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Abstract 

This article presents an investigation of the relationship between lesioning and neuroimaging 

methods of assessing functional specialisation, using synthetic brain imaging (SBI) and 

lesioning of a connectionist network of past-tense formation. The model comprised two 

processing ‘routes’: one a direct route between layers of input and output units, while the 

other, indirect, route featured an intermediate layer of processing units. Emergent 

specialisation within the network was assessed (1) by lesioning either the direct or indirect 

route and measuring past-tense performance for regular and irregular verbs, and (2) by 

measuring functional activation in each route when processing each verb type (SBI). SBI and 

lesioning approaches failed to converge when network activation was summed over each 

route in our SBI approach. Examination of individual network solutions suggested that the 

verb types might be using the indirect route differently in terms of the pattern of activation 

across the route, rather than in terms of gross activation. A subsequent SBI analysis compared 

patterns of activation in the indirect route and confirmed that these patterns were more similar 

between regular-type verbs than between regular and irregular verbs. As the spatial and 

temporal resolution of neuroimaging techniques improves, the results of this investigation 

suggest that the key to finding functional specialisation will be to distinguish local coding 

differences across behaviours that are the results of developmental processes. Other analyses 

suggest that lesioning data may be limited because, with increasing damage, they reveal the 

resting activations of a computational system rather than a computational specialisation per 

se. 

Keywords: neuropsychology, neuroimaging, synthetic brain imaging, computational 

modelling, connectionism, neural network, language, past tense, functional specialisation 
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Are imaging and lesioning studies convergent methods for assessing functional 

specialisation? Investigations using an artifical neural network 

1. Introduction 

It is an ongoing concern of neuropsychology to link particular regions of the brain to 

behavioural variation and, thereby, to particular cognitive functions. For example, the 

pioneering efforts of 19
th

 Century neurologists, such as Broca, Wernicke, and Lichteim, 

established a view that language consists of many subcomponents, e.g., naming, repetition, 

and speaking, each of which was associated with a specific brain area (see Geschwind, 1970). 

This early work was based largely on the study of the aphasias, using a dissociation-based 

approach to brain lesions to infer the existence of different functional components of 

cognition. 

A single dissociation occurs when a lesion (or an experimental variable) affects performance 

differently in two different tasks. For example, a lesion to Broca’s area is traditionally 

associated with a pronounced deficit in productive, but not receptive, language (see 

Grodzinsky & Santi, 2008, for a recent review of the function and definition of Broca’s area). 

A difference on some performance measure across tasks is termed by some a weak or impure 

dissociation, whereas a strong or pure dissociation is where the lesion affects performance in 

one task but not another (see Dunn & Kirsner, 2003, for a thorough treatment of dissociation 

logic and terminology). A (strong) double dissociation (Teuber, 1955) is where a lesion to 

one brain region affects performance in task A but not task B, whereas a lesion to some other 

region affects performance in task B but not task A. For example, Wernicke’s aphasic 

patients, who classically present a deficit in receptive but not productive language, might be 

viewed as forming a double dissociation alongside Broca’s aphasic patients. This kind of 

dissociation-based approach complements notions such as modularity (e.g., Carruthers, 2006; 
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Fodor, 1983, 2000), functional specialisation (e.g., Caplan, 1981; Shallice, 1988) and 

localisation of function (see Farah, 1994, for a review).  

In contrast to the above dissociation-based approach, functional neuroimaging techniques, 

such as functional magnetic resonance imaging (fMRI), support inferences about the 

associations of particular brain regions with a given cognitive process. fMRI involves 

(indirectly) measuring changes in blood oxygenation over time, across different brain 

regions. This ‘BOLD’ (Blood Oxygen Level Dependent) signal is correlated with synaptic 

activity (Logothetis, 2002). A common approach adopted for fMRI studies is to obtain a 

baseline from scanning participants’ brains during a control task, and then scan them again 

during a task thought to involve additionally the cognitive process under investigation. The 

BOLD signal from the control task is then subtracted from that measured in the main task; 

brain regions that show a reliable increase in oxygen uptake from the control task to the main 

task are argued to be associated with the critical cognitive process tapped in that main task. 

In broad terms (and setting aside more recent and sophisticated approaches to lesioning and 

imaging studies, for the sake of clarity), lesion data suggest particular brain regions that are 

necessary for a given cognitive process, whereas neuroimaging data give a broader picture of 

which regions contribute to a cognitive process. A number of caveats to this picture have 

been proposed, however. For example,  if a lesion produces a deficit in some cognitive 

process, it does not necessarily imply that the lesioned region is computationally involved; 

instead, it may be on a path of synaptic transmission from one region to another (e.g., the 

classical notion of conduction aphasia; see Anderson et al., 1999, for a recent discussion), or 

the lesioned region may have a diaschitic relationship (where one region supports the 

metabolic balance of another; e.g., Feeney & Baron, 1986) to regions that are 

computationally-involved. If there are redundant systems for a function, a lesion to a 
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functionally specialised system may produce no behavioural deficit (Price & Friston, 2002). 

Neuroimaging is an observational and correlative method: imaging cannot determine whether 

activated regions are necessary for a given function or co-incidentally activated; it cannot 

reveal areas that may be sufficient to generate a behaviour but that are not activated in a 

given situation (e.g., again, under the condition of redundant systems). It is worth stressing 

that devising more sensitive behavioural tests is not a solution to the problems above. 

One way of attempting to overcome the limitations of lesioning and neuroimaging data is to 

look for convergence between the methods: in order to provide support for the mapping of a 

given cognitive process onto a particular brain region, one would expect to see both 

supportive double-dissociation data, showing degradation of function in lesioned patients, 

and an increased BOLD signal in the relevant area of undamaged brains when a task is 

performed that relies on the cognitive process in question (Chatterjee, 2005). Lesioning 

would identify necessary components, imaging would identify sufficient components. 

Encouragingly, the two methods have been broadly convergent in studies of reading (Price at 

al., 2003) and writing (Menon & Desmond, 2001), but the pattern of results across the two 

methods has been less clear in an investigation of Broca’s area (Davis, Hillis, Bergey, & 

Ritzl, 2007). Nevertheless, Price and Friston (2002) have argued that the combination of 

methods might still be limited, because the existence of two or more redundant systems that 

do not overlap would allow for the possibility where there may be no single necessary system 

or brain area for a given behaviour. 

Crucially, the combination of methods is predicated on the assumption that the findings will 

converge. What if they do not? There are various circumstances that may give rise to 

disagreements between imaging and lesioning data. When imaging suggests that a brain 
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region is central to a cognitive function but lesioning does not, it may be caused by the 

following: 

1) The results reflect a particular strategy adopted by the lesioned patient. For example, 

there is more than one way to perform the task: imaging reflects the use of Region A, 

but a Region-A-lesioned patient instead uses Region B. 

2) The activity within the brain region in question is due to inhibition rather than 

excitation. The target region is involved in not doing the task (perhaps inhibiting 

competing processes) rather than participating in doing it. 

3) The activation represents the recruitment of a general, rather than task-specific, 

cognitive resource. In this case, under lesioning, some task performance is achievable 

without using the general resource. 

Conversely, there may be lesioning data suggesting that a brain region is necessary for a 

cognitive function, but imaging data that do not show increased activation of the region in 

relevant test conditions. This situation may be caused by the following: 

1) The physical characteristics of the region may prevent any increased activation being 

detected by current imaging methods (i.e., it is too small, or it is diffuse) 

2) Performance degradation resulting from lesioning may be due to damage to neuronal 

pathways passing through a region rather than to damage to the neurons within the 

region itself 

3) Processing is distributed, such that performance on a task can be achieved without 

requiring above-baseline activation (for example, a different group of neurons in the 

same region provides the function without causing total activation to exceed that of 
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the neurons contributing to baseline); nevertheless, the task relies on computational 

properties that allow it to be selectively impaired following damage to the region. 

4) The brain region in question metabolically supports other regions that are 

computationally involved with task performance, but this metabolic support does not 

require marked augmentation of oxygen uptake.  

In the current article, we use synthetic brain imaging and lesioning of a connectionist network 

(or artificial neural network, ANN) to explore the relationship between these methods of 

assessing functional specialisation. The aim is to use the resulting insights to elucidate the 

relationship between imaging and lesioning in the brain itself, in a simplified model system 

where all the implementational details are understood. The network to be studied is Thomas 

and Karmiloff-Smith’s (2002) connectionist dual-route model of past-tense processing, in 

some ways analogous to Pinker’s (1984) dual-route theory.  

The network was originally developed to investigate the mechanism by which both rule-

based (i.e., regular verbs, such as ‘walk-walked’) and exception handing (i.e., irregular verbs, 

such as ‘go-went’) aspects of past-tense acquisition could be learned. In this domain, both 

lesioning (e.g., Hodges & Patterson, 1995) and functional imaging (e.g., Ullman, Bergida, & 

O’Craven, 1997) data have been used to support the proposal that the processing of these two 

verb types relies differentially on separate brain regions. The model comprises two 

processing ‘routes’: one is a direct link between layers of input and output units (the ‘direct 

route’), while the other features an intermediate layer of processing units (the ‘indirect 

route’). Using the lesioning approach, Thomas and Karmiloff-Smith demonstrated that the 

dual-route network had acquired functional specialisations during training of the ANN, such 

that damage to the direct route was more detrimental to rule-based processing than to 

exception handling, while damage to the indirect route impacted more on exception handling 
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than on processing rule-based verbs (see also Westermann, 1998, 2000, for a related model). 

It is important to note that we do not claim that this model captures the entire richness or 

complexity of past-tense production in English. The model does not have phonological and 

semantic components and therefore cannot show dissociations that can be explained by 

differential reliance on these two systems, unlike some other past-tense models (Joanisse & 

Seidenberg, 1999; Thomas & Karmiloff-Smith, 2003; Woollams, Joanisse, & Patterson, 

2009). Past-tense formation is not the subject matter of this article. The model we use is 

appropriate for the purposes of this article because it is simple and well understood; past-

tense formation is used here only because it is representative of quasi-regular mapping 

problems with observable dissociations. Thus, Thomas and Karmiloff-Smith’s (2002) model 

may be considered a past-tense-like mapping task rather than a model of past-tense formation 

proper. Similar simple dual-route models have been used by other researchers as tools for 

studying dissociations in the domains of reading (Zorzi, Houghton, & Butterworth, 1998) 

and, indeed, past-tense inflection (Westermann & Ruh, 2009).  

As described above, lesioning of ANNs can readily reveal functional specialisations (see also 

Weems & Reggia 2006, for a simulated lesion model of aphasias). However, an alternative 

method has been used to uncover such specialisation within connectionist models that relies 

on activation levels in the intact network. This is analogous to functional imaging methods 

and indeed has been labelled synthetic brain imaging (henceforth SBI; Arbib, Bischoff, Fagg, 

& Grafton, 1995). In an ANN, the ‘neural’ activity occurs across a layer of simple processing 

units and can be represented by a vector of values, with each vector element corresponding to 

a given processing unit’s activation level. The connectivity between layers is represented by a 

matrix of excitatory and inhibitory connection strengths between individual units. SBI is a 

method of graphically representing processing inside the network, in which the strength of 
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the internal connectivity is combined with the size of the activation values exploiting this 

connectivity for any given processing pattern. SBI therefore distinguishes the ways in which 

different processes (e.g., producing regular vs. irregular verbs) exploit the same fixed 

network connectivity structure to drive behaviour (see also Sanger, 1989, for a related 

approach called contribution analysis, and Shultz, 2003, for an application of this method to 

understand the emergence of neural network representations across development).  

Recently, Cangelosi and Parisi (2004) used SBI to investigate the functional specialisations 

that emerge within an ANN trained to process nouns and verbs. They found that processing 

these different types of words produced different foci of activation within the network: 

network elements that had different functional properties supported the emergence of 

different language behaviours. Additionally, Westermann and Ruh (2009) have recently 

demonstrated that employing the past-tense domain and dual-route model similar to the one 

used here, SBI could reveal differential use of the two routes by regular and exception verbs. 

However, neither set of researchers conducted parallel lesioning of the network elements in 

order to determine whether the dissociation method would reveal the same pattern of 

functional specialisation as that revealed by SBI.  

Thus, although previous studies have explored functional specialisation of connectionist 

networks with either lesioning or SBI, none has directly compared the two methods to assess 

the degree of convergence. The aim of this article is to do exactly that, with a view to clarify 

why real-world lesioning and imaging might sometimes fail to tell the same story. There are 

several advantages of studying connectionist networks to pursue our research question: unlike 

real brains, we can control and measure every aspect of a connectionist network. It is easy to 

image and then lesion the very same networks. We are emphatically not claiming that the 

past-tense model studied in this article represents a fully adequate model of real neural 
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structures. Nor are we claiming any correspondence between either route and any particular 

neural structure: the model is at an abstract level and involves two routes, informed by recent 

work that identifies at least two neural routes for reading (e.g., Richardson, Seghier, Leff, 

Thomas, & Price, submitted). We acknowledge that the backpropagation algorhithm is 

generally viewed as biologically implausible, although it may also be viewed as an 

approximation of a Hebbian-based algorithm that uses bidirectional connections to diffuse 

error signals through a network (Xie & Seung, 2003). Furthermore, we are not concerned 

here about elucidating mechanisms of language; instead, language is used as an example 

domain that allows us to explore the relationship between lesioning and imaging data. 

Later, we will be careful to distinguish the key properties of the model from the 

simplifications. Here, it suffices to highlight one key property of the model: the network’s 

representational states are the outcome of a developmental process. Horwitz and colleagues 

(e.g., Horwitz, Tagamet, & McIntosh, 1999) conducted SBI of more biologically realistic 

neural network models (of the visual system), including explicit modelling of the BOLD 

function in order to map the modelled imaging onto observed fMRI data. That model 

emphasised biological realism at the expense of simplifying the origin of the representational 

states: the architecture was pre-wired. Since our goal was to compare the functional 

specialisation of neurocomputational structures as revealed by different measurement 

techniques, it was crucial that these specialised processes be the result of a plausible 

developmental process (specifically, the result of structure-function correspondences during 

learning) rather than a pre-wired solution encoded by the modeller. 

2. Method 

2.1. Network 
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The model comprised a feedforward, pattern-associator network. This included two routes 

connecting the input and output layers. A direct route linked 90 input units with 100 output 

units and an indirect route connected these same units via an intermediate layer of 20 hidden 

units. The model was trained to produce the correct past tense of English verbs when the 

relevant verb stem was presented at its input. 

Computational theory indicates that the direct route should have sufficient computational 

resources for learning the input-output mappings for regular verbs, whereas the indirect route 

is more suited to learning the input-output correspondences for irregular verbs (Rumelhart & 

McClelland, 1986). Broadly, the two-layer network (or direct route) can learn a regular 

function, but the additional computational resources of the hidden layer in the indirect route 

are required to handle further mappings that are inconsistent with the regular function. 

Nevertheless, the two-layer network can successfully tolerate a low proportion of exception 

patterns in a training set, particularly if the network is given a disproportionately large 

amount of training on those patterns. Hence, the degree to which one might expect exceptions 

to be handled by the indirect route is a function of how inconsistent or ‘exceptional’ those 

input-output mappings happen to be. Emergent functional specialisation might be expected 

within the dual-route model of past-tense learning, because it employs an error-correcting 

backpropagation algorithm; there is therefore competition between the routes to contribute to 

minimising the disparity between output and target activations. Should one route eliminate 

this disparity, there will be no error left over to drive plastic weight changes (i.e., learning) in 

the other route. If one route learns a pattern, there is no reason for the other to do so. Further 

details of the mechanism by which the model achieves emergent specialisation of function 

can be found in Thomas and Karmiloff-Smith (2002). 



12 

 

The training set consisted of the stems of 508 monosyllabic English-like verbs paired with 

their past-tense forms, as specified in Plunkett and Marchman (1993) and used by Thomas 

and Karmiloff-Smith (2002). Each verb consisted of three phonemes represented over six 

binary articulatory features, corresponding to a vector representation with 18 elements. Given 

the intention to evaluation functional specialisation by lesioning the network, a larger 

representation was desirable because the results obtained from network damage can be 

artefactual if the network is trivially small (Bullinara & Chater, 1995). Therefore, each 

element from the original code was replicated five times to create a total vector of 90 

elements to be presented to the 90 units of the network’s input layer, with the code for each 

replication involving a 20% chance of inversion of binary features (implementing noisy 

redundancy). The output layer employed a similar code but with the addition of 10 elements 

representing two articulatory features to capture the affix “–ed” to form a regular past tense. 

Four types of verbs were represented within the training set: (1) Regular verbs whose past 

tense took the +ed form (e.g., walk-walked; later referred to as Regular); (2) Exception verbs 

whose past tense was the same as the present tense form (e.g., cut-cut; referred to as 

Exception Pattern 1 or EP1); (3) Irregular verbs whose past tense was formed by changing 

the internal vowel of the stem tense (e.g., dig-dug; EP2); and (4) Irregular verbs whose past 

tense was entirely dissimilar to the stem tense (e.g., go-went). The verbs in category 4 were 

presented to the network three times as often as the others, because learning would not be 

possible without repeated exposure to these forms (Plunkett & Marchman, 1993). These 

verbs will be referred to as EP3f, to mark the effect of both the highest level of 

‘exceptionality’ but also the effect of high token frequency. The training set consisted of 410 

regular verbs, 20 no-change verbs, 68 irregular vowel-change verbs, and 10 irregular 

arbitrary past-tense verbs. 
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To establish the performance of the network in forming generalisations based on the training 

set, a set of novel verbs was presented to the network after training. The generalisation data 

set consisted of a group of 572 novel verbs of which the majority rhymed with a member of 

the four categories of the training set (i.e., two of their three phonemes were identical to their 

training set counterpart). The composition of the generalisation set was as follows: 410 novel 

verbs rhyming with regular verbs (‘Regular-Rhyme’), 20 novel verbs rhyming with no-

change irregulars, 76 novel verbs rhyming with vowel-change irregulars, 10 novel verbs 

rhyming with arbitrary irregulars, and 56 novel forms which did not rhyme with any verbs 

(i.e., shared no more than a single phoneme with any of the verbs in the training set). The 

members of the generalisation set that shared characteristics with elements of the training set 

tested the network’s ability to extend the past tense ‘rule’ to novel stems or exhibit some 

other pattern of generalisation (such as irregularisation). Our results will primarily focus on 

the novel verbs that rhymed with regulars and which one would therefore expect to be 

handled by the same structure that processes regular verbs in the training set. These will be 

referred to as Rule. We focus on Rule verbs of the generalisation set because these give an 

indication of whether the network (or part of the network) has abstracted the past tense ‘rule’, 

rather than merely learned associations specific to the training set (it should be noted that all 

generalisation of connectionist models is similarity- rather than rule-based, and also that the 

network was able to generalise to novel exemplars from all verb classes of the training set; 

these are omitted here for the sake of brevity). 

Each network began with connection weights initially randomised between ±0.5.The network 

was then trained for 500 presentations of the complete training set (epochs) and then tested 

on both the training set and the generalisation set. At each epoch, the training set was 

presented in a different random order. The learning rate and momentum were set to 0.1 and 
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0.0, respectively. Twelve replications were run with different initial random seeds. Following 

Thomas and Karmiloff-Smith (2002), a nearest neighbour method was implemented to assess 

the network’s accuracy in its responses: the phoneme with the least Euclidean distance 

between itself and corresponding element of the output vector was taken as being the 

network’s intended output. If all phonemes matched the target output, the verb was given a 

score of 1 otherwise it was given a score of 0. The behavioural metric was expressed in terms 

of the percentage of each verb type that the network outputted correctly. 

2.2. Lesioning 

Emergent specialisation within the network was assessed by lesioning either the direct or 

indirect route, i.e., removing a percentage of the weights between the units comprising the 

route (by setting the weights to zero), then determining the percentage of correct response 

returned by the network for each category of verb within the training or generalisation set 

(where, for the purposes of this model, the ‘correct’ novel response was taken to be 

application of the past-tense rule). Weights were lesioned rather than hidden units, because 

this approach allows for more distributed damage, thereby avoiding artefactual small-scale 

model behaviour (see Bullinaria & Chater, 1995). Performance was assessed at the intact 

level and then by removing 50% of the weights from one of the two routes (both before and 

after the hidden layer in the indirect route). Several lesioning levels were piloted. The 50% 

level was chosen in order to avoid ceiling and floor effects: at this level of damage, all verb 

types fell below 100% accuracy of the intact network but none was at 0%. There was no 

crossover of the sensitivity functions for the routes, with varying lesion level. For each of the 

12 replications of the model, 10 different lesions were applied to each route. By averaging 

across 10 lesions for each replication, any evidence of specialisation would owe to properties 

of each route as a whole, rather than to the particular weights that were removed in any single 
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lesion. In terms of neurological patients, the simulations would therefore correspond to 240 

cases of brain damage. 

For each verb category, the degree of specialisation towards either the direct or indirect route 

was defined as the difference in the degradation of performance that resulted from lesioning 

each route. For example, a comparison was made between the percentage of regular verbs 

that were correctly associated with their past tense form after a direct lesion level of 50% and 

the percentage accuracy on the same set of verbs when the indirect route experienced a 50% 

lesion. If performance declined more when the direct route was lesioned, this was taken as 

evidence that the direct route had greater specialisation for this verb class. Formally, we 

defined the specialisation level for each verb type as the difference between the two levels of 

degradation following a single route lesion. Numerically, this was equivalent to subtracting 

the level of performance after direct route damage from the level of performance after 

indirect route damage. A positive value indicated a specialisation towards the direct route and 

a negative value indicated a specialisation towards the indirect route. 

2. 3. Synthetic Brain Imaging 

To assess emergent specialisation by Synthetic Brain Imaging, consideration was given to the 

level of activation of each unit within the network and the connection weights that had 

developed between the units by the end of training. At this point, we distinguish between the 

unit activations (computed by summing the net input to each unit and passing the value 

through the unit’s non-linear threshold function) and functional activation states (henceforth 

FAS). The FAS correspond to how hard each connection is being driven and are calculated 

by the products of unit activations and connection strengths. FAS vectors can be computed 

for processing routes either with or without an intermediate layer of processing units. 
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In terms of the architecture of the current dual-route network, the FAS can be depicted by six 

vectors: two vectors for the direct route and four vectors for the indirect route. The vectors 

were of two types: (1) Sending vectors, representing the total activation being driven from a 

layer of units and (2) Receiving vectors, representing the total activation being received at a 

layer of units. The direct route consisted of one sending vector of activations being driven 

from the input layer to the output and one receiving vector of activations being received at the 

output layer from input. The indirect route consisted of two sending vectors and two 

receiving vectors: one sending vector and one receiving vector each for input-to-hidden and 

hidden-to-output. Each vector had one element for the FAS value of each unit in the relevant 

network layer. 

The value of each element in a sending vector was calculated by multiplying the activation 

level of a sending unit with absolute size of each weight emanating from this unit and 

summing the product. The vector depicts the functional activation being driven along a 

pathway by a given layer. This calculation is expressed in the following equation: 

( )∑ ×=
i

ijj waFAS
1

||        (Equation 1) 

where FAS is the functional activation state of sending unit j, aj is the activation of unit j, and 

wi are the i weights emanating from unit j. 

Similarly, the value of each element in a receiving vector was calculated by multiplying the 

absolute size of each of the weights arriving at the receiving unit by the unit’s activation 

level, and then summing these products. The vector depicts the functional activation by 

which a given layer is being driven by a pathway. The calculation is expressed in the 

following equation: 
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( )∑ ×=
i

ikk waFAS
1

||        (Equation 2) 

where FAS is the functional activation state of receiving unit k, ak is the activation of unit k, 

and wi are the i weights arriving at unit k. 

It is important to note that the absolute values of the connection weights were used in these 

calculations, so that both high levels of excitation or inhibition along a connection would 

yield the same value for a vector element. The rationale for the use of absolute values is that 

within functional brain imaging, it is not possible to directly observe neural output, but only 

to observe indirectly the level of resource used (i.e., the BOLD signal). Given that resource 

use could represent the activity of either excitatory or inhibitory neurons during the 

performance of a task, it is therefore appropriate to simulate this with absolute connectivity 

values within the model. Because in the model we know which connections are excitatory 

and inhibitory, we later compare the picture given by separating the influence of these two 

types of functional activation state. 

First, we briefly compare our method for computing SBI values with prior studies. Some 

previous SBI algorithms have summed activity over a particular time window, corresponding 

to some scan duration (e.g., Arbib et al., 2000; Cangelosi & Parisi, 2004). For example, Arbib 

et al. (2000) summed receiving activation (firing rate multiplied by connection strength) for a 

region of interest, combining the activation of sending processing units with the strength of 

their efferent connections. Cangelosi and Parisi (2004) used a similar measure to that used by 

Arbib and colleagues, but also recorded activity within a layer. Horwitz et al. (1999) also 

integrated the absolute value of activity within connections over the time course of the study 

and within the different areas of the model, but did not give details of the algorithm adopted. 

The current study’s algorithm is similar to Arbib et al.’s, insofar as unit activations and 
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connection strengths are combined, but our algorithm yields a snapshot of the network’s state 

at the end of training, where the processing of a given input occurs in a single pass, rather 

than integrating across a time window. Additionally, we consider sending activation in 

addition to receiving activation.  

Given the FAS elicited when the dual-route network processed a given pattern (or set of 

patterns), it was then necessary to derive a measure of specialisation to each route. For this, a 

subtractive method was employed. A baseline activation was calculated separately for direct 

and indirect route by averaging across all the FAS elements of that route, for the five verb 

types of principal interest in the current study: Regular, Rule, EP1, EP2 and EP3f. This 

baseline was used rather than some simulation of a ‘resting state’ baseline in order to for the 

baseline to be clear to the reader and also to avoid artefactual results that might arise from an 

arbitrary method of simulating a resting baseline
1
. The difference between the activation 

value for a particular verb class and this baseline value showed the relative change in 

contribution made by one or other route when the pattern was presented. Comparing the 

relative changes in contribution along both routes allowed the degree of specialisation to be 

calculated. The inference made was that a higher relative level of activity along one of the 

routes indicated the emergence of specialisation for processing that set of patterns by that 

route. The specialisation between the routes, then, was calculated by subtracting the relative 

change in activation for the indirect route from the relative change in direct route, for each 

class of verbs. A positive value of this figure indicated a specialisation towards the direct 

route and a negative value indicated a specialisation towards the indirect route. 

                                                           
1
 The simulations in this article were repeated with a baseline intended to be like a ‘resting state’ baseline. This 

baseline was created by inputting noise into the model. The pattern of results found was very similar to that 

reported; the arguments and analysis of the article were unchanged. 
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Finally, to aid interpretation, visualisations of the functional activation states within the 

network were produced. The 6 vectors coding the two routes were spatially extended using 

interpolation into 24 steps in both direct and indirect route, and a colour coding used to 

represent FAS levels. This spatial extension and smoothing of the vectors made use of local 

averaging of FAS values and served to allow readier visual interpretation of these FAS 

maps.
2
 To reflect common practice in fMRI, diagrams show the baseline subtraction used to 

derive the regions differentially activated by a given verb class. 

3. Results and Discussion 

Our primary research question was to address whether lesioning and synthetic imaging 

methods produced a convergent picture of functional specialisation in the model; and if they 

diverged, to identify the neurocomputational basis for this divergence. 

3.1. Main Analysis 

3.1.1. Lesioning 

Figure 1 shows the network’s performance in producing correct past-tense forms for Regular 

and EP3f exception verbs, following 50% connectivity lesions to the direct or indirect route. 

These classes correspond to the most regular and irregular verb types. For Regular verbs, 

intact performance was 100%. Averaged over the 12 networks and 10 replications per lesion 

site (as noted above, by averaging across 10 lesions for each replication, any evidence of 

specialisation would relate to overall route properties, rather than to the particular weights 

removed in any particular lesion), the network’s performance fell to 55.8% after a lesion to 

the direct route and to 76.5% after a lesion to the indirect route. Thus, the network’s 

specialisation for Regular verbs was +20.7% towards the direct route. For EP3f verbs, once 

                                                           
2
 The algorithm used to generate the FAS diagrams is available as an Excel file at: 

http://www.psyc.bbk.ac.uk/research/DNL/techreport/SBI_spreadsheet.xls 
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again intact performance was 100%. The network’s performance fell to 47.3% after a direct 

route lesion but to 29.0% after a lesion to the indirect route. The network’s specialisation for 

EP3f verbs was -18.3%, that is, 18.3% to the indirect route.  

3.1.2. Synthetic Brain Imaging 

In order to determine the level of route specialisation for the different verb types in the intact 

networks, the percentage divergence from mean FAS was computed for each type. First, a 

baseline was calculated for each route, by averaging the FAS across the five verb types 

Regular, Rule, EP1, EP2, and EP3f. Second, the percentage difference from this mean was 

calculated for each type of verb, for each route. Percentages were used rather than absolute 

values to adjust for differences in average FAS levels in the two routes (FAS levels in the 

direct route tended to be higher because the magnitude of the weights was larger). Third, the 

percentage difference for the indirect route was subtracted from that for the direct route to 

give the index of specialisation. Finally, the values for each of the 12 networks were averaged 

(see Table 1). For example, for one network, the baseline activations for direct and indirect 

routes were 49.6 and 20.4, respectively. For Regulars, the percentage disparity from these 

baselines was -2.1% and -5.9%, respectively. The difference between these values was 

+3.8%, indicating specialisation to the direct route.  

The ‘Difference’ column of Table 1 reveals that the FAS modulations by verb type were 

relatively small. Inasmuch as the verb types represent different behaviours, these different 

behaviours were achieved by relatively modest modulations of the functional activation states 

in the artificial neural network. The strongest specialisation was for EP3f exception verbs, in 

favour of the direct route. This contradicts the result found in the lesioning analysis, where 

EP3f verbs showed a strong specialisation towards the indirect route. Figure 2a shows a set of 

SBI images depicting the absolute FAS levels induced in each route by Regular and EP3f 
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verbs for one run of the model. Baseline FAS levels were calculated by averaging across all 

verb types, and the subtraction between these FAS maps for the two verb types to are shown 

to indicate their respective route specialisations. The figure confirms how both verb types use 

both routes; for EP3f, both routes are driven harder, but the direct route comparatively more 

so. 

The Regular-Baseline subtraction clearly shows the three phonemes and inflection driving the 

output of the network in the direct route. The EP3f-Baseline subtraction shows an uneven use 

of the input, with particular reliance on the central phoneme in the direct route. It is notable 

that the structure of the SBI image for Regulars is not apparent in the FAS map for these 

verbs (Figure 2a, top left panel), but emerges only following the subtraction of baseline FAS 

(Figure 2a top right panel). This offers some support for the use of the subtraction method of 

imaging distributed representations, in addition to localist representations which would more 

obviously benefit from this approach.  

3.2. Comparing the functional specialisation measured by lesioning and SBI 

The percentage specialisation indicated by lesioning was plotted against the specialisation 

from imaging, for each of the 12 networks, for each verb type (Figure 3). Lesion 

specialisation is on the horizontal axis; imaging specialisation is on the vertical axis. For both 

axes, positive values indicate specialisation towards the direct route; negative values indicate 

indirect route specialisation. If the two techniques give convergent results, the scatterplot 

points should be within the upper-right and lower-left quadrants of each diagram; and a 

regression line through the points should have a positive gradient. The results indicate the 

following: First, the individual networks varied in their specialisation on both lesioning and 

imaging measures. Second, the pattern was modulated by verb type. Third, some indices of 

specialisation were consistent for a given verb type: lesioning showed preferential 
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specialisation of both Regulars and Rule to the direct route, and specialisation of EP2 and 

EP3f to indirect. However, when excitation and inhibition were conflated, no verb type 

exhibited consistent route specialisation of FAS, even where the overall group mean 

indicated some degree of specialisation. Finally, although three of the verb types showed 

some consistency in the direction of lesion and SBI measures (i.e., the regression lines had 

positive gradients), these effects were relatively small compared to the variance in the data. 

Why should the synthetic imaging method produce such inconsistent results? Based on the 

FAS maps in Figure 2a, the SBI method appears to be a useful method for distinguishing the 

differential processing requirements of the two verb types we have focused on. Therefore, the 

disparity between SBI and lesioning methods does not arise from shortcomings in SBI itself, 

but perhaps from averaging across FAS vector scores, or perhaps from averaging across 

individual networks which have adopted different solutions. A further possibility is that the 

disparity arises because excitatory and inhibitory activations were deliberately conflated in 

the method. This is because we followed the constraints of real-world fMRI, where it is 

currently not possible to separate out these types of activity. However, in the model, it is 

relatively straightforward to separate excitatory and inhibitory contributions to specialisation.  

3.3. Splitting Functional Activation States into excitation and inhibition 

Table 2 shows the percentage divergence from baseline FAS levels for each verb type, for 

excitation and inhibition individually. It can be seen that analysing excitation and inhibition 

alone indicated a similar lack of evidence for route specialisation to that shown by the above 

analysis, which conflated excitation and inhibition (Table 1). However, as in Table 1, these 

data are averaged across all 12 networks – if the networks differ in their solutions to 

producing correct past-tense forms across verb types, it may be more informative to look at 

SBI images for an individual network.  
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Figures 2b and 2c show FAS maps of excitation and inhibition, respectively, for one run of 

the model. The most striking difference is that the excitation subtractions appear to be more 

structured than those for inhibition, with excitation showing a similar pattern for Regulars to 

that seen in the images that conflated excitation and inhibition (Figure 2a). The excitation 

subtraction for EP3f verbs shows that the direct route is driving the first three phonemes of 

the output rather than the inflection, which is consistent with the fact that this verb type 

requires no inflection production (e.g., go-went). Notably, the inhibitory FAS reveal that the 

two verb types are using the indirect route in a different way: the hidden receiving areas show 

red peaks of activation in different regions, while the output receiving areas show a different 

pattern of peak FAS for Regulars and EP3f verbs, somewhat like barcodes, that largely do not 

align when superimposed. The possibility that SBI was generating different information for 

the two routes prompted further investigation.  

3.4. Further investigation of SBI data 

Here, rather than using the preceding measure of route specialisation, we simply examined 

how hard each route was driven in processing each verb type. For each network, summed 

FAS was calculated for the verb types for the direct and indirect routes separately and this 

was correlated against specialisation as measured by lesioning. In keeping with the above 

analysis, this was first conducted for conflated FAS (see Figure 4), then for excitation and 

inhibition separately. The results were as follows. Conflated: a negative correlation for the 

direct route, R
2
 = .29, no clear correlation for the indirect route, R

2
 = .05. Excitation: again, a 

negative correlation for the direct route, R
2
 = .37, but no clear correlation for the indirect 

route, R
2
 = .03. Inhibition: no clear correlation for either direct, R

2
 = .07, or indirect, R

2
 = .06, 

routes. Figure 4 shows that the reason for this negative correlation is that the exception verbs 

– EP1, EP2, and EP3f – were driving the direct route harder than the Regular and Rule verbs. 
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However, on this measure of summed activation, the indirect route was not more strongly 

activated by either exception or non-exception verbs.  

Figure 2b suggested that Regulars and EP3f verbs might have used rather different patterns of 

activity in the indirect route, because the SBI images showed what appear to be largely non-

overlapping patterns of peak FAS for the two verb types. If so, then simply looking at 

strength of activation would fail to reveal route specialisation. As an alternative, then, we 

computed the angle (broadly equivalent to the correlation) between the FAS vectors for each 

verb type in the indirect route, where 90 degrees would represent completely orthogonal FAS 

patterns and 0 degrees would be perfect superposition. This was performed separately for 

Input-sending, Hidden-receiving, Hidden-sending, and Output-receiving vectors, for each 

combination of verb types (e.g., Regular vs EP1, Rule vs EP2, etc.), for each of the 12 

networks. These angles were then averaged across the 12 networks. For the sake of brevity, 

we present only the angles computed from the Hidden-sending vector, which are most 

relevant because they reflect any re-representation of the inputs operating in the hidden layer. 

Table 3 shows descriptive statistics for angles between Hidden-sending vectors, for conflated 

FAS (very similar results were obtained for both excitation and inhibition). Paired-samples t-

tests revealed that the angle between Regular and Rule verbs was reliably smaller than that 

between Regulars and EP1 verbs, t (11) = 5.33, p < .001, d = 2.19, Regulars and EP2 verbs, t 

(11) = 7.63, p < .001, d = 2.88, and also Regular and EP3f verbs, t (11) = 3.54, p < .005, d = 

1.25.  

Thus, there is clear evidence that the indirect route is re-representing Regular and Rule verbs 

more similarly than Regulars and exception verbs. Thus while the direct route separates verb 

types by the strength of activations, the indirect route allows the development of relatively 

non-overlapping representational codes at the hidden layer in order to appropriately activate 
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the output layer for each verb type. An appropriate analogy might be that the direct route is 

more ‘analogue’, where brute strength of connections – and therefore FAS – drives output 

units above their thresholds to switch on, whereas the indirect route is more ‘digital’, with 

degree of overlap of re-represented codes associated with different resulting output layer 

behaviour. Critically, measuring either relative (i.e., Figure 3) or absolute (Figure 4b) values 

of FAS could not detect such ‘digital’ specialisation of coding, because functionality did not 

rely on differences in net FAS summed over many units, but on the pattern of FAS across 

units. Lesioning, however, was blind to whether specialism was in terms of net FAS 

differences or re-representational codes. 

In sum, our consideration of the disparity between synthetic imaging and lesioning methods 

for assessing functional specialisation suggests the following. Lesioning can reveal the 

location of the essential functional elements. By contrast, imaging, perhaps unsurprisingly, 

reveals where the most functional activity is. While lesioning indicated that the indirect 

processing route was most important for exceptions, synthetic imaging pointed to the 

opposite. This is because imaging was unable to pick up specialisation achieved via 

distributed representational encoding in the indirect route. It only sufficed to measure brute 

activity levels in the direct route. 

 

3.5.  The emergence of  activation biases following lesioning 

Thus far we have focused on possible conceptual difficulties with the imaging approach 

through conflating excitation and inhibition, and through collapsing across distributed 

representational codes. Are there, however, potential limitations with the lesioning approach? 

In particular, we wished to examine the transparency assumption (Caramazza, 1986; Shallice, 
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1988); that is, the idea that damaged structure is directly responsible for lost function while 

intact structure is directly responsible for remaining function. In our model system, lesioning 

connection weights from the input layer serves to progressively reduce the influence of input 

information (verb stems) in driving the output of the network. However, in the absence of 

input, processing units do not return to zero activation. In an artificial neural network, 

processing units have activation biases  (sometimes referred to as the threshold or bias of a 

unit). The normal response of units is a combination of these activation biases with input 

information. As input information is reduced, the activation biases progressively contribute to 

driving behaviour. In the limit, with no input information arriving, the response of the system 

is fixed and driven only by the activation biases. Where a network produces different types of 

behaviour (here, the verb classes), the possibility exists that the activation biases may incline 

the network to one type of behaviour. In turn, this raises the possibility that a lesion does not 

straightforwardly remove the behaviour normally produced by the lost structure, but might 

also reveal underlying functional biases of the resting state of the system to produce certain 

behaviours. 

To examine this possibility, we explored the boundary condition of 100% lesion to remove 

the influence of the input on network behaviour. To reveal the contribution of activation 

biases in the output layer, we lesioned all weights arriving at the output layer. To reveal the 

combined contribution of hidden unit and output unit activation biases, we lesioned 

connections from the input to output and input to hidden, but retained the connections from 

hidden to output. We then evaluated whether the (fixed) output activations were closer to the 

responses required for any of the verb types. 

Figure 5 shows the RMS error in past-tense verb production for Regular and Ep3f verbs of a 

100% lesioned network (‘Output only’). It can be seen that there is a small but clear bias 



27 

 

towards correctly producing Ep3f verbs over Regular ones (RMS errors of .498 and .484, 

respectively, a difference of .14, t (11) = 5.61, p < .001, d = 2.87). Figure 5also shows the 

accuracy of responses driven by the combination of hidden unit and output unit activation 

biases (‘Output + hidden’). The bias towards correctly producing Ep3f past-tense forms over 

Regular ones (.492 vs .451, a difference of .41, t (11) = 5.89, p < .001, d = 2.71) is now much 

larger (i.e., there was a reliable interaction between lesion extent and verb type, F(2, 11) = 

10.624, p < .01, ηp
2 

= .491). The activation biases are determined by the frequency of input-

output mappings in the training set: units tend to reside in the most probable response state. It 

is therefore unsurprising that the EP3f verb class, marked out by its higher token frequency, 

influences the rest state activations more. However, the greater bias from the activation biases 

of the hidden units implies that as this contribution is reduced (by lesioning the connections 

from the hidden to output layer), EP3f verbs will be differentially impaired. Lesioning, 

therefore, does not simply remove the computational structures responsible for certain 

functions; it produces a computational state with an atypical balance between the influence of 

activation biases and the influence of input patterns. In this sense, the transparency 

assumption is violated and lesioning cannot directly index the functional specialisation of 

structures under normal conditions. 

4. General Discussion 

In this article, we have directly contrasted lesioning and imaging approaches of assessing 

functional specialisation, using a connectionist model of past-tense formation. Our analyses 

suggest that conventional neuroimaging data are unlikely to give a full picture, because they 

are generated by differences in net activity summed over a great many neurons, but are 

insensitive to the pattern of activity across those neurons. Lesioning data may also be limited 
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because, with increasing damage, they reveal the activation biases of a computational system 

rather than a computational specialisation per se.  

The lesioning analysis indicated strong direct route specialisation for Regular verbs and also 

clear indirect route specialisation for EP3f exception verbs. This was expected prior to 

running the model, based on computational principles of structure-function correspondences. 

However, the imaging analysis was inconsistent, indicating a direct route specialisation for 

exception verbs. The SBI metric of specialisation was based on a difference between how 

hard each route was being driven (the product of processing unit activations multiplied by the 

absolute strength of the associated connection weights). We suggested that the disparity 

between lesioning and synthetic imaging could have arisen because our imaging analysis 

deliberately conflated excitatory and inhibitory activation. However, the anomalous result 

held even when the analysis was repeated for excitation and inhibition separately. The 

implication is that conflation of excitation and inhibition per se was not the principal 

limitation of the SBI method. 

When we considered the two routes separately, it appeared that exception verbs were 

distinguished from regular verbs in the direct route: exception verbs drove the direct route 

harder. This appeared to resemble a form of analogue coding for regularity. However, the 

verb types were indistinguishable in the extent to which they activated the indirect route. 

Examination of individual network solutions suggested that the verb types might be using the 

indirect route differently. This led us to compute the angle between the FAS vectors for each 

verb type in the indirect route. This analysis revealed greater angles between Regular and 

exception verbs than between Regular and Rule verbs. The analysis confirmed that the 

patterns of activation through the indirect route were more similar for Regular and Rule verbs 

than for Regular and exception verbs. The presence of an intermediate layer of processing 
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units in the indirect route enabled the network to re-represent input patterns to begin to 

distinguish regular from exception verbs. To do so, it used a type of discrete, or ‘digital’, 

code. 

One reason for the disparity between lesion and synthetic imaging methods then becomes 

clear. We initially relied on difference measures between the routes to assess specialisation: 

different level of impairment after damaging each route vs. different levels of FAS in each 

route during normal processing. For the latter, however, the levels of FAS only differed 

between the verb types in the ‘analogue’ direct route, making it seem like this route was 

specialised to exception verb processing. Only a consideration of FAS patterns yielded the 

role of the indirect route in exception processing that was readily revealed by lesioning. Thus, 

our analyses suggested that conventional neuroimaging approaches may be limited by their 

reliance on comparing gross activation of regions. 

However, our results suggest that lesioning is also limited as a method of investigating 

functional specialisation, because damaging regions that are computationally involved in 

producing behaviours serves to reveal the influence of activation biases of the ‘downstream’ 

areas served by those regions. In the current study, we found a bias towards producing high-

frequency exception verbs in a network with no input. Such a bias cannot indicate functional, 

computational or processing specialisation because an inputless network cannot perform any 

computation or processing. As sketched in the introduction, classic neuropsychology seeks to 

draw conclusions about normal and intact cognitive processes from the patterns of 

performance seen in people with brain damage. Such conclusions rely on the transparency 

assumption, which entails that the cognitive system in a damaged brain is the same as that in 

a normal brain except for the local modification caused by the damage (e.g., Caramazza, 

1986; Shallice, 1988). The part of our network that remains after lesioning all input cannot be 
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described as ‘normal’, because of the output bias. This suggests a novel reason for 

questioning the transparency assumption (see Farah, 1994, for other reasons to question the 

assumption). 

It is reasonable to question the suitability of the dual-route model for the purposes of our 

investigations. Is it too simple to be informative? Although simple, it is important that 

functional specialisation was a product of learning rather than a built-in assumption. The 

model’s solution of separate of ‘analogue’ and ‘digital’ coding into the direct and indirect 

routes stems from an experience-dependent processes acting over a network of simple 

integrate-and-fire units. While recognising that artificial neural networks are fairly abstract 

analogues of real neurocomputational systems, we believe the complexity of the 

representational states emerging from simple processing assumptions is a strength of the 

model. Lesioning suggested different areas were key for two different cognitive processes, 

while imaging suggested that just one of these areas was particularly important for both 

processes (the direct route). Our simulations demonstrated that this situation can arise 

because imaging is insensitive to patterns of activity within a region. 

In the Introduction, we suggested that lesion data indicate particular brain regions that are 

necessary for a given cognitive process, whereas imaging data give a broader picture of 

which regions contribute to a cognitive process. Our exploration suggests that imaging can 

only reveal contributing regions that are more active overall during the particular cognitive 

process under scrutiny. Conventional neuroimaging is blind to regions that shift their patterns 

of activation depending on condition but not their overall activation (assuming that the 

method does not have the resolution to distinguish the local coding differences). This is 

certainly a candidate explanation for any lack of agreement between lesioning and imaging 

techniques. As the spatial and temporal resolution of neuroimaging techniques improves, the 
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current findings suggest the key to finding functional specialisation will be to distinguish 

local coding differences across behaviours that are the results of developmental processes. 

There has been a recent growth in pattern-information (multivoxel) analysis of fMRI data 

(see, e.g.,  Mur, Bandettini, & Kriegeskorte, 2007, for an introduction). For example, in a 

study involving both native English and Japanese speakers, Raizada et al. (2010) investigated 

the hypothesis that if fMRI patterns elicited by /ra/ and /la/ stimuli were separable from each 

other, then the listener would be perceptually able to distinguish /ra/ and /la/. They found that 

the separability of neural patterns did correlate with behavioural performance, not only across 

groups but also across individuals within each group. Critically, the average amount of fMRI 

activation did not differ for /ra/ and /la/; only the pattern of activation. As noted by Raizada 

and Kriegskorte (2010), pattern differences that are found to correlate with behavioural 

differences support the notion that pattern differences reflect brain processes that are 

functionally important.  

Further new directions are found in some recent studies that involve multivoxel fMRI of 

lesioned brains (e.g., Teipel et al., 2007, Alheimer’s; Saur et al., 2010, stroke). Such studies 

have identified not only pattern differences that correlate with behavioural differences, but 

also some that correlate with future clinical outcomes (e.g., changes in symptom severity). 

Saur et al. (2010) found that pattern differences predicted subsequent language recovery in 

stroke patients better than did behavioural language measures. The computational approach 

used in the current article could informative for this research area: modelling could elucidate 

how and why patterns of fMRI activation might change after lesions. Finally, the work 

reported here underscores the role that implemented computational models can have in 

elucidating theoretical and methodological issues in the empirical literature (see Mareschal et 
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al., 2007, for further discussion). Although simplifications of real brain systems, such models 

enable users to explore the effects of various interventions on a neural system. 
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Table 1. Percentage divergence from mean activation for each verb type, based on overall 

activation. Positive values in the ‘difference’ column indicate specialisation to the direct 

route; negative values indicate specialisation to the indirect route. 

Verb type Direct Indirect Difference 

Regular -2.5% -2.8% +0.3% 

Rule -1.2% -1.5% +0.3% 

EP1 -1.0% -0.1% -1.0% 

EP2 1.0% 2.0% -1.0% 

EP3f 3.7% 2.3% +1.4% 
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Table 2. Route specialisation for each verb type, separately for excitation and inhibition. 

Positive values in the ‘difference’ column indicate specialisation to the direct route; negative 

values indicate specialisation to the indirect route. 

 Excitation Inhibition 

Verb type Direct Indirect Difference Direct Indirect Difference 

Regular -3.7% -4.5% +0.8% -1.1% -1.4% +0.3% 

Rule -1.8% -0.7% -1.1% -0.5% -2.2% +1.6% 

EP1 -0.5% 2.1% -2.6% -1.7% -1.8% +0.1% 

EP2 2.0% 0.8% +1.2% 0.0% +3.1% -3.1% 

EP3f 4.0% 2.3% +1.7% 3.3% +2.3% +1.0% 
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Table 3. Angles between Hidden-Sending vectors, for each pairwise verb comparison. 0 

degrees would indicate completely overlapping vectors, 90 degrees would indicate entirely 

orthogonal vectors. 

Comparison Mean 

Angle 

SD 

Regular vs Rule 19.0 2.8 

Regular vs EP1 26.5 4.1 

Regular vs EP2 33.2 6.6 

Regular vs EP3f 23.1 4.0 

Rule vs EP1 22.0 4.6 

Rule vs EP2 37.0 8.0 

Rule vs EP3f 24.6 5.0 

EP1 vs EP2 30.1 6.2 

EP1 vs EP3f 21.1 2.7 

EP2 vs EP3f 26.4 6.8 
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Figure 1. Network performance in producing correct past-tense forms for Regular and 

exception (EP3f) verbs, following a 50% lesion of connectivity to either the direct or indirect 

route. Error bars depict standard errors of the means across 12 networks.  
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Figure 2. SBI images for regular and exception (EP3f) verbs. The direct route is the left half 

of each image, the indirect route is the right half. The bottom is the input layer, the top is the 

output layer. The FAS diagrams were created by interpolating values between the 6 vectors 

depicting functional activation states. Interpolated values were smoothed by local averaging 

where the vectors were of different dimensionality. 

Figure 2a. FAS activation. 

Figure 2b. FAS activation, showing only excitation. 

Figure 2c. FAS activation, showing only inhibition. 
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                Figure 2a. FAS activation. 
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                  Figure 2b. FAS activation, showing only excitation. 
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                    Figure 2c. FAS activation, showing only inhibition. 
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Figure 3. Scatterplot showing percentage specialisation indicated by lesioning and imaging, 

for each of the 12 networks, for each verb type. Lesion specialisation is on the horizontal 

axis; imaging specialisation is on the vertical axis. For both axes, positive values indicate 

specialisation towards the direct route; negative values indicate indirect route specialisation. 

 

 

 

 

 

-0.10 

-0.08 

-0.06 

-0.04 

-0.02 

0.00 

0.02 

0.04 

0.06 

0.08 

0.10 

-0.50 -0.30 -0.10 0.10 0.30 0.50 

A
ct

iv
a

ti
o

n
 S

p
e

ci
a

li
sa

ti
o

n
 (

+
v

e
 D

ir
e

ct
)

Lesion Specialisation (+ve Direct)

Regular

Rule

EP1

EP2

EP3f



50 

 

Figure 4. Scatterplot showing percentage specialisation indicated by lesioning and summed 

FAS for imaging, for each of the 12 networks, for each verb type, and separately for direct 

and indirect routes. Lesion specialisation is on the horizontal axis; imaging specialisation is 

on the vertical axis. For both axes, positive values indicate specialisation towards the direct 

route; negative values indicate indirect route specialisation. 
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Figure 4a. Direct route 
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Figure 4b. Indirect route 
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Figure 5. RMS error in producing correct past-tense forms, for Regular and Ep3f exception 

verbs. ‘Output only’ denotes 100% lesion of all connection weights, revealing a bias in the 

resting state of the output units. ‘Output + Hidden’ denotes 100% lesion of all weights apart 

from those connecting the hidden and output layers. Higher scores indicate stronger bias and 

error bars depict standard errors of means. 
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Figure 5. 
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