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A Knapsack-Type Public Key Cryptosystem 
Based on Arithmetic in Finite Fields 

BENNY CHOR AND RONALD L. RIVEST 

Abstract -A new knapsack-type public key cryptosystem is introduced. 
The system is based on a novel application of arithmetic in finite fields, 
following a construction by Bose and Chowla. By appropriately choosing 
the parameters, one can control the density of the resulting knapsack, 
which is the ratio between the number of elements in the knapsack and 
their sue in bits. In particular, the density can be made high enough to foil 
“low-density” attacks against our system. At the moment, no attacks 
capable of “breaking” this system in a reasonable amount of time are 
known. 

I. INTRODUCTION 

N 1976, Diffie and Hellman [ l l ]  introduced the idea of I public key cryptography, in which two different keys 
are used: one for encryption and one for decryption. Each 
user keeps his decryption key secret while making the 
encryption key public, so it can be used by everyone 
wishing to send messages to him. A few months later, the 
first two implementations of public key cryptosystems 
(PKC‘s) were discovered: the Merkle-Hellman scheme [21] 
and the Rivest-Shamir-Adelman (RSA) scheme [26]. More 
PKC‘s have been proposed since that time. Most of these 
implementations’ can be put into two categories: 

a) PKC‘s based on hard number-theoretic problems 
(e.g., RSA [26], Rabin [24], Williams [31], Gold- 
wasser-Micali [13]); 

b) PKC’s related to the knapsack problem (e.g., 
Merkle-Hellman [21], Shamir [30]). 

While no efficient attacks against number-theoretic PKC‘s 
are known, several knapsack-type PKC‘s have been shown 
to be insecure. Most of those systems have a concealed 
“ superincreasing” sequence. Shamir made the first success- 
ful attack on the basic Merkle-Hellman system [29]. Fol- 
lowing his attack, other attacks against more complicated 
systems were proposed. In particular, Brickell [5] found a 
way to break the general Merkle-Hellman scheme. A 
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With the exception of the McEliece system [20], which is based on 

error correcting codes. 

different attack is the “low-density’’ attack of Lagarias 
and Odlyzko [17]. The density of a knapsack is defined as 
the ratio of the number of elements in it to the size (in 
bits) of these elements. The most interesting point about 
the Lagarias-Odlyzko attack is that it does not make any 
assumption about how the system was constructed, and 
thus could be applicable to any knapsack-type cryptosys- 
tem whose density is low (unlike, say, Shamir’s attack 
which relies heavily on the superincreasing underlying 
sequence).. A different low-density attack was proposed by 
Brickell [4], although it appears to be less effective in 
practice. As a result of these attacks, knapsack-type PKC‘s 
whch either are based on superincreasing sequences or 
have very low density seem to be vulnerable. 

Here we propose a new knapsack-type PKC which has 
high density and a completely different basis. The underly- 
ing construction makes use of a result due to Bose and 
Chowla [3] on unique representations of sums in “dense” 
finite sequences. To create the encryption-decryption keys 
in this construction, discrete logarithms in finite fields 
have to be computed. Once this is done, encryption is very 
fast (linear time) and decryption is reasonably fast (com- 
parable to RSA). Hence creating the keys is the hard part. 
While there are no polynomial time algorithms known for 
taking discrete logarithms, practical algorithms (most 
notably the ones due to Pohlig and Hellman [23] and 
Coppersmith [9]) are known for some special cases. To 
demonstrate the feasibility of such cases, we have con- 
structed a real-life instance of our cryptosystem in the 
finite field GF(19724). (Readers who wish to experiment 
with the new cryptosystem can find this specific public key 
in [7].) We believe that a system of that size will foil both 
low-density and exhaustive search attacks. The running 
time for constructing the system was a few hours on a 
minicomputer. This time-consuming task is done only once 
by each user, so it is acceptable from a practical point of 
view.‘ 

We would like to remark that all known number-theo- 
retic PKC’s are at most as hard as factoring and hence are 
all reducible to the problem of taking discrete logarithms 
in composite moduli (see [2], [7], [19]). Should this discrete 
logarithm problem become tractable (thus rendering all 
“number-theoretic” PKC‘s insecure), our system will be- 
come easier to create for even larger size knapsacks. 

The remainder of this paper is organized as follows: 
In Section I1 we discuss the knapsack problem and its 
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use in cryptosystems. Section I11 is a description of the 
Bose-Chowla theorem and its proof. In Section IV we give 
the details of our new cryptosystem. In Section V the 
system performance is examined, and Section VI describes 
the actual parameters for implementing our PKC. Finally, 
some possible attacks against the new system are analyzed 
in Section VII. 

11. KNAPSACK-TYPE CRYPTOSYSTEMS 

The 0-1 knapsack problem is the following NP-com- 
plete [12] decision problem. given a set A = { a,10 I i I 
n - l}  of nonnegative integers and a nonnegative integer S ,  
is there an integer solution to Zx,a, = S where all x, are 0 
or l ?  A variant of the problem is to remove the 0-1 
restriction on the x, (while requiring them to be nonnega- 
tive integers) and bounding their weight Ex, I h.  

Knapsack-type public-key cryptosystems are based on 
the intractability of finding a solution to S = Exla ,  even 
when a solution is known to exist. In such systems each 
user publishes a set A of a ,  and a bound h. A plain 
text message consisting of an integer vector M = 

( xo, xl , .  . . , x, 1) with weight s h is encrypted by setting 

E ( M )  = E x f a , .  

The knapsack elements a, are chosen in such way that the 
equation is easily solved if certain secret trapdoor informa- 
tion is known. The exact nature of this information de- 
pends on the particular system in question. A general 
property of knapsack-type PKC‘s is that encryption is easy 
-all you have to do is to add. 

111. BOSE-CHOWLA THEOREM 

In 1936, Sidon raised the question of whether “dense” 
sequences exist whose h-fold sums are unique. Given n and 
h ,  nonnegative integers, is there a sequence A = { a,10 I i I 
n - I} of nonnegative integers, such that all sums of exactly 
h elements (repetitions allowed) out of A are distinct? It is 
easy to construct such sequences if the a, are growing 
exponentially in n. For example, the sequence (1, h ,  
h2,. . . ,A”-’  } has the aforementioned property (but does 
not work even for h + 1 element sums, since h 2  + h . I  = ( h  
+ 1) .  h) .  However, can one construct such sequences with 
the a, growing only polynomially fast in n? Bose and 
Chowla [3] found a very elegant way of constructing such 
sequences with 1 I a ,  I nh - 1 for all 0 I i i n - 1. (See 
Halberstram and Roth [14, ch. 21 for an overview of the 
subject.) Here we present a slightly modified version of 
Bose-Chowla theorem, whch fits well with our crypto- 
graphic application. 

Proof: The construction takes place in the finite field 
GF( p )  and in its h-degree extension GF( p h )  (for conve- 
nience, the elements of G F ( p )  will be indexed by their 
lexicographc order). Let t E GF( p h )  be algebraic of de- 
gree h over G F ( p )  (i.e., the minimal polynomial in 
G F (  p ) [ x ]  having t as its root is of degree h ) .  Let g be a 
multiplicative generator (primitive element) of GF ( p h )  
(that is, G F (  ph)*  = { g‘10 I e I p h  - l}). Look at an addi- 
tive shift by t of the base field G F ( p ) ,  namely, at the set 

t + G F ( p )  = { t + a , l a , E G F ( p ) }  c G F ( p h ) .  

Let a ,  = log, ( t  + a , )  ( a ,  E GF( p ) )  be the logarithm of 
t + a, to the base g in G F ( p h ) .  Then the a ,  are all 
integers in the interval [ l ,  p h  - 11, and they satisfy the 
distinctness of h-fold sums. Suppose there are two vectors 
2, y’ of nonnegative integers satisfying ( l ) ,  (2 ) ,  and (3): 

( x o > x , , - - , x p - , )  f ( y o > Y , , - - , Y p - l )  (1) 

c x,, c Y , I h  ( 2 )  

c x,a,= c Yla,. (3) 

p - 1  p - 1  

r = O  r = O  

P - 1  P - 1  

r = O  , = o  
Then the following equality holds in GF( p h ) :  

and so 
P - 1  P - 1  n n 
i = O  r = O  

Using the quality g a ,  = t + a,  and considering only the 
nonzero x,, y,, we get 

( t  + P , ) ” ’ ( t  +p2)xz. .  . ( t  + p y  
= ( t  + y,)-”(t  + y z )  v2 . . . ( t  + y,,) l,rl 

where { pl, p2;  . -, p,} and { y,, y2; . ., y,} are two differ- 
ent nonempty subsets of G F ( p )  with at most h elements 
each. Both sides of the last equation are thus distinct 
monic polynomials of degree I h with coefficients in 
GF( p ) ,  so, subtracting them, we get that t is a root of a 
nonzero polynomial of degree I h - 1 with coefficients in 
G F ( p ) .  This contradicts the fact that t is algebraic of 
degree h over GF( p ) .  

Remarks: 1) From the proof it is clear that 1 sums 
( I  i h )  of A are distinct not only over Z,  but also modulo 
p h  - 1. 2)  The requirement “ p  is a prime” can be replaced 
by “ p  is a prime power” with no change in the claim or its 
proof. 

Bose-Chowla Theorem: Let p be a prime and h 2 2 an 
integer. Then there exists a sequence A = { a,\0 I i I p - 1) 
of integers such that 

IV. How THE CRYPTOSYSTEM Is CONSTRUCTED 
AND USED 

1) 1 I a,  i p h - l ,  
2) if (xo, x,; . ., x P - , )  and ( y o ,  y,; . ., y P p l )  are two 

i =  O,1; .., p - 1  In t h s  section we describe how the new cryptosystem is 
created and used. We start with an informal (and slightly 

distinct vectors with nonnegative integral coordinates and simplified) description. Next, a step-by-step recipe for 
E!i;x,, Cp=-:y, s h ,  then E~:~x,a, # Xf=-;y,a,. generating the cryptosystem, encrypting messages, and de- 



CHOR AND RIVEST: A KNAPSACK-TYPE PUBLIC KEY CRYPTOSYSTEM 903 

crypting ciphertexts is given. Finally, we describe how to 
transform “regular” unconstrained bit strings into strings 
with a fixed weight. 

A .  The Cryptosystem 

The first step is to pick a prime (or a prime power) p 
and h such that GF(  p h )  is amenable to discrete logarithm 
computations. We leave p and h as unspecified parame- 
ters in this section and elaborate more on their exact 
choice in Section VI (the approximate magnitudes will be 
p = 200, h = 25). Once p and h are chosen, we pick 
t E G F (  p h )  of algebraic degree h over the base field, and 
a primitive element g E GF(  p h )  (both t and g are picked 
at random from the many possible candidates). Following 
Bose and Chowla, logarithms (to base g )  of the p elements 
in GF(  p )  + t are computed. These p integers are then 
scrambled using a randomly chosen permutation. The 
scrambled integers are published. Together with p and h 
they constitute the public encryption key, while the ele- 
ments t ,  g, and the unscrambling permutation constitute 
the secret decryption key. To encrypt a binary message of 
length p and weight h, a user adds the knapsack elements 
with 1 in the corresponding message location, and sends 
the sum. When the legitimate receiver gets a sum, he first 
raises the generator g to it, and expresses the result as a 
degree h polynomial in t over GF(  p ) .  The h roots of this 
polynomial are found by successive substitutions. Apply- 
ing the inverse of the original permutation, the indices of 
the plain text having the bit 1 are recovered. 

1)  System Generation: a) Let p be a prime power, h I p 
an integer such that discrete logarithms in GF(  p h )  can be 
efficiently computed. 

b) Pick a random t E GF( p h )  that is algebraic of de- 
gree h over GF(p) .  This will be done by finding f ( t ) ,  
a random irreducible monic polynomial of degree h 
in G F (  p ) [ t ] ,  and representing GF( p h )  arithmetic by 
G F ( p ) [ t ] / (  f ( t ) ) .  (That is, elements of GF(ph)  are poly- 
nomials of degree I h - 1 with coefficients in GF( p ) ,  and 
addition/multiplication operations are done modulo p and 

c) Pick g E GF(  p h ) ,  g a multiplicative generator of 
GF(ph) ,  at random. This will be done by picking a 
random r E G F ( p h )  until one which satisfies r (ph- l ) / s  21 
(for all prime factors s of p h  -1) is found. Note that in 
our system p h  - 1 will have only small prime divisors, and 
so it is easy to verify that a given r passes the above test. 
Since the density of such generators is relatively high in all 
cases (regardless of any special properties of p and h ) ,  the 
foregoing procedure is indeed feasible. 

d) Construction following Bose-Chowla Theorem: Com- 
pute a ,  = log,(? + a,) for all a, E GF( p ) .  

e) Scramble the a , :  let T: (0, l ; . . ,  p - l }  + 
(0,l; . . , p - l }  be a randomly chosen permutation. Set 

f) Add some noise: pick 0 I d I p h  - 2 at random. Set 

g) Public Key-to be Published: We have e,,, cl; e ,  

f ( t ) * )  

b, = an(,) .  

c, = b, + d .  

c p - l ;  P ,  h .  

h) Private Key - to be Kept Secret: We have t ,  g ,  T-’, d .  
Remark: Every user can use the same p and h. The 

probability of collisions (two users having the same keys) 
is negligible. 

2)  Encryption: To encrypt a binary message M = 
( x o , . .  ., x p p l )  of length p and weight (number of 1’s) 
exact& h,  add the c, whose corresponding bit is 1. Send 

P - 1  
E ( M ) =  x,c, (modph--1). 

i = O  

3) Decryption: a) Let r ( t )  = t h  modulo f ( t ) ,  a polyno- 
mial of degree I h - 1 (computed once at system genera- 
tion). , 

b) Given s = E ( M ) ,  compute s’= s - hd (modulo p h  - 
1). 

c) Compute q ( t )  = g” modulo f ( t ) ,  a formal polyno- 

d) Add t h  - r ( t )  to q ( t )  to get s ( t )  = t h  + q ( t ) -  r ( t ) ,  a 

e) We now have 

mial of degree h -1 in the variable t .  

polynomial of degree h in GF( p ) [ t ] .  

s ( t )  = ( t  + ai,).( t + a;,). . . ( t  + a,J 

name, s ( t )  factors to linear terms over GF( p ) .  By succes- 
sive substitutions, we find the h roots a,, (at most p 
substitutions needed). Apply 7 ~ - l  to recover the coordi- 
nates of the original M having the bit 1. 

B. Transforming Unconstrained Bit Strings 

We have assumed until now that the message space M 
contains binary vectors of length p and weight h. How- 
ever, regular binary text does not have this form. This 
subsection describes a simple procedure for translating 
unconstrained binary text into the aforementioned form. 

Given a binary text, we first break it into blocks of 
bog,( :)I bits each. Each of these blocks is viewed as the 

binary representation of a number n,  0 I n < . To map 
these numbers into weight h binary vectors, we use the 
order-preserving mapping induced by the lexicographic 
order of the vectors and the natural order of the integers. 
If n is larger than :I: , the first bit in the corresponding 
vector is set to 1. Otherwise, the first bit is set to 0. We 
then update p and h, and iterate p times, until all p bits 
are determined: 

code for transforming a number n into a binary vec- 

(3 

0 

tor y’: 
Input: n ,  p ,  h; Output: y’ 

1. for i + l  t o p  do 
2.  if n >( then 
3 .  y , + l  
4. n + - n - ( i I ; )  
5 .  h t h - 1  
6 .  else y, 0 
7. return yf 
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The inverse transformation, which is the last step in de- 
cryption, is just as simple: 

code for transforming a binary vector y’ into a num- 
ber n :  
Input: F, p, h;  Output: n 

1. n e 0  
2. for i +- 1 to p do 
3. if y ,  = 1 then 
4. n t n + ( p i l )  

6. return n 
5. h t h - 1  

For efficient implementation, the p . h /4 binomial coeffi- 
cients preceding (in the Pascal triangle) will be pre- 
computed and permanently stored. 

Remark: The previous indexing scheme is well-known 
in the literature (see, e.g. [lo]). 

(3 

V. SYSTEM PERFORMANCE: TIME, SPACE, AND 
INFORMATION RATE 

In this section we analyze three basic parameters of the 
cryptosystem: the time needed for encrypting and decrypt- 
ing a message, the size of the keys, and the information 
rate in terms of clear text bits per cipher text bits. The 
complexity of key generation is discussed in Section VI. 

Given a binary message length p and weight h,  encrypt- 
ing it amounts to adding h integers c,, each smaller than 
ph. The run time for decryption is much longer. It is 
dominated by the modular exponentiation. To raise a 
polynomial g to a power in the range [l ,  p h  - 11 takes at 
most 2h log p modular multiplications. The modulus is 
f( t ) ,  a polynomial of degree h,  with coefficients in GF(  p). 
Using the naive polynomial multiplication algorithm, 2h2 
operations (in G F  ( p)) per modular multiplication will 
suffice. Therefore, overall, 4h3 log p operations in GF(  p )  
are required. For the proposed parameters p = 200, h = 25 
this gives about 500000 GF( p )  operations and compares 
favorably with RSA encryption--decryption time. 

The size of the keys, and especially of the public key, is 
an important factor in the design of any public key system. 
In our system the size of the public key is that of p 
numbers, each in the range [l, p “  - 11. In terms of bits, this 
is p log, ph = ph log, p bits. For p = 200, h = 25, the key 
takes less than 40000 bits. While this number is about 35 
times larger than the currently proposed size for the RSA 
public key (600 bits for the modulus and 600 for the 
exponent), it is still within practical bounds. 

The information rate R of a block code is defined as 
R = (log, IMI)/N, where JMI is the size of the message 
space, and N is the number of bits in a cipher text. Letting 
M range over all binary vectors of length p and weight h 
we have [MI = (:I. Also N = log, p h ,  and thus the infor- 
mation rate is 

for the proposed parameters p = 197, h = 24, R = 0.556 
(data expansion 1.798). 

VI. PROPOSED PARAMETERS AND 

IMPLEMENTATION DETAILS 

As mentioned before, the main difficulty in implement- 
ing our cryptosystem is the computation of discrete loga- 
rithms in large finite fields GF(ph) .  T h s  computational 
problem is considered quite hard in general. However, 
for some special cases the algorithms of Coppersmith 
[9] and Pohlig and Hellman [23] work well in practice. 
Coppersmith’s algorithm is appropriate for fields of small 
characteristic, and performs best in characteristic 2. Let- 

ting ph = 2”, the run time of the algorithm is e 
For n < 200, implementation of the Coppersmith algo- 
rithm will terminate in a few hours on a mainframe 
computer. The Pohlig-Hellman algorithm works for any 
characteristic, provided ph - 1 has only small prime fac- 
tors. It turns out that the Pohlig-Hellman algorithm is 
preferable for our specific application, because of two 
properties: the nice factorization of several numbers p h  - 1 
of appropriate magnitude, and the simplicity of the algo- 
rithm. 

The Pohlig-Hellman algorithm has a T - S  (time. space) 
complexity proportional to the largest factor of ph - 1. 
While, in general, numbers whose order of magnitude is 
= 2OOZ5 do not have ‘small’ largest factors (the expected 
size of the largest factor of a random number m is about 
m0.6-see Knuth and Pardo [16]), things are much better 
when the number has the form x h  - 1 since we can first 
factor this expression as a polynomial in x and then factor 
each term as a number after substituting x + p. Numbers 
h ’s with “good” factorization are especially effective. For 
example, x24 - 1 has the factors x8 - x4  + 1, x4 - xz + 1, 
x 4  + 1, and other terms of degree not exceeding 2. Substi- 
tuting p =197, the largest prime factor of 19724 - 1 is 
10316017 = 10’. The square root of t h s  is 3. lo3, so the 
Pohlig-Hellman algorithm can easily be implemented on a 
minicomputer within a few CPU hours for all the 197 
logarithms. 

Other possible values are (the last two values are from 

p = 211, h = 24 (largest prime factor of 2 l lZ4  - 1 is 

p = 243 = 3’, h = 24 (largest prime factor of 3lZ0 - 1 
is 47 763 361 = 5 .  lo’); 
p = 256 = 2*, h = 25 (largest prime factor of 2’O0 - 1 
is 3 173 389 601 = 3 .  lo9). 

The last candidate has the advantage that the field is of 
characteristic 2. Thus binary arithmetic can be used for 
key generation and decryption calculations. In addition, 
binary arithmetic offers easier implementation in special- 
purpose hardware. 

We have implemented the key generation step in 
GF(19724) on a Symbolics 3600 Lisp Machme. Polynomi- 
als were represented as arrays, and some preprocessing was 

o( 3m) 

[61): 

216330241 = 2.108); 
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done to speed-up the field arithmetic. In the implementa- 
tion of the Pohlig-Hellman algorithm, instead of sorting 
the precomputed powers, we hashed them in a 197-by-197 
array according to the free term and the coefficient of t in 
the polynomial. In this way the matching trials were sim- 
plified. 

The overall run time for finding all 197 logarithms in 
GF(197") was about 8 hours. With some simple modifica- 
tions we expect that the time can be reduced by 30 
percent. It seems that even for G F  (25625) the computation 
should be feasible, taking advantage of the binary opera- 
tions in the polynomial arithmetic. All these estimates can 
be drastically reduced if the computation is to be carried 
out on a faster larger computer using a programming 
language more suitable for numerical calculations (e.g., 
Fortran). 

VII. POSSIBLE ATTACKS 

In this section we examine some possible attacks on the 
cryptosystem. We start with specialized attacks on the 
cryptosystem, where the cryptanalyst is trying to recon- 
struct the secret key (possibly with some partial knowledge 
of it). We proceed by considering low-density and brute- 
force attacks with no prior secret information, where the 
goal is not to reconstruct the secret key but rather to 
decipher a given cipher text. 

A. Specialized Attacks 

We begin by assuming that certain parameters are known 
to the cryptanalyst. In Section VII-A5 we assume nothing 
is known. 

1) Known g and d: Given d ,  compute {bo, b,; . e, b p p l }  
= { ~ , - d , c , - d ; ~ - , c ~ ~ , - d } .  Let t ' = g h o .  Since g"0- 

gho= t - t ' ~  GF(p) ,  the sets { t  + a,Ia, E GF(p)} and 
{ t '+  a,Ia, E GF(p)} are identical. Thus for every a, E 
G F ( p )  there is a unique a(l( l )  E GF( p )  so that g h a ( i )  = 
t'+ a,. Using t ' ,  g ,  u, and d ,  the cryptanalyst can perform 
the same decryption algorithm as the legitimate receiver. 

2) Known t and d: Pick an arbitrary generator g'. Com- 
pute a: = log,, ( t  + al). As sets, we have 

{ ~0 - d ,  c1- d ;  * ,  cP-1 - d }  = {a,,  a , , . .  0 ,  a , - , }  

= L { a ; , , a ; , - - , a j , - , }  

where equality is modulo p h  - 1, the numbers L,  p h  - 1 are 
relatively prime, and L satisfies g = g'L. Once L is recov- 
ered we are done, for then g = g r L ,  and we can reconstruct 
7~ and have all the pieces of the private key. 

If one of the a: ( a &  say) is relatively prime to p h  - 1, 
then L is one of a,aL-' (mod p h  - 1) for some 0 I j I 
p - 1. Otherwise, the cryptanalyst can compute L modulo 
each of the prime power factors of p h  - 1 (which, by 
choice of p and h, are all small and, therefore, easy to 
find), and then combine them using the Chmese remainder 
theorem. 

3) Known t (Attack Due to Oded Goldreich): Pick an 
arbitrary generator g'. Compute a: = log,, ( I  + a,). As sets 

we have 

{ c 0 - c , , c 1 - c 0 ; ~ ~ , c p ~ , - c 0 }  

= { a ,  - a,, a, - a,; * * ,  a p - ,  - a , }  

= L {  ah- a& a; - a&. . * )  U h - 1 -  a ; )  

and now it is possible to proceed as in (b). 
4) Known Permutation n (Attack Due to Andrew 

Odlyzko): Subtracting as in 3), we get the integers a ,  - a, 
for i = 1; . 0 ,  p - 1. Since the knapsack is dense, there are 
small integral coefficients x ,  (some of which may be 
negative) such that 

P - 1  c x , ( a , - a o ) = O  
I =1 

(see the Appendix and Section VII-A5 for a justification of 
this claim). The x, can be efficiently found by applying the 
Lenstra-Lenstra-Lovasz (LLL) basis reduction algorithm 
[18] to the truncated Lagarias-Odlyzko lattice (see the 
Appendix and [22] for a similar attack on other knapsack 
schemes). Raising g to both sides of the last equality, we 
get 

gErT~x,(a,-ao) = 1 

i.e., 
P - 1  n (1 + i ) = t z P - ; 1 X z .  
I = 1  

Let m l =  Ex:l (m ,=Zx , - I )  denote the sum of positive 
(negative) x,, and m = max(m,, m,) .  The left side of the 
last equality is a rational function of t ,  while the right side 
has the form tm'-m2. The generator g ,  which is still un- 
known, is not a part of the equality. Multiplying through, 
we get a polynomial equation r( t )  = 0 of degree m - 1 in 
t ,  with coefficients from GF( p ) .  Since the x, are small, m 
is also not too large. All roots (in GF( ph)) of t h s  polyno- 
mial cah be found using a fast probabilistic algorithm. The 
element t is necessarily one of these roots, so attack 3) can 
now be used. 

The most efficient way for root finding which we know 
of (Rabin [25]) requires finding the gcd of r ( t )  and t p h - ' .  

With p h  - 1 >> m ,  this polynomial gcd computation is per- 
formed by raising t to the power p h  - 1 and reducing 
modulo r( t ) .  Therefore, we basically have to perform 
h log, p multiplications of m degree polynomials with 
coefficients in GF( p), reducing modulo r( t )  each time. 
Assuming standard arithmetic, each polynomial multipli- 
cation will take m2 GF( p )  operations (FFT arithmetic 
(see, e.g. [l, ch. 71) will introduce a large constant and will 
probably be less efficient in practice). Thus the root-find- 
ing algorithm will require at least m2h log, p operations in 
GF(  p )  (assuming that a single root is found). 

Remark: If 7~ is not known, this attack does not seem to 
work since even though the x ,  can be found, they give rise 
to an 'unknown' polynomial. If m , +  m ,  is very small, 
then one can try all (,,+",, possibilities even without 
knowing n. However, with v unknown and m l + m ,  ex- 

1 



906 ILIA. TRANSACHONS ON INtOKMMArION THEORY, VO1 34. NO 5. SEPTEMBtR 19x8 

ceeding 10, this brute force approach becomes unfeasible. 
A more refined method for dealing with unknown 7~ is 
presented next. 

5) Nothing Known (Attack Due to Ernest Brickell): This 
attack is a strengthening of Odlyzko's attack. The goal is 
again to find a small degree equation satisfied by g.  Using 
a carefully designed lattice, it is possible to find integer 
coefficients x,, many of them 0, such that both equations 

P -1 
x,c,=O (modph--1) 

, = o  
P - 1  

x,=O (modph--1) 
r = O  

hold. The second equality guarantees that 
gEp=;;r,c, = gX:P=;,'x,( h, + d )  

- - gx.Pi;*,h,. gdL!=P;x, 

= gX/',p_;x,h, 

and thus by the first equality, 
gX/':dx,hc = 1 

that is, 

g v : d * , k  = 1.  

With the permutation 7~ unknown, this equality now means 
that 

P - 1  n ( t  + a J t  =l .  
r = O  

Let x,? denote x, if x, 2 0; 0, otherwise (similarly, 
x,- denote - x, if x, I 0; 0, otherwise). Let r,(t) = 

nfG:(t + C X ~ ( ~ ) ) ' , +  -np::(t + a,(,))*, , and I be the num- 
ber of nonzero x,. Every one-to-one mapping from the set 
{ I Ix, f 0} into GF(  p )  gives rise to a different polynomial 
in r,(t). Only the "correct" polynomial will have the right 
t as one of its roots. Thus on the average we have to try 
(1/2)( p!/( p - I)!) mappings to come up with the right 
polynomial. (In fact, it suffices to consider the mappings 
of only I - 1 elements, since having t + aJ for some aJ E 

G F ( p )  is as good as having t itself, and so (1/2)(p!/ 
( p - I + l)!) mappings are to be checked.) 

For every such mapping, the cryptanalyst should find 
the roots in G F ( p h )  of r,(t), an m degree polynomial 
with coefficients from G F ( p )  ( m  denotes here the same 
quantity as in Section VII-A4). Combining the foregoing 
calculations with the running-time estimates for polyno- 
mial arithmetic, the expected running time for recovering t 
will thus be ( 1 / 2 ) ( p ! / ( p - I + l ) ! ) . m 2 h l o g , p  (GF(p)  
operations). There is trade-off between I and m. Consider 
the I nonzero x,. How large do they have to be to have a 
nonzero solution to Cx,a, = 0 (modulo ph - l)? If the x, 
are in the range - B/2 < x, < B/2, then this gives us B' 
combinations of Cx,a,. If B '> p h  -1, then two of these 
combinations must be the same modulo ph - 1. In fact, if 
B '>  ph/*, then by the birthday paradox two of the Bl 

sums are going to be equal modulo ph - 1 with probability 
no less than 1/2. Assuming the latter bound, B = ph/2/. 
To get a nonzero combination Lx,a ,  = 0 (modulo p" - l), 
we subtract two combinations with the same sum. The 
average absolute value of the resulting x, is about B/2 = 

ph/,//2, and about half (1/2) of them are negative. Thus 
the sum of negative (positive) x, is m - [phl2//4. The total 
running time for finding t is thus 

1 p! 

2 ( p - l + l ) !  
.m2h log, p - 

- p1-'ph/l12h log 2P 
32 

This expression is optimized with I = @(fi), resulting in an 
O( p2$h2 log, p )  algorithm for retrieving t. While this 
expression is asymptotically superior to all other methods 
already mentioned, i t  seems quite prohibitive in practice. 
For example, taking p = 197 and h = 24, I - 1 + h / l  is 
optimized at I = 5 ,  yielding 8.8. However, 197'.' > 260, so 
the attack is impractical. (Even assuming FFT arithmetic 
and complexity O ( m )  for the root finding algorithm, the 
resulting expression p'-'+h/211h log, p is optimized at I = 

3, yielding about 2'*. The extra log factors of the FFT and 
the hidden constant will drive the expression up to at 
least 258.) 

B. Low-Density Attacks 

p - l}, is defined to be 
The density d( A )  of a knapsack system A = { u, /0  I i I 

P 
log, (max a , )  ' 

d(A)  = 

Lagarias and Odlyzko [17] have devised an attack which is 
effective against low-density knapsacks. Given a knapsack 
system A = { a,10 5 i 5 p - 1) and a sum instance (cipher 
text) S = Er=-:x,a,, they construct a ( p + 1)-dimensional 
lattice (see the'Appendix for details). The lattice construc- 
tion uses the p knapsack elemepts and the given cipher 
text. A certain vector in this lattice (which we call here the 
special uector ) is defined. This vector corresponds to the 
solution of the given cipher text (yields the coefficients x, 
in the sum), and the goal of the cryptanalyst is to find it. 
Lagarias and Odlyzko have shown that if d( A) is low, this 
special vector is likely to be the shortest one in their 
lattice. Using the last observation, what Lagarias and 
Odlyzko are trying to do is to find the shortest vector in 
the lattice. Specifically, the tool they use is the lattice basis 
reduction algorithm of Lenstra et al. [18]. 

The success of the Lagarias and Odlyzko attack, when 
applied to a specific knapsack instance, depends on two 
factors. One factor is the density of the knapsack. If the 
density is too high, then one expects to have many extrane- 
ous short vectors. In this case, the attack will not work 
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regardless of which short vector subroutine it uses. Even if 
the density is such that the special vector is indeed the 
shortest lattice vector, the attack is still not certain to 
succeed. In such case, its success is determined by the 
properties of the short vector subroutine. Present day 
algorithms either are guaranteed to find the shortest vec- 
tor, but are inefficient, or are efficient (run in polynomial 
time), but are guaranteed only to find a relatively short 
vector, not necessarily the shortest one. To find the short- 
est vector, short vector algorithms of the second type (e.g. 
[18] ,  [27])  typically require that the shortest lattice vector 
be substantially shorter than other lattice vectors. 

In our specific case, the knapsack has relatively high 
density. Thus the length (square of Euclidean norm) of the 
special vector will not be much shorter than the length of 
many other vectors (24 versus 40 for p =197, h = 24-see 
the Appendix). Shortest vector algorithms of the first type 
will, therefore, find the special vector in this case. How- 
ever, the best shortest vector algorithm known currently is 
the one of Kannan [15], and its performance is no better in 
our application than the brute-force attack sketched in 
Section VII-C. The proximity of the special vector length 
(24)  to lengths of many other vectors (40) should prevent 
the efficient short vector algorithms of the second type 
from finding the special vector. 

The last claim was confirmed experimentally. Odlyzko 
has tested the Lagarias and Odlyzko attack on a smaller 
knapsack created by us, using the LLL algorithm as the 
short vector subroutine. For the test case we generated an 
instance of the knapsack with parameters p =lo3  and 
h = 12. For these parameters the density is 1.271. Using the 
calculations of [17],  the length of the shortest nonspecial 
vector in the constructed lattice should be at least 17. 
However, the LLL algorithm did not find the special 
vector even when its length was only 5 (i.e., when only five 
knapsack elements were added together in the sum). 
Therefore, it seems that for the Lagarias-Odlyzko attack 
to be successful against our system it must use a signifi- 
cantly better short vector algorithm than the ones now 
available. 

A few people (including Brickell, Coppersmith, Desmedt, 
and Odlyzko) have suggested a modification of the 
Lagarias and Odlyzko attack. It is intended to make use of 
the fact that in our cryptosystem the number of knapsack 
elements that are added together is h ,  which is substan- 
tially smaller than n / 2  which is the typical number in 
general knapsack systems. This attack (see the Appendix 
for more details) increases the ratio between the lengths of 
the special vector and the rest of the vectors in the lattice. 
This gives a better chance of finding the special vector 
when a short vector subroutine of the second type is used. 

It is possible to modify the cryptosystem so that several 

cient enough to break the cryptosystem, and so such 
modification of the cryptosystem will not be necessary. 

C.  Brute-Force Attacks 

Despite the soplustication of the previous attacks, none 
of them outperforms a careful brute-force attack (unless 
the cryptanalyst is supplied with some part of the secret 
decryption key). The most efficient method we know of for 
solving knapsack instances with h out of p items, given a 
specific cipher text, is the following. There are (:) ways of 
choosing h out of p elements. Take a random subset S 
containing p / 2  elements. The probability that a given sum 
contains exactly h / 2  out of these p / 2  elements is 

(:;;)* z- 1 

4%. 

Assuming that this is indeed the case, we generate all h / 2  
sums of S and of its complement, and sort them. The goal 
is to find a pair of sums from the two lists whose sum 
matches the desired target. Tlus can be achieved by keep- 
ing two pointers on the two lists and marching linearly 
through each one (one in increasing order, and the other in 
decreasing order). If the two lists are exhausted but no 
matching sum found, then another random S is tried. The 
run time per one choice of S is dominated by sorting all 
h / 2  sums of both S and its complement.'This will require 
2 -  (i;:) In (:$) operations. On the average, about fi 
choices of S have to be made. The overall expected run- 
ning time will thus be 

For the proposed parameters p = 197, h = 24, the expected 
number of operations is 3.466 1017 > 258, so such brute 
force attack is impractical. The knapsack algorithm of 
Schroeppel and Shamir [28] might be used here for space 
efficiency. However, its run time behavior is no better than 
the above algorithm. 

D. A Word of Caution 

Even though none of these attacks seems to produce a 
serious threat to the system security, other attacks might 
be successful. We urge the reader to examine our proposal 
for as yet undiscovered weaknesses. 

elements are used more than once. Provided that the total 
number of elements used (counted with their multiplicities) 
is h ,  such modification does not affect the efficiency of 
decryption. It has the advantage of increasing the length of 
the special vector. However, with the current state of short 
vector algorithms it looks like the last attack is not effi- 
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APPENDIX 
THE LAGARIAS-OKLYZKO LOW-DENSITY ATTACK 

In this appendix we give a brief description of the Lagarias- 
Odlyzko “low-density’’ attack, which is based on finding short 
vectors in lattices. (A different “low-density’’ attack was pro- 
posed by Brickell [4].) Given a knapsack system A = { a,10 I i I 
n - l} and a sum instance S = C::;X,U,, the algorithm proceeds 
as follows. 

a) Construct an ( n  + 1)-dimensional integer lattice with basis 
vectors 

u7,=(1,0,0;’~,0,u0)  

GI = (0,1,0;. . ,o, u l )  

~ * ; = ( 0 , 0 , 1 , ~ ’ ~ , 0 , U , )  

b) Look for the shortest nonzero \ector ii in this lattice. T h s  
step is using the LLL basis reduction algorithm which finds a 
relatively short vector in the lattice (not necessarily the shortest 
vector). 

c) Check if li= 2, where x’= (x,,, xl, x,; . ., x,,- 1,0) is the 
special vector which deciphers S.  

We call the lattice spanned by the n + 1 basis vectors the full 
Lagarias - Odlyzko lattice, and the sublattice spanned by the first 
n basis vectors the truncated Lagarias-Odlyzko lattice. The trun- 
cated lattice does not depend on the actual sum S .  The basic idea 
behind the algorithm is that since S = E x , a , ,  x’ is always a vector 
in the space spanned by the basis vectors. The Euclidean norm of 
x’ is {w. Lagarias and Odlyzko show that for any constant 
0 < a I 1/2, there is a critical density d ,  so that for almost all 
sets A (in an appropriate probability space) with density below 
d,, and almost all subset sums of I an elements, there is 
a unique vector in the lattice spanned by Go, Z,; . ., c, with 
Euclidean norm not exceeding &n. (For example, dl,, = 
0.645.) Lagarias and Odlyzko conjectured that d,  is a “cut-off” 
density in the following sense: almost all knapsacks A with 
d(  A )  > d,  will have exponentially many vectors with Euclidean 
norm I& in the truncated lattice. These short vectors corre- 
spond to small linear dependencies among the a, -solutions to 
Cy:;x,a, = 0 with small integral x ,  (not necessarily i 1 or 0). 

The modification of the Lagarias and Odlyzko attack, which 
makes use of the additional information that in our ciphertexts 
Cf:dx, = h ,  is as follows. Add one more column to the basis 
elements in the Lagarias-Odlyzko lattice. For i = 0,l; . . , n - 1, 
ii, will have a large constant s in this additional entry, while GI 
will contain - hs in this entry (s -10 suffices for our applica- 
tion). To be shorter than the special vector, a vector y’ in the 

truncated lattice must now satisfy both C!=-;y, = 0 and Cf:iy,u, 
= 0. This should get rid of many extraneous short vectors. 

The possible modification to the cryptosystem which is aimed 
at increasing the length of the special vector is the following. For 
0-1 knapsack problems, the Euclidean norm of x’ is not too big 
since each coordinate contributes at most 1 to the sum. However, 
if the same item is taken more than once, the norm of x’ grows 
substantially. Thus by taking some elements with multiplicity 
greater than one, we can improve on the resistance of the system 
to low-density attacks. 
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