
Adapting Control Policies for Expensive Systems to Changing Environments

Matthew Tesch, Jeff Schneider, and Howie Choset

Abstract— Many controlled systems must operate over a
range of external conditions. In this paper, we focus on the
problem of learning a policy to adapt a system’s controller
based on the value of these external conditions in order to
always perform well (i.e., maximize system output). In addition,
we are concerned with systems for which it is expensive to run
experiments, and therefore restrict the number that can be run
during training. We formally define the problem setup and the
notion of an optimal control policy. We propose two algorithms
which aim to find such a policy while minimizing the number
of system output evaluations. We present results comparing
these algorithms and various other approaches and discuss the
inherent tradeoffs in the proposed algorithms. Finally, we use
these methods to train both simulated and physical snake robots
to automatically adapt to changing terrain, and demonstrate
improved performance on test courses with changing environ-
ments.

I. INTRODUCTION

During typical operation of many robotic and industrial
systems, the environment can change significantly. For exam-
ple, a locomoting humanoid robot may move over gently up-
sloped terrain, traverse a horizontal, slightly bumpy area, and
move downhill through many large obstacles. Assume there
is a parameterized controller which can be tuned to perform
well in each of these environments. Obviously, a static set of
parameters for this controller would be a suboptimal method
for controlling the system in multiple environments, as one
would expect the controller parameters for uphill motion to
be different than those for downhill. However, one would
expect some continuity in the robot’s performance – similar
contol parameters should lead to similar performance – and
in the optimal controller – two similar environments would
likely engender similar optimal parameters (Fig. 1). In this
paper, we seek to intelligently generate control policies that
adapt to changes in the environment by selecting the best
controller parameters for a given environment.

Unfortunately, for some systems it is infeasible to test
every possible controller in every possible environment. In
particular, we focus on systems for which evaluation of
even a single controller/environment pair may take significant
effort, and therefore we must minimize the necessary number
of these evaluations. The choice of experiments (points at
which to evaluate the system output) can significantly affect
the quality of the resulting policy. The goal of experiment
selection algorithms is to select parameters at which to
evaluate in a manner that enables generation of the best
possible policies.

Matthew Tesch, Jeff Schneider, and Howie Choset are with the Robotics
Institute, Carnegie Mellon University, 5000 Forbes Ave, Pittsburgh, PA.
This work was supported by the Department of Defense (DoD) through the
National Defense Science & Engineering Graduate Fellowship (NDSEG)
Program.

(a) . (b) .

Fig. 1: (a) We are interested in problems for which the optimal control
parameter changes significantly depending on the environmental conditions.
Ideally similar environment/control combinations lead to similar system
output; we therefore assume this function is continuous, although these
methods can still operate with some discontinuities. (b) The resulting policy
(dark lines that indicate mapping from environment to control) tends to
be piecewise continuous; similar environments usually result in similar
controllers, but there are likely to be some discontinuities. A good policy
can be estimated from a low-cost model of the true expensive system output,
requiring only a handful of carefully chosen points.

This resourceful policy generation is made possible by
the assumption of continuous system output with respect to
the controller parameters and the environment, allowing us
to infer reasonable values for an unsampled system output
based on nearby sampled values. We use statistical metrics
such as expected improvement in order to choose where
to sample the system output, so that we ensure that our
evaluations are useful (rather than wasted on poor regions
of our search space).

In this paper, we first outline the terms necessary to
formally define the optimization problem and the goals of
our algorithms. We then propose two algorithms which use
a statistical measure to select points at which to sample
the system output. We demonstrate the efficacy of these
methods on a set of test functions, and then show results of
several control policies created using these methods, applied
to both simulated systems and physical robots. Specifically,
we demonstrate improved locomotion over changing terrain
for the snake robots described in [1], as compared to a
control policy generated through random sampling of the
environment and control parameter spaces.

II. RELATED WORK

One of the keys to this work is the idea of using a surro-
gate function to represent a function which is expensive to
evaluate, and basing search methods on this cheap model of
the true function. These ideas have been extensively explored
in the global optimization community [2], [3], often relying
on stochastic processes to create a surrogate function [4],
[5], [6]. In this paper, we use Gaussian Processes ([7]) as a
function approximation method that generates an estimate of

2011 IEEE/RSJ International Conference on
Intelligent Robots and Systems
September 25-30, 2011. San Francisco, CA, USA

978-1-61284-455-8/11/$26.00 ©2011 IEEE 357

the true system output along with a measure of confidence
in that estimate.

Given a surrogate function, the goal of global optimization
of expensive functions becomes using the surrogate to choose
subsequent true function evaluations in order to minimize the
number of total evaluations while maximizing performance.
In cases where the function evaluations are costly (hours
to days), computational requirements are not a significant
issue; careful choice of the sample is more important. Note
the difference from active learning, where the quality of
the surrogate is paramount (e.g., [8]); instead, we are only
interested in the model as a means to optimize a function,
and do not require high confidence over the entire surface.

A number of heuristics and statistical methods have been
derived to use information from the surrogate function to
choose this sample location ([3] provides a survey of many
existing methods). These include sampling at an upper
confidence bound of the predicted function [9], [10], using
the probability of improvement[11], [12], and the use of
expected improvement[13], [14]. The latter has shown to
effectively trade off exploration of the parameter space and
exploitation of the known good areas, without requiring
algorithm parameters to be carefully tuned. It has been used
in the context of global optimization, and expanded to multi-
objective optimization [15], [16], noisy black-box function
optimization [17], [18], [19], and other domains. However,
none of these methods are directly applicable to the addition
of environment parameters. In contrast, our algorithms take
these parameters into consideration through the optimization
of a policy which defines a mapping on the function’s
domain. Inspired by the success of the expected improvement
metric, we adapt it to be meaningful in selecting points which
aim to improve our policy.

Perhaps the most closely related relevant work is that
done in the field of robust controller selection [20], [21]. In
particular this work explicitly breaks the parameter space into
a control and environment subspace, as we do in this paper.
However, robust controller selection methods seek to find
a robust controller, rather than an adaptive controller. Their
formulation treats the environment parameter as noise, which
is useful when the environment is unobservable or changes
at a timescale much shorter than the control bandwidth.
Instead, we create a control policy, which adapts controller
performance to observable, changing environments. In envi-
ronments where the controller is fast relative to the changes
in environment, adaptive control will produce a system with
better overall performance.

III. PROBLEM DEFINITION

This work aims to find a control policy that optimally
adapts to external variables, while minimizing the number
of experiments done to perform the optimization. The two
subgoals then become:

1) Policy Generation: After the completion of a prede-
termined number of system output evaluations, predict
an optimal control policy based on the samples.

2) Experiment Selection: Select subsequent parameters
for evaluation, based on the previous system output
evaluations, which maximize the score of the policy
predicted by the policy generation algorithm.

In order to make these notions more concrete, we define
several terms and then restate these subgoals more precisely.

Definition 1 (Control Parameter): The control parameter
space Xc is a compact subset of Rmc . Each xc ∈ Xc

represents a particular value of the system of interest that can
be fully specified during normal operation. Some examples
of control parameters include the value of a set of gains in
a PID controller, the relative concentration of two reactants
in an industrial process, or the prescribed dosage of a drug
during drug development.

Definition 2 (Environment Parameter): The environment
parameter space Xe is a compact subset of Rme . This space
contrasts with the control space in that values xe ∈ Xe

cannot be controlled under normal real-world operation, but
can be specified in laboratory trials. Furthermore, the value
of xe can be measured during normal operation. Therefore,
these parameters represent continuous valued external factors
of the system, such as terrain steepness for a locomoting
system, wind strength and direction for a UAV, particulate
size in an industrial process, or disease strain during drug
development.

Definition 3 (System Output): The system output, de-
noted as f : Xe × Xc → R, is a continuous, real-valued
function of the environment and control parameters. This
function represents the performance of the system, given
some environmental conditions and some specified control
parameter. Example system outputs include the speed of
a locomoting system over a terrain, the efficiency of a
mechanical process, or the turbulance of a wing design
calculated from a wind tunnel or computational fluid dy-
namics experiment. For the methods we propose here, we
assume that sampling this system output is time intensive or
computationally expensive, and therefore there is a limit to
the number of times this function can be evaluated.

Definition 4 (Control Policy): The control policy defined
in this work is a mapping γ : Xe → Xc (not necessarily
surjective), such that γ(xe) represents the control parameter
set by γ in reaction to sensing environment parameter xe.

The score S of a control policy,

S(γ) =
∫
Xe

ω(xe)f(xe, γ(xe))dxe, (1)

represents how well this policy adapts to varied environ-
mental parameters. The ω : Xe → R+ term is an optional
weighting function that reflects the relative importance of
learning controllers for various environments.

We define the optimal control policy for the system, γ∗,
as the policy which maximizes f(xe, γ(xe)) ∀ xe ∈ Xe. In
other words,

γ∗ = argmax
γ

S(γ). (2)

Note that γ∗ is independent of ω, because γ̂∗(xe) can be
independently determined for each xe ∈ Xe. Although the

358

(a) (b)

Fig. 2: An example system output for one dimensional environment and
control spaces. The policy is shown below the function and its performance
is projected to the left. An optimal policy is illustrated in (a), presenting
the best control parameter for every environment parameter. Note that the
policy shown in (b), which also maps to a control parameter that maximizes
the system output at xe = 1, results in a significantly lower overall score
because of its poorer choices in other regions of the environment space.

weighting function can make a significant difference during
experiment selection and policy comparison, the optimal
policy is unaffected by the relative importance of different
environments.

To illustrate these ideas, we use one-dimensional environ-
ment and control spaces (Fig. 2). In Fig. 2(a), the optimal
policy γ∗ is shown projected onto the control-environment
plane, and the score integral is visualized on the system
output-environment plane; Fig. 2(b) shows a suboptimal
policy. Note that the system output is continuous, whereas
the control policy does not have this restriction.

The goal of this work is to find the highest scoring γ after
a number of system output evaluations. As above, we break
this problem into policy generation and experiment selection
subproblems.

1) Policy Generation: Given the results of n system
output evaluations, choose the best estimate for γ∗.

2) Experiment Selection: Choose the sequence of points
X = {x1, x2, . . . xn}, xi ∈ Xe × Xc, where the
choice of xk+1 is informed by {f(xi) |i ≤ k}, which
maximizes the score of the policy produced by the
chosen policy generation algorithm.

IV. PROPOSED METHODS

The difficulty of applying a standard optimization tech-
nique to this problem is twofold. First, the true objective
function we are maximizing during policy generation is
S. Unfortunately, evaluating S(γ), the score of a single
policy, involves an integral of our expensive system output
f(xe, xc). As the policy generation task admits no new
evaluations of f , and the experiment selection only allows
n evaluations, it is clear that it is impossible to calculate
S(γ) for any single policy γ, let alone apply a standard
optimization technique to S. Secondly, rather than directly
searching the infinite-dimensional policy space, the problem
setup requires selection of a series of xi ∈ Xe ×Xc which
will yield the information necessary to build a good policy.

The first of these problems is addressed in our approach
by using a surrogate function, f̂ , to model the system output
and make decisions. This technique is widely used in global

optimization of expensive functions, but the surrogate usually
directly represents the function to be optimized. Here, we
instead use it to represent a function that is an intermediary
in the computation of our score function. However, we share
with the global optimization community the key idea of
replacing an expensive function with a surrogate, using the
surrogate to make informed decisions, and then updating the
surrogate when new information is available.

In particular, we use a Gaussian Process (GP) [7] for f̂ .
Using GPs for regression has the benefit of providing a full
posterior distribution (which is Gaussian) at each point; we
denote the variance of this distribution as σ̂2. This means
it is easy to determine confidence intervals or integrate an
objective criterion over possible values of the function.

Use of a surrogate function entails the assumption that the
model is a reasonable representation of knowledge about the
function. If the hypothesis space is not rich enough to capture
behavior of the system output, or the hypothesis space is too
rich, the model could under or overfit the data, resulting in
poor algorithm performance. For the experimental results, we
have used the squared exponential kernel as the covariance
for the GP, but the methods described below do not rely
on any particular choice of covariance; in general we rec-
ommend selecting between model complexity (for example,
different covariance functions for the GP) via a comparison
of the leave-one-out predictive likelihood of each model. In
addition, any prior knowledge about the system output should
be encoded in the model prior.

Unsurprisingly, standard local and global optimization
methods directly applied to optimizing system output per-
form poorly. This is because these methods are not opti-
mizing the true objective; rather they focus on improving
knowledge in environments with high system output results,
and ignore environments with low system output results. This
causes the resulting policy to be very weak in “difficult”
environments (ones with low system output results), and
therefore lowers the overall score. However, we have in-
cluded results from the expected improvement global search
algorithm EGO [14] as a point of comparison.

To respond to the problem encountered by such a method,
one might choose to incorporate a method such as informa-
tion gain, uniform sampling, or maximum dispersion point
selection to ensure that all types of environments are equally
sampled. Unfortunately, these methods cause poor regions
of the control space to be sampled at the same frequency as
good regions of the control space, resulting in an ineffective
use of the limited sample budget. We have included a random
point selection algorithm as a baseline to compare our efforts
against.

These methods amount to heuristic approaches for this
problem, and although heuristics can often perform well, we
seek a more principled solution. The methods proposed in
§ IV-B and § IV-C attempt to provide a tractable solution
which maximizes a statistical quantity related to the score
function: approximate expectation of improvement above the
current predicted policy score.

359

(a) (b) (c) (d)

Fig. 3: (a) A surrogate for system output; the color represents the confidence (dark = high, light = low). (b) The value of a potential experiment using
expected improvement. The expected improvement metric biases point selection towards environments with high system output values. (c) The value
of a potential experiment using expected improvement over the best predicted system output for that environment. This reduces this bias toward easy
environments and more directly optimizes the policy score. (d) The estimated policy score improvement as a result of sampling each point. This selection
criterion is computationally intensive, but results in better performance than (c).

A. Policy Generation

Using the assumption that the surrogate function generated
by the GP, f̂ , is our best estimate of the true function, the
appropriate course of action is to select the policy which
maximizes our best estimate of the score,

Ŝ(γ) =
∫
Xe

ω(xe)f̂(xe, γ(xe))dxe. (3)

Therefore, we choose γ̂∗ = argmaxγ Ŝ(γ). Although
more efficient approximations could be applied, in low
dimensional spaces γ̂∗ can be estimated via a dense sampling
of the (relatively) cheap f̂ .

Alternatively, one could also choose to take a lower-risk
approach, and use a lower confidence bound of the surrogate
function to define Ŝ. Using this definition of f̂ to find
γ̂∗ biases the generated policy towards control/environment
combinations that are more well-known, and reduces the
likelihood that the policy will choose a controller that will
perform extremely poorly in an unexplored region of the
parameter space.

As this work mainly focuses on experiment selection
methods, we assume a policy generation method based on
maximization of (3) via dense sampling.

B. Unbiased Expected Improvement

Among many surrogate function based methods, one of
the most popular is Jones et. al’s EGO algorithm [14]. This
method seeks to optimize an expensive system output by
using a surrogate function to choose a sequence of points
at which to evaluate the function. Each subsequent selected
point xk is a maximum of the expected improvement,

EI(xt) =

∫ ∞
ym

p(yt)(yt − ym)dyt, (4)

over ym = max1≤i≤k−1(f(x
i)), the best previously sam-

pled system output. Here, yt represents a sample from the
predictive distribution given by the GP at xt, and p(yt) =
N (f̂ , σ̂2) is the probability density of this sample. This
metric seeks to provide a balanced method for trading off

exploration of the search space and focus on the best regions
discovered so far (“exploitation”), and does so in a principled
fashion without requiring hand-tuned parameters. In doing
so, expected improvement considers the whole distribution
of possible experiment results. Furthermore, given a normal
probability distribution for p(yt) as is true for GPs, the
integral in (4) admits an analytic solution.

Although this method has shown considerable success, a
naı̈ve application of this approach to the selection of xk ∈
Xe×Xc produces poor results for control policy generation.
As the algorithm quickly finds the maximum regions of f ,
environments which have no control parameter that performs
very well will not be explored at all. Instead, the algorithm
biases its search towards environments that have high values
for the system output (Fig. 3(b)). This results in a policy that
performs well in “easy” environments, but suboptimally in
“difficult” environments.

The approach proposed here adapts this basic idea to the
explicit separation of the environment and control space.
We consider the expected improvement of sampling at some
xt = (xte, x

t
c), but measure improvement over the maximum

predicted value when xe = xte, or maxxc∈Xc
(f̂(xc, x

t
e)),

instead of over the best system output evaluation so far,
max1≤i≤k−1(f(x

i)). This gives the unbiased expected im-
provement (UEI):

UEI(xt) = ω(xte)

∫ ∞
γ̂∗(xt

e)

p(yt)(yt − γ̂∗(xte))dyt. (5)

The xk chosen by this algorithm is then given by
argmaxUEI(x).

By applying this method, we remove the inherent bias to-
wards environments containing high values for f (Fig. 3(c)).
Furthermore, this approach is related to the expected im-
provement of Ŝ. Since the calculation of Ŝ involves in-
tegration of the performance of the controller γ(xe) over
all environments, this method is equivalent to finding the
(xe, xc) which maximizes the expected improvement of a
single infinitesimal element of this integral.

360

Fig. 4: Three analytic test functions designed for the comparison of point selection algorithms. The exact formulae are too lengthy for inclusion, but
consist mainly of a collection of trigonometric functions.

C. Expected Policy Score Improvement

Although the unbiased expected improvement method
begins to approximate improvement of the true policy score
function S, there is one crucial limitation. The improvement
to the score calculated by UEI(xt) only considers improve-
ment at one point in the environment space, independent of
the other environments, and therefore is only an infinitesimal
element of the true expected improvement of the policy
score. However, sampling a point will add information to f̂
about an entire region, not just a single point. To approximate
the full expected improvement, we must find a way to
extrapolate the effect of sampling a single point to an
entire region. To measure this effect, we generate new GP
surrogate functions for every potential system output value
in the predictive distribution of a point, and integrate the
improvement to the policy predicted by each new surrogate.

Using this method generates a more complete estimate of
the effect of sampling a point on the policy score. Of course,
computing a large numeric integral can also take significantly
more time, and the quality of the solution can vary based on
the resolution of the integral.

More formally, let us define the expected policy score
improvement at a test point xt = (xte, x

t
c) as:

EPSI(xt) =∫ ∞
−∞

p(yt)

∫
Xe

ω(xe)max(γ̂∗yt(xe)− γ̂∗(xe), 0)dxedyt, (6)

where γ̂∗yt is the optimal policy generated by the surrogate
function conditioned on the addition of a sample at xt with
value yt. The point chosen for evaluation by this algorithm
is argmaxEPSI(x).

By maximizing (6), we are choosing a point to evaluate
which maximizes expectation of improvement in the policy
score function, rather than choosing a point which maximizes
improvement in one differential element of the policy score
integral. An example of this criterion is shown in Fig. 3(d).

D. Method Comparison and Discussion

As the unbiased expected improvement uses an analytic
expression to calculate expected improvement it is relatively
quick to calculate, but only considers one infiniteseminal
element of the policy score integral (albeit arguably the most

significant element). Expected policy score improvement
provides a more complete approximation, but requires a
numeric double integral, for which the integrand requires
conditioning the GP.

This produces a resulting selection surface which is
smoother with respect to the environment parameter as
compared to unbiased expected improvement (Fig. 3). Qual-
itatively the locations of the maxima chosen by each al-
gorithm are similar. However, the EPSI approach gives a
slightly more complete approximation of the true policy
score improvement. This results in improved performance but
suffers from a computationally burdensome numeric integral
which may reduce its usefulness for some applications.

One notable difference in the computation of the expected
improvement used here and that typically used for global
optimization is that here we are calculating improvement
over maxima of our surrogate function (an approximation
to system output), whereas other approaches calculate this
improvement over the best previous system output evalua-
tion. We calculate improvement in this manner due to the fact
that a randomly selected environment has zero probability of
containing a previously evaluated point. The full implications
of this difference are not explored in this paper.

V. EXPERIMENTAL RESULTS

To evaluate the performance of these algorithms we first
used analytic “test functions” in leiu of a physical system’s
system output, which allowed the completion of enough tests
to enable one to draw reasonable conclusions. The algorithms
were then used to create policies γ̂∗ (as previously described
in § IV-A) for both physical and simulated systems, which
were then tested on a course with a changing environment.
We created three test functions of varying complexity, shown
in Fig. 4, which could be used to compare point selection
algorithms. Specifically, these environments were created
such that a static control policy would not be effective over
the entire space.

To measure the score of a particular algorithm, we non-
deterministically generate an initial set of k points through
guaranteed-coverage sampling method, such as a latin hyper-
cube [22], and then sequentially select n − k more points,
evaluating the system output after each choice. The predicted
f̂ is used after each evaluation to generate a policy, which is

361

(a) (b) (c)

Fig. 5: Comparison of algorithms on three analytic test functions. Each algorithm was run 10 times, and the scores averaged. The dotted black line
represents the best possible policy for that function. Expected policy score improvement performed best, followed by unbiased expected improvement.
Expected improvement selected initial experiments intelligently, but its inherent bias lead to poor overall performance. Random point selection suffered
from no such bias, and resulted in steady policy score improvement with increasing experiments. Each line represents the mean of 20 trials, and the shaded
regions indicate ±1 standard error.

scored via a numeric integral on system output. This entire
process was repeated 10 times for each algorithm, the results
averaged, and standard errors calculated to provide a rigorous
comparison of methods. The algorithms were written in
MATLAB, and used the open-source Gaussian Processes
for Machine Learning package provided by Rasmussen and
Williams [23].

Although the algorithms described herein do not have any
intrinsic parameters to tune, there are several implementation
details which must be considered. Specifically, the choice of
covariance function for the GP, the sampling strategy, the
sampling density, and the density of the numeric integrals
all can have an effect on overall performance. Therefore, to
keep the comparison as fair as possible, we kept these choices
constant when comparing the algorithms. In particular:
• The squared exponential covariance function was used

for the Gaussian process.
• A grid of points was used as the set of all points at

which to evaluate the metric. The location of this grid
was defined by independent random offsets in each
parameter, which were recalculated for the selection of
each subsequent point xi.

• Varying densities of this grid, from 10 to 40 points
in the environment parameter space and 10-20 points
in the control parameter space, were compared. Each
algorithm was run for 10 trials at each grid density.
The inner numeric integral of the expected policy score
improvement method was a summation over the envi-
ronmental component of this grid.

• The outer integral of the expected policy score im-
provement method was run at various resolutions, and
with varying limits: integration limits of ±3 and ±4
were both used, each with sampling density of 31 and
61 points. These values were selected after conducting
a small study of the effect of limits and sampling
density on the accuracy of the numeric integration of
the expected improvement metric.

We reiterate here that the expected policy score improve-

ment method had greater computational requirements given
the same implementation choices; however, we are interested
in quality of the algorithm rather than computational perfor-
mance, as the time required by the algorithm is assumed to be
relatively insignificant compared to system output evaluation
times for real systems.

A. Test Functions

A summary of the results of these methods is shown
in Fig. 5. As expected, random point selection performs
suboptimally, showing that it is important to carefully select
experiments. However, as coverage is guaranteed, random
selection results in continual policy improvement. Standard
expected improvement also shows an unsurprising trend:
initially, performance is comparable to the other algorithms,
as it seeks out the best area of Xe×Xc. However, the overall
expected improvement is low in regions of Xe that do not
have high values for f , and so policy score tends to stagnate
quickly, ignoring potential score function improvements in
these regions.

The unbiased expected improvement performs much bet-
ter, eliminating the bias of standard expected improvement.
This suggests that it is a reasonable, simple choice to use for
tackling such point selection problems. Finally, the expected
policy score improvement algorithm improves upon unbiased
expected improvement, but only slightly. In all of the results,
it was always shown to be at least as good, but often
the margin of improvement was very slight. This indicates
that although expected policy score improvement potentially
gives a better approximation to the expected improvement of
the policy score, unbiased expected improvement provides a
much simpler and quicker method which produces similarly
high quality results. The final choice between these methods
involves several factors, and is largely application dependent.

While not strictly algorithm parameters, implementation
decisions can have significant effects on performance. Fig-
ure 6(a) illustrates that a more dense sampling of candidate
points improves the average generated policy’s performance,

362

(a) (b)

(c) (d)

Fig. 6: A comparison of the effect of grid resolution (top row) and numeric
integral density (bottom row) on algorithm performance. In general, higher
density candidate point grids and numeric integrals resulted in improvements
in the quality of results. All EPSI results shown use ±3 standard deviations
of p(yt) as the limits to the numeric integral. Each line represents the mean
of 20 trials, and the shaded regions indicate ±1 standard error.

relative to the start of the test, by as much as 50% (near
experiment 75) for the UEI algorithm. During computation
of the numeric integrals of the EPSI algorithm, this grid size
was the resolution of the integral over the environment space
(see (6)), and was also shown to have a notable effect (see
Fig. 6(b)). The resolution of the integral over the predictive
distribution for EPSI can be a limiting factor as well, as
seen in Fig. 6(c) and 6(d). The dependence of EPSI on
high density numeric integrals is one of the most significant
limitations of this algorithm.

B. Simulation And Physical System Results

As such a complete analysis could not be run on phys-
ical systems due to the expensive nature of system output
evaluation and the inability to compute a true policy score,
we instead set up a range of environmental conditions in a
“test course”, and then used the above algorithms to generate
policies which were scored on this test course. These policies
map environment parameters (slope and crevise width) into
a 2-D gait parameter control space (see [1]). The EPSI
algorithm was compared to random point selection.

Two test courses were defined, one for a simulation of a
snake robot and one for the physical mechanism in Choset’s
lab [24]. The tests involved crawling through a crevice and
crawling up slopes of various steepness. As the control
policies generated did not consider transition effects, the

(a)

10 15 20 25 30 35 40
3.5

4

4.5

5

5.5

6

6.5

7

Experiment Number

T
e
s
t
C

o
u
rs

e
 S

c
o
re

Experimental (Simulator) Comparison of Point Selection Methods

Expected Policy Score Improvement

Random

(b)

(c)

10 15 20 25
27.5

28

28.5

29

29.5

30

30.5

31

Experiment Number

T
e

s
t

C
o

u
rs

e
 S

c
o

re

Experimental (Robot) Comparison of Point Selection Methods

Expected Policy Score Improvement

Random

(d)

Fig. 7: Performance of policies generated from points selected randomly
versus using the expected policy score improvement method. In the top row,
a simulated snake robot crawls through a crevice of varying width using a
helical rolling motion. The system performance is a measure of locomotive
energy efficiency; high amplitude controllers do well in wide cracks but
waste energy in small cracks. The bottom row shows a physical robot
climbing up an incline; higher amplitudes work well for flat ground, but
smaller amplitudes allow the robot to climb steeper inclines without slipping
backwards. In both cases, 5 initial experiments were selected randomly
before use of the point selection method. Candidate points were chosen
from a grid 40 environment points by 20 control points. Only one trial was
conducted for each setup.

environment changes during evaluation on the test course
involved instantaneous terrain and parameter changes (when
using the physical snake this was accomplished by pausing
the test in order to change these parameters).

Finally, the additional difficulty of noisy function evalua-
tions is encountered when working with the robot and simu-
lations. Although there is no explicit mention of noise in the
algorithms, an appropriate choice of GP covariance function
attempts to characterize this by fitting a noise parameter as
well.This allows the algorithms to remain effective even in
the presence of stochastic system output evaluations.

Results of evaluation of the policies generated during
testing are shown in Fig. 7. Overall, expected policy score
improvement caused superior policies to be generated, as
compared to random point selection (this comparison is not
as unfair as it might seem; in the analytic tests random
performed second only to the proposed algorithms, because
standard approaches are not appropriate for this problem).
The difference can be noted even after only 10 samples of
the space (the first 5 of which are the randomly generated
initial sampling). These results also show that using surrogate
functions still carries risk, as a bad surrogate function fit can

363

result in a bad policy, such as that seen after 20 experiments
from the simulated snake. This result suggests the use of a
low-risk policy generation method when few sampled points
are available, and a less conservative method when more data
is available.

VI. CONCLUSION

This paper has formulated an optimization problem that
applies to expensive systems operating in varying environ-
mental conditions. By carefully selecting training experi-
ments, a superior control policy can be generated with a
low number of system evaluations.

This framework is applicable to a rich set of problems.
Locomoting systems, industrial processes, and prescription
drugs all operate in changing environmental conditions, are
expensive to test, and could benefit from optimal adaptive
control policies. We have described two potential approaches
for this experiment selection, both inspired by the statistical
notion of expected improvement. One approach provides a
fast, efficient computation that performs reasonably well,
while the other is more complex and computationally in-
tensive, but produces better results overall. We have also
proposed a simple method for policy generation, given the
experiments chosen by such an algorithm. We have demon-
strated the efficacy of these algorithms, and presented a
summary of results on analytic test functions as well as a
physical snake robot system.

In addition to producing superior control policies as com-
pared to naı̈ve approaches, these methods have the advantage
of requiring no algorithm parameters to tune for particular
applications. However, there are still several implementation
details that must be considered, including reasonable covari-
ance functions for fitting Gaussian processes to the system
output and numeric integral resolution.

Improving the algorithms so that these implementation
details are less important choices is one direction for future
work; by improving the efficiency of the computation in the
numeric integral, we remove the limiting factor for high
resoltion integrals. This could be approached by applying
methods to quickly update a GP distribution given one
additional sample, or deriving analytic expressions that could
be used in place of numeric ones.

Other plans for extending this work include demonstrat-
ing the efficacy of the algorithms on higher dimensional
problems, more extensive use for improving adaptability of
real world systems, and comparing the proposed methods
against a wider range of possible approaches to this problem.
We are also interested in proving theoretic properties of
the algorithms, such as completeness, and more rigorously
accounting for noisy system output.

REFERENCES

[1] M. Tesch, K. Lipkin, I. Brown, R. Hatton, A. Peck, J. Rembisz,
and H. Choset, “Parameterized and Scripted Gaits for Modular Snake
Robots,” Advanced Robotics, vol. 23, pp. 1131–1158, June 2009.

[2] G. E. P. Box and N. R. Draper, Empirical model-building and response
surfaces. Wiley, 1987.

[3] D. R. Jones, “A taxonomy of global optimization methods based on
response surfaces,” Journal of Global Optimization, vol. 21, no. 4,
pp. 345–383, 2001.

[4] R. G. Regis and C. A. Shoemaker, “A Stochastic Radial Basis
Function Method for the Global Optimization of Expensive Functions,”
INFORMS Journal on Computing, vol. 19, no. 4, 2007.

[5] H.-M. Gutmann, “A Radial Basis Function Method for Global Opti-
mization,” Journal of Global Optimization, vol. 19, 1999.

[6] K. Holmström, “An adaptive radial basis algorithm (ARBF) for expen-
sive black-box global optimization,” Journal of Global Optimization,
vol. 41, no. 3, 2008.

[7] C. E. Rasmussen and C. K. I. Williams, Gaussian Processes for
Machine Learning. The MIT Press, 2006.

[8] A. Kapoor, K. Grauman, R. Urtasun, and T. Darrell, “Active Learning
with Gaussian Processes for Object Categorization,” 2007 IEEE 11th
International Conference on Computer Vision, pp. 1–8, Oct. 2007.

[9] A. W. Moore and J. Schneider, “Memory-based stochastic optimiza-
tion,” Advances in Neural Information Processing Systems, pp. 1066–
1072, 1996.

[10] D. Cox and S. John, “A statistical method for global optimization,”
in 1992 IEEE International Conference on Systems, Man, and Cyber-
netics, pp. 1241–1246, Ieee, 1992.

[11] H. J. Kushner, “A new method for locating the maximum point of an
arbitrary multipeak curve in the presence of noise.,” Journal of Basic
Engineering, vol. 86, pp. 97–106, 1964.

[12] A. Žilinskas, “A review of statistical models for global optimization,”
Journal of Global Optimization, vol. 2, pp. 145–153, June 1992.

[13] J. Mockus, V. Tiesis, and A. Zilinskas, “The application of Bayesian
methods for seeking the extremum,” Towards Global Optimization,
vol. 2, pp. 117–129, 1978.

[14] D. R. Jones, M. Schonlau, and W. J. Welch, “Efficient Global
Optimization of Expensive Black-Box Functions,” Journal of Global
Optimization, vol. 13, no. 4, 1998.

[15] J. Knowles, “ParEGO: a hybrid algorithm with on-line landscape
approximation for expensive multiobjective optimization problems,”
IEEE Transactions on Evolutionary Computation, vol. 10, pp. 50–66,
Feb. 2006.

[16] M. Emmerich and J.-w. Klinkenberg, “The computation of the ex-
pected improvement in dominated hypervolume of Pareto front ap-
proximations,” 2008.

[17] E. Vazquez, J. Villemonteix, M. Sidorkiewicz, and E. Walter, “Global
optimization based on noisy evaluations: An empirical study of
two statistical approaches,” Journal of Physics: Conference Series,
vol. 135, p. 012100, Nov. 2008.

[18] D. Huang, T. T. Allen, W. I. Notz, and N. Zeng, “Global Optimiza-
tion of Stochastic Black-Box Systems via Sequential Kriging Meta-
Models,” Journal of Global Optimization, vol. 34, pp. 441–466, Mar.
2006.

[19] V. Picheny, D. Ginsbourger, and Y. Richet, “Noisy Expected Improve-
ment and on-line computation time allocation for the optimization of
simulators with tunable fidelity,” in 2nd International Conference on
Engineering Optimization, (Lisbon, Portugal), pp. 1–10, 2010.

[20] J. Lehman, Sequential Design of Computer Experiments for Robust
Parameter Design. PhD thesis, Ohio State University, 2002.

[21] B. Williams, T. Santner, and W. Notz, “Sequential design of computer
experiments to minimize integrated response functions,” Statistica
Sinica, vol. 10, no. 4, pp. 1133–1152, 2000.

[22] M. D. McKay, R. J. Beckman, and W. J. Conover, “A Comparison of
Three Methods for Selecting Values of Input Variables in the Analysis
of Output from a Computer Code,” Technometrics, vol. 21, no. 2,
pp. 239 – 245, 1979.

[23] C. E. Rasmussen and C. K. I. Williams, “Gaussian Processes for
Machine Learning.”

[24] C. Wright, A. Johnson, A. Peck, Z. McCord, A. Naaktgeboren, P. Gi-
anfortoni, M. Gonzalez-Rivero, R. Hatton, and H. Choset, “Design
of a modular snake robot,” in IEEE/RSJ International Conference on
Intelligent Robots and Systems, pp. 2609–2614, IEEE, Oct. 2007.

364

