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Abstract

Under current analysis, tardiness bounds applica-
ble to global earliest-deadline-first scheduling and re-
lated policies depend on per-task worst-case execution
times. By splitting job budgets to create subjobs with
shorter periods and worst-case execution times, such
bounds can be reduced to near zero for implicit-deadline
sporadic task systems. However, doing so will re-
sult in more preemptions and could create problems
for synchronization protocols. This paper analyzes this
tradeoff between theory and practice by presenting an
overhead-aware schedulability study pertaining to job
splitting. In this study, real overhead data from a
scheduler implementation in LITMUSRT was factored
into schedulability analysis. This study shows that de-
spite practical issues affecting job splitting, it can still
yield substantial reductions in tardiness bounds.

1 Introduction

For implicit-deadline sporadic task systems, a num-
ber of optimal multiprocessor real-time scheduling al-
gorithms exist that avoid deadline misses in theory, as
long as the system is not overutilized (e.g., [2, 13, 14]).
However, all such algorithms cause jobs to experience
frequent preemptions and migrations or are difficult to
implement in practice.

For some applications, such as multimedia systems,
some deadline tardiness is acceptable. For these appli-
cations, scheduler options exist that have many of the
advantages of optimal algorithms but without the asso-
ciated practical concerns. In particular, a wide variety
of global algorithms exist that are reasonable to im-
plement, do not give rise to excessive preemptions and
migrations, and can ensure per-task tardiness bounds
while allowing full platform utilization [12]. Such al-
gorithms include the global earliest deadline first (G-
EDF ) scheduler and the improved global fair lateness
(G-FL) scheduler [6, 7, 9, 10]. G-FL (see Sec. 2) is con-
sidered a G-EDF-like (GEL) scheduler, because under
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Figure 1: Key for schedules.

Figure 2: τ scheduled with G-EDF. The key in Fig. 1
is assumed in this and subsequent figures. τi,j denotes
the jth job of task τi.

it, each job’s priority is defined by a fixed point in time
after its release, like G-EDF.

Even if some amount of tardiness is tolerable in an
application, it would still be desirable to have tardiness
bounds that are reasonably small. In current tardiness
analysis for GEL schedulers, tardiness bounds are ex-
pressed in terms of maximum job execution costs. If
such bounds are deemed too large, then one potential
solution is to split jobs into subjobs, which lowers ex-
ecutions costs, and hence tardiness bounds. However,
job splitting increases the likelihood that the original
job will be preempted/migrated frequently and thus
can increase overheads that negatively impact schedu-
lability. Also, as explained later, job splitting can cause
problems for synchronization protocols. In this paper,
we examine the practical viability of job splitting for re-
ducing tardiness bounds under GEL schedulers in light
of such complications.

Motivating example. For motivational purposes,
we will repeatedly consider example schedules of a task
system τ with three tasks, which we specify here us-
ing the notation (per-job execution cost, time between
job releases): τ1 = (4ms, 6ms) τ2 = (9ms, 12ms) and
τ3 = (14ms, 24ms). Each job of τ1, τ2, and τ3 has a
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Figure 3: τ scheduled with G-EDF, where τ3 is split
into two subjobs and the other tasks are not split.

deadline at the release time of its successor. An exam-
ple G-EDF schedule for τ is given in Fig. 2. Observe
that τ3 misses a deadline at time 24. (As demonstrated
in [7], tardiness is indeed bounded for this system.)

A continuum of schedulers. In the implementa-
tion of job splitting we propose, all job splitting is done
through budget tracking in the operating system (OS).
That is, job splitting does not require actually break-
ing the executable code that defines a task into multiple
pieces. We define the split factor of a task as the num-
ber of subjobs into which each of its jobs is split. With
any GEL scheduler, existing tardiness bounds can be
driven arbitrarily close to zero by arbitrarily increasing
such split factors. In the “limit,” i.e., when each sub-
job becomes one time unit (or quantum) in length, a
GEL algorithm becomes similar in nature to algorithms
within the Pfair family of optimal schedulers [2]. One
can thus view task split factors as tuning parameters
that can be set to select a desired scheduler within a
continuum of schedulers to achieve desired tardiness
bounds. If tardiness were the only issue, then split fac-
tors would naturally be set arbitrarily high, but this
raises practical concerns, as discussed earlier.

Returning to our example task system, Fig. 3 depicts
a schedule for τ under G-EDF in which each job of τ3
is split into two subjobs. Note that splitting is done
in a way that preserves the task’s original utilization.
In this example, the tardiness of τ3 is reduced by 1ms,
and no additional preemptions happen to be necessary.

Related work on job splitting. The idea of job
splitting is not new and has been applied in other con-
texts. For example, in [5], job splitting is proposed for
reducing jitter in a control system. In that work, each
job is split into three subjobs: the first reads data, the
second performs necessary calculations, and the third
outputs a control action. Priorities are selected to make
the time between control actions as consistent as pos-
sible. Job splitting has also been proposed as a way
to make rate-monotonic (RM) priorities reflect criti-
cality [15]: job splitting can be applied to a critical
task to reduce its period, and hence elevate its prior-

ity under RM scheduling. The implementation of job
splitting in RT-Linux on a uniprocessor has also been
studied [17]. Additionally, a splitting technique similar
to ours has been proposed to achieve mixed-criticality
schedulability on a uniprocessor [16]. These are just a
few examples concerning the use of job splitting that
can be found in the literature.

Contributions. Our goal herein is to assess the prac-
tical usefulness of job splitting to reduce tardiness in
GEL schedulers. In the first part of the paper (Secs. 4-
6), we describe how to implement job splitting in the
OS by properly managing task budgets. We explain
the needed budget management by first considering
systems in which critical sections due to the use of syn-
chronization protocols are not present, and by then dis-
cussing modifications that critical sections necessitate.
Since the efficacy of job splitting depends on overheads,
we also describe relevant overheads that must be con-
sidered and explain how they can be accounted for in
schedulability analysis. For ease of exposition, we limit
attention to G-EDF throughout this part of the paper
because, within the class of GEL schedulers, G-EDF is
the most widely understood algorithm.

In the second part of the paper (Sec. 7), we present
an experimental evaluation of job splitting. In this part
of the paper, we focus on G-FL because it (provably)
has the best tardiness bounds of any GEL scheduler
(using current analysis techniques) [7]. All of the re-
sults presented for G-EDF in the first part of the paper
are easily adapted to apply to G-FL. In our evaluation,
we utilize a new heuristic algorithm that automatically
determines split factors. This algorithm is a contri-
bution in itself as it frees programmers from having
to specify split factors. We evaluate the usefulness of
job splitting by comparing tardiness bounds that re-
sult with and without this heuristic algorithm applied
(i.e., with job splitting and without it). In these exper-
iments, real measured overheads from an implementa-
tion of G-FL in LITMUSRT [3] were applied and task
systems both with and without critical sections were
considered. The results of these experiments are quite
striking. Our heuristic algorithm was found to often en-
able significant tardiness-bound reductions, even when
a synchronization protocol is used. Reductions in the
range 25% to 80% were quite common.

Before presenting the results summarized above, we
first present needed background and discuss related
work in more detail (Secs. 2-3).

2 Task Model

We consider a system τ of n implicit deadline spo-
radic tasks τi = (Ti, Ci) running on m ≥ 2 processors,
where Ti is the minimum separation time between sub-
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sequent releases of jobs of τi, and Ci ≤ Ti is the worst-
case execution time of any job of τi. We denote the
jth job of τj as τi,j . We assume that n > m. If this
is not the case, then each task can be assigned its own
processor, and each job of each τi will complete within
Ci time units of its release. We assume that the OS
enforces execution budgets, so that each job runs for
at most Ci time units. We also assume that he rel-
ative deadline of each job equals its period. We use
Ui = Ci/Ti to denote the utilization of τi. All quanti-
ties are real-valued. We assume that∑

τi∈τ
Ui ≤ m, (1)

which was demonstrated in [12] to be a necessary con-
dition for the existence of tardiness bounds.

The focus of this work is the splitting of jobs into
smaller subjobs with smaller periods and worst-case ex-
ecution times, as depicted in Figs. 2–3. To distinguish
between a task before splitting (e.g., τ3 in Fig. 2) and
the same task after splitting (τ3 in Fig. 3), we define

τ basei as the base task before splitting and τspliti as the
split task after splitting. To disambiguate between base
and split tasks, we also use superscripts on parameters:
Cbase, Csplit, U base, etc. A job of a base task is called
a base job, while a split task is instead composed of
subjobs of base jobs. We define the split factor of τ basei ,
denoted si, to be the number of subjobs per base job.
In Fig. 3, s3 = 2. The subjobs of a base job τ basei,j are
denoted τi,j,0, τi,j,1, . . . , τi,j,si−1. τi,j,0 is its initial sub-
job (e.g., the first subjob τ3,1,0 of τ base3,1 in Fig. 3) and
τi,j,si−1 is its final subjob (e.g., the second subjob τ3,1,1
of τ base3,1 in Fig. 3). The longest time that any job of

τ basei waits for or holds a single outermost lock is de-
noted bi. Split tasks use a variant of the sporadic task
model that is described in Sec. 6, but the sporadic task
model is assumed prior to Sec. 6.

If a job has absolute deadline d and completes ex-
ecution at time t, then its lateness is t − d, and its
tardiness is max{0, t − d}. If such a job was released
at time r, then its response time is t − r. We bound
these quantities on a per-task basis, i.e., for each τi,
we consider upper bounds on these quantities that ap-
ply to all jobs of τi. The max-lateness bound for τ is
the largest lateness bound for any τi ∈ τ . Similarly,
the max-tardiness bound for τ is the largest tardiness
bound for any τi ∈ τ .

Let τi,j be a job of task τi released at time ri,j . The
relative deadline (of the task) is Ti, and the absolute
deadine (of the job) is ri,j +Ti. A scheduler is G-EDF-
like (GEL) if the priority of τi,j is ri,j + Yi, where Yi
is constant across all jobs of τi. Yi is referred to as the
relative priority point (of the task) and ri,j + Yi as the
absolute priority point (of the job). G-EDF is the GEL

scheduler with Yi = Ti, and G-FL is the GEL scheduler
with Yi = Ti − m−1

m Ci [7].
When a non-final subjob completes, the resulting

change in deadline is a deadline move (DLM). In Fig. 3,
a DLM occurs at time 14 for τ3.

3 Prior Work

In this section, we discuss prior work that we uti-
lize. In Sec. 3.1, we discuss work relating to tardiness
bounds, and in Sec. 3.2, we discuss work relating to
overhead analysis.

3.1 Tardiness Bounds

In this subsection, we will briefly review relevant
prior work for computing tardiness bounds. The pur-
pose of this review is to show that prior tardiness
bounds each approach zero as the maximum Ci in the
system approaches zero. We will use the notation de-
scribed in Sec. 2 rather than the original notation in
the relevant papers. Tardiness bounds for G-EDF were
originally considered in [6]. That work defines a value

x =

∑
m−1 largest Ci −minτi∈τ Ci

m−
∑
m−2 largest Ui

such that no task τi will have tardiness greater than
x + Ci. An improved, but more complex, bound was
introduced in [9]. While these works focused on G-
EDF itself, [7] proposed G-FL as a new scheduler with
analysis similar to the analysis of G-EDF in [9]. G-FL
usually provides a smaller maximum lateness bound
for the task system. These improvements are based
on analysis following the same basic proof structure as
[6], and they maintain the property that all tardiness
bounds approach zero as the maximum Ci in the sys-
tem approaches zero.

3.2 Overhead Analysis

In order to determine the schedulability of a task
system in practice, it is necessary to determine rele-
vant system overheads and to account for them in the
analysis. We use standard methods from [3], where
Brandenburg provides accounting methods to do so for
several different schedulers, including G-EDF. Due to
space constraints, we only provide here a brief overview
of the types of overheads considered in [3]. For com-
plete analysis, please consult [3].

Consider Fig. 4, which depicts a subset of the sched-
ule in Fig. 2 with some additional overheads included.

1. From the time when an event triggering a re-
lease (e.g., a timer firing) occurs to the time that
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Figure 4: A subset of the schedule from Fig. 2 with overheads included. The execution times have been slightly
reduced to make room for overheads.

the corresponding interrupt is received by the OS,
there is event latency, denoted ev (at time 18) in
Fig. 4.

2. When the interrupt is handled, the scheduler must
perform release accounting and may assign the re-
leased job to a CPU. This delay is referred to as
release overhead, denoted rel (after time 18) in
Fig. 4.

3. If the job is to be executed on a CPU other than
the one that ran the scheduler, then an inter-
processor interrupt (IPI ) must be sent. In this
case, the job will be delayed by the IPI latency of
the system, denoted ipi (after time 18) in Fig. 4.

4. The scheduler within the OS must run when the
IPI arrives (before time 19), creating scheduling
overhead, denoted sch.

5. After the scheduling decision is made, a context
switch must be performed (time 19). Context
switch overhead is denoted cxs in Fig. 4.

Observe from Fig. 2 that τ3,1 had previously been
preempted by τ1,3 at time 12. As a result of this earlier
preemption, it experiences three additional costs when
it is scheduled again after time 16.

1. When τ3,1 is scheduled again (time 16), it will in-
cur another scheduling overhead sch and context
switch overhead cxs.

2. Because τ3,1 was preempted, some of its cached
data items and instructions may have been evicted
from caches by the time it is scheduled again. As
a result, τ3,1 will require extra execution time in
order to repopulate caches. Although not depicted
in Fig. 4, observe from Fig. 2 that τ3,1 is migrated
to another processor at time 21, which may cause

even greater cache effects. The added time to re-
populate caches is called cache-related preemption
and migration delay (CPMD) and is denoted cpd
(before time 17) in Fig. 4.

Another overhead that occurs is the presence of in-
terrupts, both from the periodic timer tick and from
job releases. The maximum time for the timer tick in-
terrupt service request routine is denoted tck in Fig. 4
(time 15), and the maximum cache-related delay from
an interrupt is denoted cid in Fig. 4 (after time 15).

4 Split G-EDF Scheduling Algorithm

In this section, we describe the OS mechanisms nec-
essary to implement job splitting under G-EDF. Al-
though we will require the system designer to specify
the split factor si for each job, we do not require the
jobs to be split a priori. Instead, the OS will use the
budget tracking schemes described in this section to
perform DLMs at the appropriate times.

When certain events occur, the scheduler within the
OS is called. We refer to this call as a reschedule. For
example, a reschedule occurs whenever a job completes,
so that another job can be selected for execution. In
our implementation of splitting in LITMUSRT, part of
the scheduling process involves checking whether the
currently executing job needs a DLM and to perform
the DLM if so.

In this section, let Cspliti = Cbasei /si and T spliti =

T basei /si. For example, in Fig. 3, Csplit3 = 14/2 = 7

and T split3 = 24/2 = 12.
The tardiness analysis reviewed in Sec. 3.1 contin-

ues to hold if jobs become available for execution before
their release times, as long as their deadlines are based
on release times that follow the minimum separation
constraint. The technique of allowing jobs to run be-
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fore their release times is called early releasing [1]. Al-
lowing subjobs to be released early may prevent tasks
from suspending unnecessarily and allows us to alter
the deadline of a job τi,j only when it has executed for

a multiple of Cspliti . With early releasing, we do not
have to consider the wall clock time when determining
a split job’s deadline, because we can instead consider
its cumulative execution time. In addition, in Sec. 5 we
will discuss how early releasing prevents the same job
from having to incur certain overheads multiple times.

We will track the budget of each τi,j in order to sim-

ulate the execution of τi,j,0, τi,j,1, . . . τi,j,si with T spliti

time units between each pair of subjob releases and
with each subjob executing for Cspliti time units. In
order to do so, we define several functions below with
respect to time. These functions are only defined for
time t such that τ basei has a job that is ready for execu-
tion (released and predecessor has completed) but has
not completed. We let Ji(t) denote this job. For ex-
ample, in Fig. 3, J3(t) denotes τ base3,1 for any t ∈ [0, 27),

and τ base3,2 after t = 27. Several of these functions are
explicitly labelled as “ideal” functions that ignore crit-
ical sections — deviation from “ideal” behavior due to
critical sections will be described in Sec. 6.

• The current execution ei(t) is the amount of ex-
ecution that Ji(t) has already completed before
time t. In Fig. 3, e3(4) = 0 and e3(5) = 1. Our
definition of ei(t) allows us to keep track of how
many subjobs of Ji(t) have already completed.

• The current release ri(t) is the release time of Ji(t).
Note that ri(t) is the release time of the current
base job, not the current subjob. In Fig. 3, r3(4) =
r3(17) = 0 and r3(29) = 24.

• The ideal subjob ji(t) is the index of the subjob of
Ji(t) that should be executing at time t, ignoring
the effect of critical sections. In other words, it is
the index of the subjob that should be executing
based on the number of multiples of Cspliti that
Ji(t) has completed by time t. It is defined as
follows:

ji(t) =

⌊
si · (ei(t))
Cbasei

⌋
. (2)

In Fig. 3, j3(4) = 0, j3(17) = 1, and j3(29) = 0.
(Recall that subjobs are zero-indexed.)

• The ideal next DLM vi(t) is the time for the next
DLM after time t, ignoring the effect of critical
sections and assuming that Ji(t) is scheduled con-
tinously from time t until vi(t). In other words,
it is when the current ideal subjob should end as-
suming that it is not preempted. It is defined as
follows:

vi(t) = t+ (ji(t) + 1)Cbasei /si − ei(t). (3)

In Fig. 3, v3(4) = 11. Observe that, because τ3,1,0
is actually preempted at time 6, the DLM actually
does not occur until time 14.

• The ideal subjob release ρi(t) is the release time for
the current ideal subjob. It is defined as follows:

ρi(t) = ri(t) + T spliti ji(t). (4)

(4) reflects that the subjobs are released every

T spliti time units, and the first subjob is released
at the same time as the corresponding base job.
In Fig. 3, ρ3(4) = 0. Although it does not occur
in Fig. 3, it is possible (due to early releasing) for
the ideal subjob release to be after that subjob
actually commences execution.

• The ideal deadline di(t) is the deadline that should
be active for Ji(t) at time t, ignoring the effect of
critical sections. In other words, it is the deadline
of the ideal subjob ji(t). It is defined as follows:

di(t) = ρi(t) + T spliti (5)

(5) follows from the definition of G-EDF schedul-
ing. In Fig. 3, d3(4) = 12.

• The current deadline δi(t) is the deadline that the
scheduler actually uses for Ji(t) at time t. This
value is maintained by the budget tracking algo-
rithm we describe in this section, rather than being
merely a definition like the functions above. Be-
cause there are no critical sections in Fig. 3 (as we
are assuming in this section), δi(t) equals di(t) for
all i and all t. Therefore, δ3(4) is 12.

With these definitions in place, we define budget
tracking rules in order to maintain the invariant δi(t) =
di(t).

• R1. If a job of τ basei is released at time t, then
δi(t) is assigned to di(t).

In Fig. 3, applying this rule at time 0, we have
δi(0) = 12.

• R2. Whenever a non-final subjob of τ basei is sched-
uled at time t to run on a CPU, a DLM timer
is assigned to force a reschedule on that CPU at
time vi(t). Whenever τ basei is preempted, the DLM
timer is cancelled.

In the schedule depicted in Fig. 3, the DLM timer
for τ3 is set at time 4 to fire at time v3(4) = 11.
However, the DLM timer is cancelled at time 6
when τ3 is preempted. When τ3 is selected for
execution again at time 9, the DLM is set to fire
at time 14. It does fire at that time and forces a
reschedule. Because only the final subjob remains,
the timer is not set at time 16.
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• R3. Whenever the scheduler is called on a CPU
that was running τ basei at time t, δi(t) is assigned
the value di(t).

In Fig. 3, the scheduler is called several times on a
CPU that was running τ base3 , including at times 6
and 14. At time 6, di(t) = δi(t) already held, so
a DLM does not occur. However, a DLM occurs
at time 14 because di(t) > δi(t) is established,
causing δi(t) to be updated.

5 Overhead Analysis

We now describe how to implement job splitting in
an efficient manner, describing how the overheads from
our implementation will differ from those in Sec. 3.2. In
this section we continue to assume the absence of crit-
ical sections; critical sections will be handled in Sec. 6.
An illustration of overheads due to job splitting is given
in Fig. 5.

Whenever a DLM is necessary by Rule R3 above,
the scheduler can simulate a job completion for the old
subjob (with the old deadline), followed by an immedi-
ate arrival for the new subjob (with the new deadline).
The same situation occurs when a tardy job completes
after the release of its successor. Therefore, the same
accounting can be used for both the case where the
DLM timer fires, ending the subjob on its processor,
and for the case of a normal job completion.

Having considered the direct overheads produced by
DLMs, we now consider other relevant overheads that
happen while running the system. As a simple over-
head accounting method, we can simply analyze split
tasks rather than base tasks, treating subjobs as jobs.
It is necessary to account for the cache-related delays
that can be caused by the preemption of the base job
between subjobs, because this preemption is not neces-
sarily caused by a new release. Treating each subjob as
a base job is actually more pessimistic than necessary.
When the release timer fires on behalf of a task, the
time spent processing the resulting interrupt may de-
lay part of the execution of a different task. However,
the time spent processing the DLM timer interrupt will
not delay any other task. (If a different task is selected
after the DLM, that case does not differ from a normal
job completion, as discussed above.) When the system
in Fig. 3 is executed, a release interrupt for τ3,1 will
only occur at time 0, not at time 14.

In addition, each non-initial subjob becomes avail-
able immediately when its predecessor completes. Be-
cause the scheduler in LITMUSRTdoes not release the
global scheduler lock between processing a job comple-
tion and the next arrival, if the new subjob has suffi-
cient priority to execute, then it will run on the same
CPU as its predecessor. There are two improvements

that are made possible by this observation. First, only
the initial subjob of each base job can experience event
latency or require an IPI. Second, only the first sub-
job of each base job can preempt another job and thus
cause preemption-related overheads.

6 Handling Critical Sections

One of the advantages of GEL schedulers is that they
are job-level static priority (JLSP) algorithms, which
is important for synchronization mechanisms such as
those discussed in [3]. However, when splitting is in-
troduced, a GEL algorithm is no longer truly JLSP.
If a subjob ends while waiting for or holding a lock,
then the priority of the underlying job is changed, po-
tentially violating the assumptions of synchronization
algorithms. Furthermore, if a locking protocol oper-
ates nonpreemptively, then it is not possible to split a
job while it is waiting for or holding a critical section.
Fortunately, we can solve both problems by simply ex-
tending subjob budgets for as long as a resource re-
quest is active. A similar technique was proposed for
aperiodic servers in [11].

In order to support the necessary budget extensions,
we use a more complicated set of rules than those de-
scribed in Sec. 4. To illustrate the behavior of our mod-
ified algorithm, in Fig. 6 we present a modification of
the schedule from Fig. 3 with the addition of critical
sections. Our new rules allow the budget for a subjob
to be extended when its DLM is delayed. Furthermore,
because this delay does not change the expressions for
ji(t), vi(t), ρi(t), or di(t), the next subjob implicitly
has its budget shortened. Essentially, we are only al-
lowing each DLM to “lag” behind the ideal DLM by at
most bi units of the corresponding base job’s execution.
It is even possible for a subjob to be implicitly skipped
by this mechanism if bi > Cspliti .

• R1. If a job of τ basei is released at time t, then
δi(t) is assigned to di(t).

This rule is identical to Rule R1 from Sec. 4.

• R2. Whenever a non-final subjob of τ basei is sched-
uled at time t to run on a CPU, a DLM timer
is assigned to force a reschedule on that CPU at
time vi(t). Whenever τ basei is preempted, or τ basei

requests a resource, the DLM timer is cancelled.

In the schedule in Fig. 6, the DLM timer for τ3 is
set at time 9 to fire at time 14, but is cancelled at
time 13 when τ base3 requests a resource. Because
only a final subjob remains after time 15, however,
the timer will not be set again.

• R3. Whenever a critical section ends, if di(t) >
δi(t), then a reschedule is forced.
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Figure 5: A subset of the schedule from Fig. 3 with some overheads included.

Figure 6: τ scheduled with G-EDF, where τ3 is split
into two subjobs, the other tasks are not split, and
critical sections are present.

Observe in Fig. 6 that for t ∈ [14, 15), the cur-
rent subjob of τ3,1 (according to deadline) is an
earlier subjob than j3(t). Thus, when the critical
section ends, a DLM should occur. Triggering a
reschedule will cause the needed DLM.

• R4. Whenever the scheduler is called on a CPU
that was running τ basei at time t, if di(t) > δi(t),
then δi(t) is assigned the value di(t).

This rule is identical to Rule R3 in Sec. 4 and
functions the same way. However, the scheduler
could have been invoked either due to Rule R2 or
Rule R3 as modified above. In Fig. 6 it is invoked
due to Rule R3 at time 15.

We let Cspliti denote the ideal worst-case execution
time of a subjob, ignoring critical sections. When we
account for critical sections, a single subjob of a job
from τi can run for as long as Cspliti + bi. Nonetheless,
τi’s processor share over the long term is not affected,
because the total execution of all subjobs must be the
execution of the base job. The tardiness analysis pro-
vided in [7] can be modified in a straightforward man-
ner to provide tardiness bounds that are increased by
approximately bi with no utilization loss.

7 Experiments

In order to test the benefits that splitting has on
tardiness bounds on a real system, we measured the
overheads for G-FL with splitting in a manner similar
to the overhead measurements in [3]. We tested the
results on a 24-core Xeon L7455 (2.13GHz) system with
64GB of RAM. On that system, pairs of cores share an
L2 cache and the cores on each six-core chip share an
L3 cache.

[3] reports that the best scheduler for bounded tardi-
ness is clustered earliest-deadline-first, where CPUs are
grouped by either L2 cache (C-EDF-L2) or L3 cache
(C-EDF-L3). If a release master (RM) is used, then
the first CPU is dedicated to handling interrupts. In
such cases, we add “-RM” to the name of the scheduler,
and the first cluster has one less CPU than the other
clusters. Whether an RM is used or not, G-EDF is used
on each cluster. Because G-FL provides better maxi-
mum tardiness bounds than G-EDF, as demonstrated
in [7], we instead define the clustered fair lateness (C-
FL) scheduler, where CPUs are grouped by L2 cache
(C-FL-L2) or L3 cache (C-FL-L3), with or without an
RM.

We assigned tasks to clusters using a worst-fit de-
creasing heuristic: we ordered tasks by decreasing uti-
lization, and we placed each task in order on the CPU
with the most remaining capacity.

Heuristic for Determining si. In order to use
splitting to reduce tardiness bounds, it is necessary
to determine appropriate si values for the tasks. To
do so, we used a simple heuristic algorithm. A short
description follows.

• A task τi is split-beneficial if adding 1 to si results
in a smaller maximum lateness bound for the en-
tire task system.

• A task τi is saturated if adding 1 to si results in a
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system with unbounded tardiness.

• When trying to find a split-beneficial τi within a
cluster, we first order tasks based on their contri-
bution to the lateness bound. Because this order-
ing depends on the full algorithm for computing
lateness bounds, we provide the details in [8]. We
then loop through the tasks and stop upon finding
a split-beneficial task τi. If we find such a split-
beneficial task, we permanently increase its si by
1. During the loop, we mark saturated tasks, and
we skip tasks known to be saturated.

• To find a good splitting, we repeatedly try to find
a split-beneficial task in the cluster with the maxi-
mum lateness bound. (The particular cluster that
has the maximum lateness bound can change each
time we find a split-beneficial task.) If there is
no split-beneficial task in that cluster, then we at-
tempt to find split-beneficial tasks in the remain-
ing clusters in case doing so reduces system-wide
locking overheads. When we do not find any split-
beneficial task, we terminate the algorithm.

Task Set Generation. To determine the benefits
of splitting, we generated implicit-deadline task sets
based on the experimental design in [3]. We gener-
ated task utilizations using either a uniform, a bi-
modal, or an exponential distribution. For task sets
with uniformly distributed utilizations, we used ei-
ther a light distribution with values randomly chosen
from [0.001, 0.1], a medium distribution with values
randomly chosen from [0.1, 0.4], or a heavy distribu-
tion with values randomly chosen from [0.5, 0.9]. For
tasks sets with bimodally distributed utilizations, val-
ues were chosen uniformly from either [0.001, 0.5] or
[0.5, 0.9], with respective probabilities of 8/9 and 1/9
for light distributions, 6/9 and 3/9 for medium distri-
butions, and 4/9 and 5/9 for heavy distributions. For
task sets with exponentially distributed utilizations, we
used exponential distributions with a mean of 0.10 for
light distributions, 0.25 for medium distributions, and
0.50 for heavy distributions. Utilizations were drawn
until one was generated between 0 and 1. We gener-
ated integral task periods using a uniform distribution
from [3ms, 33ms] for short periods, [10ms, 100ms] for
moderate periods, or [50ms, 250ms] for long periods.

When testing the behavior with locking, critical sec-
tions were chosen uniformly from either [1µs, 15µs] for
short critical sections, [1µs, 100µs] for medium criti-
cal sections, or [5µs, 1280µs] for long critical sections.
We denote the number of resources as nr and per-
formed tests with nr = 6 and nr = 12. We denote
the probability that any given task accesses a given
resource as pacc and performed tests with pacc = 0.1
and pacc = 0.25. For a task using a given resource, we
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Figure 7: Light Uniform Utlization, Short Uniform Pe-
riods.

generated the number of accesses uniformly from the
set {1, 2, 3, 4, 5}. These parameter choices are a sub-
set of those used in [3] because, unlike [3], we chose
to perform experiments on a larger variety of working
set sizes to facilitate better comparisons with exper-
iments without locking. An implementation study in
[4] demonstrated that for typical soft real-time applica-
tions, the vast majority of critical sections are less than
10µs. Therefore, the short critical section distribution
is likely to be the most common in practice.

For each tested set of distribution parameters, we
generated 100 task sets for each utilization cap of the
form 24i

20 where i is an integer in [1, 20]. Tasks were
generated until one was created that would cause the
system to exceed the utilization cap, which was then
discarded. We tested each task set with each cluster
size, with and without an RM, and for tests involv-
ing locking we used the mutex queue spinlock locking
protocol (see [3]). We ignored task sets that were ei-
ther not schedulable under C-FL (without splitting)
or that resulted in zero tardiness, because our goal
was to show improvements upon previously available
schedulers. For each task set that was schedulable,
we applied task splitting using the algorithm described
above and compared the maximum tardiness bound be-
fore and after splitting. (Because si = 1 is allowed by
our algorithm, every considered task set is scheduable
under C-FL with splitting by definition.)

Results. Examples of results without locking are de-
picted in Figs. 7 and 8, which have the same key. (Ad-
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Figure 9: Medium Bimodal Utilization, Long Uniform
Periods, WSS = 128KB. Graph with respect to utiliza-
tion instead of WSS.

ditional results can be found in [8]. In total, our exper-
iments resulted in several hundred graphs.) Observe
that improvements over 25% are common, and can be
nearly 100% in some cases. Because task systems with
higher working set sizes are more likely to be unschedu-
lable even without splitting, higher working set sizes of-
ten represent significantly smaller groups of tasks and
are skewed towards task sets with smaller utilization.
This can cause a nonincreasing trend in the tardiness
bounds with increased working set sizes for C-FL, but
our purpose is to compare the effect of splitting when
bounded tardiness is already achievable by C-FL. An
overall trend from our experiments was that splitting
provides more benefit when jobs are longer (larger uti-
lizations and longer periods.) This phenomenon oc-
curs because the additional overheads from splitting
are proportional to the split factor rather than the
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job length, so the additional overheads are relatively
smaller in comparison to longer jobs.

Fig. 9 has the same key as Figs. 7 and 8, but depicts
the difference in bounds with respect to the system
utilization cap rather than the working set size. Ob-
serve that the bounds with splitting (dashed lines) tend
to grow more slowly than the bounds without split-
ting (solid lines) until they grow drastically before all
tested task sets were unschedulable. This phenomenon
occurs because the overheads from splitting use some
of the system’s remaining utilization, and when very
little utilization is available the tasks cannot be split
as finely.

Figs. 10, 11, and 12 share a key (distinct from that
of Figs. 7–9) and depict the behavior of the system in
the presence of locks. Observe that significant gains
from splitting are available most of the time. However,
for C-FL-L3-RM with long locks, there is no benefit to
splitting.

8 Conclusions

Tardiness bounds established previously for GEL
schedulers can be lowered in theory by splitting jobs.
However, such splitting can increase overheads and cre-
ate problems for locking protocols. In this paper, we
showed how to incorporate splitting-related costs into
overhead analysis and how to address locking-related
concerns. We then applied these results in a schedu-
lablity study in which real measured overheads were
considered. This study suggests that job splitting can
viably lower tardiness bounds in practice.
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Figure 11: Medium Bimodal Utilization, Long Uniform
Periods, Medium Critical Sections, nr = 6, pacc = 0.25.
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