

Methodology for Formal Verification of Routing Protocols for Ad Hoc Wireless Networks

D. Câmara, A. A. F. Loureiro, F. Filali

Introduction

Routing is a crucial task for wireless networks

- Having robust and correct algorithms is essential
- Given their distributed behavior, designing such algorithms is a complex and error prone task

Formal Verification

Is a technique to guarantee that a formal specified system has/has not an specific property

Formal Verification Approaches

Still not very commonly applied to routing

- > Although, some researchers have been working on it
- Considered hard and not worthy by many

Existing methods

- Hard to implement
- Not general enough
 - Focus one specific case or algorithm
 - Specific topologies, number of nodes
- Not able to handle the dynamic behavior of the network
 - Topology changes and mobility

Methodology

Intend to be a simple and general

Step by step guide

- List of procedures that should be followed to formal verify a given algorithm
- Most of the steps are well known and used in the field

Based on model checking

Almost all the procedures exist to avoid the combinatorial state explosion problem

Ground Principles

- The methodology is grounded on some basic principles
 - Topology abstraction
 - Node position independence
 - Lower layers services trustability

Modeling

- Represent all possible relations
- Communicating channel
 - Common to every node in the network
- Three kinds of nodes to represent the network

- Flooding representation
 - Two messages can represent all existing relations in a flooding

Modeling

Mobility

The main consequence of the mobility is the occurrence of broken links, If we model all possible relations we also model mobility

Information modeling

- Model as variable, boolean if possible
- Initialization should be random whenever possible

Modeling

Simplifications and abstractions

> As far does not compromise the protocol representation

Analysis

Every response MUST to be analyzed to guarantee it is an error in the protocol and not in the model

- To validate the method three different algorithms where chosen
 - > LAR, DREAM, OLSR
 - Two geographic algorithms
 - One newer and standardized
 - > We used SPIN model checker but, in principle, any tool that enables the channel implementation could be used
- All of them present designing errors, some of these not reported before

LAR 1 and 2

- Geographical
- Controlled flooding

Failures

- Loop
- Delivering message failure

Delivering message failure - LAR 1

DREAM

- Geographical
- Controlled flooding

Failures

- > Loop
- Delivering message failure

OLSR

- May fail delivering messages during routing table recalculation
- Does not control counter overflow
- Older information may be kept on the routing tables instead of newer ones
- The two previous errors can also lead to routing loop, at least for a period of time
- Control messages may be discarded and not all two hop neighbors may receive it

Conclusion

- The method presented is simple, but effective
 - Formal verification does not NEED to be hard to give useful results
- Independent approach
 - Handles mobility
 - Handles flooding
 - > Independent of number of nodes
- General verified procedures can be aggregate into a library to make the verification of newer protocols even easier

Methodology for Formal Verification of Routing Protocols for Ad Hoc Wireless Networks

D. Câmara, A. A. F. Loureiro, F. Filali