
Tamagawa Numbers in the Function Field Case (Lecture 2)

April 3, 2013

In the previous lecture, we defined the Tamagawa number of a connected semisimple algebraic group G
over the field Q, and formulated Weil’s conjecture: if G is simply connected, then the Tamagawa number of
G is equal to 1. In this lecture, we will discuss the analogous conjecture in the case of a function field.

Notation 1. Let Fq denote a finite field with q elements, and let X be an algebraic curve over Fq (which
we assume to be smooth, proper, and geometrically connected). We let K denote the function field of the
curve X (that is, the residue field of the generic point of X).

We will write x ∈ X to mean that x is a closed point of the curve X. For each point x ∈ X, we let
κx denote the residue field of X at the point x. Then κx is a finite extension of the finite field Fq. We
will denote the degree of this extension by deg(x) and refer to it as the degree of x. We let Ox denote the
completion of the local ring of X at the point x: this is a complete discrete valuation ring with residue
field κx, noncanonically isomorphic to a power series ring κx[[t]]. We let Kx denote the fraction field of Ox.
We let A denote the restricted product of the local fields Kx: that is, the subset of the product

∏
x∈X Kx

consisting of those elements {fx}x∈X such that fx ∈ Ox for all but finitely many values of x. We will refer to
A as the ring of adeles of K. It is a locally compact commutative ring, and the diagonal embedding K→ A
embeds K as a discrete subgroup of A. We let A0 =

∏
x∈X Ox denote the ring of integral adeles: a compact

open subring of A.

Let G0 be an affine algebraic group of dimension d defined over the field K. It will often be convenient
to assume that we are given an integral model of G0: that is, that G0 is given as the generic fiber of an affine
group scheme G over the curve X. Later in this course, it will be useful to choose an integral model G with
some nice properties. For the moment, we will assume the following:

(a) The map G→ X is smooth.

(b) The fibers of the map G→ X are connected.

If G satisfies (a) and the generic fiber G0 is connected, then we can always arrange that G satisfies (b)
by discarding any extraneous connected components of the remaining fibers.

For every commutative ring R equipped with a map SpecR → X, we let G(R) denote the group of
R-points of G. Then G(A) is a locally compact group, containing G(K) as a discrete subgroup. We can
identify G(A) with the restricted product of the locally compact groups G(Kx) with respect to the family
of compact open subgroups {G(Ox) ⊆ G(Kx)}. Our first goal in this lecture is to describe a canonical Haar
measure on G(A), which we will refer to as Tamagawa measure.

Let ΩG/X denote the relative cotangent bundle of the smooth morphism π : G → X. Then ΩG/X is a

vector bundle on G of rank d = dim(G0). We let ΩdG/X denote the top exterior power of ΩG/X , so that

ΩdG/X is a line bundle on G. Let L denote the pullback of ΩdG/X along its zero section. Equivalently, we

can identify L with the subbundle of π∗Ω
d
G/X consisting of left-invariant sections. Let L0 denote the generic

fiber of L, so that L0 is a 1-dimensional vector space over K. Let us fix a nonzero element ω ∈ L0, which
we can identify with a left-invariant differential form of top degree on the algebraic group G0.
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For every point x ∈ X, ω determines a Haar measure µx,ω on the locally compact topological group
G(Kx). Concretely, we can describe this measure as follows. Let t denote a uniformizing parameter for
Ox (so that Ox ' κx[[t]]), and let Gx denote the fiber product SpecOx×XG. Choose a local coordinates
y1, . . . , yd for the group Gx near the identity: that is, coordinates which induce a map u : Gx → Ad which
is étale at the origin of G(x). Let vx(ω) denote the order of vanishing of ω at the point x. Then, in a
neighborhood of the origin in G(x), we can write ω = tvx(ω)λdy1 ∧ · · · ∧ dyd, where λ is an invertible regular
function. Let mx denote the maximal ideal of Ox, and let G(mx) denote the kernel of the reduction map
G(Ox) → G(κx). Since y1, . . . , yd are local coordinates near the origin, the map u induces a bijection
G(mx)→ mdx. The measure defined by the differential form dy1 ∧ · · · ∧ dyd on G(mx) is obtained by pulling
back the “standard” measure on Kd

x along the map u, where this standard measure is normalized so that Odx
has measure 1. It follows that the measure of G(mx) (with respect to the differential form dy1 ∧ · · · ∧ dyd)
is given by 1

|κx|d . We therefore have

µω,x(G(mx)) = q− deg(x)vx(ω)
1

|κx|d
.

The smoothness of G implies that the map G(Ox)→ G(κx) is surjective, so that we have

µω,x(G(Ox)) = q− deg(x)vx(ω)
|G(κx)|
|κx|d

.

Remark 2. If you prefer, you can take the above formula as the definition of the measure µx,ω. One should
then show that this measure depends only on the underlying algebraic group G0 and the choice of differential
form ω, and not on the choice of integral model G.

A key fact is the following:

Proposition 3. Suppose that G0 is connected and semisimple, and let ω be a nonzero element of L0. Then
the product of the measures µx,ω on the groups G(Kx) determines a well-defined measure on the restricted
product G(A) =

∏res
x∈X G(Kx). Moreover, this product measure is independent of ω.

To check that the product measure is well-defined, it suffices to show that it is well-defined when evaluated
on a compact open subgroup of G(A), such as G(A0). This is equivalent to the absolute convergence of the
infinite product ∏

x∈X
µx,ω(G(Ox)) =

∏
x∈X

q− deg(x)vx(ω)
|G(κx)|
|κx|d

.

Let us assume this for the moment. The fact that the product measure is independent of the choice of ω
follows from the fact that the infinite sum∑

x∈X
deg(x)vx(ω) = deg(L)

is independent of ω.

Definition 4. Let G0 be a connected semisimple algebraic group over K. Let d denote the dimension of
G0, and let g denote the genus of the curve X. The Tamagawa measure on G(A) is the Haar measure given
informally by the product

µTam = qd(1−g)
∏
x∈X

µx,ω

Remark 5. More precisely, we can say that Tamagawa measure µTam is the Haar measure on G(A) which
is normalized by the requirement

µTam(G(A0)) = qd(1−g)−deg(L)
∏
x∈X

|G(κx)|
|κx|d

.
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Remark 6. In order for Tamagawa measure to be well-defined, it is important that the quotients |G(κx)|
|κx|d be

close to 1, so that the infinite product
∏
x∈X

|G(κx)|
|κx|d is absolutely convergent. This can fail dramatically if G

is not connected (in this case, we expect each factor to be approximately equal to the number of connected
components of G). However, it is satisfied for many groups which are not semisimple: for example, for the
additive group Ga.

Remark 7. If G = Ga, then we have d = 1, deg(L) = 0, and |G(κx)| = |κx| for each x ∈ X. Consequently,
the Tamagawa measure µTam is characterized by the formula µTam(G(A0)) = q1−g. Note that we have an
exact sequence

0→ H0(X;OX)→ G(A0)→ G(K)\G(A)→ H1(X;OX)→ 0,

so that the Tamagawa measure of the quotient G(K)\G(A) is given by

|H1(X;OX)|
|H0(X;OX)|

µTam(G(A0)) =
qg

q
q1−g = 1.

Remark 8. One might ask the motivation for the auxiliary factor qd(1−g) appearing in the definition of the
Tamagawa measure. Remark 7 provides one answer: the auxiliary factor is exactly what we need in order
to guarantee that Weil’s conjecture holds for the additive group Ga.

Another answer is that the auxiliary factor is necessary to obtain invariance under Weil restriction.
Suppose that π : X → Y is a separable map of algebraic curves over Fq. Let KY be the fraction field
of Y , so that K is a finite extension of KY , let AY denote the ring of adeles of KY , and let H0 denote
the algebraic group over KY obtained from G0 by Weil restriction along the inclusion of fields KY ↪→ K.
Then we have a canonical isomorphism of locally compact groups G0(A) ' H0(AY ). This isomorphism is
compatible with the Tamagawa measures on each side, but only if we include the auxiliary factor qd(1−g)

indicated in Definition 4.

The goal of this course is to prove the following:

Conjecture 9 (Weil). Suppose that G0 is semisimple and simply connected. Then µTam(G(K)\G(A)) = 1.

Note that the quotient G(K)\G(A) carries a right action of the compact group G(A0). We may therefore
write G(K)\G(A) as a union of orbits, indexed by the collection of double cosets

G(K)\G(A)/G(A0).

Moreover, if Z ⊆ G(K)\G(A) is the orbit corresponding to the double coset of an element γ ∈ G(A), then
Z can be identified with the quotient of G(A0) by the intersection G(A0) ∩ γ−1G(K)γ. We therefore have

µTam(G(K)\G(A)) = µTam(G(A0))
∑
γ

1

|G(A0) ∩ γ−1G(K)γ|

= qd(1−g)−deg(L)(
∏
x∈X

|G(κx)|
|κx|d

)
∑
γ

1

|G(A0) ∩ γ−1G(K)γ|
.

Our next goal is to give an algebro-geometric interpretation to many of the expressions appearing on the
right hand side of this equation.

Construction 10 (Regluing). Let γ be an element of the group G(A). We can think of γ as given by a
collection of elements γx ∈ G(Kx), having the property that there exists a finite set S such that γx ∈ G(Ox)
whenever x /∈ S.

We define a G-bundle Pγ on X as follows:

(a) The bundle Pγ is trivial on the open set U = X − S.
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(b) The bundle Pγ is trivial on a formal neighborhood SpecOx of each point x ∈ S.

(c) For each s ∈ S, the trivializations of Pγ on U and SpecOx given by (a) and (b) differ by the element
γx ∈ G(Kx) on the overlap SpecKx ' SpecOx×XU .

Note that the G-bundle Pγ is canonically independent of the choice of S, so long as S contains all points
x such that γx /∈ G(Ox).

Remark 11. Let γ, γ′ ∈ G(A). The G-bundles Pγ and Pγ′ come equipped with trivializations at the
generic point of X. Consequently, giving an isomorphism between the restrictions Pγ |SpecK and Pγ′ |SpecK
is equivalent to giving an element β ∈ G(K). Unwinding the definitions, we see that this isomorphism
admits an (automatically unique) extension to an isomorphism of Pγ with Pγ′ if and only if γ′−1βγ belongs
to G(A0). This has two consequences:

(a) The G-bundles Pγ and Pγ′ are isomorphic if and only if γ and γ′ determine the same element of
G(K)\G(A)/G(A0).

(b) The automorphism group of the G-torsor Pγ is the intersection G(A0) ∩ γ−1G(K)γ.

Remark 12. Let P be a G-bundle on X. Then P can be obtained from Construction 10 if and only if the
following two conditions are satisfied:

(i) There exists an open set U ⊆ X such that P |U is trivial.

(ii) For each point x ∈ X − U , the restriction of P to SpecOx is trivial.

By a direct limit argument, condition (i) is equivalent to the requirement that P |SpecK be trivial: that
is, that P is classified by a trivial element of H1(SpecK;G0). If G0 is semisimple and simply connected,
then H1(SpecK;G0) vanishes (this is a theorem of Harder: a strong version of the Hasse principle from
the previous lecture) so that condition (i) is automatic. If the map G → X is smooth and geometrically
connected, then condition (ii) is automatic (the restriction P |Specκx

can be trivialized by Lang’s theorem,
and any trivialization of P |Specκx

can be extended to a trivialization of P |SpecOx
by virtue of the smoothness

of G).

Combining Remarks 11 and 12, we obtain the formula

µTam(G(K)\G(A)) ' qd(1−g)−deg(L)(
∏
x∈X

|G(κx)|
|κx|d

)
∑
P

1

|Aut(P)|
.

Here the sum is taken over all isomorphism classes of G-bundles on X. We may therefore reformulate
Conjecture 9 as follows:

Conjecture 13 (Weil). Suppose that G0 is semisimple and simply connected. Then

qd(1−g)−deg(L)
∑
P

1

|Aut(P)|
=

∏
x∈X

|κx|d

|G(κx)|
.

Remark 14. Note that neither side of the equation of Conjecture 13 is a priori well defined. The absolute
convergence of the product on the right hand side is equivalent to the well-definedness of Tamagawa measure.
The left hand side is usually an infinite sum (unless the algebraic group G0 is anisotropic), but the conjecture
asserts that this infinite sum converges to the right hand side.

The assertion of Conjecture 13 can be regarded as a function field analogue of the Siegel mass formula
(in its original formulation). However, there are tools available for attacking Conjecture 13 that have no
analogue in the case of a number field. More specifically, we would like to take advantage of the fact that
the collection of all G-bundles on X admits an algebro-geometric parametrization.
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Definition 15. If Y is a scheme equipped with a map Y → X, we define a G-bundle on Y to be a principal
homogeneous space for the group scheme GY = Y ×X G over Y . The collection of G-bundles on Y forms a
category (in which all morphisms are isomorphisms).

For every Fq-algebra R, we let BunG(R) denote the category of G-bundles on the relative curve

SpecR×SpecFq X.

The construction R 7→ BunG(R) is an example of an algebraic stack, which we will denote by BunG. We will
refer to BunG as the moduli stack of G-bundles on X.

Remark 16. The algebraic stack BunG is smooth over Fq, and its dimension is given by d(1− g)− deg(L).
By definition, the category BunG(Fq) is the category of G-bundles on X. We will denote the sum

∑
P

1
|Aut(P)|

by |BunG(Fq)|: we can think of it as a (weighted) count of the objects of BunG(Fq), which properly takes
into account the fact that BunG(Fq) is a category rather than a set. With this notation, we can rephrase
Conjecture 13 as an equality

|BunG(Fq)|
qdim(BunG)

=
∏
x∈X

|κx|d

|G(κx)|

Remark 17. For every point x ∈ X, let Gx denote the fiber product Specκx ×X G, so that Gx is a
connected algebraic group over κx. Let BGx denote the classifying stack of Gx: this is a smooth algebraic
stack of dimension −d over Specκx. Then BGx(Fq) is the category of Gx-bundles on Specκx. It follows
from Lang’s theorem that every Gx-bundle on Specκx is trivial. Moreover, the automorphism group of the
trivial Gx-bundle is given by Gx(κx) = G(κx). We may therefore rewrite Weil’s conjecture in the suggestive
form

|BunG(Fq)|
qdim(BunG)

=
∏
x∈X

|BGx(κx)|
|κx|dim(BGx)

.

Heuristically, this should reflect the idea that BunG is a product of the classifying stacks BGx as x varies
over the curve X.
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