
IEEE TRANSACTIONS ON INFORMATION THEORY, VOL. 34, NO. 5, SEPTEMBER 1988 90 1

A Knapsack-Type Public Key Cryptosystem
Based on Arithmetic in Finite Fields

BENNY CHOR AND RONALD L. RIVEST

Abstract -A new knapsack-type public key cryptosystem is introduced.
The system is based on a novel application of arithmetic in finite fields,
following a construction by Bose and Chowla. By appropriately choosing
the parameters, one can control the density of the resulting knapsack,
which is the ratio between the number of elements in the knapsack and
their sue in bits. In particular, the density can be made high enough to foil
“low-density” attacks against our system. At the moment, no attacks
capable of “breaking” this system in a reasonable amount of time are
known.

I. INTRODUCTION

N 1976, Diffie and Hellman [l l] introduced the idea of I public key cryptography, in which two different keys
are used: one for encryption and one for decryption. Each
user keeps his decryption key secret while making the
encryption key public, so it can be used by everyone
wishing to send messages to him. A few months later, the
first two implementations of public key cryptosystems
(PKC‘s) were discovered: the Merkle-Hellman scheme [21]
and the Rivest-Shamir-Adelman (RSA) scheme [26]. More
PKC‘s have been proposed since that time. Most of these
implementations’ can be put into two categories:

a) PKC‘s based on hard number-theoretic problems
(e.g., RSA [26], Rabin [24], Williams [31], Gold-
wasser-Micali [13]);

b) PKC’s related to the knapsack problem (e.g.,
Merkle-Hellman [21], Shamir [30]).

While no efficient attacks against number-theoretic PKC‘s
are known, several knapsack-type PKC‘s have been shown
to be insecure. Most of those systems have a concealed
“ superincreasing” sequence. Shamir made the first success-
ful attack on the basic Merkle-Hellman system [29]. Fol-
lowing his attack, other attacks against more complicated
systems were proposed. In particular, Brickell [5] found a
way to break the general Merkle-Hellman scheme. A

Manuscript received May 27,1986; revised August 11,1987. This work
was supported in part by National Science Foundation Grant MCS-
8006938. This paper was presented at Crypto ’84, Santa Barbara, CA,
August 1984.

B. Chor was with Bell Laboratories, Murray Hill, NJ. He is now with
the Department of Computer Science, Technion-Israel Institute of Tech-
nology, Haifa 32000, Israel.

R. L. Rivest is with the Laboratory for Computer Science, Mas-
sachusetts Institute of Technology, Cambridge, MA 02139.

fEEE Log Number 8823612.
With the exception of the McEliece system [20], which is based on

error correcting codes.

different attack is the “low-density’’ attack of Lagarias
and Odlyzko [17]. The density of a knapsack is defined as
the ratio of the number of elements in it to the size (in
bits) of these elements. The most interesting point about
the Lagarias-Odlyzko attack is that it does not make any
assumption about how the system was constructed, and
thus could be applicable to any knapsack-type cryptosys-
tem whose density is low (unlike, say, Shamir’s attack
which relies heavily on the superincreasing underlying
sequence).. A different low-density attack was proposed by
Brickell [4], although it appears to be less effective in
practice. As a result of these attacks, knapsack-type PKC‘s
whch either are based on superincreasing sequences or
have very low density seem to be vulnerable.

Here we propose a new knapsack-type PKC which has
high density and a completely different basis. The underly-
ing construction makes use of a result due to Bose and
Chowla [3] on unique representations of sums in “dense”
finite sequences. To create the encryption-decryption keys
in this construction, discrete logarithms in finite fields
have to be computed. Once this is done, encryption is very
fast (linear time) and decryption is reasonably fast (com-
parable to RSA). Hence creating the keys is the hard part.
While there are no polynomial time algorithms known for
taking discrete logarithms, practical algorithms (most
notably the ones due to Pohlig and Hellman [23] and
Coppersmith [9]) are known for some special cases. To
demonstrate the feasibility of such cases, we have con-
structed a real-life instance of our cryptosystem in the
finite field GF(19724). (Readers who wish to experiment
with the new cryptosystem can find this specific public key
in [7].) We believe that a system of that size will foil both
low-density and exhaustive search attacks. The running
time for constructing the system was a few hours on a
minicomputer. This time-consuming task is done only once
by each user, so it is acceptable from a practical point of
view.‘

We would like to remark that all known number-theo-
retic PKC’s are at most as hard as factoring and hence are
all reducible to the problem of taking discrete logarithms
in composite moduli (see [2], [7], [19]). Should this discrete
logarithm problem become tractable (thus rendering all
“number-theoretic” PKC‘s insecure), our system will be-
come easier to create for even larger size knapsacks.

The remainder of this paper is organized as follows:
In Section I1 we discuss the knapsack problem and its

0018-9448/88/0900-0901$01.00 01988 IEEE

902 IEEE TRANSACTIONS ON INFORMATION THEORY. VOI.. 34. NO. 5 , SEPTEMBFR 1988

use in cryptosystems. Section I11 is a description of the
Bose-Chowla theorem and its proof. In Section IV we give
the details of our new cryptosystem. In Section V the
system performance is examined, and Section VI describes
the actual parameters for implementing our PKC. Finally,
some possible attacks against the new system are analyzed
in Section VII.

11. KNAPSACK-TYPE CRYPTOSYSTEMS

The 0-1 knapsack problem is the following NP-com-
plete [12] decision problem. given a set A = { a,10 I i I
n - l} of nonnegative integers and a nonnegative integer S ,
is there an integer solution to Zx,a, = S where all x, are 0
or l ? A variant of the problem is to remove the 0-1
restriction on the x, (while requiring them to be nonnega-
tive integers) and bounding their weight Ex, I h.

Knapsack-type public-key cryptosystems are based on
the intractability of finding a solution to S = Exla , even
when a solution is known to exist. In such systems each
user publishes a set A of a , and a bound h. A plain
text message consisting of an integer vector M =

(xo, xl , . . . , x, 1) with weight s h is encrypted by setting

E (M) = E x f a , .

The knapsack elements a, are chosen in such way that the
equation is easily solved if certain secret trapdoor informa-
tion is known. The exact nature of this information de-
pends on the particular system in question. A general
property of knapsack-type PKC‘s is that encryption is easy
-all you have to do is to add.

111. BOSE-CHOWLA THEOREM

In 1936, Sidon raised the question of whether “dense”
sequences exist whose h-fold sums are unique. Given n and
h , nonnegative integers, is there a sequence A = { a,10 I i I
n - I} of nonnegative integers, such that all sums of exactly
h elements (repetitions allowed) out of A are distinct? It is
easy to construct such sequences if the a, are growing
exponentially in n. For example, the sequence (1, h ,
h2,. . . ,A”-’ } has the aforementioned property (but does
not work even for h + 1 element sums, since h 2 + h . I = (h
+ 1) . h) . However, can one construct such sequences with
the a, growing only polynomially fast in n? Bose and
Chowla [3] found a very elegant way of constructing such
sequences with 1 I a , I nh - 1 for all 0 I i i n - 1. (See
Halberstram and Roth [14, ch. 21 for an overview of the
subject.) Here we present a slightly modified version of
Bose-Chowla theorem, whch fits well with our crypto-
graphic application.

Proof: The construction takes place in the finite field
GF(p) and in its h-degree extension GF(p h) (for conve-
nience, the elements of G F (p) will be indexed by their
lexicographc order). Let t E GF(p h) be algebraic of de-
gree h over G F (p) (i.e., the minimal polynomial in
G F (p) [x] having t as its root is of degree h) . Let g be a
multiplicative generator (primitive element) of GF (p h)
(that is, G F (ph)* = { g‘10 I e I p h - l}). Look at an addi-
tive shift by t of the base field G F (p) , namely, at the set

t + G F (p) = { t + a , l a , E G F (p) } c G F (p h) .

Let a , = log, (t + a ,) (a , E GF(p)) be the logarithm of
t + a, to the base g in G F (p h) . Then the a , are all
integers in the interval [l , p h - 11, and they satisfy the
distinctness of h-fold sums. Suppose there are two vectors
2, y’ of nonnegative integers satisfying (l) , (2) , and (3):

(x o > x , , - - , x p - ,) f (y o > Y , , - - , Y p - l) (1)

c x,, c Y , I h (2)

c x,a,= c Yla,. (3)

p - 1 p - 1

r = O r = O

P - 1 P - 1

r = O , = o
Then the following equality holds in GF(p h) :

and so
P - 1 P - 1 n n
i = O r = O

Using the quality g a , = t + a, and considering only the
nonzero x,, y,, we get

(t + P ,) ” ’ (t +p2)xz. . . (t + p y
= (t + y,)-”(t + y z) v2 . . . (t + y,,) l,rl

where { pl, p2; . -, p,} and { y,, y2; . ., y,} are two differ-
ent nonempty subsets of G F (p) with at most h elements
each. Both sides of the last equation are thus distinct
monic polynomials of degree I h with coefficients in
GF(p) , so, subtracting them, we get that t is a root of a
nonzero polynomial of degree I h - 1 with coefficients in
G F (p) . This contradicts the fact that t is algebraic of
degree h over GF(p) .

Remarks: 1) From the proof it is clear that 1 sums
(I i h) of A are distinct not only over Z, but also modulo
p h - 1. 2) The requirement “ p is a prime” can be replaced
by “ p is a prime power” with no change in the claim or its
proof.

Bose-Chowla Theorem: Let p be a prime and h 2 2 an
integer. Then there exists a sequence A = { a,\0 I i I p - 1)
of integers such that

IV. How THE CRYPTOSYSTEM Is CONSTRUCTED
AND USED

1) 1 I a, i p h - l ,
2) if (xo, x,; . ., x P - ,) and (y o , y,; . ., y P p l) are two

i = O,1; .., p - 1 In t h s section we describe how the new cryptosystem is
created and used. We start with an informal (and slightly

distinct vectors with nonnegative integral coordinates and simplified) description. Next, a step-by-step recipe for
E!i;x,, Cp=-:y, s h , then E~:~x,a, # Xf=-;y,a,. generating the cryptosystem, encrypting messages, and de-

CHOR AND RIVEST: A KNAPSACK-TYPE PUBLIC KEY CRYPTOSYSTEM 903

crypting ciphertexts is given. Finally, we describe how to
transform “regular” unconstrained bit strings into strings
with a fixed weight.

A . The Cryptosystem

The first step is to pick a prime (or a prime power) p
and h such that GF(p h) is amenable to discrete logarithm
computations. We leave p and h as unspecified parame-
ters in this section and elaborate more on their exact
choice in Section VI (the approximate magnitudes will be
p = 200, h = 25). Once p and h are chosen, we pick
t E G F (p h) of algebraic degree h over the base field, and
a primitive element g E GF(p h) (both t and g are picked
at random from the many possible candidates). Following
Bose and Chowla, logarithms (to base g) of the p elements
in GF(p) + t are computed. These p integers are then
scrambled using a randomly chosen permutation. The
scrambled integers are published. Together with p and h
they constitute the public encryption key, while the ele-
ments t , g, and the unscrambling permutation constitute
the secret decryption key. To encrypt a binary message of
length p and weight h, a user adds the knapsack elements
with 1 in the corresponding message location, and sends
the sum. When the legitimate receiver gets a sum, he first
raises the generator g to it, and expresses the result as a
degree h polynomial in t over GF(p) . The h roots of this
polynomial are found by successive substitutions. Apply-
ing the inverse of the original permutation, the indices of
the plain text having the bit 1 are recovered.

1) System Generation: a) Let p be a prime power, h I p
an integer such that discrete logarithms in GF(p h) can be
efficiently computed.

b) Pick a random t E GF(p h) that is algebraic of de-
gree h over GF(p) . This will be done by finding f (t) ,
a random irreducible monic polynomial of degree h
in G F (p) [t] , and representing GF(p h) arithmetic by
G F (p) [t] / (f (t)) . (That is, elements of GF(ph) are poly-
nomials of degree I h - 1 with coefficients in GF(p) , and
addition/multiplication operations are done modulo p and

c) Pick g E GF(p h) , g a multiplicative generator of
GF(ph) , at random. This will be done by picking a
random r E G F (p h) until one which satisfies r (ph- l) / s 21
(for all prime factors s of p h -1) is found. Note that in
our system p h - 1 will have only small prime divisors, and
so it is easy to verify that a given r passes the above test.
Since the density of such generators is relatively high in all
cases (regardless of any special properties of p and h) , the
foregoing procedure is indeed feasible.

d) Construction following Bose-Chowla Theorem: Com-
pute a , = log,(? + a,) for all a, E GF(p) .

e) Scramble the a , : let T: (0, l ; . . , p - l } +
(0,l; . . , p - l } be a randomly chosen permutation. Set

f) Add some noise: pick 0 I d I p h - 2 at random. Set

g) Public Key-to be Published: We have e,,, cl; e ,

f (t) *)

b, = an(,) .

c, = b, + d .

c p - l ; P , h .

h) Private Key - to be Kept Secret: We have t , g , T-’, d .
Remark: Every user can use the same p and h. The

probability of collisions (two users having the same keys)
is negligible.

2) Encryption: To encrypt a binary message M =
(x o , . . ., x p p l) of length p and weight (number of 1’s)
exact& h, add the c, whose corresponding bit is 1. Send

P - 1
E (M) = x,c, (modph--1).

i = O

3) Decryption: a) Let r (t) = t h modulo f (t) , a polyno-
mial of degree I h - 1 (computed once at system genera-
tion). ,

b) Given s = E (M) , compute s’= s - hd (modulo p h -
1).

c) Compute q (t) = g” modulo f (t) , a formal polyno-

d) Add t h - r (t) to q (t) to get s (t) = t h + q (t) - r (t) , a

e) We now have

mial of degree h -1 in the variable t .

polynomial of degree h in GF(p) [t] .

s (t) = (t + ai,).(t + a;,). . . (t + a,J

name, s (t) factors to linear terms over GF(p) . By succes-
sive substitutions, we find the h roots a,, (at most p
substitutions needed). Apply 7 ~ - l to recover the coordi-
nates of the original M having the bit 1.

B. Transforming Unconstrained Bit Strings

We have assumed until now that the message space M
contains binary vectors of length p and weight h. How-
ever, regular binary text does not have this form. This
subsection describes a simple procedure for translating
unconstrained binary text into the aforementioned form.

Given a binary text, we first break it into blocks of
bog,(:)I bits each. Each of these blocks is viewed as the

binary representation of a number n, 0 I n < . To map
these numbers into weight h binary vectors, we use the
order-preserving mapping induced by the lexicographic
order of the vectors and the natural order of the integers.
If n is larger than :I: , the first bit in the corresponding
vector is set to 1. Otherwise, the first bit is set to 0. We
then update p and h, and iterate p times, until all p bits
are determined:

code for transforming a number n into a binary vec-

(3

0

tor y’:
Input: n , p , h; Output: y’

1. for i + l t o p do
2. if n >(then
3 . y , + l
4. n + - n - (i I ;)
5 . h t h - 1
6 . else y, 0
7. return yf

YO4 IEEE TRANSACTIONS ON INFOILMATION THEORY, VOL. 3 4 , NO. 5. SEPTEMBER 1988

The inverse transformation, which is the last step in de-
cryption, is just as simple:

code for transforming a binary vector y’ into a num-
ber n :
Input: F, p, h; Output: n

1. n e 0
2. for i +- 1 to p do
3. if y , = 1 then
4. n t n + (p i l)

6. return n
5. h t h - 1

For efficient implementation, the p . h /4 binomial coeffi-
cients preceding (in the Pascal triangle) will be pre-
computed and permanently stored.

Remark: The previous indexing scheme is well-known
in the literature (see, e.g. [lo]).

(3

V. SYSTEM PERFORMANCE: TIME, SPACE, AND
INFORMATION RATE

In this section we analyze three basic parameters of the
cryptosystem: the time needed for encrypting and decrypt-
ing a message, the size of the keys, and the information
rate in terms of clear text bits per cipher text bits. The
complexity of key generation is discussed in Section VI.

Given a binary message length p and weight h, encrypt-
ing it amounts to adding h integers c,, each smaller than
ph. The run time for decryption is much longer. It is
dominated by the modular exponentiation. To raise a
polynomial g to a power in the range [l , p h - 11 takes at
most 2h log p modular multiplications. The modulus is
f(t) , a polynomial of degree h, with coefficients in GF(p).
Using the naive polynomial multiplication algorithm, 2h2
operations (in G F (p)) per modular multiplication will
suffice. Therefore, overall, 4h3 log p operations in GF(p)
are required. For the proposed parameters p = 200, h = 25
this gives about 500000 GF(p) operations and compares
favorably with RSA encryption--decryption time.

The size of the keys, and especially of the public key, is
an important factor in the design of any public key system.
In our system the size of the public key is that of p
numbers, each in the range [l, p “ - 11. In terms of bits, this
is p log, ph = ph log, p bits. For p = 200, h = 25, the key
takes less than 40000 bits. While this number is about 35
times larger than the currently proposed size for the RSA
public key (600 bits for the modulus and 600 for the
exponent), it is still within practical bounds.

The information rate R of a block code is defined as
R = (log, IMI)/N, where JMI is the size of the message
space, and N is the number of bits in a cipher text. Letting
M range over all binary vectors of length p and weight h
we have [MI = (:I. Also N = log, p h , and thus the infor-
mation rate is

for the proposed parameters p = 197, h = 24, R = 0.556
(data expansion 1.798).

VI. PROPOSED PARAMETERS AND

IMPLEMENTATION DETAILS

As mentioned before, the main difficulty in implement-
ing our cryptosystem is the computation of discrete loga-
rithms in large finite fields GF(ph) . T h s computational
problem is considered quite hard in general. However,
for some special cases the algorithms of Coppersmith
[9] and Pohlig and Hellman [23] work well in practice.
Coppersmith’s algorithm is appropriate for fields of small
characteristic, and performs best in characteristic 2. Let-

ting ph = 2”, the run time of the algorithm is e
For n < 200, implementation of the Coppersmith algo-
rithm will terminate in a few hours on a mainframe
computer. The Pohlig-Hellman algorithm works for any
characteristic, provided ph - 1 has only small prime fac-
tors. It turns out that the Pohlig-Hellman algorithm is
preferable for our specific application, because of two
properties: the nice factorization of several numbers p h - 1
of appropriate magnitude, and the simplicity of the algo-
rithm.

The Pohlig-Hellman algorithm has a T - S (time. space)
complexity proportional to the largest factor of ph - 1.
While, in general, numbers whose order of magnitude is
= 2OOZ5 do not have ‘small’ largest factors (the expected
size of the largest factor of a random number m is about
m0.6-see Knuth and Pardo [16]), things are much better
when the number has the form x h - 1 since we can first
factor this expression as a polynomial in x and then factor
each term as a number after substituting x + p. Numbers
h ’s with “good” factorization are especially effective. For
example, x24 - 1 has the factors x8 - x4 + 1, x4 - xz + 1,
x 4 + 1, and other terms of degree not exceeding 2. Substi-
tuting p =197, the largest prime factor of 19724 - 1 is
10316017 = 10’. The square root of t h s is 3. lo3, so the
Pohlig-Hellman algorithm can easily be implemented on a
minicomputer within a few CPU hours for all the 197
logarithms.

Other possible values are (the last two values are from

p = 211, h = 24 (largest prime factor of 2 l lZ4 - 1 is

p = 243 = 3’, h = 24 (largest prime factor of 3lZ0 - 1
is 47 763 361 = 5 . lo’);
p = 256 = 2*, h = 25 (largest prime factor of 2’O0 - 1
is 3 173 389 601 = 3 . lo9).

The last candidate has the advantage that the field is of
characteristic 2. Thus binary arithmetic can be used for
key generation and decryption calculations. In addition,
binary arithmetic offers easier implementation in special-
purpose hardware.

We have implemented the key generation step in
GF(19724) on a Symbolics 3600 Lisp Machme. Polynomi-
als were represented as arrays, and some preprocessing was

o(3m)

[61):

216330241 = 2.108);

CHOR AND RIVEST: A KNAPSACK-TYPE PUBLIC KEY CRYPTOSYSTEM 905

done to speed-up the field arithmetic. In the implementa-
tion of the Pohlig-Hellman algorithm, instead of sorting
the precomputed powers, we hashed them in a 197-by-197
array according to the free term and the coefficient of t in
the polynomial. In this way the matching trials were sim-
plified.

The overall run time for finding all 197 logarithms in
GF(197") was about 8 hours. With some simple modifica-
tions we expect that the time can be reduced by 30
percent. It seems that even for G F (25625) the computation
should be feasible, taking advantage of the binary opera-
tions in the polynomial arithmetic. All these estimates can
be drastically reduced if the computation is to be carried
out on a faster larger computer using a programming
language more suitable for numerical calculations (e.g.,
Fortran).

VII. POSSIBLE ATTACKS

In this section we examine some possible attacks on the
cryptosystem. We start with specialized attacks on the
cryptosystem, where the cryptanalyst is trying to recon-
struct the secret key (possibly with some partial knowledge
of it). We proceed by considering low-density and brute-
force attacks with no prior secret information, where the
goal is not to reconstruct the secret key but rather to
decipher a given cipher text.

A. Specialized Attacks

We begin by assuming that certain parameters are known
to the cryptanalyst. In Section VII-A5 we assume nothing
is known.

1) Known g and d: Given d , compute {bo, b,; . e, b p p l }
= { ~ , - d , c , - d ; ~ - , c ~ ~ , - d } . Let t ' = g h o . Since g"0-

gho= t - t ' ~ GF(p) , the sets { t + a,Ia, E GF(p)} and
{ t '+ a,Ia, E GF(p)} are identical. Thus for every a, E
G F (p) there is a unique a(l(l) E GF(p) so that g h a (i) =
t'+ a,. Using t ' , g , u, and d , the cryptanalyst can perform
the same decryption algorithm as the legitimate receiver.

2) Known t and d: Pick an arbitrary generator g'. Com-
pute a: = log,, (t + al). As sets, we have

{ ~0 - d , c1- d ; * , cP-1 - d } = {a,, a , , . . 0 , a , - , }

= L { a ; , , a ; , - - , a j , - , }

where equality is modulo p h - 1, the numbers L, p h - 1 are
relatively prime, and L satisfies g = g'L. Once L is recov-
ered we are done, for then g = g r L , and we can reconstruct
7~ and have all the pieces of the private key.

If one of the a: (a & say) is relatively prime to p h - 1,
then L is one of a,aL-' (mod p h - 1) for some 0 I j I
p - 1. Otherwise, the cryptanalyst can compute L modulo
each of the prime power factors of p h - 1 (which, by
choice of p and h, are all small and, therefore, easy to
find), and then combine them using the Chmese remainder
theorem.

3) Known t (Attack Due to Oded Goldreich): Pick an
arbitrary generator g'. Compute a: = log,, (I + a,). As sets

we have

{ c 0 - c , , c 1 - c 0 ; ~ ~ , c p ~ , - c 0 }

= { a , - a,, a, - a,; * * , a p - , - a , }

= L { ah- a& a; - a&. . *) U h - 1 - a ;)

and now it is possible to proceed as in (b).
4) Known Permutation n (Attack Due to Andrew

Odlyzko): Subtracting as in 3), we get the integers a , - a,
for i = 1; . 0 , p - 1. Since the knapsack is dense, there are
small integral coefficients x , (some of which may be
negative) such that

P - 1 c x , (a , - a o) = O
I =1

(see the Appendix and Section VII-A5 for a justification of
this claim). The x, can be efficiently found by applying the
Lenstra-Lenstra-Lovasz (LLL) basis reduction algorithm
[18] to the truncated Lagarias-Odlyzko lattice (see the
Appendix and [22] for a similar attack on other knapsack
schemes). Raising g to both sides of the last equality, we
get

gErT~x,(a,-ao) = 1

i.e.,
P - 1 n (1 + i) = t z P - ; 1 X z .
I = 1

Let m l = Ex:l (m ,=Zx , - I) denote the sum of positive
(negative) x,, and m = max(m,, m,) . The left side of the
last equality is a rational function of t , while the right side
has the form tm'-m2. The generator g , which is still un-
known, is not a part of the equality. Multiplying through,
we get a polynomial equation r(t) = 0 of degree m - 1 in
t , with coefficients from GF(p) . Since the x, are small, m
is also not too large. All roots (in GF(ph)) of t h s polyno-
mial cah be found using a fast probabilistic algorithm. The
element t is necessarily one of these roots, so attack 3) can
now be used.

The most efficient way for root finding which we know
of (Rabin [25]) requires finding the gcd of r (t) and t p h - ' .

With p h - 1 >> m , this polynomial gcd computation is per-
formed by raising t to the power p h - 1 and reducing
modulo r(t) . Therefore, we basically have to perform
h log, p multiplications of m degree polynomials with
coefficients in GF(p), reducing modulo r(t) each time.
Assuming standard arithmetic, each polynomial multipli-
cation will take m2 GF(p) operations (FFT arithmetic
(see, e.g. [l, ch. 71) will introduce a large constant and will
probably be less efficient in practice). Thus the root-find-
ing algorithm will require at least m2h log, p operations in
GF(p) (assuming that a single root is found).

Remark: If 7~ is not known, this attack does not seem to
work since even though the x , can be found, they give rise
to an 'unknown' polynomial. If m , + m , is very small,
then one can try all (,,+",, possibilities even without
knowing n. However, with v unknown and m l + m , ex-

1

906 ILIA. TRANSACHONS ON INtOKMMArION THEORY, VO1 34. NO 5. SEPTEMBtR 19x8

ceeding 10, this brute force approach becomes unfeasible.
A more refined method for dealing with unknown 7~ is
presented next.

5) Nothing Known (Attack Due to Ernest Brickell): This
attack is a strengthening of Odlyzko's attack. The goal is
again to find a small degree equation satisfied by g. Using
a carefully designed lattice, it is possible to find integer
coefficients x,, many of them 0, such that both equations

P -1
x,c,=O (modph--1)

, = o
P - 1

x,=O (modph--1)
r = O

hold. The second equality guarantees that
gEp=;;r,c, = gX:P=;,'x,(h, + d)

- - gx.Pi;*,h,. gdL!=P;x,

= gX/',p_;x,h,

and thus by the first equality,
gX/':dx,hc = 1

that is,

g v : d * , k = 1.

With the permutation 7~ unknown, this equality now means
that

P - 1 n (t + a J t =l .
r = O

Let x,? denote x, if x, 2 0; 0, otherwise (similarly,
x,- denote - x, if x, I 0; 0, otherwise). Let r,(t) =

nfG:(t + C X ~ (~)) ' , + -np::(t + a,(,))*, , and I be the num-
ber of nonzero x,. Every one-to-one mapping from the set
{ I Ix, f 0} into GF(p) gives rise to a different polynomial
in r,(t). Only the "correct" polynomial will have the right
t as one of its roots. Thus on the average we have to try
(1/2)(p!/(p - I)!) mappings to come up with the right
polynomial. (In fact, it suffices to consider the mappings
of only I - 1 elements, since having t + aJ for some aJ E

G F (p) is as good as having t itself, and so (1/2)(p!/
(p - I + l)!) mappings are to be checked.)

For every such mapping, the cryptanalyst should find
the roots in G F (p h) of r,(t), an m degree polynomial
with coefficients from G F (p) (m denotes here the same
quantity as in Section VII-A4). Combining the foregoing
calculations with the running-time estimates for polyno-
mial arithmetic, the expected running time for recovering t
will thus be (1 / 2) (p ! / (p - I + l) !) . m 2 h l o g , p (GF(p)
operations). There is trade-off between I and m. Consider
the I nonzero x,. How large do they have to be to have a
nonzero solution to Cx,a, = 0 (modulo ph - l)? If the x,
are in the range - B/2 < x, < B/2, then this gives us B'
combinations of Cx,a,. If B '> p h -1, then two of these
combinations must be the same modulo ph - 1. In fact, if
B '> ph/*, then by the birthday paradox two of the Bl

sums are going to be equal modulo ph - 1 with probability
no less than 1/2. Assuming the latter bound, B = ph/2/.
To get a nonzero combination Lx,a , = 0 (modulo p" - l),
we subtract two combinations with the same sum. The
average absolute value of the resulting x, is about B/2 =

ph/,//2, and about half (1/2) of them are negative. Thus
the sum of negative (positive) x, is m - [phl2//4. The total
running time for finding t is thus

1 p!

2 (p - l + l) !
.m2h log, p -

- p1-'ph/l12h log 2P
32

This expression is optimized with I = @(fi), resulting in an
O(p2$h2 log, p) algorithm for retrieving t. While this
expression is asymptotically superior to all other methods
already mentioned, i t seems quite prohibitive in practice.
For example, taking p = 197 and h = 24, I - 1 + h / l is
optimized at I = 5 , yielding 8.8. However, 197'.' > 260, so
the attack is impractical. (Even assuming FFT arithmetic
and complexity O (m) for the root finding algorithm, the
resulting expression p'-'+h/211h log, p is optimized at I =

3, yielding about 2'*. The extra log factors of the FFT and
the hidden constant will drive the expression up to at
least 258.)

B. Low-Density Attacks

p - l}, is defined to be
The density d(A) of a knapsack system A = { u, /0 I i I

P
log, (max a ,) '

d(A) =

Lagarias and Odlyzko [17] have devised an attack which is
effective against low-density knapsacks. Given a knapsack
system A = { a,10 5 i 5 p - 1) and a sum instance (cipher
text) S = Er=-:x,a,, they construct a (p + 1)-dimensional
lattice (see the'Appendix for details). The lattice construc-
tion uses the p knapsack elemepts and the given cipher
text. A certain vector in this lattice (which we call here the
special uector) is defined. This vector corresponds to the
solution of the given cipher text (yields the coefficients x,
in the sum), and the goal of the cryptanalyst is to find it.
Lagarias and Odlyzko have shown that if d(A) is low, this
special vector is likely to be the shortest one in their
lattice. Using the last observation, what Lagarias and
Odlyzko are trying to do is to find the shortest vector in
the lattice. Specifically, the tool they use is the lattice basis
reduction algorithm of Lenstra et al. [18].

The success of the Lagarias and Odlyzko attack, when
applied to a specific knapsack instance, depends on two
factors. One factor is the density of the knapsack. If the
density is too high, then one expects to have many extrane-
ous short vectors. In this case, the attack will not work

c n o R AND RIVEST: A KNAPSACK-TYPE PUBLIC KEY CRYPTOSYSTEM 907

regardless of which short vector subroutine it uses. Even if
the density is such that the special vector is indeed the
shortest lattice vector, the attack is still not certain to
succeed. In such case, its success is determined by the
properties of the short vector subroutine. Present day
algorithms either are guaranteed to find the shortest vec-
tor, but are inefficient, or are efficient (run in polynomial
time), but are guaranteed only to find a relatively short
vector, not necessarily the shortest one. To find the short-
est vector, short vector algorithms of the second type (e.g.
[18] , [27]) typically require that the shortest lattice vector
be substantially shorter than other lattice vectors.

In our specific case, the knapsack has relatively high
density. Thus the length (square of Euclidean norm) of the
special vector will not be much shorter than the length of
many other vectors (24 versus 40 for p =197, h = 24-see
the Appendix). Shortest vector algorithms of the first type
will, therefore, find the special vector in this case. How-
ever, the best shortest vector algorithm known currently is
the one of Kannan [15], and its performance is no better in
our application than the brute-force attack sketched in
Section VII-C. The proximity of the special vector length
(24) to lengths of many other vectors (40) should prevent
the efficient short vector algorithms of the second type
from finding the special vector.

The last claim was confirmed experimentally. Odlyzko
has tested the Lagarias and Odlyzko attack on a smaller
knapsack created by us, using the LLL algorithm as the
short vector subroutine. For the test case we generated an
instance of the knapsack with parameters p =lo3 and
h = 12. For these parameters the density is 1.271. Using the
calculations of [17], the length of the shortest nonspecial
vector in the constructed lattice should be at least 17.
However, the LLL algorithm did not find the special
vector even when its length was only 5 (i.e., when only five
knapsack elements were added together in the sum).
Therefore, it seems that for the Lagarias-Odlyzko attack
to be successful against our system it must use a signifi-
cantly better short vector algorithm than the ones now
available.

A few people (including Brickell, Coppersmith, Desmedt,
and Odlyzko) have suggested a modification of the
Lagarias and Odlyzko attack. It is intended to make use of
the fact that in our cryptosystem the number of knapsack
elements that are added together is h , which is substan-
tially smaller than n / 2 which is the typical number in
general knapsack systems. This attack (see the Appendix
for more details) increases the ratio between the lengths of
the special vector and the rest of the vectors in the lattice.
This gives a better chance of finding the special vector
when a short vector subroutine of the second type is used.

It is possible to modify the cryptosystem so that several

cient enough to break the cryptosystem, and so such
modification of the cryptosystem will not be necessary.

C. Brute-Force Attacks

Despite the soplustication of the previous attacks, none
of them outperforms a careful brute-force attack (unless
the cryptanalyst is supplied with some part of the secret
decryption key). The most efficient method we know of for
solving knapsack instances with h out of p items, given a
specific cipher text, is the following. There are (:) ways of
choosing h out of p elements. Take a random subset S
containing p / 2 elements. The probability that a given sum
contains exactly h / 2 out of these p / 2 elements is

(:;;)* z- 1

4%.

Assuming that this is indeed the case, we generate all h / 2
sums of S and of its complement, and sort them. The goal
is to find a pair of sums from the two lists whose sum
matches the desired target. Tlus can be achieved by keep-
ing two pointers on the two lists and marching linearly
through each one (one in increasing order, and the other in
decreasing order). If the two lists are exhausted but no
matching sum found, then another random S is tried. The
run time per one choice of S is dominated by sorting all
h / 2 sums of both S and its complement.'This will require
2 - (i;:) In (:$) operations. On the average, about fi
choices of S have to be made. The overall expected run-
ning time will thus be

For the proposed parameters p = 197, h = 24, the expected
number of operations is 3.466 1017 > 258, so such brute
force attack is impractical. The knapsack algorithm of
Schroeppel and Shamir [28] might be used here for space
efficiency. However, its run time behavior is no better than
the above algorithm.

D. A Word of Caution

Even though none of these attacks seems to produce a
serious threat to the system security, other attacks might
be successful. We urge the reader to examine our proposal
for as yet undiscovered weaknesses.

elements are used more than once. Provided that the total
number of elements used (counted with their multiplicities)
is h , such modification does not affect the efficiency of
decryption. It has the advantage of increasing the length of
the special vector. However, with the current state of short
vector algorithms it looks like the last attack is not effi-

ACKNOWLEDGMENT

We wish to thank Ernie Brickel, Don Coppersmith,
Oded Goldreich, Jeff Lagarias, and Andrew Odlyzko for
many discussions concerning the system and possible at-

908 IEEE TRANSACTIONS ON IN€ORMArION lHEORY, \’OL 34, NO 5 , SEPTEMBER 1988

tacks on it. Andrew’s assistance in a first implementation
of the system, and later in testing the low-density attack
against it, was especially helpful. Oded was kind enough to
decipher earlier versions of this manuscript, and his com-
ments made i t much clearer. We would also like to thank
Scott Warner for his assistance in the final implementation
of the system. Finally, thanks to Don Coppersmith and
Victor Miller for acquainting us with [6] and [lo].

APPENDIX
THE LAGARIAS-OKLYZKO LOW-DENSITY ATTACK

In this appendix we give a brief description of the Lagarias-
Odlyzko “low-density’’ attack, which is based on finding short
vectors in lattices. (A different “low-density’’ attack was pro-
posed by Brickell [4].) Given a knapsack system A = { a,10 I i I
n - l} and a sum instance S = C::;X,U,, the algorithm proceeds
as follows.

a) Construct an (n + 1)-dimensional integer lattice with basis
vectors

u7,=(1,0,0;’~,0,u0)

GI = (0,1,0;. . ,o, u l)

~ * ; = (0 , 0 , 1 , ~ ’ ~ , 0 , U ,)

b) Look for the shortest nonzero \ector ii in this lattice. T h s
step is using the LLL basis reduction algorithm which finds a
relatively short vector in the lattice (not necessarily the shortest
vector).

c) Check if li= 2, where x’= (x,,, xl, x,; . ., x,,- 1,0) is the
special vector which deciphers S.

We call the lattice spanned by the n + 1 basis vectors the full
Lagarias - Odlyzko lattice, and the sublattice spanned by the first
n basis vectors the truncated Lagarias-Odlyzko lattice. The trun-
cated lattice does not depend on the actual sum S . The basic idea
behind the algorithm is that since S = E x , a , , x’ is always a vector
in the space spanned by the basis vectors. The Euclidean norm of
x’ is {w. Lagarias and Odlyzko show that for any constant
0 < a I 1/2, there is a critical density d , so that for almost all
sets A (in an appropriate probability space) with density below
d,, and almost all subset sums of I an elements, there is
a unique vector in the lattice spanned by Go, Z,; . ., c, with
Euclidean norm not exceeding &n. (For example, dl,, =
0.645.) Lagarias and Odlyzko conjectured that d, is a “cut-off”
density in the following sense: almost all knapsacks A with
d(A) > d, will have exponentially many vectors with Euclidean
norm I& in the truncated lattice. These short vectors corre-
spond to small linear dependencies among the a, -solutions to
Cy:;x,a, = 0 with small integral x , (not necessarily i 1 or 0).

The modification of the Lagarias and Odlyzko attack, which
makes use of the additional information that in our ciphertexts
Cf:dx, = h , is as follows. Add one more column to the basis
elements in the Lagarias-Odlyzko lattice. For i = 0,l; . . , n - 1,
ii, will have a large constant s in this additional entry, while GI
will contain - hs in this entry (s -10 suffices for our applica-
tion). To be shorter than the special vector, a vector y’ in the

truncated lattice must now satisfy both C!=-;y, = 0 and Cf:iy,u,
= 0. This should get rid of many extraneous short vectors.

The possible modification to the cryptosystem which is aimed
at increasing the length of the special vector is the following. For
0-1 knapsack problems, the Euclidean norm of x’ is not too big
since each coordinate contributes at most 1 to the sum. However,
if the same item is taken more than once, the norm of x’ grows
substantially. Thus by taking some elements with multiplicity
greater than one, we can improve on the resistance of the system
to low-density attacks.

REFERENCES

A. Aho. J. Hopcroft, and J. Ullman, The Design urid Anulvsis of
Computer Algorithnrs.
E. Bach. “Discrete logarithms and factoring,” Computer Science
Division, Univ. of California, Berkeley, Tech. Rep. CSD UCB
84/186, 1984.
R. C. Bose and S. Chowla, “Theorems in the additive theory of
numbers,” Comment. Muth. Heluet., vol. 37, pp. 141-147, 1962.
E. F. Brickell, “Are most low density knapsacks solvable in polyno-
mial time?,” in Proc. 14th Southeustern Con/. Comhinutorics. Gruph
Theor), urid Computing, Cong. Numer., vol. 39. 1983. pp. 145-156.
~, “Breaking iterated knapsacks,” Aduunces in Cn.ptologv: Proc.
Crrpto84, G. R. Blakely and D. Chaum, Eds. New York:
Springer-Verlag, 1985, pp. 342-358.
J. Brillhart, D. H. Lehmer, J. L. Selfridge, B. Tuckerman, and S. S.
Wagstaff, Jr., “Factorization of h“ 1,” in Contenlporuty Muthe-
niutics, vol. 22.
B. Chor. “Two issues in public-key cryptography,” Ph.D. disserta-
tion. Mass. Inst. Technol., Cambridge, 1986.
B. Chor and R. L. Rivest, “A knapsack type public key cryptosys-
tem based on arithmetic in finite fields (preliminary report),” in
Aduuncrs in C ~ p t o l o g v : Proc. Cnpto84, G. R. Blakely and D.
Chaum, Eds.
D. Coppersmith, “Fast evaluation of logarithms in fields of charac-
teristic two.” IEEE Truns. In/orm. Theor?., vol. IT-30, pp. 587-594,
1984.
T. M. Cover. “Enumerative source encoding,” IEEE Truns. Inforni.
Theon:, vol. IT-19, pp. 73 77, 1973.
W. Diffie and M. Hellman, “New directions in cryptography,”
IEEE Truns. Inform. Theoiy, vol. IT-22, pp. 644-654, 1976.
M. Garey and D. Johnson, Computers and Intructubility. New
York: Freeman, 1979.
S. Goldwasser and S . Micah, “Probabilistic encryption,” J . Coni-
pur. Svsr. Sei., vol. 28, no. 2, pp. 270-299, 1984.
H. Halberstram and K. F. Roth. Sequences. New York:
Springer-Verlag, 1983.
R. Kannan, “Improved algorithms for integer programming and
related lattice problems.” in Proc. lSth Ann. Symp. Theon of
Conipurrng, ACM, 1983, pp. 193-206.
D. E. Knuth and L. T. Pardo, “Analysis of a simple factorization
algorithm,” Theoret. Comput. Sa. , vol. 3, no. 3, pp. 321-348, 1976.
J. C. Lagarias and A. M. Odlyzko, “Solving low-density subset sum
problems,” J. Ass. Comput. Much., vol. 32, no. 1, pp. 229-246. Jan.
1985.
A. K. Lenstra, H. W. Lenstra Jr., and L. Lovasz, “Factoring
polynomials with rational coefficients,” Muth. Ann., vol. 261, pp.
515-534, 1982.
D. L. Long, “Random equivalence of factorization and computa-
tion of order,” Theoret. Comput. Sa. , to be published.
R. J. McEliece. “A public-key cryptosystem based on algebraic
coding theory,” D S N Progress Rep. 42-44, pp. 114-116, 1978.
R. C. Merkle and M. Hellman, “Hiding information and signatures
in trap-door knapsacks,” IEEE Truns. In/orm. Theon., vol. IT-24,

A. M. Odlyzko, “Cryptanalytic attacks on the multiplicative knap-
sack cryptosystem and on Shamir’s fast signature scheme,” IEEE
Truns. Inforni. Theory, vol. IT-30, pp. 594-601, 1984.
R. C. Pohlig and M. Hellman. “An improved algorithm for com-
puting logarithms over GF(p) and its cryptographic significance,”
IEEE Truns. Inform. Theory, vol. IT-24, pp. 106-110, 1978.

Reading, MA: Addison-Wesley, 1974.

Providence, RI: AMS, 1983.

New York: Springer-Verlag, 1985, pp. 54-65.

pp. 525-530, 1978.

CHOR AND RIVEST: A KNAPSACK-TYPE PUBLIC KEY CRYPTOSYSTEM 909

[24] M. 0. Rabin, “Digitalized signatures and public-key functions as
intractable as factorization,” Laboratory for Computer Science,
Mass. Inst. Technol., Cambridge, Tech. Rep. TR-212, 1979.
-, “Probabilistic algorithms in finite fields,” S I A M J. Comput.,
vol. 9, no. 2, pp. 273-280, 1980.
R. L. Rivest, A. Shamir, and L. Adleman, “On digital signatures
and public key cryptosystems,” Commun. A C M , vol. 21, pp.
120-126,1978.
C. P. Schnorr, “A hierarchy of polynomial time basis reduction
algorithms,” manuscript, 1984.
R. Schroeppel and A. Shamir, “A T = 0(2“12), S = O (Y / ~) algo-

[25]

[26]

[27]

[28]

rithm for certain NP-complete problems,” S I A M J . Cornput., vol.
10, no. 3, pp. 456-464,1981.
A. Shamir, “A polynomial time algorithm for breaking the basic
Merkle-Hellman cryptosystem,” in Proc. 23rd Ann. Symp. Foun-
dations of Computer Science. New York: IEEE, 1982, pp. 145-152.
-, “Embedding cryptographic trapdoors in arbitrary knapsack
systems,” Lab. for Computer Science, Mass. Inst. Technol., Cam-
bridge, Tech. Memo. TM230, Sept. 1982.
H. C. Williams, “A modification of the RSA public-key encryption
procedure,” IEEE Trans. inform. Theory, vol. IT-26, pp. 726-729,
1980.

[29]

[30]

[31]

