# Tamagawa Numbers in the Function Field Case (Lecture 2) 

April 3, 2013

In the previous lecture, we defined the Tamagawa number of a connected semisimple algebraic group $G$ over the field $\mathbf{Q}$, and formulated Weil's conjecture: if $G$ is simply connected, then the Tamagawa number of $G$ is equal to 1 . In this lecture, we will discuss the analogous conjecture in the case of a function field.

Notation 1. Let $\mathbf{F}_{q}$ denote a finite field with $q$ elements, and let $X$ be an algebraic curve over $\mathbf{F}_{q}$ (which we assume to be smooth, proper, and geometrically connected). We let $\mathcal{K}$ denote the function field of the curve $X$ (that is, the residue field of the generic point of $X$ ).

We will write $x \in X$ to mean that $x$ is a closed point of the curve $X$. For each point $x \in X$, we let $\kappa_{x}$ denote the residue field of $X$ at the point $x$. Then $\kappa_{x}$ is a finite extension of the finite field $\mathbf{F}_{q}$. We will denote the degree of this extension by $\operatorname{deg}(x)$ and refer to it as the degree of $x$. We let $\mathcal{O}_{x}$ denote the completion of the local ring of $X$ at the point $x$ : this is a complete discrete valuation ring with residue field $\kappa_{x}$, noncanonically isomorphic to a power series ring $\kappa_{x}[t t]$. We let $\mathcal{K}_{x}$ denote the fraction field of $\mathcal{O}_{x}$. We let A denote the restricted product of the local fields $\mathcal{K}_{x}$ : that is, the subset of the product $\prod_{x \in X} \mathcal{K}_{x}$ consisting of those elements $\left\{f_{x}\right\}_{x \in X}$ such that $f_{x} \in \mathcal{O}_{x}$ for all but finitely many values of $x$. We will refer to $\mathbf{A}$ as the ring of adeles of $\mathcal{K}$. It is a locally compact commutative ring, and the diagonal embedding $\mathcal{K} \rightarrow \mathbf{A}$ embeds $\mathcal{K}$ as a discrete subgroup of $\mathbf{A}$. We let $\mathbf{A}_{0}=\prod_{x \in X} \mathcal{O}_{x}$ denote the ring of integral adeles: a compact open subring of $\mathbf{A}$.

Let $G_{0}$ be an affine algebraic group of dimension $d$ defined over the field $\mathcal{K}$. It will often be convenient to assume that we are given an integral model of $G_{0}$ : that is, that $G_{0}$ is given as the generic fiber of an affine group scheme $G$ over the curve $X$. Later in this course, it will be useful to choose an integral model $G$ with some nice properties. For the moment, we will assume the following:
(a) The map $G \rightarrow X$ is smooth.
(b) The fibers of the map $G \rightarrow X$ are connected.

If $G$ satisfies (a) and the generic fiber $G_{0}$ is connected, then we can always arrange that $G$ satisfies (b) by discarding any extraneous connected components of the remaining fibers.

For every commutative ring $R$ equipped with a map $\operatorname{Spec} R \rightarrow X$, we let $G(R)$ denote the group of $R$-points of $G$. Then $G(\mathbf{A})$ is a locally compact group, containing $G(\mathcal{K})$ as a discrete subgroup. We can identify $G(\mathbf{A})$ with the restricted product of the locally compact groups $G\left(\mathcal{K}_{x}\right)$ with respect to the family of compact open subgroups $\left\{G\left(\mathcal{O}_{x}\right) \subseteq G\left(\mathcal{K}_{x}\right)\right\}$. Our first goal in this lecture is to describe a canonical Haar measure on $G(\mathbf{A})$, which we will refer to as Tamagawa measure.

Let $\Omega_{G / X}$ denote the relative cotangent bundle of the smooth morphism $\pi: G \rightarrow X$. Then $\Omega_{G / X}$ is a vector bundle on $G$ of rank $d=\operatorname{dim}\left(G_{0}\right)$. We let $\Omega_{G / X}^{d}$ denote the top exterior power of $\Omega_{G / X}$, so that $\Omega_{G / X}^{d}$ is a line bundle on $G$. Let $\mathcal{L}$ denote the pullback of $\Omega_{G / X}^{d}$ along its zero section. Equivalently, we can identify $\mathcal{L}$ with the subbundle of $\pi_{*} \Omega_{G / X}^{d}$ consisting of left-invariant sections. Let $\mathcal{L}_{0}$ denote the generic fiber of $\mathcal{L}$, so that $\mathcal{L}_{0}$ is a 1 -dimensional vector space over $\mathcal{K}$. Let us fix a nonzero element $\omega \in \mathcal{L}_{0}$, which we can identify with a left-invariant differential form of top degree on the algebraic group $G_{0}$.

For every point $x \in X, \omega$ determines a Haar measure $\mu_{x, \omega}$ on the locally compact topological group $G\left(\mathcal{K}_{x}\right)$. Concretely, we can describe this measure as follows. Let $t$ denote a uniformizing parameter for $\mathcal{O}_{x}$ (so that $\mathcal{O}_{x} \simeq \kappa_{x}[[t]]$ ), and let $G^{x}$ denote the fiber product Spec $\mathcal{O}_{x} \times_{X} G$. Choose a local coordinates $y_{1}, \ldots, y_{d}$ for the group $G^{x}$ near the identity: that is, coordinates which induce a map $u: G^{x} \rightarrow \mathbb{A}^{d}$ which is étale at the origin of $G(x)$. Let $v_{x}(\omega)$ denote the order of vanishing of $\omega$ at the point $x$. Then, in a neighborhood of the origin in $G(x)$, we can write $\omega=t^{v_{x}(\omega)} \lambda d y_{1} \wedge \cdots \wedge d y_{d}$, where $\lambda$ is an invertible regular function. Let $\mathfrak{m}_{x}$ denote the maximal ideal of $\mathcal{O}_{x}$, and let $G\left(\mathfrak{m}_{x}\right)$ denote the kernel of the reduction map $G\left(\mathcal{O}_{x}\right) \rightarrow G\left(\kappa_{x}\right)$. Since $y_{1}, \ldots, y_{d}$ are local coordinates near the origin, the map $u$ induces a bijection $G\left(\mathfrak{m}_{x}\right) \rightarrow \mathfrak{m}_{x}^{d}$. The measure defined by the differential form $d y_{1} \wedge \cdots \wedge d y_{d}$ on $G\left(\mathfrak{m}_{x}\right)$ is obtained by pulling back the "standard" measure on $\mathcal{K}_{x}^{d}$ along the map $u$, where this standard measure is normalized so that $\mathcal{O}_{x}^{d}$ has measure 1. It follows that the measure of $G\left(\mathfrak{m}_{x}\right)$ (with respect to the differential form $d y_{1} \wedge \cdots \wedge d y_{d}$ ) is given by $\frac{1}{\left|\kappa_{x}\right|^{d}}$. We therefore have

$$
\mu_{\omega, x}\left(G\left(\mathfrak{m}_{x}\right)\right)=q^{-\operatorname{deg}(x) v_{x}(\omega)} \frac{1}{\left|\kappa_{x}\right|^{\mid}}
$$

The smoothness of $G$ implies that the map $G\left(\mathcal{O}_{x}\right) \rightarrow G\left(\kappa_{x}\right)$ is surjective, so that we have

$$
\mu_{\omega, x}\left(G\left(\mathcal{O}_{x}\right)\right)=q^{-\operatorname{deg}(x) v_{x}(\omega)} \frac{\left|G\left(\kappa_{x}\right)\right|}{\left|\kappa_{x}\right|^{d}}
$$

Remark 2. If you prefer, you can take the above formula as the definition of the measure $\mu_{x, \omega}$. One should then show that this measure depends only on the underlying algebraic group $G_{0}$ and the choice of differential form $\omega$, and not on the choice of integral model $G$.

A key fact is the following:
Proposition 3. Suppose that $G_{0}$ is connected and semisimple, and let $\omega$ be a nonzero element of $\mathcal{L}_{0}$. Then the product of the measures $\mu_{x, \omega}$ on the groups $G\left(\mathcal{K}_{x}\right)$ determines a well-defined measure on the restricted product $G(\mathbf{A})=\prod_{x \in X}^{\mathrm{res}} G\left(\mathcal{K}_{x}\right)$. Moreover, this product measure is independent of $\omega$.

To check that the product measure is well-defined, it suffices to show that it is well-defined when evaluated on a compact open subgroup of $G(\mathbf{A})$, such as $G\left(\mathbf{A}_{0}\right)$. This is equivalent to the absolute convergence of the infinite product

$$
\prod_{x \in X} \mu_{x, \omega}\left(G\left(\mathcal{O}_{x}\right)\right)=\prod_{x \in X} q^{-\operatorname{deg}(x) v_{x}(\omega)} \frac{\left|G\left(\kappa_{x}\right)\right|}{\left|\kappa_{x}\right|^{d}}
$$

Let us assume this for the moment. The fact that the product measure is independent of the choice of $\omega$ follows from the fact that the infinite sum

$$
\sum_{x \in X} \operatorname{deg}(x) v_{x}(\omega)=\operatorname{deg}(\mathcal{L})
$$

is independent of $\omega$.
Definition 4. Let $G_{0}$ be a connected semisimple algebraic group over $\mathcal{K}$. Let $d$ denote the dimension of $G_{0}$, and let $g$ denote the genus of the curve $X$. The Tamagawa measure on $G(\mathbf{A})$ is the Haar measure given informally by the product

$$
\mu_{\mathrm{Tam}}=q^{d(1-g)} \prod_{x \in X} \mu_{x, \omega}
$$

Remark 5. More precisely, we can say that Tamagawa measure $\mu_{\text {Tam }}$ is the Haar measure on $G(\mathbf{A})$ which is normalized by the requirement

$$
\mu_{\operatorname{Tam}}\left(G\left(\mathbf{A}_{0}\right)\right)=q^{d(1-g)-\operatorname{deg}(\mathcal{L})} \prod_{x \in X} \frac{\left|G\left(\kappa_{x}\right)\right|}{\left|\kappa_{x}\right|^{d}}
$$

Remark 6. In order for Tamagawa measure to be well-defined, it is important that the quotients $\frac{\left|G\left(\kappa_{x}\right)\right|}{\left|\kappa_{x}\right|^{d}}$ be close to 1 , so that the infinite product $\prod_{x \in X} \frac{\left|G\left(\kappa_{x}\right)\right|}{\left|\kappa_{x}\right|^{d}}$ is absolutely convergent. This can fail dramatically if $G$ is not connected (in this case, we expect each factor to be approximately equal to the number of connected components of $G$ ). However, it is satisfied for many groups which are not semisimple: for example, for the additive group $\mathbf{G}_{a}$.

Remark 7. If $G=\mathbf{G}_{a}$, then we have $d=1, \operatorname{deg}(\mathcal{L})=0$, and $\left|G\left(\kappa_{x}\right)\right|=\left|\kappa_{x}\right|$ for each $x \in X$. Consequently, the Tamagawa measure $\mu_{\text {Tam }}$ is characterized by the formula $\mu_{\operatorname{Tam}}\left(G\left(\mathbf{A}_{0}\right)\right)=q^{1-g}$. Note that we have an exact sequence

$$
0 \rightarrow \mathrm{H}^{0}\left(X ; \mathcal{O}_{X}\right) \rightarrow G\left(\mathbf{A}_{0}\right) \rightarrow G(\mathcal{K}) \backslash G(\mathbf{A}) \rightarrow \mathrm{H}^{1}\left(X ; \mathcal{O}_{X}\right) \rightarrow 0
$$

so that the Tamagawa measure of the quotient $G(\mathcal{K}) \backslash G(\mathbf{A})$ is given by

$$
\frac{\left|\mathrm{H}^{1}\left(X ; \mathcal{O}_{X}\right)\right|}{\left|\mathrm{H}^{0}\left(X ; \mathcal{O}_{X}\right)\right|} \mu_{\operatorname{Tam}}\left(G\left(\mathbf{A}_{0}\right)\right)=\frac{q^{g}}{q} q^{1-g}=1
$$

Remark 8. One might ask the motivation for the auxiliary factor $q^{d(1-g)}$ appearing in the definition of the Tamagawa measure. Remark 7 provides one answer: the auxiliary factor is exactly what we need in order to guarantee that Weil's conjecture holds for the additive group $\mathbf{G}_{a}$.

Another answer is that the auxiliary factor is necessary to obtain invariance under Weil restriction. Suppose that $\pi: X \rightarrow Y$ is a separable map of algebraic curves over $\mathbf{F}_{q}$. Let $\mathcal{K}_{Y}$ be the fraction field of $Y$, so that $\mathcal{K}$ is a finite extension of $\mathcal{K}_{Y}$, let $\mathbf{A}_{Y}$ denote the ring of adeles of $\mathcal{K}_{Y}$, and let $H_{0}$ denote the algebraic group over $\mathcal{K}_{Y}$ obtained from $G_{0}$ by Weil restriction along the inclusion of fields $\mathcal{K}_{Y} \hookrightarrow \mathcal{K}$. Then we have a canonical isomorphism of locally compact groups $G_{0}(\mathbf{A}) \simeq H_{0}\left(\mathbf{A}_{Y}\right)$. This isomorphism is compatible with the Tamagawa measures on each side, but only if we include the auxiliary factor $q^{d(1-g)}$ indicated in Definition 4.

The goal of this course is to prove the following:
Conjecture 9 (Weil). Suppose that $G_{0}$ is semisimple and simply connected. Then $\mu_{\operatorname{Tam}}(G(\mathcal{K}) \backslash G(\mathbf{A}))=1$.
Note that the quotient $G(\mathcal{K}) \backslash G(\mathbf{A})$ carries a right action of the compact group $G\left(\mathbf{A}_{0}\right)$. We may therefore write $G(\mathcal{K}) \backslash G(\mathbf{A})$ as a union of orbits, indexed by the collection of double cosets

$$
G(\mathcal{K}) \backslash G(\mathbf{A}) / G\left(\mathbf{A}_{0}\right) .
$$

Moreover, if $Z \subseteq G(\mathcal{K}) \backslash G(\mathbf{A})$ is the orbit corresponding to the double coset of an element $\gamma \in G(\mathbf{A})$, then $Z$ can be identified with the quotient of $G\left(\mathbf{A}_{0}\right)$ by the intersection $G\left(\mathbf{A}_{0}\right) \cap \gamma^{-1} G(\mathcal{K}) \gamma$. We therefore have

$$
\begin{aligned}
\mu_{\operatorname{Tam}}(G(\mathcal{K}) \backslash G(\mathbf{A})) & =\mu_{\operatorname{Tam}}\left(G\left(\mathbf{A}_{0}\right)\right) \sum_{\gamma} \frac{1}{\left|G\left(\mathbf{A}_{0}\right) \cap \gamma^{-1} G(\mathcal{K}) \gamma\right|} \\
& =q^{d(1-g)-\operatorname{deg}(\mathcal{L})}\left(\prod_{x \in X} \frac{\left|G\left(\kappa_{x}\right)\right|}{\left|\kappa_{x}\right|^{d}}\right) \sum_{\gamma} \frac{1}{\left|G\left(\mathbf{A}_{0}\right) \cap \gamma^{-1} G(\mathcal{K}) \gamma\right|}
\end{aligned}
$$

Our next goal is to give an algebro-geometric interpretation to many of the expressions appearing on the right hand side of this equation.

Construction 10 (Regluing). Let $\gamma$ be an element of the group $G(\mathbf{A})$. We can think of $\gamma$ as given by a collection of elements $\gamma_{x} \in G\left(\mathcal{K}_{x}\right)$, having the property that there exists a finite set $S$ such that $\gamma_{x} \in G\left(\mathcal{O}_{x}\right)$ whenever $x \notin S$.

We define a $G$-bundle $\mathcal{P}_{\gamma}$ on $X$ as follows:
(a) The bundle $\mathcal{P}_{\gamma}$ is trivial on the open set $U=X-S$.
(b) The bundle $\mathcal{P}_{\gamma}$ is trivial on a formal neighborhood $\operatorname{Spec} \mathcal{O}_{x}$ of each point $x \in S$.
(c) For each $s \in S$, the trivializations of $\mathcal{P}_{\gamma}$ on $U$ and $\operatorname{Spec} \mathcal{O}_{x}$ given by $(a)$ and ( $b$ ) differ by the element $\gamma_{x} \in G\left(\mathcal{K}_{x}\right)$ on the overlap $\operatorname{Spec} \mathcal{K}_{x} \simeq \operatorname{Spec} \mathcal{O}_{x}{ }^{\times}{ }_{X} U$.

Note that the $G$-bundle $\mathcal{P}_{\gamma}$ is canonically independent of the choice of $S$, so long as $S$ contains all points $x$ such that $\gamma_{x} \notin G\left(\mathcal{O}_{x}\right)$.

Remark 11. Let $\gamma, \gamma^{\prime} \in G(\mathbf{A})$. The $G$-bundles $\mathcal{P}_{\gamma}$ and $\mathcal{P}_{\gamma^{\prime}}$ come equipped with trivializations at the generic point of $X$. Consequently, giving an isomorphism between the restrictions $\left.\mathcal{P}_{\gamma}\right|_{\text {Spec } \mathcal{K}}$ and $\left.\mathcal{P}_{\gamma^{\prime}}\right|_{\text {Spec } \mathcal{K}}$ is equivalent to giving an element $\beta \in G(\mathcal{K})$. Unwinding the definitions, we see that this isomorphism admits an (automatically unique) extension to an isomorphism of $\mathcal{P}_{\gamma}$ with $\mathcal{P}_{\gamma^{\prime}}$ if and only if $\gamma^{\prime-1} \beta \gamma$ belongs to $G\left(\mathbf{A}_{0}\right)$. This has two consequences:
(a) The $G$-bundles $\mathcal{P}_{\gamma}$ and $\mathcal{P}_{\gamma^{\prime}}$ are isomorphic if and only if $\gamma$ and $\gamma^{\prime}$ determine the same element of $G(\mathcal{K}) \backslash G(\mathbf{A}) / G\left(\mathbf{A}_{0}\right)$.
(b) The automorphism group of the $G$-torsor $\mathcal{P}_{\gamma}$ is the intersection $G\left(\mathbf{A}_{0}\right) \cap \gamma^{-1} G(\mathcal{K}) \gamma$.

Remark 12. Let $\mathcal{P}$ be a $G$-bundle on $X$. Then $\mathcal{P}$ can be obtained from Construction 10 if and only if the following two conditions are satisfied:
(i) There exists an open set $U \subseteq X$ such that $\left.\mathcal{P}\right|_{U}$ is trivial.
(ii) For each point $x \in X-U$, the restriction of $\mathcal{P}$ to $\operatorname{Spec} \mathcal{O}_{x}$ is trivial.

By a direct limit argument, condition $(i)$ is equivalent to the requirement that $\left.\mathcal{P}\right|_{\text {Spec } \mathcal{K}}$ be trivial: that is, that $\mathcal{P}$ is classified by a trivial element of $\mathrm{H}^{1}\left(\operatorname{Spec} \mathcal{K} ; G_{0}\right)$. If $G_{0}$ is semisimple and simply connected, then $\mathrm{H}^{1}\left(\operatorname{Spec} \mathcal{K} ; G_{0}\right)$ vanishes (this is a theorem of Harder: a strong version of the Hasse principle from the previous lecture) so that condition (i) is automatic. If the map $G \rightarrow X$ is smooth and geometrically connected, then condition ( $i i$ ) is automatic (the restriction $\left.\mathcal{P}\right|_{\text {Spec } \kappa_{x}}$ can be trivialized by Lang's theorem, and any trivialization of $\left.\mathcal{P}\right|_{\text {Spec } \kappa_{x}}$ can be extended to a trivialization of $\left.\mathcal{P}\right|_{\text {Spec } \mathcal{O}_{x}}$ by virtue of the smoothness of $G$ ).

Combining Remarks 11 and 12, we obtain the formula

$$
\mu_{\operatorname{Tam}}(G(\mathcal{K}) \backslash G(\mathbf{A})) \simeq q^{d(1-g)-\operatorname{deg}(\mathcal{L})}\left(\prod_{x \in X} \frac{\left|G\left(\kappa_{x}\right)\right|}{\left|\kappa_{x}\right|^{d}}\right) \sum_{\mathcal{P}} \frac{1}{|\operatorname{Aut}(\mathcal{P})|}
$$

Here the sum is taken over all isomorphism classes of $G$-bundles on $X$. We may therefore reformulate Conjecture 9 as follows:

Conjecture 13 (Weil). Suppose that $G_{0}$ is semisimple and simply connected. Then

$$
q^{d(1-g)-\operatorname{deg}(\mathcal{L})} \sum_{\mathcal{P}} \frac{1}{|\operatorname{Aut}(\mathcal{P})|}=\prod_{x \in X} \frac{\left|\kappa_{x}\right|^{d}}{\left|G\left(\kappa_{x}\right)\right|}
$$

Remark 14. Note that neither side of the equation of Conjecture 13 is a priori well defined. The absolute convergence of the product on the right hand side is equivalent to the well-definedness of Tamagawa measure. The left hand side is usually an infinite sum (unless the algebraic group $G_{0}$ is anisotropic), but the conjecture asserts that this infinite sum converges to the right hand side.

The assertion of Conjecture 13 can be regarded as a function field analogue of the Siegel mass formula (in its original formulation). However, there are tools available for attacking Conjecture 13 that have no analogue in the case of a number field. More specifically, we would like to take advantage of the fact that the collection of all $G$-bundles on $X$ admits an algebro-geometric parametrization.

Definition 15. If $Y$ is a scheme equipped with a map $Y \rightarrow X$, we define a $G$-bundle on $Y$ to be a principal homogeneous space for the group scheme $G_{Y}=Y \times_{X} G$ over $Y$. The collection of $G$-bundles on $Y$ forms a category (in which all morphisms are isomorphisms).

For every $\mathbf{F}_{q}$-algebra $R$, we let $\operatorname{Bun}_{G}(R)$ denote the category of $G$-bundles on the relative curve

$$
\operatorname{Spec} R \times_{\operatorname{Spec} \mathbf{F}_{q}} X
$$

The construction $R \mapsto \operatorname{Bun}_{G}(R)$ is an example of an algebraic stack, which we will denote by $\mathrm{Bun}_{G}$. We will refer to $\mathrm{Bun}_{G}$ as the moduli stack of $G$-bundles on $X$.

Remark 16. The algebraic stack $\operatorname{Bun}_{G}$ is smooth over $\mathbf{F}_{q}$, and its dimension is given by $d(1-g)-\operatorname{deg}(\mathcal{L})$. By definition, the category $\operatorname{Bun}_{G}\left(\mathbf{F}_{q}\right)$ is the category of $G$-bundles on $X$. We will denote the sum $\sum_{\mathcal{P}} \frac{1}{\operatorname{Aut}(\mathcal{P}) \mid}$ by $\left|\operatorname{Bun}_{G}\left(\mathbf{F}_{q}\right)\right|$ : we can think of it as a (weighted) count of the objects of $\operatorname{Bun}_{G}\left(\mathbf{F}_{q}\right)$, which properly takes into account the fact that $\operatorname{Bun}_{G}\left(\mathbf{F}_{q}\right)$ is a category rather than a set. With this notation, we can rephrase Conjecture 13 as an equality

$$
\frac{\left|\operatorname{Bun}_{G}\left(\mathbf{F}_{q}\right)\right|}{q^{\operatorname{dim}\left(\operatorname{Bun}_{G}\right)}}=\prod_{x \in X} \frac{\left|\kappa_{x}\right|^{d}}{\left|G\left(\kappa_{x}\right)\right|}
$$

Remark 17. For every point $x \in X$, let $G_{x}$ denote the fiber product $\operatorname{Spec} \kappa_{x} \times_{X} G$, so that $G_{x}$ is a connected algebraic group over $\kappa_{x}$. Let $B G_{x}$ denote the classifying stack of $G_{x}$ : this is a smooth algebraic stack of dimension $-d$ over Spec $\kappa_{x}$. Then $B G_{x}\left(\mathbf{F}_{q}\right)$ is the category of $G_{x}$-bundles on Spec $\kappa_{x}$. It follows from Lang's theorem that every $G_{x}$-bundle on Spec $\kappa_{x}$ is trivial. Moreover, the automorphism group of the trivial $G_{x}$-bundle is given by $G_{x}\left(\kappa_{x}\right)=G\left(\kappa_{x}\right)$. We may therefore rewrite Weil's conjecture in the suggestive form

$$
\frac{\left|\operatorname{Bun}_{G}\left(\mathbf{F}_{q}\right)\right|}{q^{\operatorname{dim}\left(\operatorname{Bun}_{G}\right)}}=\prod_{x \in X} \frac{\left|B G_{x}\left(\kappa_{x}\right)\right|}{\left|\kappa_{x}\right|^{\operatorname{dim}\left(B G_{x}\right)}}
$$

Heuristically, this should reflect the idea that $\operatorname{Bun}_{G}$ is a product of the classifying stacks $B G_{x}$ as $x$ varies over the curve $X$.

## References

[1] Harder, G. Über die Galoiskohomologie halbeinfacher algebraischer Gruppen. III. Journal für die reine und angewandte Mathematik 274, 1975, 125-138.

