J Sign Process Syst (2012) 68:217-231
DOI 10.1007/s11265-011-0602-1

Parallel High Throughput Soft-Output Sphere

Decoding Algorithm

Qi Qi - Chaitali Chakrabarti

Received: 6 October 2010 / Revised: 9 June 2011 / Accepted: 9 June 2011 / Published online: 7 July 2011

© Springer Science+Business Media, LLC 2011

Abstract Multiple-Input-Multiple-Output communica-
tion systems demand fast sphere decoding with high per-
formance. To speed up the computation, we propose a
scheme with multiple fixed complexity sphere decod-
ers to construct a parallel soft-output fixed complex-
ity sphere decoder (PFSD). The proposed decoder is
highly parallel and has performance comparable to soft-
output list fixed complexity sphere decoder (LFSD)
and K-best sphere decoder. In addition, we propose
a parallel QR decomposition algorithm to lower the
preprocessing overhead, and a low complexity LLR
algorithm to allow parallel update of LLR values. We
demonstrate that the PFSD algorithm can increase the
throughput and reduce bit error rate of a soft-output
solution in a 4x4 16-QAM system, and has superior
performance compared to other soft decoders with
comparable throughput and computation complexity.
The PFSD algorithm has been mapped onto Xilinx
XC4VLX160 FPGA. The resulting PFSD decoder can
achieve up to 75 Mbps throughput for 4 x4 64-QAM
configuration at 100MHz with low control overhead.

Keywords Soft-output sphere decoding -
Parallel algorithm - Fixed complexity

Q. Qi (X)) - C. Chakrabarti

School of Electrical, Computer and Energy Engineering,
Arizona State University, Tempe, AZ 85287-5706, USA
e-mail: gi@asu.edu

C. Chakrabarti
e-mail: chaitali@asu.edu

1 Introduction

The increasing demand of robust and high through-
put mobile systems has spear-headed the development
of multiple-input multiple-output (MIMO) communi-
cation systems. The performance gain of a MIMO
system comes at the cost of increasing design com-
plexity. The signal detector is one of the most impor-
tant modules in a MIMO system. Maximum-likelihood
(ML) signal detectors are impractical for high data
rate MIMO systems, since their complexity increases
exponentially with signal dimension. Active research
on low-complexity and near ML MIMO detectors have
generated several solutions, including-zero-forcing
equalization (ZF) [1], nulling and canceling (NC) [2],
semidefinite relaxation (SR) [3, 4] and sphere decod-
ing (SD) [5]. Of these approaches, the SD algorithm
is the most promising. It offers low complexity and
good bit-error-rate (BER) performance under a vari-
ety of Signal-to-Noise (SNR) and constellation condi-
tions [6].

The soft-output SD algorithm is favored over the
hard output SD algorithm due to its significant perfor-
mance gain in low and medium SNR conditions [7]. A
soft-output sphere decoder typically consists of a list
generator that finds a set of candidate symbol vector,
and a log-likelihood (LLR) generator that calculates
the soft-output bit value for the MIMO channel de-
coder. VLSI implementation of SD detectors, such as
[7, 8], focus on reducing the computation complexity of
only the list generator. Recently, a high speed systolic-
like soft-output sphere decoder has been proposed in
[9]. However, the LLR generator involves sorting large
number of candidate solutions, and thereby limits the
throughput of the MIMO detector.

@ Springer

218

J Sign Process Syst (2012) 68:217-231

In this paper, we present a new algorithm and ar-
chitecture for a soft-output fixed complexity sphere
decoder. The main contributions of this paper are listed
below.

1. We introduce a parallel fixed complexity sphere
decoding (PFSD) algorithm, and investigate its per-
formance under different SNR and parallelization
parameters. We find that for a 4 x4 16-QAM sys-
tem, the PFSD provides better BER performance
than the list fixed complexity decoder (LFSD) [10].

2. We use a parallel QR decomposition algorithm for
PFSD that shares intermediate results from multi-
ple QR decompositions. As a result, the throughput
of this step can be increased by 100% compared to
serial QR decomposition, with minimal addition of
computation units.

3. We introduce a low complexity LLR algorithm for
PFSD that allows parallel update of LLR values. It
has 85.7% less compare operations than a full list
search based LLR algorithm.

4. We map PFSD algorithm onto Xilinx XC4VLX160
FPGA. It can deliver up to 400 Mbps, 200 Mbps
and 75 Mbps throughput for 4x4 systems with
4-,16- and 64-QAM configuration when clocked at
100 MHz.

The rest of the paper is organized as follows. We
briefly describe a MIMO system in Section 2, fol-
lowed by a review of the sphere decoding algorithm in
Section 3. Section 4 presents the PFSD, the parallel
QR decomposition and the low complexity LLR algo-
rithms. Section 5 provides algorithm simulation results.
Section 6 discusses the hardware architecture for PFSD.
The conclusion is given in Section 7.

2 Preliminaries

A basic MIMO Bit-interleaved coded modulation
(BICM) communication system [11] consists of chan-
nel encoder, interleaver (] [), modulation and mapping
unit, demodulation and MIMO detector, de-interleaver
(IT"") and channel decoder, as shown in Fig. 1. Assume
that there are My transmit antennas and My receive
antennas. Let & denote a vector of uncoded source data
bits that is input to a channel encoder of rate R<1
to produce a coded bit vector ¢. The channel encoder
output vector ¢ is interleaved to obtain bit vector X. Let
s be an My x 1 vector of transmitted symbols. Each
transmitted symbol is obtained by mapping every M, =
log,(M) consecutive bits from X onto an M-symbol

@ Springer

Information
Source {j Channel I X Modulation
— — H » and
Encoder Mapping
Information ‘
Sink U Channel L(x) H_1 L(x) Soft-out(l))ut
» h» h» MIM
Decoder Detector

Figure 1 Block diagram of a MIMO communication system.

constellation. Let y be the Mg x1 vector of received
symbols, given by

y=Hi+n 1)

where H is an Mg x My complex channel matrix, and
n is an Mgx1 noise vector. Each element 4;; in H
represents the complex transfer function from the jth
transmit antenna to the ith receive antenna. All ele-
ments in H are independent and identically distributed
(i.i.d.) complex Gaussian variables with zero mean and
variance 1. Similarly, all elements in # are i.i.d. complex
Gaussian variables with zero mean and o? variance,
where o2 is calculated according to the received SNR.
A MIMO detector generates a set of symbol candi-
dates S = {5y} according to the following function

ssp =argmin || y = Hs |, s5p €S @)

where O = M7 denotes all possible transmitted sym-
bol vectors which reside in an Mp-dimensional square
lattice spanned by an M complex constellation in each
dimension. A set of possible transmitted coded bit
vectors {x} is obtained by demodulating symbol set
{ssp}. The channel decoder then uses the aposteriori
log-likelihood ratio value (LLR) of the bits from de-
interleaved {x} to calculate the likely transmitted data
sequence .

For any received vector y, the low complexity Max-
log approximation LLR L (x| y) for bit x; is calcu-
lated as B
Il y—Hs|?

Il y—Hs|?
L (xk|X)r’\¢ min LE A L min 5 3)

x€Xp 11 o? xeXp-1 o

where s is an M7 x 1 symbol vector and x is the corre-
sponding M7 M, x 1 bit vector. Set X 4, and X _; de-
note subsets of {x} with the kth bit x,=+1 and x;=—1,
respectively. Hence, the kth bit LLR of x requires two

J Sign Process Syst (2012) 68:217-231

219

bit vectors with opposite binary values in the kth bit po-
sition. One of the bit vectors is always the ML solution.
The other bit vector is the complementary solution,
whose kth bit is defined as the counter-hypothesis bit
[12]. The distance between the hypothesis bit solution
and counter-hypothesis bit solution is a measure of the
reliability of the bit value.

Throughout this paper, we assume that the system is
full rank, where Mg > Mt. The channel matrix H and
the noise variance o are known to the receiver through
training sequence estimation. To generate the maxi-
mum likelihood solution, one has to search over MM7
symbol vectors. Even for a moderate 64-QAM 4 x 4 sys-
tem, the complete symbol set {s} contains 16, 777, 216
candidates. To avoid exhaustive search, approximate
LLRs are calculated by using soft sphere decoding (SD)
algorithm, which finds the K smallest norm solutions to
Eq.2in {sgp}, where K < MM7.

3 Sphere Decoding Algorithm

SD algorithms enumerate vector solutions s of Eq. 2,
where s € S C O, and s is inside an ellipsoid centered
at y. To efficiently search the ML solution inside the
ellipsoid, a SD algorithm converts the original least
square problem to a tree search problem using the
following steps. It first performs the Q R decomposition
of the channel matrix H, where H = QR. The result-
ing Q is an Mr x Mg orthogonal matrix, and R is
an Mr x My nonsingular upper triangular matrix [6].
Equation 2 undergoes orthogonal transformation, and
can be represented as

€=l Rs |)

where § = Qf'y = Rs?F. Q" denotes the complex con-
jugate transpose of Q, s?f = R'Q"y= H'y is the
zero-forcing (ZF) solution, and H' is the pseudo-
inverse of H. We use £ to represent the squared dis-
tance between estimated and transmitted signals.

Due to the upper triangular nature of matrix R, Eq. 4
can be further recursively decomposed to generate the
following expressions

2

1 i+1
19— RsIP= Y || §i— D rijsy | —rasi
:M] MT
1
2
= Z z+l (H—l) riisi|
i=Mrt
! 2
= |Di (—(i))| ®)

i=Mr

where Sgy = [SiSit1 - .. sM.,.]T denotes a partial vector
symbol candidate, Vi, is the corresponding residual
vector metric and D;(s;) is the respective branch metric.
The graphic illustration of Eq. 5 is an inverse M7 + 1
level M-ary tree, where each node has M child nodes
except the leaf nodes on level 1. Each branch is associ-
ated with a branch metric which is always positive. The
partial Euclidean distance metric (PED), T; = Zi: My |
Di(s@) %, is the accumulative branch metrics along a
path from the root node to a node at level i, and
is monotonically non-decreasing. Note that the sibling
nodes have identical PED value 7;;, and residual vec-
tor metric V4.

Existing SD algorithms are based on either the
depth-first or breadth-first search. The depth-first SD
algorithms, such as the Fincke-Pohst (F-P) algorithm
[13] and the Schnorr—Euchner (SE) algorithm [14],
generate one candidate solution at a time, and reduce
the search radius r based on the current best solution.
The K-best algorithm [15] is a type of breadth-first
SD algorithm, where K candidate paths are generated
at a time. From hardware implementation stand-point,
the K-best algorithm has several advantages over the
depth-first algorithms, including fixed decoder state
transition, parallel child node extension, and constant
throughput. However, a K-best based algorithm needs
to find the K smallest PED paths out of KM can-
didate paths at each decoding level, which requires
large number of sorting operations for moderate K and
M. This issue is circumvented by fixed complexity SD
algorithms [16-19].

Fixed complexity SD algorithms are breadth-first SD
algorithms that generate a set of transmitted vectors by
traversing fixed paths from the root level to the leaf
level. The entire tree search procedure is defined by the
cardinality vector t = [, fp, ..., tm,]. At level i, each
parent node enumerates #; child nodes in increasing
order of their branch metrics. Fixed complexity SD
algorithms eliminate the sorting procedure by keeping
all expanded nodes. The resulting number of partial
vector candidate S4) is]_[j‘g tj, where 1 <t; < M. The
cardinality vector ¢t and symbol detection order can
greatly impact the performance of a fixed complexity
SD algorithm. The algorithm in [16] offers an effective
solution, and it is denoted as the fixed-complexity SD
(FSD) algorithm in the following sections.

The FSD algorithm consists of three steps, namely,
channel matrix ordering, solution set generation and
hard decision selection. Channel matrix ordering deter-
mines the order in which the symbols in vector s are
detected. Solution set generation finds solution candi-
date vectors according to a predefined n. Hard decision
selection finds the candidate vector with the smallest

@ Springer

220

J Sign Process Syst (2012) 68:217-231

PED value. FSD only has two types of node expansions,
full expansion (FS) and single expansion (SS). In FS, a
parent node expands and keeps all M child nodes. In
SS, only the child node with the smallest branch metric
is kept. The top p levels of solution set generation are
of type FS, and the remaining M7 — p levels are of
type SS. The symbols in consecutive FS levels are de-
tected in ascending order of their post-detection noise
amplification, and the symbols in consecutive SS levels
are detected in descending order of their post-detection
noise amplification.

We developed a soft-output parallel fixed complex-
ity SD (PFSD) algorithm based on the hard-output
FSD algorithm, which not only delivers high through-
put but also offers good scalability. The PFSD algo-
rithm details are described in the following section. A

Table 1 Definition of key notations.

Notation Definition
D; Branch metric at level i
& Distance between estimated and transmitted signals
E; Path metric set for S;
0
S:I?i'ﬁ Minimum path metric for the bth bit in X;
with value 0
HT Pseudo-inverse of H
H; Column-wise permuted H according to k;
k; ith permutation vector
ki [th element of k;

[LLR value vector for s

M QAM constellation size

M Cardinality value for ¢y,

M, Bits per M-QAM symbol

t Child node cardinality vector

n; Child nodes per parent node at level j
(0] Orthogonal matrix

qj1 [th column of Q;

R Upper triangular matrix

r Sphere decoder search radius

s Candidate symbol vector

S A set of candidate symbol vectors

Si A subset of S generated from H; and ii

Si A candidate symbol at level i
Gy Partial vector symbols contains elements s; to sy,
sML Maximum likelihood symbol vector
sZF Zero forcing solution
8i j jth symbol vector in S;
Si j Mz Mrth symbol of jth symbol vector in S;
7 Partial distance metric from root node to a
node at level i
Vi Residual vector metric for level i
X Candidate bit vector
Xi Bit vector equivalence of S;
x? b.j bth bit of the jth bit vector in X; with bit value of 0
y Received symbol vector
; Orthogonal transformation of y

@ Springer

summary of the key notations that are used in this paper
is included in Table 1 for easy reference.

4 Parallel Fixed Complexity Sphere Decoding

The fixed complexity SD algorithms are best suited
for VLSI implementation due to simplification in path
pruning in the solution generation steps [18]. However,
existing soft decision fixed complexity sphere decod-
ing algorithms [10, 20] provide high diversity in the
bit values by either selective child node enumeration,
or expansion of larger number of child nodes in suc-
cessive levels. Both procedures introduce data depen-
dency between sibling nodes, and require additional
computation. We propose a high throughput parallel
fixed complexity sphere decoding (PFSD) algorithm
which eliminates this dependency by producing soft
decision outputs from multiple hard decision FSDs.
The PFSD algorithm provides good BER performance
when compared to a LFSD algorithm with similar com-
putation complexity. In addition, the PFSD algorithm
make use of layer ordering technique in [21] to reduce
preprocessing overhead. Last, the PFSD algorithm pro-
duces more reliable LLR values with slight increase
in computation overhead than a competing parallel
fixed complexity sphere decoding algorithm, Layered
Orthogonal Decoding (LORD) in [22].

The proposed PFSD algorithm is presented in
Algorithm 1. It starts with the same channel matrix
ordering step as the FSD algorithm in [16] and produces
a 1 x My permutation vector k,. Additional My —1
permutation vectors are derived from k, iteratively
(lines 2-5). Vector k; must guarantee that its last ele-
ment k; . differs from k; ,, for all i # j. A new H;
is obtained by column-wise permutation of the original
H according to k;. In the solution set generation step,
PFSD produces candidate set S; for each pair of H;
and y by performing FSD search with cardinality vector
t, =11, ..., M] (lines 9-15). Hence, there are My
candidate sets and each set has M vectors. Note that
when ¢, , = M = M, the first decoding level is fully
expanded. It can be relaxed to a partial expansion level
(t; p1, < M) to reduce overall computation complexity.
However, this results in performance degradation as
demonstrated in the simulation results in Section 5.
Finally, PFSD finds the quasi-ML solution s¥% and
calculates the 1 x M .My LLR vector [from MTM
vector candidates (lines 19 and 20). The LORD algo-
rithm also uses multiple FSDs to generate candidate
solution set. However, it differs in the way multiple QR
decomposition are done (Section 4.1) as well as the way
LLR values are calculated (Section 4.2).

J Sign Process Syst (2012) 68:217-231

221

Algorithm 1 Soft decision PFSD algorithm
Require: M, My, y, H
1: {Channel Matrix Ordering:}
2: Produce permutation vector k, = [k, kio,...,
ki m,]
fori =2to My do
Construct k;, where k; ., # k; . Vj <1
end for
{Solution Set Generation:}
SetS=0¢
fori=1to My do
Generate H; by permuting H column-wise ac-
cording to k;
10: (O Rl =qr(H). 3, = 0Of'y
1 =[1,....,M,M<M
12: {FSD tree search:}
13: Input: R;, 21,, t;; Output: Solution subset S;

D e AN

14: Inverse permute candidate vectors in S; using k;
15 S=§;US

16: end for

17: {Calculate Outputs:}

18: Assign minimum weight vectorin S to s
19: Calculate LLR values / from S

20: return hard and soft decision outputs

ML

Essentially, PFSD produces soft decision outputs by
performing multiple hard decision FSDs. The theoret-
ical analysis in [23] proves that FSD can provide the
same diversity order as the ML decoder, and yield
asymptotically ML performance in the high SNR region
under the following condition

(Mr—M7)(@+1)+(q+1)* > Mg (6)

where ¢ is the number of FS levels. For a 4 x4 MIMO
system, 1 FS level is sufficient (z,=[1,...,1, M]).
The symbol detection order of each FSD in PFSD is
uniquely determined by its permutation vector. Ele-
ment k; 7, specifies the 1st detected symbol of the ith
FSD. Since k; y, differs from k;j 57, providedi # j, each
symbol element of vector s becomes the 1st detected
symbol exactly once. In case partial expansion is used,
where ty, = M < M, M must be sufficiently large to
guarantee the existence of counter-hypothesis bit at
each bit position. This condition improves the reliability
of LLRs. Note that the number of candidate nodes at
each level is uniform, and the number of calculations
involved in finding all candidate vectors is identical.
The complexity analysis of PFSD includes that of the
channel matrix ordering step and the tree search step.
The channel matrix ordering step is identical to the
FSD algorithm. Since the tree search step is equivalent

to multiple FSD decoding, the computation complexity
of the tree search step is simply My times the complex-
ity of one stage full expansion FSD implementation.
However, the PFSD requires multiple QR decomposi-
tions, which adds computation complexity to the overall
algorithm. In the next subsection, we present a parallel
QR decomposition algorithm that can generate outputs
of two H matrices every cycle, thereby reducing the
overhead. The multiplication complexity of the tree
search step, without including the QR decomposition
overhead, is given by

My
Noit = M7y [aM + (M7 — i)b M] (7)

i=1

where a denotes the number of real multiplications for
[>-norm calculations of branch metric (a is typically 2),
and b denotes the number of real multiplications for
a complex product (b is typically 3 or 4 depending
on the implementation). It is easy to see that Npyux
only depends on M7 and M. For a given modulation
scheme, Ny increases cubically with Mr; for a fixed
antenna system, Npy increases linearly with respect to
the modulation size.

4.1 Parallel QR Decomposition for PFSD

To support multiple tree searches in PFSD, a QR
decomposition is needed for each FSD. We present
a parallel QR decomposition algorithm based on [21]
that lowers channel processing overhead by combining
the channel matrix ordering with QR decomposition.
For instance, for a 4 x4 system, if matrices H; and H;
differ only in the two right most columns, the com-
mon intermediate results generated during their QR
decompositions can be shared, resulting in significant
computation saving. The permutation vectors for 4 x4
serial and parallel QR decompositions are illustrated in
Fig. 2a. Alphabets a—d are used to denote the values
of permutation vector k;, 1< j<4. In parallel QR, for
vector k, and k,, the first two columns of H; and H,
are the same. Similarly for vectors k3 and k4, the first
two columns of H; and H, are the same. Hence, they
share identical decomposition results, and redundant
computation steps can be avoided. Figure 2b shows
the permutation vectors for 8 x 8 system. For example,
first four columns of H,—H, (Hs through Hg) share
identical decomposition results, and their permutation
vector elements a—d (h through g) have same color
filling. Finally, existing QR decomposition systems are
based on Given Rotations [24] and Householder trans-
formation [25]. Unfortunately, those methods cannot

@ Springer

222 J Sign Process Syst (2012) 68:217-231
1234 12345678 12345678 Algorithm 2 Parallel QR Decomposition algorithm
kabed kirabcdefgh kkabcdlefgh 1: {Channel Matrix Order (optional)}
k.dbca .
kdach kshbcdefg k;abcdlefhg 2: Perform improved sorted Gram-Schmidt QR de-
k.dabec kshacdefghb ksabcdhagfe composition [26] for H,
Serial QR 4x4 kshabdefgoe keabcdhge f 3: Generate permutation vector k
4: for j=2to My do
1234 Lhabcefgd Kshefgabdc .
5: Generate permutation vector k. from k. , {See
k;abcd kehabcdfge ksh e f gabcd . / .l
kabdc parallel QR channel matrix examples in Fig. 3}
kdeba kzhabodegf B 6: Obtain H; by column-wise permuting H accord-
kidcab ksh abcde fg ksh e fgicdab ing to k;
- =
Parallel QR 4x4 Serial QR 8x8 Parallel QR 8x8 7. Perform QR decomposition on H; {Copying

(a) (b)

Figure 2 Permutation order comparison of serial QR and paral-
lel QR decompositions for a 4 x4 and b 8 x 8 channel matrices.

be easily extended to exploit the common computations
and result in large overhead.

The parallel QR decomposition is shown in
Algorithm 2. We use the improved sorted Gram-
Schmidt QR decomposition algorithm in [26], where
the 2nd minimum norm square |g;|* is chosen for k; for
i > 2. As aresult, H; satisfies the channel matrix order-
ing for FSD but incurs additional compare and vector
> norm operations. This is useful for hard decision
decoding under very high SNR conditions, where the
minimum weight solution generated from H, is almost
always the transmitted vector. However, simulation re-
sults in Section 5.1 show that channel matrix ordering
step has negligible performance impact on PFSD, and
can be excluded to reduce computation complexity.

Figure 3 shows the data flow graphs (DFG) of Gram-
Schmidt method for both serial and parallel QR decom-
position. In both cases, two 4 x4 channel matrices H, =
[k, h,, hy, hy] and H,=[h,, h,, h,, h;] are fed as in-
puts, and two orthonormal matrices Q; =14,-4,-9,-4,]
and O,=1q,, 4,4, q .q L are produced as outputs Both

Figure 3 Data flow graphs [
for: a serial QR and b parallel
QR decompositions for 4 x4
channel matrix.

t3

5

1=
=

@ Springer

shared intermediate results from previous QR}
8: end for

DFGs consist of two types of nodes, N and P. Node
N takes an input vector g;, and produces a normalized
basis vector e, which is passed to the P node below.
Node P has two inputs, g;, and ¢;,, and two outputs,
o and e, . e, 1 set to ¢, and passed to the P
below; a,, is computed by subtracting the subspace
component of g;,, in the direction of basis e;,,, and passed
to the node to 1ts right. All input and output vectors
are complex. The elements in the R matrix (of the QR
decomposition) are a by-product of the computation in
the P and N nodes. Essentially, r;; in R is the Hermitian
inner product between ¢;, ; and g;, ;.

For the 4 x4 system, node P requires 24 real mul-
tiplications, 47 real additions, and node N requires 16
real multiplications, 7 real additions, 1 real division and
1 real square-root. If we assume that each node takes
1 cycle, then the parallel QR produces the outputs of
Q) and QO in cycles 5-8. Since it is a pipelined imple-
mentation, the next set of outputs (corresponding to O
and Q.) can be produced in cycles 6-9. In contrast, the
pipelined implementation of the serial QR produces
outputs of Q; and Q; in cycles 5-9 and outputs of O3

J Sign Process Syst (2012) 68:217-231

223

and Q, in cycles 7-11. Note there is a 3 cycle latency
overhead for the 1st QR decomposition and after that
the parallel QR produces outputs at twice the rate as
the serial QR. For Mg x Mg matrix, the parallel QR
only requires one additional P node and two additional
N nodes more than the serial QR to achieve the 100%
throughput gain.

The parallel QR algorithm not only has reduced
the computation complexity, but also has lower mem-
ory storage requirement compared to performing each
QR decomposition independently in parallel. The two
channel matrices H; and H; derived from permuting
channel matrix H, differ in last two columns. The QR
decomposition results of H; and H; show that O, and Q;
differ in the last two columns and R; and R; differ in last
two rows. Hence, memory requirement of the parallel
QR decomposition results does not increase linearly
with respect to antenna size. For the 4 x4 system, the
memory requirement of the parallel QR algorithm is
only 2.8X more than a single QR decomposition, and
is 30% less than performing each QR decomposition
independently in parallel. For the 8x8 system, the
memory requirement of the parallel QR algorithm is
3.6X more than a single QR decomposition, and is 55%
less than performing each QR decomposition indepen-
dently in parallel.

4.2 Low Complexity LLR Algorithm for PFSD

Generating LLR values from a large list of candidate
symbol vectors contribute significantly to the compu-
tation complexity to the overall soft-output decoding.
The proposed low complexity LLR algorithm for PESD
produces suboptimal soft-output values for a given set
of candidate vectors in order to reduce the number of
sorting operations. Equation 3 shows that to calculate
the LLR for one bit position, we need the the quasi-ML
solution, and the counter-hypothesis bit solution. The
low complexity LLR algorithm searches all candidate
vectors for the quasi-ML solution. However, it only
searches a subset of candidate vectors for each counter-
hypothesis bit solution. Furthermore, since candidate
vector subsets are independent from each other, LLR
values can be computed in parallel without compromis-
ing the quasi-ML solution. The proposed algorithm is
summarized in Algorithm 3.

The low complexity LLR algorithm starts by re-
ceiving M7 subsets of candidate symbol vectors (S;)
and their path metrics (E;) from the PFSD solution
generation step. The algorithm searches and saves min-

imum PED values £ s and & 5 within E;. The M(My —

min min
1) symbol candidate vectors from other subsets are

Algorithm 3 Low complexity LLR algorithm
Require: {k},E;, S;, Vi=1,..., My

1: demOd(SuMT) S;,Vi=1,..., My
2: [1,'=[1,EMt =00
3: forz_ltoMTdo{forX}

4. forb =1to M, do {for x;; ;}
5

6

=[1,"=

if x; b. j==0then

Em’li = mln] Lo B Sx’bf Sx'l’leEl,xlb ,€Xi
. Ib 0
7: add & ;) to !
8: else
1
Em‘lfl = mm] g &, EF ’bJGEz,xlb j€X;
. Ib 1
10: add & ;) tol
11: end if
. ML __ lb :h ML
12: £ in(mm,Emm,gm)
13: kML:ki ML —s&7" s€7" e, if EML changes
14: end for
15: end for
16: inverse permute sM~ using kM

17: xML =demod(sM’)

18: update [” and /' using xM* and
19: calculate LLR [=[°—["

20: return sM% £ML and LLR values

SML

ignored. However, the quasi-ML solution is selected
from all M M vectors. The ith bit vector subset X; is
obtained by only demodulating s; ; 5, in S; (see line 1).
Variable s; ; », denotes the Mrth symbol element of
the jth symbol vector, where 1< j< M. The algorithm

then searches and saves minimum path metrics &, .

min
and Emm associated with subset X; (see lines 5-11). The
bth bit of the jth bit Vector is denoted by x;;, ;, where
1<b<M,. xl b and x! ip.jTepresents x;p with bit value

0 and 1 respec‘nvely, and their PED values are denoted
by g¥ivs and E%ini, Vector [° and I' records newly found

8”’ andé‘”’

min min

The quasi-ML solution sM% is updated

along with its permutation vector k* when either & " o

or Em‘f;l is smaller than its current path metric £M-
(see lines 12 and 13). LLR values [are finally calcu-
lated using properly permuted s”%, [° and ' (see lines
16-19).

The low complexity LLR algorithm performs sub-
optimal search of the counter-hypothesis bits and full

search of the quasi-ML bits. Since £ ’1” and Sm’lfl are gen-
erated locally for the Mth symbol within the ith FSD,
the number of compare operations can be reduced by
exploiting the property of QAM symbols. Recall that

symbols in the same column share identical in-phase

@ Springer

224

J Sign Process Syst (2012) 68:217-231

binary code and symbols in the same row share iden-
tical quadrature binary code. Hence, path metrics for
symbols with identical in-phase and quadrature compo-
nents are minimized first. Then, minimum path metrics

0 o
EW and £

i . are generated for the bth bit position
from surviving path metrics, which also require 2[v M
symbol demodulations. The total number of compare
operations for the low complexity LLR algorithm is

given by
Neomp = [2M7 (81— 1) B] + | My M, (31 - 2)]
+ 2M7 —1] 8

where M= (\/HL M < M. The first term in Eq. 8 cal-
culates the number of quadrature and in-phase symbol
path metric comparisons. The second term calculates
the number of bit position path metric comparisons.
The last term counts the additional compare opera-
tions for the quasi-ML solution. Parallel implementa-
tion of the compare operations require 2M 7 M sorting
networks of size My, MM, sorting networks of size
(M—1) and 1 sorting network of size 2My. For a 4 x4
system, the sorting networks are not very large, and
yet they contribute to 14% of the decoder area in our
FPGA implementation!

Existing methods such as K-best and LFSD are
based on full search of counter-hypothesis bits. When
all MMy symbol candidate vectors are considered
in a full counter-hypothesis bit search, additional
MM (Mt — I)M] compare operations are required
to find the bit values. For a 4 x4 system, this translates
to 85% and 88% less compare operations compared to
the full search algorithm for 16-QAM and 64-QAM,
respectively.

5 Simulation Results

In this section, we compare the Monte-Carlo simulation
results of PFSD, LFSD and K-best sphere decoding
algorithms. The system under investigation consists
of Mp=4 transmit and Mg =4 receive antennas. The
uncoded source data vector i is 4,096 bits long. It is
encoded by a parallel concatenated Turbo encoder,
which consists of two component R.=1/2 Recursive
Systematic Convolutional (RSC) component encoders.
The generator matrices for the encoders are gl (D) =
1+ D+ D? and g2(D) = 1+ D? [27]. The output of
the encoder ¢ is a 8,192 bits long packet. Each packet
is passed through a pseudo-random interleaver, and
reshaped to a 4x2,048 bit matrix. Gray code map-
ping is used to map every M. = 4 consecutive bits in

@ Springer

each row to a 16-QAM symbol. A vector of 4 sym-
bols is transmitted at a time, one from each antenna.
Block Rayleigh fading is used to model the channel.
We assume that the channel matrix H is known, and
stays constant for every 16 consecutively transmitted
symbol vectors. The fading coefficients h;;s of H are
independent and identically-distributed (i.i.d.) complex
unit variance Gaussian variables.

The energy per transmitted information bit is
defined as E;, = 1, and the noise power is calculated
from a given SNR Ej, /Ny|a» with 0> = N,. There are
R:.M, bits in a transmitted symbol, and the average
symbol energy per transmit antenna is defined as E; =
R.M_E,. Hence, the total energy per received antenna
is M1 E,. The MIMO detector calculates the soft-value
information using the Max-log approximation for each
received symbol vector. The LLR clipping values of 8
are used for a prescribed bit when no counter-
hypothesis bit is found in the candidate solution set [28].
Each LLR is a signed 10-bit long number with 6 bits
in the fractional part. The Turbo decoder consists of
two parallel concatenated soft-output Viterbi algorithm
(SOVA) based decoders.

The Turbo decoder takes the soft outputs from the
MIMO detector, and decodes the information bits it-
eratively. Eight iterations are run for each packet. For
BER less than 1072, simulations are kept running until
at least 1,000 bit errors are accumulated at the outputs.
For BER greater than 1072, simulations are kept run-
ning until at least 100 bit errors are accumulated at the
outputs.

5.1 BER Performance

Figure 4a shows the BER performance of LFSD, PFSD,
LORD and K-best decoders for a 4x4 system with
16-QAM modulations. The LFSD algorithm is a soft-
output extension of the FSD algorithm [10], where the
number of expanded nodes doubles for p levels after
the initial g FS levels. Hence, the cardinality vector ¢
for 64 candidate LFSD decoderis [1, 2,2, 16] with g=1
and p=2. We study 2 setups for the PFSD decoder,
with 64 total candidates but different LLR computation
complexities. The first uses the low complexity LLR
algorithm described in Section 4.2. The other, denoted
as the max-log LLR, computes LLR values at each bit
position from all 64 candidate solution. Finally, the 64
candidate LORD algorithm [22] is added for baseline
performance comparison.

The SNR differences of these algorithms are ex-
amined at 107> BER. The PFSD with parallel QR
(pQR) and exact max-log LLR computation provides
the best performance at 3.3 dB SNR. This is due to the

J Sign Process Syst (2012) 68:217-231

225

M =Mg=4, 1 6-QAM

—A— K-best (K=16)
10 " F| —4— LFSD (64:[1,2,2,16]) SRR o
=0=" LORD (64:4x[1,1,1,16]) : :

-6- PFSD (64:4x[1,1,1,16]), pQR
with exact max-log LLR

= B - PFSD (64:4x(1,1,1,16)), pQR \T

05075 1 12515175 2 22525275 3 32535375 4 4.25 4.5

Eb/N%b

(a)

MT=MR=4’ 16-QAM

_ PFSD (64:4x[1,1,1,16]), pQR| .
without FSD ordering

—&A— PFSD (48:4x[1,1,1,12]), pQR

—8— PFSD (64:4x[1,1,1,16]), pQR

= ® = PFSD (64:4x[1,1,1,16]), sQR

--O— LORD (64 4x[1 1, 1 16])

10
05075 1 12515175 2 22525275 3 32535375 4 42545
Eb/NOdb

(b)

Figure 4 BER performance comparison of: a the K-best, the LFSD, the LORD and the PFSD algorithms and b the PESD algorithm
with different candidate cardinality vectors and QR decomposition setups with a rate R, = 1/2 Turbo code and 16-QAM modulation.

existence of counter-hypothesis bits for all bit positions
in their candidates solution set. The LFSD and the
K-best decoders can not make such a claim. They use
LLR clipping when necessary, which affects the quality
of the soft bit values for the channel decoder, and in
turn, the BER [29]. The LFSD and the K-best decoders
achieve 1073 BER at 3.6 dB and 3.8 dB, respectively.
The PFSDs with low complexity LLR closely follow the
K-best decoder. They achieve 1073 BER slightly below
4dB. In low complexity LLR, the counter-hypothesis
bit squared Euclidian distance is calculated from MLT
candidate vectors in the candidate set. This provides
significant savings in terms of number of sorting op-
erations at the expense of small BER degradation.
The LORD algorithm also uses ML[candidate lists to
compute LLR values at all bit positions; however it
does not find the exact quasi-ML solution. Hence, the
overall quality of its LLR values is lower than PFSD
with low complexity LLR.

Figure 4b shows the BER performances of the PFSD
algorithm with low complexity LLR for different QR
decomposition, initial channel ordering and cardinality
vectors. We study 3 setups for PFSD with 64 candidates,
(i) parallel QR (pQR) with initial channel ordering
[16] for the first FSD, (ii) pQR without initial chan-
nel ordering, and (iii) serial QR (sQR), as shown in
Fig. 2, for all Mt QR decompositions. For these three
setups, the SNR differences are less than 0.1 dB. These
results illustrate that initial channel ordering and QR
decomposition scheme have little effect on the PFSD
algorithm. Multiple FSDs reduce the likelihood that

unfavorable channel ordering from any one FSD domi-
nates the overall performance of PFSD. We conclude
that PFSD can be implemented without performing
the initial channel ordering to reduce preprocessing
computation overhead.

Figure 4b also shows the effect of different number
of nodes expanded at the top level of each FSD in
PFSD. PFSD with 64 and 48 total candidates achieves
10~ BER at 3.98 dB and 4.3 dB, respectively. PFSD
with 48 candidate vectors provides better performance
than LORD with 64 candidate vectors. The number of
nodes expanded at the top level has significant impact,
because less nodes expanded at the top layer increase
the likelihood that the correct symbol will be missed
at the top decoding layer of each FSD, and reduce the
likelihood that symbols at lower layers will be detected
correctly.

5.2 Computation Complexity

For high throughput applications, in addition to BER
performance, the computation complexity as well as
the overhead of parallelization are important metrics.
Table 2 shows the operation costs of aforementioned
algorithms measured in terms of number of additions,
multiplications and comparisons. Among the candidate
algorithms, LFSD (64:[1,2,2,16]) has the lowest number
of multiplications and K-best has the highest number
of multiplications. The proposed PFSD with 64 and 48
candidates has 1.3-1.6 times more multiplications than
LFSD, but 10-33% less multiplications than the K-best.

@ Springer

226

J Sign Process Syst (2012) 68:217-231

Table 2 Comparison of SD
algorithms with respect to
performance and complexity.

Algorithms for 4 x 4 SNR for Number of operations

16-QAM system 103 BER Addition Multiplication Comparison
PFSD (64:4x[1,1,1,16]) 3.98 3,456 1,680 135

PFSD (48:4x[1,1,1,12]) 43 2,592 1,264 99

PFSD (64:4x[1,1,1,16]) 33 3,456 1,680 896

with exact max-log

LORD (64:4x[1,1,1,16]) 4.5 3,456 1,680 128

LFSD (64:[1,2,2,16]) 3.6 2,080 1,008 825
K-best (K = 16) 3.8 3,024 1,872 4,199

Even though PFSD has more multiplications than
LFSD, its candidate vectors are independent of each
other and they can be generated in parallel. In contrast,
in LFSD, the sibling candidate nodes are partially de-
pendent on each other in intermediate decoding stages.
This data dependency translates to additional compu-
tations [30], and increases decoder latency for larger
antenna system with more intricate cardinality vector
setup.

All these algorithms require comparisons for the
sorting operations in solution set generation and LLR
value calculation. The two PFSDs and LORD have sim-
ilar number of comparisons for LLR value calculation,
but LFSD and K-best have significantly higher num-
ber of comparisons. The PFSD implementation con-
sists of Mt identical sorting networks and 1 quasi-ML
path sorter. Each parallel sorting network requires at
most [2(~'M — 1)v/M] + [M.(~'M — 2)] comparators;
the quasi-ML path sorter requires 2(Mp — 1) com-
parators. Hence, sorting networks for PFSD scale well
with respect to increasing QAM size and antenna
configuration. The sorting operations in LFSD and K-
best depend on total number of candidate vectors and
are typically implemented by a folded network which
increases the latency of the LLR computation.

6 FPGA Implementation of PFSD

In this section, we discuss the hardware implementation
details of the PFSD decoder for a 4 x 4 MIMO system.
In the channel preprocessing part, we do not consider
channel matrix ordering since it does not enhance the
performance. The parallel QR architecture is based on
Fig. 3b, where each P node is implemented with 6 real
multipliers and 14 real adders, and each N node is im-
plemented with 4 real multipliers, 2 real adders, 1 real
divider and 1 square root. The outputs of two matrices
come out every time unit starting with the 5th time unit,
where the time unit is determined by the delay in the N
node. We do not describe the QR implementation here
but instead focus on the scalable parallel implementa-

@ Springer

tion of the PFSD parallel tree search and the PFSD low
complexity LLR value calculation on an FPGA.

6.1 Architecture Details

The FPGA-based architecture for the PFSD algorithm
with LLR calculation is shown in Fig. 5. It consists of
a SDRAM controller, a processor local bus (PLB), and
a parallel and pipelined PFSD decoder. The decoder
consists of the PFSD kernel, the input/output memory,
and a local memory controller. The SDRAM controller
fetches the channel preprocessing output data from
the SDRAM and sends it to the input memory of
the PFSD decoder. The PFSD decoder processes the
data, and stores the results in the output memory. The
SDRAM controller reads the results and store it back
to the SDRAM. A 64-bit Xilinx Multi-Port Memory
Controller (MPMC) [31] is used to implement the
SDRAM controller, and a 128-bit Process Local Bus
(PLB) [32] is used to transfer data in and out of the
PFSD decoder. The function of the PFSD decoder
components is described below.

Local Memory Controller This block controls the data
access pattern of the PFSD kernel. The PFSD kernel
requires 4 pairs of R; and 21‘ to generate one LLR vector
[(see Algorithm 1, line 13). Each input is a 32-bit wide
complex number with 16 bits for the real/imaginary
parts. Each output LLR is 10-bit wide with 6 bits for
fractional part. The PLB transfers 128-bit each clock
cycle. Hence, 4 pairs of R; and 21, require 12 read

FPGA (100 MHz)
Parallel & Pipelined
N PFSD Decoder PFSD Kerel
b=)
£ a H é Input iN Solution Set
3 q% = "g 3 5 Memory Generator
O0o b zfer] O] Sfe 2) v
s 2 = 2 o
c O *n < 2 Output < LLR Value
S Y g Memory Generator
(&) %) o I
External v | Local Memory Controller |
Modules

Figure 5 The proposed architecture of PFSD.

J Sign Process Syst (2012) 68:217-231

227

cycles, and an output vector [requires 2-4 write cy-
cles depending on the QAM size. This bus can sup-
port 75 Mbps throughput for 4 x 4 64-QAM decoder
running at 100 MHz. For higher throughput decoder
configurations, wider PLB bus must be used to meet
data I/O requirement.

Input/Output Memory There are 4 independent and
identical dual-port input memory blocks. Each memory
block is divided into three 128-bit wide 16-entry mem-
ory banks. One bank stores y and other two banks
each stores half of R;. The s1ngle dual-port output mem-
ory block consists of six 128-bit wide 16-entry memory
banks, where each entry of a memory bank stores 4
LLRs. Multiple banks in input and output memory

blocks are used to ensure parallel data access for the
PFSD kernel.

PFSD Kernel The block diagram of the PFSD ker-
nel is shown in Fig. 6a. The PFSD kernel consists of
a solution set generator that performs parallel FSD
tree search and a LLR value generator that runs the
low complexity LLR algorithm. The solution set gen-
erator has 4 parallel FSD cores. The ith core takes
input data y and R;, and calculate path metrics of d
(d< M) candidate solution vectors. Figure 6b shows
the internal structure of a FSD core, which has two
function units—sibling node enumeration and candidate
path search. The sibling node enumeration finds d
symbols expanded at the top level. It starts with a

Figure 6 Block diagram of: a
PFSD kernel and b FSD core. Solution Set Generator
j, i, i, i,
R| 11? R;{ R.[
FSD Core 1 FSD Core 2 FSD Core 3 FSD Core 4
Xy Xs X3 Xy
El v E_} v E;; v E.l v
Sorting Sorting Sorting Sorting
Network 1 Network 2 Network 3 Network 4
Quasi-ML | VL LLR Value L -
+ - . [
Path Search | gVL - Calculation
LLR Value Generator
(a)
Sibling Node .
g Cand/date Path Search :
Enumerate i ; ! ! Sij+3
Sij+a4 B PE NEINEINEIE
Sij+1.4 E | 4 1:} 3 ﬂ:> 5 ﬂ}» 1 "
e
Sir24L-PPE |} |PE| in |PE| I |PE ;§ivi
Sl,],4 E > 4 ‘E‘> 3 ﬂ:‘b 2 ﬂ}‘» 1 ;
(b)

@ Springer

228

J Sign Process Syst (2012) 68:217-231

slicer, which determines the top level 1st candidate
symbol s; | 4. Remaining d — 1 symbols are easily found
by using a LUT table, where neighboring symbols of
si,1.4 are listed in increasing order of their distance. The
candidate path search unit takes 2 top level symbol
inputs (s; 4 and s; 114, 1 < j< M) and generates 2
candidate vector outputs (s; ;and s; ;.) per clock cycle.
The candidate path search unit consists of two identical
4-stage pipeline connected processing elements (PE).
PE1 to PE3 performs the following three tasks:

1. Calculating residual vector V;;; according to Eq. 5,
where only shift and add operations are used to
obtain TijSj.

2. Determine the 1st child symbol s; by comparing the
real and imaginary values of V;;; to products of r;;
and all possible v/ M PAM symbols.

3. Calculating PED 7; = Y ;_,, | Di(s)) |*, and pass-
ing symbol vector and its PED to the next PE.

PE4 only needs to perform task 3.

Figure 6a shows that the LLR value generator con-
sists of 4 sorting networks, a quasi-ML solution search
module, and a LLR value calculation module. Outputs
X; and E; from FSD core i are fed to sorting network i,

which finds the minimum path metrics Eﬁﬁ and 5::1113 for
all M. bit position of 5; ;4,1 < j < M (see Algorithm 3,
lines 5 and 6). To accommodate parallel and pipelined
sorting of 64-QAM path metrics, each sorting network
has 12 parallel 2 stage sorters. The minimum path
metrics from 4 sorting networks are passed to the LLR
value calculation module and recorded in a metric ta-

ble. There are 24 entries in the table, and each entry is
32-bit wide. The top 16 bits are for £* and the bottom

min
16 bits are for Slflllfl Minimum path metrics and their
associated symbols from 4 sorting networks are passed
to the quasi-ML solution search module. Once s™ is
found, the entries in the metric tables are updated.

The LLR value calculation module then calculates the

LLR vector [by using [’ and [' from the metric table.
There are 24 parallel subtractors in the LLR value
calculation module. When operating under lower QAM
configuration, such as 4-QAM and 16-QAM, the LLR
value generator disables unused sorters in each sorting
network, and asserts maximum path metric value for bit
positions that do not exist in the metric table. A simple
address counter is used to ensure that valid LLRs are
passed to the output memory.

6.2 Virtex-4 FPGA Implementation

The VHDL code for the proposed PFSD architecture
is developed in Xilinx ISE 10.1 environment. The RTL
code is synthesized for the Xilinx Virtex-4 (X4VLX160)
device with —12 speed grade. Table 3 shows the total
area and individual component utilization of the PFSD
decoder. The percentage numbers for the PFSD total
area entries are calculated with respect to the overall
available FPGA resources. The solution set generator
and the low complexity LLR value generator occupy
82.2% and 18.3% of the PFSD decoder slices. The
FSD shared modules within the solution set generator
include shared control signals and delay registers within
each FSD core. They are less than 3% of the PFSD
decoder. The local memory controller generates input
and output memory address for FSD cores and the
LLR value generator. It takes up less than 1% of the
PFSD decoder. In the Virtex-4 FPGA, we can fit two
PFSDs provided that the multiplications are done by
both DSP48s and LUTs. Each PFSD can be clocked at
120MHz. The critical path delay resides in the sorting
network, where current path metrics are compared with
existing path metrics.

The latency of the PFSD decoder is 55 cycles. Table 4
shows the maximum latency required for the individual
modules. Each FSD core takes 45 cycles to generate
one candidate vector for a new set of inputs, which
includes the 22 cycles required by the FSD shared

Table 3 FPGA device utilization summary for PFSD and LLR calculation (f = 100 MHz, N = 4, k = 2).

Xilinx XC4VLX160 Device utilization
Slice flip flops 4 input LUTs Slices RAMBI16 DSP48s

PFSD total area 32,464 (24%) 46,325 (34%) 25,787 (38%) 48 (16%) 64 (66%)
Solution set generator FSD cores 26,280 38,060 20,256 12 64

FSD shared 1,304 1,016 680
LLR value generator Sorting network 3,904 5,148 3,672

Quasi-ML search 352 375 271 4

LLR value calc 504 1,512 768
Local memory controller 120 215 140
Input memory 16
Output memory 16

@ Springer

J Sign Process Syst (2012) 68:217-231

229

Table 4 FPGA device timing table for PFSD and LLR calculation (f = 100 MHz, N = 4, k = 2).

Xilinx XC4VLX160 Solution set generator LLR value generator
FSD cores FSD shared Sorting network Quasi-ML search LLR value calc
Clock cycle count 45 (22) 4 4 2

module. It contributes to 82% of the PFSD decoder
latency. The latency of the parallel sorting network is 4
cycles. The quasi-ML search only adds 4 cycles to the
overall decoder latency; its latency increases linearly
with respect to M 7. Hence, full parallel implementation
of the low complexity LLR algorithm greatly reduces
overall decoder latency with moderate increase in de-
coder size.

For 4x4 64-QAM decoder running at 100 MHz, 24
LLRs are produced by the LLR value generator every
32 cycles. This translates to a throughput of 75 Mbps.
However, when 16-QAM is used, 16 LLRs are produce
by the LLR value generator every 14 cycles and the
throughput is 114 Mbps instead of the expected 200
Mbps. This is because of the constraints imposed by the
128-bit wide PLB bus, where 14 read and write cycles
are required (12 read cycles for inputs and 2 write cycles
for outputs).

The power consumption of the PFSD implementa-
tion for a internal source voltage of 1.140 V is reported
to be 4.36 W, of which the dynamic power consumption
is 2.94 W, and the static power consumption is 1.42 W.

PFSD Scalability The decoding rate of the proposed
PFSD decoder, R;, depends on f, the circuit operating
frequency, N, the number of FSD cores, d, the num-
ber of candidates generated by each core per received
vector, and, k, the number of candidates generated by
each core in each clock cycle for the case when the PLB
bus width is wide enough to not pose a constraint. It is
expressed by the following equation

M.

Ri=[kN=

,where 1l<N<My,1<d, k<M 9)

There are FPGA implementations of sphere de-
coders as early as 2006 [33]. The FSD decoder reduces
computation complexity by using /' norm, generates
8 candidate vectors every clock cycle, and achieves
450 Mbps throughput for 64-QAM configuration when
clocked at 150 MHz. The proposed soft-output PFSD
generates up to 256 candidate vectors for 64-QAM
configuration, uses /> norm instead of /' norm for
higher decoder performance, and consequently has
lower throughput. Recently, another FPGA implemen-
tation for hard-output FSD has been proposed in [34].

The decoder can achieve 52.5 Mbps at 35 MHz for 64-
QAM system. Our PFSD implementation has larger
area compared to [34] due to the FSD cores and the
LLR value generator that are required for soft-output
generation, along with use of larger bit width (16 vs 11).
Also, the solution set generator in PFSD produces 8
candidate vector every clock cycle, whereas the decoder
in [34] only produces 4 candidate vectors every clock
cycle. In addition, /! norm is used in [34]. Most recently,
an improved version of LORD [35] has been proposed
and implemented in ASIC for a small system (2x2)
with 64-QAM. It achieves a very high throughput of
240 Mbps with a 80 MHz clock. Since it is a smaller
system, it allows high degree of parallelization where 32
candidate vectors are generated every clock cycle. Such
a high degree of parallelization cannot be maintained
for a 4 x4 system with 64-QAM without a very large
area overhead.

The parameter f is determined by the maximum
clocking frequency of the FPGA implementation, and
N is determined by the MIMO antenna configuration.
The parameter d is determined by the sibling node
enumeration unit within each FSD core. While R, can
be increased by decreasing d, it comes at the cost of
lower BER performance, as demonstrated in Section 5,
where 64-candidate PFSD outperforms 32-candidate
PFSD. R, can also be improved by increasing k. This
solution does not degrade BER performance, but re-
quires additional hardware resources.

7 Conclusion

In this paper, we developed a high throughput parallel
fixed complexity sphere decoding (PFSD) algorithm.
We also designed a low complexity parallel QR decom-
position that reduces the PFSD channel preprocessing
overhead. The PFSD provides high bit diversity for
each received signal component and simplifies the child
node enumeration step that is required in the existing
soft-output sphere decoders. Through simulation, we
demonstrate that the PFSD algorithm performs better
than LFSD and k-best in a 4x4 16-QAM system for
configurations where all three algorithms have com-
parable computation complexity. The PFSD algorithm
has been implemented on Xilinx VC4VLX160 FPGA.
For 4x4 64-QAM configuration, the PFSD decoder

@ Springer

230

J Sign Process Syst (2012) 68:217-231

can achieve 75Mbps running at 100MHz. The scalability
of the PFSD decoder is also investigated. Since the data
paths of the PFSD decoder is inherently parallel, it can
be easily mapped onto multiple FPGA chips to achieve
very high decoding rate.

References

1. Butler, M. R. G., & Collings, I. B. (2004). A zero-forcing ap-
proximate log-likelihood receiver for MIMO bit-interleaved
coded modulation. /[EEE Communication Letter, 8, 105-107.

2. Foschini, G. J. (1996). Layered space-time architecture for
wireless communication in a fading environment when us-
ing multi-element antenna. Bell Labs Technical Journal, 1,
41-59.

3. Mobasher, A., Taherzadeh, M., Sotirov, R., & Khandani, A.
K. (2005). A near maximum likelihood decoding algorithm
for MIMO systems based on semi-definite programming. In
IEEE international symposium on information theory (ISIT)
(pp. 1686-1690).

4. Sidiropoulos, N. D., & Luo, Z.-Q. (2006). A semidefinite
relaxation approach to MIMO detection for high-order QAM
constellations. /EEE Signal Processing Letters, 13, 525-528.

5. Pohst, M. (1981). On the computation of lattice vectors of
minimal length, successive minima and reduced bases with
applications. In ACM special interest group on symbolic and
algebraic manipulation (SIGSAM Bull.) (Vol. 15, pp. 37-44).

6. Hassibi, B., & Vikalo, H. (2005). On the sphere-decoding al-
gorithm I, expected complexity. IEEE Transactions on Signal
Processing, 53, 2806-2818.

7. Guo, Z., Nilsson, P. (2006). Algorithm and implementation of
the K-best sphere decoding for MIMO detection. IEEE Trans-
actions on Selected Areas in Communications, 44, 491-503.

8. Chen, S., Zhang, T., & Xin, Y. (2007). Relaxed K-best
MIMO signal detector design and VLSI implementation.
IEEE Transactions on VLSI Systems, 15, 328-337.

9. Bhagawat, P., Dash, R., & Choi, G. (2009). Systolic like soft-
detection architecture for 4 x 4 64-QAM MIMO system. In
IEEE The design, automation, and test in Europe (DATE)
(pp. 870-873).

10. Barbero, L. G., & Thompson, J. S. (2008). Extending a fixed-
complexity sphere decoder to obtain likelihood information
for Turbo-MIMO systems. /[EEE Transactions on Vehicular
Technology, 57,2804-2814.

11. Caire, G., Taricco, G., & Biglieri, E. (1998). Bit-interleaved
coded modulation. IEEE Transaction of Information Theory,
8, 927-946.

12. Studer, C., Burg, A., & Bolcskei, H. (2008). Soft-output
sphere decoding: Algorithms and VLSI implementation.
IEEE Transactions on Selected Areas in Communications, 26,
290-300.

13. Fincke, U., & Pohst, M. (1985). Improved methods for calcu-
lating vectors of short length in a lattice, including a complex-
ity analysis. Mathematics of Computation, 44, 161-163.

14. Schnorr, C. P., & Euchner, M. (1991). Lattice basis reduction:
Improved practical algorithms and solving subset sum prob-
lems. Fundamentals of Computation Theory, 529, 68-85.

15. Wong, K. W., Tsui, C. Y., Cheng, R. S.-K., & Mow, W. H.
(2002). A VLSI architecture of a K-best lattice decoding algo-
rithm for MIMO channels. In IEEE international symposium
on circuits and systems (ISCAS) (Vol. 3, pp. 273-276).

16. Barbero, L. G., & Thompson, J. S. (2006). A fixed-complexity
MIMO detector based on the complex sphere decoder. In

@ Springer

17.

18.

19.

20.

21.

22.

23.

24.

25.

26.

27.

28.

29.

30.

31.

32.

33.

IEEE international workshop on signal processing advances
for wireless communications (SPAWC) (pp. 1-5).

Hess, C., Wenk, M., Burg, A., Luethi, P., Studer, C., Felber,
N., et al. (2007). Reduced-complexity MIMO detector with
close-to-ML error rate performance. In ACM Great Lakes
symposium on VLSI (pp. 200-203).

Li, M., Bougard, B., Lopez, E. E., Bourdoux, A., Novo, D.,
Van Der Perre, L., et al. (2008). Selective spanning with fast
enumeration: A near maximum-likelihood MIMO detector
designed for parallel programmable baseband architectures.
In /IEEE international conference on communications (ICC)
(pp. 737-741).

Milliner, D. L., Zimmermann, E., Barry, J. R., & Fettweis,
G. P. (2008). A framework for fixed complexity breadth-
first MIMO detection. In IEEE international symposium
on spread spectrum techniques and applications (ISSSTA)
(pp- 129-132).

Li, M., Novo, D., Bougard, B., Naessens, F., Van der Perre,
L., & Catthoor, F. (2008). An implementation friendly low
complexity multiplierless LLR generator for soft MIMO
sphere decoders. In IEEE workshop on signal processing sys-
tems (SiPS) (pp. 118-123).

Siti, M., & Fitz, M. P. (2007). On layer ordering techniques for
near-optimal MIMO detectors. In IEEE wireless communica-
tions and networking conference (WCNC) (pp. 1199-1204).
Siti, M., & Fitz, M. P. (2006). A novel soft-output layered
orthogonal lattice detector for multiple antenna communica-
tions. In IEEE international conference on communications
(ICC) (pp. 1686-1691).

Jalden, J., Barbero, L. G., Ottersten, B., & Thompson, J. S.
(2009). The error probability of the fixed-complexity sphere
decoder. IEEE Transactions on Signal Processing, 57, 2711—
2720.

El-Amawy, A., & Dharmarajan, K. R. (1989). Parallel VLSI
algorithm for stable inversion of dense matrices. In Com-
puters and digital techniques, IEE proceedings E (Vol. 236,
pp- 575-580).

Liu, K. R., Hsieh, S.-F., & Yao, K. (1992). Systolic block
householder transformation for RLS algorithm with two-
level pipelined implementation. [EEE Transactions on Signal
Processing, 40, 946-958.

Wiibben, D., Bohnke, R., Rinas, J., Kiihn, V., & Kammeyer,
K. D. (2001). Efficient algorithm for decoding layered space-
time codes. IEEE Transactions on Electronics Letters, 37,
1348-1350.

Vucetic, B., & Yuan, J. (2000). Turbo codes: Principles and
applications. Norwell: Kluwer.

Hochwald, B. M., & Brink, S. (2003). Achieving near-capacity
on a multiple-antenna channel. IEEE Transactions on
Communications, 51, 389-399.

Milliner, D. L., Zimmermann, E., Barry, J. R., & Fettweis,
G. (2008). Channel state information based LLR clipping in
list MIMO detection. In IEEE international symposium on
personal, indoor and mobile radio communications (PIMRC)
(pp. 1-5).

Burg, A., Borgmann, M., Wenk, M., Zellweger, M., Fichtner,
W., & Bolcskei, H. (2005). VLSI implementation of MIMO
detection using the sphere decoding algorithm. I[EEE Journal
of Solid-State Circuits, 40, 1566-1577.

Xilinx. Xilinx multi-port memory controller. http://www.xilinx.
com/support/documentation/ip_documentation/mpmec.pdf.
Xilinx. Processor local bus. http://www.xilinx.com/support/
documentation/ip_documentation/plb_v46.pdf.

Barbero, L. G., & Thompson, J. S. (2006). FPGA design con-
siderations in the implementation of a fixed-throughput sphere
decoder for MIMO systems. In IEEE international workshop

http://www.xilinx.com/support/documentation/ip_documentation/mpmc.pdf
http://www.xilinx.com/support/documentation/ip_documentation/mpmc.pdf
http://www.xilinx.com/support/documentation/ip_documentation/plb_v46.pdf
http://www.xilinx.com/support/documentation/ip_documentation/plb_v46.pdf

J Sign Process Syst (2012) 68:217-231

231

on signal processing advances for wireless communications
(SPAWC) (pp. 1-5).

34. Bhagawat, P., Dash, R., & Choi, G. (2008). Architecture for
reconfigurable MIMO detector and its FPGA implementa-
tion. In /EEE international conference on electronics, circuits
and systems (ICECS) (pp. 61-64).

35. Cupaiuolo, T., Siti, M., & Tomasoni, A. (2010). Low-
complexity high throughput VLSI architecture of soft-output
ML MIMO detector. In Design, automation test in Europe
conference exhibition (DATE), 2010 (pp. 1396-1401).

Qi Qi received the B.S., M.S. and Ph.D. degrees in electrical
engineering from Arizona State University (ASU), Tempe, in
2001, 2004 and 2010, respectively. His research interests include
VLSI architectures and algorithms for communication and signal
processing systems.

Chaitali Chakrabarti (SM’02) received the B.Tech. degree in
electronics and electrical communication engineering from the
Indian Institute of Technology, Kharagpur, India, in 1984, and
the M.S. and Ph.D. degrees in electrical engineering from the
University of Maryland, College Park, in 1986 and 1990, re-
spectively. She is a Professor with the Department of Electri-
cal Engineering, Arizona State University (ASU), Tempe. Her
research interests include the areas of low power embedded
systems design including memory optimization, high level synthe-
sis and compilation, and VLSI architectures and algorithms for
signal processing, image processing, and communications. Prof.
Chakrabarti was a recipient of the Research Initiation Award
from the National Science Foundation in 1993, a Best Teacher
Award from the College of Engineering and Applied Sciences
from ASU in 1994, and the Outstanding Educator Award from
the IEEE Phoenix Section in 2001. She served as the Techni-
cal Committee Chair of the DISPS subcommittee, IEEE Signal
Processing Society (2006-2007). She is now an Associate Editor
of the Journal of VLSI Signal Processing Systems and the IEEE
Transactions on Very Large Scale Integration Systems.

@ Springer

	Parallel High Throughput Soft-Output Sphere Decoding Algorithm
	Abstract
	Introduction
	Preliminaries
	Sphere Decoding Algorithm
	Parallel Fixed Complexity Sphere Decoding
	Parallel QR Decomposition for PFSD
	Low Complexity LLR Algorithm for PFSD

	Simulation Results
	BER Performance
	Computation Complexity

	FPGA Implementation of PFSD
	Architecture Details
	Virtex-4 FPGA Implementation

	Conclusion
	References

