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Abstract—With data services in the cloud, users can easily
modify and share data as a group. To ensure data integrity can
be audited publicly, users need to compute signatures on all the
blocks in shared data. Different blocks are signed by different
users due to data modifications performed by different users.
For security reasons, once a user is revoked from the group, the
blocks, which were previously signed by this revoked user must
be re-signed by an existing user. The straightforward method,
which allows an existing user to download the corresponding
part of shared data and re-sign it during user revocation, is
inefficient due to the large size of shared data in the cloud. In
this paper, we propose a novel public auditing mechanism for the
integrity of shared data with efficient user revocation in mind. By
utilizing proxy re-signatures, we allow the cloud to re-sign blocks
on behalf of existing users during user revocation, so that existing
users do not need to download and re-sign blocks by themselves.
In addition, a public verifier is always able to audit the integrity
of shared data without retrieving the entire data from the cloud,
even if some part of shared data has been re-signed by the cloud.
Experimental results show that our mechanism can significantly
improve the efficiency of user revocation.

I. INTRODUCTION

With data storage and sharing services, such as Google

Drive, provided by the cloud, people can easily work together

as a group by sharing data with each other. More specifically,

once a user creates shared data in the cloud, every user in the

group is able to not only access and modify shared data, but

also share the latest version of the shared data with the rest of

the group. Although cloud providers promise a more secure

and reliable environment to the users, the integrity of data in

the cloud may still be compromised, due to the existence of

hardware/software failures and human errors [1], [2].

To protect the integrity of data in an untrusted cloud, a

number of mechanisms [2]–[9] have been proposed. In these

mechanisms, a signature is attached to each block in data,

and the integrity of data relies on the correctness of these

signatures. One of the most significant and common features

of these mechanisms is their ability to allow not only the

data owner, but also a public verifier, such as a third party

auditor (TPA), to check data integrity in the cloud without

downloading the entire data, referred to as public auditing.

Most of the previous works [2]–[7], [9] focus on auditing the

integrity of personal data. Different from these works, our

recent work [8] focuses on how to preserve identity privacy

from the TPA when auditing the integrity of shared data.

Unfortunately, none of the previous works, including our own,

considers the efficiency of user revocation when auditing the

correctness of shared data in the cloud.

With shared data, once a user modifies a block, she also

needs to compute a new signature for the modified block. Due

to the modifications from different users, different blocks are

signed by different users. For security reasons, when a user

leaves the group or misbehaves, this user must be revoked

from the group. As a result, this revoked user should no

longer be able to access and modify shared data, and the

signatures generated by this revoked user are no longer valid

to the group [10]. Therefore, although the content of shared

data is not changed during user revocation, the blocks, which

were previously signed by the revoked user, still need to be

re-signed by an existing user in the group, so that, after the

revocation, the integrity of the entire data can still be verified

with the public keys of existing users only.

Since shared data is outsourced to the cloud and users no

longer store it on local devices, the straightforward method to

re-compute these signatures during user revocation (as shown

in Fig. 1) is to allow an existing user to first download the

blocks signed by the revoked user, verify the correctness of

these blocks, then re-sign these blocks, and finally upload

the new signatures to the cloud. However, this straightfor-

ward method may cost the existing user a huge amount of

communication and computation resources by downloading

and verifying blocks, and by re-computing and uploading

signatures, especially when the number of re-signed blocks

is quite large or the membership of the group is frequently

changing. To make matters worse, the size of shared data in

the cloud is generally large, which further prevents existing

users from downloading and re-signing data efficiently.

A block signed by Alice A block signed by BobA B

A A A A A B A B B

A A A A A A AA A A

Before Bob is revoked

After Bob is revoked

B

Cloud

Cloud

Alice

1. Download blocks

4. Upload signatures

3. Re-compute signatures{ 2. Verify blocks

Fig. 1. Alice and Bob share data in the cloud. When Bob is revoked, Alice
re-signs the blocks that were previously signed by Bob with her private key.

Clearly, if the cloud could possess each user’s private key, it



can easily finish the re-signing task for existing users without

asking them to download and re-sign blocks. However, since

the cloud is not in the same trusted domain with each user in

the group, outsourcing every user’s private key to the cloud

would introduce significant security issues. Another important

problem we need to consider is that the re-computation of

any signature during user revocation should not affect the most

attractive property of public auditing — auditing data integrity

publicly without retrieving the entire data. Therefore, how

to efficiently reduce the significant burden to existing users

introduced by user revocation, and still allow a public verifier

to check the integrity of shared data without downloading the

entire data from the cloud, is a challenging task.

In this paper, we propose a novel public auditing mechanism

for the integrity of shared data with efficient user revocation in

an untrusted cloud. In our mechanism, by utilizing the idea of

proxy re-signatures [11], once a user in the group is revoked,

the cloud is able to re-sign the blocks, which were signed

by the revoked user, with a re-signing key (as presented in

Fig. 2). As a result, the efficiency of user revocation can be

significantly improved, and computation and communication

resources of existing users can be easily saved. Meanwhile, the

cloud, who is not in the same trusted domain with each user,

is only able to convert a signature of the revoked user into a

signature of an existing user on the same block, but it cannot

sign arbitrary blocks on behalf of either the revoked user or an

existing user. By designing a new proxy re-signature scheme

with nice properties, which traditional proxy re-signatures do

no have, even after the cloud re-signs any block, a public

verifier is always able to check the integrity of shared data

without retrieving the entire data from the cloud.
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Fig. 2. When Bob is revoked, the cloud re-signs the blocks that were
previously signed by Bob with a re-signing key.

The remainder of this paper is organized as follows: In

Sec. II, we present the system model, threat model and design

goals. Then, we introduce several cryptographic primitives

in Sec. III. Detailed design and security analysis of our

mechanism are presented in Sec. IV and Sec. V. We evaluate

the performance of our mechanism in Sec. VI. Finally, we

briefly discuss related work in Sec. VII, and conclude this

paper in Sec. VIII.

II. PROBLEM STATEMENT

In this section, we describe the system and threat model of

this paper, and illustrate the design goals of our public auditing

mechanism.

A. System and Threat Model

In this paper, the system model includes three entities: the

cloud, the third party auditor (TPA), and users who share data

as a group (as illustrated in Fig. 3). The cloud offers data

storage and sharing services to users. The TPA is able to

publicly audit the integrity of shared data in the cloud for

users. In a group, there is one original user and a number of

group users. The original user is the original owner of data.

This original user creates and shares data with other users in

the group through the cloud. Both the original user and group

users are able to access, download and modify shared data.

Shared data is further divided into a number of blocks. A user

can modify a block in shared data by performing an insert,

delete or update operation on the block.
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Fig. 3. The system model includes the cloud, the TPA, and users.

Generally, the integrity of shared data is threatened by three

factors. First, the cloud service provider may inadvertently

pollute shared data due to hardware/software failures and

human errors. Second, an external adversary may try to corrupt

shared data in the cloud, and prevent users from using shared

data correctly. Third, a revoked user, who no longer has the

right as existing users, may try to illegally modify shared data.

Considering these threats, users do not fully trust the cloud

with the integrity of shared data.

To protect the integrity of shared data, each block in shared

data is attached with a signature, which is computed by one

of the users in the group. When shared data is initially created

by the original user in the cloud, all the signatures on shared

data are computed by the original user. After that, once a user

modifies a block, this user also needs to sign the modified

block with his/her own private key. By sharing data among

a group of users, different blocks may be signed by different

users due to modifications from different users.

When a user in the group leaves or misbehaves, the group

needs to revoke this user. Generally, as the creator of shared

data, the original user acts as the group manager and is able to

revoke users on behalf of the group. Once a user is revoked,

the signatures computed by this revoked user become invalid

to the group, and the blocks that were previously signed by

this revoked user need to be re-signed by an existing user, so

that the correctness of the entire data can still be verified with

the public keys of existing users only.



Note that allowing every user in the group to share a

common group private key and sign each block with it, is also

a possible way to protect the integrity of shared data. However,

when a user is revoked from the group, a new group private

key needs to be securely distributed to every existing user and

all the blocks in the shared data have to be re-signed with

the new private key, which increases the complexity of key

management and affects the efficiency of user revocation.

B. Design Goals

To correctly verify the integrity of shared data with efficient

user revocation, our public auditing mechanism should achieve

the following properties: (1) Correctness: The TPA is able to

correctly check the integrity of shared data. (2) Efficient and

Secure User Revocation: On one hand, once a user is revoked

from the group, the blocks signed by the revoked user can be

efficiently re-signed. On the other hand, only existing users in

the group can generate valid signatures on shared data, and the

revoked user can no longer compute valid signatures on shared

data. (3) Public Auditing: The TPA can audit the integrity of

shared data without retrieving the entire data from the cloud,

even if some blocks in shared data have been re-signed by the

cloud.

III. PRELIMINARIES

In this section, we briefly introduce some cryptographic

techniques we will use in this paper, including bilinear maps,

homomorphic authenticators and proxy re-signatures.

A. Bilinear Maps

Let G1 and G2 be two multiplicative cyclic groups of prime

order p, g be a generator of G1. Bilinear map e is a map

e: G1 × G1 → G2 with the following properties: 1) Com-

putability: there exists an efficient algorithm for computing

map e. 2) Bilinearity: for all u, v ∈ G1 and a, b ∈ Zp,

e(ua, vb) = e(u, v)ab. 3) Non-degeneracy: e(g, g) 6= 1.

B. Complexity Assumptions

Definition 1: Computational Diffie-Hellman (CDH)

Problem. For a, b ∈ Zp, given g, ga, gb ∈ G1 as input, output

gab ∈ G1.

The CDH assumption holds in G1 if it is computationally

infeasible to solve the CDH problem in G1.

Definition 2: Discrete Logarithm (DL) Problem. For a ∈
Zp, given g, ga ∈ G1 as input, output a.

The DL assumption holds in G1 if it is computationally

infeasible to solve the DL problem in G1

C. Homomorphic Authenticators

Homomorphic authenticators [2], also called homomorphic

verifiable tags, allow a public verifier to check the integrity

of data stored in the cloud without downloading the entire

data. They have been widely used in the previous public

auditing mechanisms [2]–[9]. Besides unforgeability (only a

user with a private key can generate valid signatures), a

homomorphic authenticable signature scheme, which denotes

a homomorphic authenticator scheme based on signatures,

should also satisfy the following properties:

Let (pk, sk) denote the signer’s public/private key pair, σ1

denote the signature on block m1 ∈ Zp, and σ2 denote the

signature on block m2 ∈ Zp.

• Blockless verifiability: Given σ1 and σ2, two random val-

ues α1, α2 in Zp and a block m′ = α1m1 + α2m2 ∈ Zp,

a verifier is able to check the correctness of block m′

without knowing m1 and m2.

• Non-malleability: Given m1 and m2, σ1 and σ2, two

random values α1, α2 in Zp and a block m′ =
α1m1 + α2m2 ∈ Zp, a user, who does not have private

key sk, is not able to generate a valid signature σ′ on

block m′ by combining σ1 and σ2.

Blockless verifiability enables a verifier to audit the cor-

rectness of data in the cloud with only a linear combination

of all the blocks, while the entire data does not need to be

downloaded to the verifier. Non-malleability indicates that an

untrusted party cannot generate valid signatures on combined

blocks by combining existing signatures.

D. Proxy Re-signatures

Proxy re-signatures, first proposed by Blaze et al. [11],

allow a semi-trusted proxy to act as a translator of signatures

between two users, for example, Alice and Bob. More specif-

ically, the proxy is able to convert a signature of Alice into

a signature of Bob on the same block. Meanwhile, the proxy

is not able to learn any private keys of the two users, which

means it cannot sign any block on behalf of either Alice or

Bob. In this paper, to improve the efficiency of user revocation,

we propose to let the cloud to act as the proxy and convert

signatures for users.

IV. HOMOMORPHIC AUTHENTICABLE PROXY

RE-SIGNATURES

In this section, we first present a new proxy re-signature

scheme, which satisfies the property of blockless verifiability

and non-malleability. Then, we will describe how to construct

our public auditing mechanism for shared data based on this

proxy re-signature scheme in the next section.

A. HAPS: Construction

Because traditional proxy re-signature schemes [11], [12]

are not blockless verifiable, if we directly apply these proxy

re-signature schemes in the public auditing mechanism, then a

verifier has to download the entire data to check data integrity,

which will significantly reduce the efficiency of auditing.

Therefore, we first propose a homomorphic authenticable

proxy re-signature (HAPS) scheme, which is able to satisfy

blockless verifiability and non-malleability. Our proxy re-

signature scheme includes five algorithms: KeyGen, ReKey,

Sign, ReSign and Verify.

Scheme Details: Let G1 and G2 be two groups of order

p, g be a generator of G1, e : G1 × G1 → G2 be a bilinear

map, w be a random element of G1. The global parameters



are (e, p,G1, G2, g, w,H), where H is a hash function with

H : {0, 1}∗ → G1.

KeyGen. Given global parameters (e, p,G1, G2, g, w,H), a

user uA selects a random a ∈ Zp, and outputs his/her public

key pkA = ga and private key skA = a.

ReKey. The proxy generates a re-signing key rkA→B as

follows: (1) the proxy generates a random r ∈ Zp and sends

it to user uA; (2) user uA computes and sends r/a to user

uB , where skA = a; (3) user uB calculates and sends rb/a to

the proxy, where skB = b; (4) the proxy recovers rkA→B =
b/a ∈ Zp. (We assume that private and authenticated channels

exist between each pair of entities, and there is no collusion.)

Sign. Given private key skA = a, block m ∈ Zp and block

identifier id, user uA outputs the signature on block m as:

σ = (H(id)wm)a ∈ G1. (1)

ReSign. Given re-signing key rkA→B , public key pkA,

signature σ, block m ∈ Zp and block identifier id, the proxy

checks that Verify(pkA,m, id, σ)
?
= 1. If the verification result

is 0, the proxy outputs ⊥; otherwise, it outputs

σ′ = σrkA→B = (H(id)wm)a·b/a = (H(id)wm)b ∈ G1. (2)

Verify. Given public key pkA, block m, block identifier id,

and signature σ, a verifier outputs 1 if

e(σ, g) = e(H(id)wm, pkA), (3)

and 0 otherwise.

B. HAPS: Security Analysis

We now prove the correctness of the above proxy re-

signature scheme. Based on the properties of bilinear maps,

we have e(σ, g) = e((H(id)wm)a, g) = e(H(id)wm, pkA).
Then, we wish to show that our proxy re-signature scheme is

unforgeable and homomorphic authenticable.

Theorem 1: It is computational infeasible to generate a

forgery of a signature under HAPS.

Proof: Following the standard security model defined

in the previous proxy re-signature scheme [12], we show

that our proxy re-signature scheme is able to resist forgery.

The security of HAPS includes two aspects: external security

and internal security. External security means an external

adversary cannot generate a forgery of a signature; internal

security means that the proxy cannot use its re-signature keys

to sign on behalf of honest users. The logic of this proof is

that if an external or internal adversary is able to generate

a forgery of a signature under HAPS, then we could find an

algorithm to solve the CDH problem, which however should be

computational infeasible to solve under the CDH assumption.

External Security: An external adversary cannot generate

a forgery of a signature. We show that if a (t′, ǫ′)-algorithm

A, operated by an external adversary, can generate a forgery

of a signature under HAPS after making at most qH hash

queries, at most qS signing queries, at most qR re-signing

queries, and requesting qK public keys, then there exists a

(t, ǫ)-algorithm B that can solve the CDH problem in G1

with t ≤ t′ + qHcG1
+ qScG1

+ 2qRcP and ǫ ≥ ǫ′/qHqK ,

where one exponentiation on G1 takes time cG1
and one

pairing operation takes time cP . On input (g, ga, gb), the CDH

algorithm B simulates a proxy re-signature external security

game for algorithm A as described in [13]. Due to space

limitations, we omit the details of the external security game

in this paper, further details of this proof can be found in our

technical report [13].

Internal Security: The proxy cannot use its re-signature

keys to sign on behalf of honest users. We now prove that,

if a (t′, ǫ′)-algorithm A, operated by the proxy, can generate

a forgery of a signature after making at most qH hash

queries and qS signing queries, then there exists a (t, ǫ)-
algorithm B that can solve the CDH problem in G1 with t ≤
t′ + qHcG1

+ qScG1
and ǫ ≥ ǫ′/qHqK . On input (g, ga, gb),

the CDH algorithm B simulates a proxy re-signature internal

security game for algorithm A as illustrated in [13]. Due to

space limitations, we omit the details of the internal security

game in this paper, further details of this proof can be found

in our technical report [13].

Because under the external or internal security game, if a

forgery of a signature can be generated, then we can find an

algorithm to solve the CDH problem in G1, which contradicts

to the assumption that the CDH problem is computational

infeasible in G1. Therefore, it is computational infeasible to

generate a forgery of a signature under HAPS.

Theorem 2: HAPS is a homomorphic authenticable proxy

re-signature scheme.

Proof: As we introduced in Section III, to prove HAPS

is homomorphic authenticable, we need to show HAPS is not

only blockless verifiable but also non-malleable. In addition,

we also need to prove that the re-signing of the proxy does

not affect these two properties, which means the signatures

re-signed by the proxy are also blockless verifiable and non-

malleable.

Given user ua’s public key pkA, two random numbers y1,

y2 ∈ Zp, two identifiers id1 and id2, and two signatures σ1 and

σ2 signed by user ua, a verifier is able to check the correctness

of a block m′ = y1m1 + y2m2 by verifying

e(σy1

1 · σy2

2 , g)
?
= e(H(id1)

y1H(id2)
y2wm′

, pkA), (4)

without knowing block m1 and block m2. Based on the

properties of bilinear maps, the correctness of the above

equation can be proved as:

e(σy1

1 · σy2

2 , g) = e(H(id1)
y1wy1m1H(id2)

y2wy2m2 , ga)

= e(H(id1)
y1H(id2)

y2wm′

, pkA).

It is clear that HAPS can support blockless verifiability.

Meanwhile, an adversary, who does not have private key

skA = a, cannot generate a valid signature σ′ for a combined

block m′ = y1m1 + y2m2 by combining σ1 and σ2 with y1
and y2. The hardness of this problem lies in the fact that H
must be a one-way hash function (given every input, it is easy

to compute; however, given the image of a random input, it is

hard to invert).



More specifically, if we assume this adversary can generate

a valid signature σ′ for the combined block m′ by combining

σ1 and σ2, we have






σ′ = σy1

1 · σy2

2

σy1

1 · σy2

2 = (H(id1)
y1H(id2)

y2wm′

)a

σ′ = (H(id′)wm′

)a

and we can further learn that H(id′) = H(id1)
y1H(id2)

y2 .

Then, given a value of h = H(id1)
y1H(id2)

y2 , we can

easily find a block identifier id′ so that H(id′) = h, which

contradicts to the assumption that H is a one-way hash

function.

Because the construction and verification of the signatures

re-signed by the proxy are as the same as the signatures

computed by users, we can also prove that the signatures re-

signed by the proxy are blockless verifiable and non-malleable

in the same way illustrated above. Therefore, HAPS is a

homomorphic authenticable proxy re-signature scheme.

V. PUBLIC AUDITING WITH EFFICIENT USER REVOCATION

A. Overview

Based on the new proxy re-signature scheme and its prop-

erties illustrated in the previous section, we now present our

public auditing mechanism for shared data with efficient user

revocation. In our mechanism, we allow the cloud to perform

as the proxy and translate signatures for users in the group.

The original user acts as the group manager, who is able to

revoke misbehaving users from the group.

B. Support Dynamic Data

To build the entire mechanism, another issue we need

to consider is how to support dynamic data during public

auditing. Because the computation of a signature includes

the block identifier, conventional methods — which use the

index of a block as the block identifier — are not efficient

for supporting dynamic data [7], [8]. Specifically, if a single

block is inserted or deleted, the indices of blocks that after this

modified block are all changed, and the change of those indices

requires the user to re-compute signatures on those blocks,

even though the content of those blocks are not changed.

Further explanation and corresponding figures can be found

in our technical report [13].

By leveraging index hash tables [7], [8], we allow a user

to modify a single block efficiently without changing block

identifiers of other blocks (as presented in Fig. 4 and Fig.

5). More specifically, a block identifier, which is unique in

the index hash table, is described as idi = {vi||ri||si}, where

vi ∈ N
∗ is the virtual index of this block, ri is computed as

ri = H ′(mi||vi) with a collision-resistance hash function H ′ :
{0, 1}∗ → Zq, and si is the signer id of block mi. Different

from our previous work [8], in this paper, each block identifier

contains a signer id to distinguish the identity of the signer.

It is because, in this proposed mechanism, the cloud needs to

know the identity of the signer on each block, so that it can

easily distinguish which block needs to be re-signed during

user revocation. The virtual indices ensure that all the blocks

are in the right order. For instance, if vi > vj , then block mi

is one of the blocks that are after block mj in shared data.

The initial virtual index of block mi is computed as vi = i ·δ,

where δ ∈ N
∗ is a system parameter decided by the original

user and δ ≥ 2. If a new block m′
i is inserted, the virtual index

of block m′
i is computed as v′i = ⌊(vi−1 + vi)/2⌋. Clearly, if

block mi and mi+1 are both initially created by the original

user, the maximal number of inserted blocks that is allowed

between block mi and mi+1 is δ−1. The original user should

choose a proper value of δ based on the related information

of shared data, such as the number of users in the group, the

type of the data file, the topic of the content in shared data,

etc, so that users can perform insert operations on shared data

properly.
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Fig. 5. Update block m1 and delete block m3 in shared data using an index
hash table as block identifiers.

C. Construction of Our Public Auditing Mechanism

Our public auditing mechanism includes six algorithms:

KeyGen, ReKey, Sign, ReSign, ProofGen, ProofVerify. In

KeyGen, every user in the group generates his/her public key

and private key. In ReKey, the cloud computes a re-signing

key for each pair of users in the group. When the original user

creates shared data in the cloud, he/she computes a signature

on each block as in Sign. After that, if a user in the group

modifies a block in shared data, the signature on the modified

block is also computed as in Sign. In ReSign, a user is revoked

from the group, and the cloud re-signs the blocks, which were

previously signed by this revoked user, with a re-signing key.

The cloud is able to generate a proof of possession of shared

data in ProofGen. In ProofVerify, a public verifier is able to

check the correctness of a proof.

In ReSign, without loss of generality, we assume that

the cloud always converts signatures of a revoked user into

signatures of the original user. The reason is that the original

user acts as the group manager, and we assume he/she is secure



in our mechanism. Another way to decide which re-signing

key should be used when a user is revoked from the group, is

to create a priority list (PL). Every existing user’s id is in the

PL and listed in the order of priority. When the cloud needs to

decide which existing user the signatures should be converted

into, the first user shown in the PL is selected. To ensure the

correctness of the PL, it should be signed with the original

user’s private key.

Scheme Details: Let G1 and G2 be two groups of order

p, g be a generator of G1, e : G1 × G1 → G2 be a bilinear

map, w be a random element of G1. The global parameters

are (e, p,G1, G2, g, w,H,H ′), where H is a hash function

with H : {0, 1}∗ → G1 and H ′ is a hash function with H ′ :
{0, 1}∗ → Zq. The total number of blocks in shared data is n,

and shared data is described as M = (m1, ...,mn). The total

number of users in the group is d.

KeyGen. For user ui, he/she generates a random xi ∈ Zp,

and outputs his/her public key pki = gxi and private key

ski = xi. Without loss of generality, we assume user u1 is the

original user, who is the creator of shared data. The original

user also creates a user list (UL), which contains ids of all the

users in the group. The user list is public and signed by the

original user.

ReKey. The cloud generates a re-signing key rki→j as

follows: (1) the cloud generates a random r ∈ Zp and sends it

to user ui; (2) user ui sends r/xi to user uj , where ski = xi;

(3) user uj sends rxj/xi to the cloud, where skj = xj ; (4)

the cloud recovers rki→j = xj/xi ∈ Zp. (We still assume that

private and authenticated channels exist between each pair of

entities, and there is no collusion.)

Sign. Given private key ski = xi, block mk ∈ Zp in shared

data M and its block identifier idk, where k ∈ [1, n], user ui

outputs the signature on block mk as:

σk = (H(idk)w
mk)xi ∈ G1.

ReSign. When user ui is revoked from the group, the

cloud is able to convert signatures of user ui into signatures

of user uj on the same block. More specifically, given re-

signing key rki→j , public key pki, signature σk, block mk

and block identifier idk, the cloud first checks that e(σk, g)
?
=

e(H(idk)w
mk , pki). If the verification result is 0, the cloud

outputs ⊥; otherwise, it outputs

σ′
k = σ

rki→j

k = (H(idk)w
mk)xi·xj/xi = (H(idk)w

mk)xj .

After the re-signing, the original user removes user ui’s id

from UL and signs the new UL.

ProofGen. To audit the integrity of shared data, the TPA

generates an auditing message as follows:

1) Randomly picks a c-element subset L of set [1, n] to

locate the c selected random blocks that will be checked

in this auditing task.

2) Generates a random yl ∈ Zq , for l ∈ L and q is a much

smaller prime than p.

3) Outputs an auditing message {(l, yl)}l∈L, and sends it

to the cloud.

After receiving an auditing message, the cloud generates a

proof of possession of shared data M . More concretely,

1) The cloud divides set L into d subset L1, ..., Ld, where

Li is the subset of selected blocks signed by user ui.

And the number of elements in subset Li is ci. Clearly,

we have c =
∑d

i=1
ci, L = L1∪...∪Ld and Li∩Lj = ∅,

for i 6= j.

2) For each set Li, the cloud computes αi =
∑

l∈Li
ylml ∈

Zp and βi =
∏

l∈Li
σyl

l ∈ G1.

3) The cloud outputs an auditing proof {ααα,βββ, {idl}l∈L},

and sends it to the verifier, where ααα = (α1, ..., αd) and

βββ = (β1, ..., βd).

ProofVerify. With an auditing proof {ααα,βββ, {idl}l∈L}, an

auditing message {(l, yl)}l∈L, and all the existing users’ public

keys (pk1, ..., pkd), the TPA checks the correctness of this

auditing proof as

e(

d
∏

i=1

βi, g)
?
=

d
∏

i=1

e(
∏

l∈Li

H(idl)
yl · wαi , pki). (5)

If the result is 1, the verifier believes that the integrity of all

the blocks in shared data M is correct. Otherwise, the verifier

outputs 0.

Discussion: As presented in our mechanism above, the TPA

selects a number of random blocks instead of choosing all the

blocks in shared data, which can improve the efficiency of

auditing. Previous work [2] has already proved that a verifier

is able to detect the polluted blocks with a high probability by

selecting a small number of random blocks. More specifically,

when shared data contains n = 1, 000, 000 blocks, if 1% of all

the blocks are corrupted, a verifier can detect these polluted

blocks with a probability greater than 99% or 95%, where the

number of selected blocks c is 460 or 300, respectively.

D. Scalability of Our Public Auditing Mechanism

In many cases, the TPA may receive amount of auditing

requests from different users in a very short time period.

Clearly, asking the TPA to perform these auditing requests one

by one is not efficient. Therefore, to improve the scalability of

our public auditing mechanism in such cases, we can further

extend our proposed public auditing mechanism to support

batch auditing [6] by utilizing the properties of bilinear maps.

With batch auditing, the TPA can perform multiple auditing

tasks simultaneously. Due to space limitations, further discus-

sion and explanation about batch auditing of our mechanism

can be found in our technical report [13]. We also discuss how

to improve the scalability of our mechanism by reducing the

total number of re-signing keys that the cloud needs to manage

when cloud data is shared by a very large number of group

users in the full version of this paper [13].

E. Security Analysis of Our Public Auditing Mechanism

Theorem 3: Given shared data M and its signatures, a

verifier is able to correctly check the integrity of shared data

M .

Proof: To prove the correctness of our mechanism is

equivalent of proving Equation (5) is correct. Based on the



properties of bilinear maps, the correctness of Equation (5) is

presented as the following:

e(

d
∏

i=1

βi, g) =

d
∏

i=1

e(
∏

l∈Li

σyl

l , g)

=
d
∏

i=1

e(
∏

l∈Li

(H(idl)w
ml)xiyl , g)

=

d
∏

i=1

e(
∏

l∈Li

H(idl)
yl ·

∏

l∈Li

wmlyl , gxi)

=
d
∏

i=1

e(
∏

l∈Li

H(idl)
yl · wαi , pki).

Theorem 4: For the cloud, it is computational infeasible to

generate a forgery of an auditing proof under our mechanism.

Proof: Following the security model and security game

defined in [3], [8], we can prove that, if the cloud could win

a security game, named Game 1, by forging an auditing proof

on incorrect shared data, then we can find a solution to the

Discrete Logarithm problem in G1 with a probability of 1 −
1/p, which contradicts to the DL assumption. We define Game

1 as follows:

Game 1: The TPA sends an auditing message {(l, yl)}l∈L

to the cloud, the auditing proof on correct shared data M
should be {ααα,βββ, {idl}l∈L}, which should pass the verification

with Equation (5). However, the cloud generates a proof on

incorrect shared data M ′ as {ααα′,βββ, {idl}l∈L}, where ααα′ =
(α1, ..., αd), α

′
i =

∑

l∈Li
ylm

′
l, for i ∈ [1, d], and M 6= M ′.

Define ∆αi = α′
i − αi for 1 ≤ i ≤ d, and at least one

element of {∆αi}1≤i≤d is nonzero. If this proof still pass the

verification performed by the TPA, then the cloud wins this

game. Otherwise, it fails.

We first assume that the cloud wins the game. Then,

according to Equation (5), we have

e(

d
∏

i=1

βi, g) =

d
∏

i=1

e(
∏

l∈Li

H(idl)
yl · wα′

i , pki).

Because {ααα,βββ, {idl}l∈L} is a correct auditing proof, we have

e(

d
∏

i=1

βi, g) =

d
∏

i=1

e(
∏

l∈Li

H(idl)
yl · wαi , pki).

Based on the properties of bilinear maps, we can learn that

d
∏

i=1

wαixi =

d
∏

i=1

wα′

ixi ,

d
∏

i=1

wxi∆αi = 1.

Because G1 is a cyclic group, then for two elements

u, v ∈ G1, there exists x ∈ Zp that v = ux. Without

loss of generality, given u, v, each wxi can generated as

wxi = uξivγi ∈ G1, where ξi and γi are random values of

Zp. Then, we have

1 =

d
∏

i=1

(uξivγi)∆αi = u
∑d

i=1
ξi∆αi · v

∑d
i=1

γi∆αi .

Clearly, we can find a solution to the Discrete Logarithm

problem. Given u, v = ux ∈ G1, we can output

v = u
−

∑d
i=1

ξi∆αi
∑d

i=1
γi∆αi , x = −

∑d
i=1

ξi∆αi
∑d

i=1
γi∆αi

,

unless the denominator is zero. However, as we defined in

Game 1, at least one of element in {∆αi}1≤i≤d is nonzero,

and γi is a random element of Zp, therefore, the denominator

is zero with a probability of 1/p, which is negligible because

p is a large prime. Then, we can find a solution to the Discrete

Logarithm problem with a probability of 1 − 1/p, which

contradicts to the assumption that Discrete Logarithm problem

is computationally infeasible in G1.

F. Efficient and Secure User Revocation

We argue that our mechanism is efficient and secure during

user revocation. It is efficient because when a user is revoked

from the group, the cloud can re-sign blocks that were previ-

ously signed by the revoked user with a re-signing key, while

an existing user does not have to download those blocks, re-

compute signatures on those blocks and upload new signatures

to the cloud. The re-signing preformed by the cloud improves

the efficiency of user revocation and saves communication and

computation resources for existing users.

The user revocation is secure because only existing users are

able to sign the blocks in shared data. As analyzed in Theorem

1, even with a re-signing key, the cloud cannot generate a valid

signature for an arbitrary block on behalf of an existing user.

In addition, after being revoked from the group, a revoked user

is no longer in the user list, and can no longer generate valid

signatures on shared data.

VI. PERFORMANCE

In this section, we first discuss the communication and

computation cost of our mechanism. Then we evaluate the

performance of our mechanism in experiments.

A. Communication Cost

According to the description in Section V, the size of an

auditing message {(l, yl)}l∈L is c · (|n|+ |q|) bits, where c is

the number of selected blocks, |n| is the size of an element

of set [1, n] and |q| is the size of an element of Zq . The size

of an auditing proof {ααα,βββ, {idl}l∈L} is 2d · |p| + c · (|id|)
bits, where d is the number of existing users in the group, |p|
is the size of an element of G1 or Zp, |id| is the size of a

block identifier. Therefore, the total communication cost of an

auditing task is 2d · |p|+ c · (|id|+ |n|+ |q|) bits.

B. Computation Cost

As shown in ReSign of our mechanism, the cloud first

verifies the correctness of the original signature on a block,

and then computes a new signature on the same block with

a re-signing key. The computation cost of re-signing a block

in the cloud is 2ExpG1
+ MulG1

+ 2Pair + HashG1
, where

ExpG1
denotes one exponentiation in G1, MulG1

denotes one

multiplication in G1, Pair denotes one pairing operation on



e : G1×G1 → G2, and HashG1
denotes one hashing operation

in G1. The cloud can further reduce the computation cost

of the re-signing on a block to ExpG1
by directly re-signing

it without verification. The public auditing performed by the

TPA ensures that the re-signed blocks are correct. Based on

Equation (5), the computation cost of an auditing task in our

mechanism is (c+d)ExpG1
+(c+2d)MulG1

+(d+1)Pair+
dMulG2

+ cHashG1
.

C. Experimental Results

In this section, we evaluate the performance of our mecha-

nism in experiments. We utilize Pairing Based Cryptography

Library (PBC)1 to implement cryptographic operations in our

mechanism. All the experiments are tested under Ubuntu with

an Intel Core i5 2.5 GHz Processor and 4 GB Memory over

1, 000 times. In the following experiments, we assume the size

of an element of G1 or Zp is |p| = 160 bits, the size of an

element of Zq is |q| = 80 bits, the size of a block identifier is

|id| = 80 bits, and the total number of blocks in shared data

is n = 1, 000, 000. By utilizing aggregation methods from [3],

[8], the size of each block can be set as 2 KB, then the total

size of shared data is 2 GB.

1) Performance of User Revocation: As introduced in

Section I, the main purpose of our mechanism is to improve

the efficiency of user revocation. Without our mechanism, to

revoke a user in the group, an existing user needs to download

the blocks were previously signed by the revoked user, verify

the correctness of these blocks, re-compute signatures on these

blocks and upload the new signatures. In this experiment,

we assume the download speed and upload speed for the

data storage and sharing services is 1Mbps and 500Kbps,

respectively. We also assume the cloud and an existing user

leverage the same type of machine (Intel Core i5 2.5 GHz

Processor and 4 GB Memory) to perform user revocation.

Let k denote the number of re-signed blocks during user

revocation.

The performance of our mechanism during user revocation

is presented in Fig. 6. The cloud is able to not only efficiently

re-sign blocks but also save existing users’ computation and

communication resources. As shown in Fig. 6, when the

number of re-signed blocks is 500, which is only 0.05% of

the total number of blocks, the cloud in our mechanism can

re-sign these blocks within 15 seconds. In contrast, without

our mechanism, an existing user needs about 22 seconds to

re-sign the same number of blocks by herself. Besides, the

500 re-signed blocks that this existing user downloaded costs

her extra bandwidth during user revocation. Both of the two

revocation time are linearly increasing with an increase of

k—the number of re-signed blocks. Since we assume the

cloud and an existing user have the same level of computation

resource in this experiment, it is easy to see that the gap

in terms of revocation time between the two lines in Fig. 6

is mainly introduced by downloading the re-signed blocks.

In a practical cloud environment, the cloud should have

1http://crypto.stanford.edu/pbc/

more powerful computation capabilities than personal devices,

which allows the cloud to finish the re-signing on data even

sooner.
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In addition, as we analyzed before, the cloud can even

directly re-sign data without verification, which can further

improve the efficiency of re-signing about 100 times. More

specifically, the re-signing time on one block with verification

is 28.19 milliseconds while the one without verification is

only 0.28 milliseconds. Note that due to the existence of

transmission errors in networks, it is not a good idea to allow

an existing user to re-sign the blocks without verifying them.

Even if an existing user directly re-signs the blocks without

verification, compared to our mechanism, this user still needs

to spend some extra time to download the blocks. As illustrated

in Fig. 7, when the number of re-signed blocks is still 500, the

cloud in our mechanism can re-sign these blocks in about 0.14
seconds; while an existing user needs about 8.43 seconds by

herself. With the comparison between Fig. 6 and Fig. 7, we can

see that the verification on original signatures before re-signing

is one of the main factors that can slow down the entire user

revocation process. Meanwhile, as shown in Fig. 6 and Fig. 7,

the key advantage of our mechanism is that we can improve

the efficiency of user revocation and release existing users

from the communication and computation burden introduced

by user revocation.

2) Performance of Auditing: We can see from Fig. 8 and

Fig. 9 that, in order to maintain a higher detection probability,

a verifier needs more time and communication overhead to

finish the auditing task on shared data. Meanwhile, the auditing

time (the time that the TPA needs to verify the correctness of

an auditing proof based on Equation (5)) is linearly increasing

with the number of existing users in the group. Our mechanism

allows a verifier to efficiently audit the correctness of shared

data without retrieving the entire data from the cloud. More

specifically, when c = 460 and d = 10, the communication

cost of an auditing task (the communication cost that the TPA

requires during an auditing task) is about 11.9 KB, and the

auditing time of the entire data is only about 300 milliseconds.

VII. RELATED WORK

Provable Data Possession (PDP), first proposed by Ateniese

et al. [2], allows a verifier to check the correctness of a

client’s data stored at an untrusted server. By utilizing RSA-

based homomorphic authenticators and sampling strategies,

the verifier is able to publicly audit the integrity of data
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without retrieving the entire data, which is referred to as

public verifiability or public auditing. Shacham and Waters [3]

designed an improved PDP scheme based on BLS signatures.

To support dynamic operations on data during auditing, Ate-

niese et al. [14] presented another PDP mechanism based on

symmetric keys. However, it is not publicly verifiable and only

provides a user with a limited number of verification requests.

Wang et al. utilized the Merkle Hash Tree to support fully

dynamic operations in a public auditing mechanism. Erway

et al. [15] introduced Dynamic Provable Data Possession by

using authenticated dictionaries, which are based on rank

information. Zhu et al. [7] exploited the fragment structure

to reduce the storage of signatures in their public auditing

mechanism. In addition, they also used index hash tables to

provide dynamic operations for users.

Wang et al. [4] leveraged homomorphic tokens to ensure the

correctness of erasure code-based data distributed on multiple

servers. To minimize the communication overhead in the phase

of data repair, Chen et al. [16] introduced a mechanism for

auditing the correctness of data with the multi-server scenario,

where these data are encoded with network coding. More

recently, Cao et al. [9] constructed an LT code-based secure

cloud storage mechanism. Compared to previous mechanisms

[4], [16], this mechanism can avoid high decoding computation

costs for data users and save computation resources for online

data owners during data repair.

When a third party auditor (TPA) is introduced into a public

auditing mechanism in the cloud, both the content of data and

the identities of signers are private information to users, and

should be preserved from the TPA. The public mechanism pro-

posed by Wang et al. [6] is able to preserve users’ confidential

data from the TPA by using random maskings. In addition, to

operate multiple auditing tasks from different users efficiently,

they also extended their mechanism to support batch auditing.

Our recent work [8] first proposed a mechanism for public

auditing shared data in the cloud for a group of users. With

ring signature-based homomorphic authenticators, the TPA can

verify the integrity of shared data but is not able to reveal the

identity of the signer on each block. The auditing mechanism

in [10] is designed to preserve identity privacy for a large

number of users. However, it fails to support public auditing.

VIII. CONCLUSIONS

In this paper, we proposed a new public auditing mechanism

for shared data with efficient user revocation in the cloud.

When a user in the group is revoked, we allow the cloud to

re-sign blocks that were signed by the revoked user with proxy

re-signatures. Experimental results show that the cloud can

improve the efficiency of user revocation, and existing users

in the group can save a significant amount of computation and

communication resources during user revocation.
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