
Some Simple Economics of Open Source
Author(s): Josh Lerner and Jean Tirole
Source: The Journal of Industrial Economics, Vol. 50, No. 2 (Jun., 2002), pp. 197-234
Published by: Blackwell Publishing
Stable URL: http://www.jstor.org/stable/3569837
Accessed: 11/07/2010 05:51

Your use of the JSTOR archive indicates your acceptance of JSTOR's Terms and Conditions of Use, available at
http://www.jstor.org/page/info/about/policies/terms.jsp. JSTOR's Terms and Conditions of Use provides, in part, that unless
you have obtained prior permission, you may not download an entire issue of a journal or multiple copies of articles, and you
may use content in the JSTOR archive only for your personal, non-commercial use.

Please contact the publisher regarding any further use of this work. Publisher contact information may be obtained at
http://www.jstor.org/action/showPublisher?publisherCode=black.

Each copy of any part of a JSTOR transmission must contain the same copyright notice that appears on the screen or printed
page of such transmission.

JSTOR is a not-for-profit service that helps scholars, researchers, and students discover, use, and build upon a wide range of
content in a trusted digital archive. We use information technology and tools to increase productivity and facilitate new forms
of scholarship. For more information about JSTOR, please contact support@jstor.org.

Blackwell Publishing is collaborating with JSTOR to digitize, preserve and extend access to The Journal of
Industrial Economics.

http://www.jstor.org

http://www.jstor.org/stable/3569837?origin=JSTOR-pdf
http://www.jstor.org/page/info/about/policies/terms.jsp
http://www.jstor.org/action/showPublisher?publisherCode=black

THE JOURNAL OF INDUSTRIAL ECONOMICS 0022-1821
Volume L June 2002 No. 2

SOME SIMPLE ECONOMICS OF OPEN SOURCE*

JOSH LERNERt AND JEAN TIROLEt

There has been a recent surge of interest in open source software
development, which involves developers at many different locations and
organizations sharing code to develop and refine programs. To an
economist, the behavior of individual programmers and commercial
companies engaged in open source projects is initially startling. This
paper makes a preliminary exploration of the economics of open source
software. We highlight the extent to which labor economics, especially
the literature on 'career concerns', and industrial organization theory
can explain many of these projects' features. We conclude by listing
interesting research questions related to open source software.

I. INTRODUCTION

IN RECENT YEARS, there has been a surge of interest in open source
software development. Interest in this process, which involves software
developers at many different locations and organizations sharing code to
develop and refine software programs, has been spurred by three factors:

* The rapid difusion of open source software. A number of open source
products, such as the Apache web server, dominate their product cate-
gories. In the personal computer operating system market, International
Data Corporation estimates that the open source program Linux has
between seven to twenty-one million users worldwide, with a 200% annual
growth rate. Many observers believe it represents a leading potential
challenger to Microsoft Windows in this important market segment.

* The assistance of the Harvard Business School's California Research Center, and Chris
Darwall in particular, was instrumental in the development of the case studies and is
gratefully acknowledged. We also thank a number of practitioners-especially Eric Allman,
Mike Balma, Brian Behlendorf, Keith Bostic, Tim O'Reilly, and Ben Passarelli-for their
willingness to generously spend time discussing the open source movement. George Baker,
Jacques Cremer, Rob Merges, Bernie Reddy, Pierre R6gibeau, Bernard Salanie, many open
source participants, seminar participants at the American Economics Association annual
meetings, European Economic Association Bolzano meetings, and Harvard, and three
anonymous referees provided helpful comments. Harvard Business School's Division of
Research provided financial support. The Institut D'Economie Industrielle receives research
grants from a number of corporate sponsors, including French Telecom and the Microsoft
Corporation. All opinions and errors, however, remain our own.

t Authors' affiliations: Harvard Business School, Morgan Hall, Room 395, Boston,
Massachusetts, 02163, USA.
email: jlerner@hbs.edu

t Institut d'Economie Industrielle, Manufacture des Tabacs, Bureau MF529 - Bat. F 21
Allee de Brienne, 31000 Toulouse, France.
email: tirole@cict.fr
? Blackwell Publishers Ltd. 2002, 108 Cowley Road, Oxford OX4 1JF, UK, and 350 Main Street, Malden, MA 02148, USA.

197

198 JOSH LERNER AND JEAN TIROLE

* The significant capital investments in open source projects. Over the
past two years, numerous major corporations, including Hewlett
Packard, IBM, and Sun, have launched projects to develop and use
open source software. Meanwhile, a number of companies specializing
in commercializing Linux, such as Red Hat and VA Linux, have
completed initial public offerings, and other open source companies
such as Cobalt Networks, Collab.Net, Scriptics, and Sendmail have
received venture capital financing.

* The new organization structure. The collaborative nature of open source
software development has been hailed in the business and technical press
as an important organizational innovation.

Yet to an economist, the behavior of individual programmers and
commercial companies engaged in open source processes is startling.
Consider these quotations by two leaders of the open source community:

The idea that the proprietary software social system-the system
that says you are not allowed to share or change software-is
unsocial, that it is unethical, that it is simply wrong may come as a
surprise to some people. But what else can we say about a system
based on dividing the public and keeping users helpless? [Stallman,
1999]

The 'utility function' Linux hackers is maximizing is not classically
economic, but is the intangible of their own ego satisfaction and
reputation among other hackers. [Parenthetical comment deleted]
Voluntary cultures that work this way are actually not uncommon;
one other in which I have long participated is science fiction fandom,
which unlike hackerdom explicitly recognizes 'egoboo' (the enhance-
ment of one's reputation among other fans) [Raymond, 1999b].

It is not initially clear how these claims relate to the traditional view of
the innovative process in the economics literature. Why should thousands
of top-notch programmers contribute freely to the provision of a public
good? Any explanation based on altruism' only goes so far. While users in
less developed countries undoubtedly benefit from access to free software,
many beneficiaries are well-to-do individuals or Fortune 500 companies.
Furthermore, altruism has not played a major role in other industries, so it
would have to be explained why individuals in the software industry are
more altruistic than others.

This paper seeks to make a preliminary exploration of the economics
of open source software. Reflecting the early stage of the field's develop-

1The media like to portray the open source community as wanting to help mankind, as it
makes a good story. Many open source advocates put limited emphasis on this explanation.
? Blackwell Publishers Ltd. 2002.

SOME SIMPLE ECONOMICS OF OPEN SOURCE 199

ment, we do not seek to develop new theoretical frameworks or to
statistically analyze large samples. Rather, we focus on four 'mini-cases'
of particular projects: Apache, Linux, Perl, and Sendmail.2 We seek to
draw some initial conclusions about the key economic patterns that
underlie the open source development of software. We find that much can
be explained by reference to economic frameworks. We highlight the
extent to which labor economics, in particular the literature on 'career
concerns', and industrial organization theory can explain many of the
features of open source projects.

At the same time, we acknowledge that aspects of the future of open
source development process remain somewhat difficult to predict with 'off-
the-shelf' economic models. In the final section of this paper, we highlight
a number of puzzles that the movement poses. It is our hope that this
paper will have itself an 'open source' nature: that it will stimulate research
by other economic researchers as well.

Finally, it is important to acknowledge the relationship with the earlier
literature on technological innovation and scientific discovery. The open
source development process is somewhat reminiscent of the type of 'user-
driven innovation' seen in many other industries. Among other examples,
Rosenberg's [1976] studies of the machine tool industry and von Hippel's
[1988] of scientific instruments have highlighted the role that sophisticated
users can play in accelerating technological progress. In many instances,
solutions developed by particular users for individual problems have
become more general solutions for wide classes of users. Similarly, user
groups have played an important role in stimulating innovation in other
settings: certainly, this has been the case from the earliest days of the
computer industry [e.g., Caminer, et al., 1996].

A second strand of related literature examines the adoption of the
scientific institutions ('open science', in Dasgupta and David's [1994]
terminology) within for-profit organizations. Henderson and Cockburn
[1994] and Gambardella [1995] have highlighted that the explosion of
knowledge in biology and biochemistry in the 1970s triggered changes in
the management of R&D in major pharmaceutical firms. In particular, a
number of firms encouraged researchers to pursue basic research, in
addition to the applied projects that typically characterized these
organizations. These firms that did so enjoyed substantially higher R&D
productivity than their peers, apparently because the research scientists
allowed them to more accurately identify promising scientific develop-
ments (in other words, their 'absorptive capacity' was enhanced) and
because the interaction with cutting-edge research made these firms more
attractive to top scientists. At the same time, the encouragement of 'open

2 These are summarized in Darwall and Lerner [2000].
? Blackwell Publishers Ltd. 2002.

200 JOSH LERNER AND JEAN TIROLE

science' processes has not been painless. Cockburn, Henderson, and Stern
[1999] highlight the extent to which encouraging employees to pursue both
basic and applied research led to substantial challenges in designing
incentive schemes, because of the very different outputs of each activity
and means through which performance is measured.3

But as we shall argue below, certain aspects of the open source
process-especially the extent to which contributors' work is recognized
and rewarded-are quite distinct from earlier settings. This study focuses
on understanding this contemporaneous phenomenon, rather than seeking
to make a general evaluation of the various cooperative schemes employed
over time.

II. THE NATURE OF OPEN SOURCE SOFTWARE

While media attention to the phenomenon of open source software has
been recent, the basic behaviors are much older in their origins. There has
long been a tradition of sharing and cooperation in software development.
But in recent years, both the scale and formalization of the activity have
expanded dramatically with the widespread diffusion of the Internet.4 In
the discussion below, we will highlight three distinct eras of cooperative
software development.

II(i). The First Era: Early 1960s to the Early 1980s

Many of the key aspects of the computer operating systems and the
Internet were developed in academic settings such as Berkeley and MIT
during the 1960s and 1970s, as well as in central corporate research
facilities where researchers had a great deal of autonomy (such as Bell
Labs and Xerox's Palo Alto Research Center). In these years, the sharing
by programmers in different organizations of basic operating code of
computer programs-the source code-was commonplace.5

3It should be noted that these changes are far from universal. In particular, many
information technology and manufacturing firms appear to be moving to less of an emphasis
on basic science in their research facilities (for a discussion, see Rosenbloom and Spencer
[1996]).

4 This history is of necessity highly abbreviated and we do not offer a complete explanation
of the origins of open source software. For more detailed treatments, see Browne [1999],
DiBona, Ockman, and Stone [1999], Gomulkiewicz [1999], Levy [1984], Raymond [1999a],
and Wayner [2000].

5 Programmers write source code using languages such as Basic, C, and Java. By way of
contrast, most commercial software vendors only provide users with object, or binary, code.
This is the sequence of Os and ls that directly communicates with the computer, but which is
difficult for programmers to interpret or modify. When the source code is made available
to other firms by commercial developers, it is typically licensed under very restrictive
conditions.
? Blackwell Publishers Ltd. 2002.

SOME SIMPLE ECONOMICS OF OPEN SOURCE 201

Many of the cooperative development efforts in the 1970s focused
on the development of an operating system that could run on multiple
computer platforms. The most successful examples, such as Unix and
the C language used for developing Unix applications, were originally
developed at AT&T's Bell Laboratories. The software was then
installed across institutions, being transferred freely or for a nominal
charge. Many of the sites where the software was installed made further
innovations, which were in turn shared with others. The process of
sharing code was greatly accelerated with the diffusion of Usenet, a
computer network begun in 1979 to link together the Unix pro-
gramming community. As the number of sites grew rapidly (e.g., from
3 in 1979 to 400 in 1982), the ability of programmers in university and
corporate settings to rapidly share technologies was considerably
enhanced.

These cooperative software development projects were undertaken on a
highly informal basis. Typically no effort to delineate property rights or to
restrict reuse of the software were made. This informality proved to be
problematic in the early 1980s, when AT&T began enforcing its
(purported) intellectual property rights related to Unix.

II(ii). The Second Era: Early 1980s to the Early 1990s

In response to these threats of litigation, the first efforts to formalize the
ground rules behind the cooperative software development process
emerged. This ushered in the second era of cooperative software develop-
ment. The critical institution during this period was the Free Software
Foundation, begun by Richard Stallman of the MIT Artificial Intelligence
Laboratory in 1983. The foundation sought to develop and disseminate a
wide variety of software without cost.

One important innovation introduced by the Free Software Foundation
was a formal licensing procedure that aimed to preclude the assertion of
patent rights concerning cooperatively developed software (as many
believed that AT&T had done in the case of Unix). In exchange for being
able to modify and distribute the GNU software (as it was known),
software developers had to agree to make the source code freely available
(or at a nominal cost). As part of the General Public License (GPL, also
known as 'copylefting'), the user had to also agree not to impose licensing
restrictions on others. Furthermore, all enhancements to the code-and
even code that intermingled the cooperatively developed software with
that developed separately-had to be licensed on the same terms. It is
these contractual terms that distinguish open source software from
shareware (where the binary files but not the underlying source code are
made freely available, possibly for a trial period only) and public-domain
? Blackwell Publishers Ltd. 2002.

202 JOSH LERNER AND JEAN TIROLE

software (where no restrictions are placed on subsequent users of the
source code).6

This project, as well as contemporaneous efforts, also developed a
number of important organizational features. In particular, these projects
employed a model where contributions from many developers were
accepted (and frequently publicly disseminated or posted). The official
version of the program, however, was managed or controlled by a smaller
subset of individuals closely involved with the project, or in some cases,
an individual leader. In some cases, the project's founder (or his designated
successor) served as the leader; in others, leadership rotated between
various key contributors.

II(iii). The Third Era: Early 1990s to Today

The widespread diffusion of Internet access in the early 1990s led to a
dramatic acceleration of open source activity. The volume of contributions
and diversity of contributors expanded sharply, and numerous new open
source projects emerged, most notably Linux (a UNIX operating system
developed by Linus Torvalds in 1991). As discussed in detail below, inter-
actions between commercial companies and the open source community
also became commonplace in the 1990s.

Another innovation during this period was the proliferation of
alternative approaches to licensing cooperatively developed software.
During the 1980s, the GPL was the dominant licensing arrangement for
cooperatively developed software. This changed considerably during the
1990s. In particular, Debian, an organization set up to disseminate Linux,
developed the 'Debian Free Software Guidelines' in 1995. These guidelines
allowed licensees greater flexibility in using the program, including the
right to bundle the cooperatively developed software with proprietary
code. These provisions were adopted in early 1997 by a number of
individuals involved in cooperative software development, and were
subsequently known as the 'Open Source Definition'. As the authors
explained:

License Must Not Contaminate Other Software. The license must
not place restrictions on other software that is distributed along with
the licensed software. For example, the license must not insist that

6It should be noted, however, that some projects, such as the Berkeley Software
Distribution (BSD) effort, did take alternative approaches during the 1980s. The BSD license
also allows anyone to freely copy and modify the source code (as long as credit was given to
the University of California at Berkeley for the software developed there, a requirement no
longer in place). It is much less constraining than the GPL: anyone can modify the program
and redistribute it for a fee without making the source code freely available. In this way, it is
a continuation of the university-based tradition of the 1960s and 1970s.
? Blackwell Publishers Ltd. 2002.

SOME SIMPLE ECONOMICS OF OPEN SOURCE 203

all other programs distributed on the same medium must be open-
source software. Rationale: Distributors of open-source software
have the right to make their own choices about their own software
[Open Source Initiative, 1999].

These new guidelines did not require open source projects to be 'viral':
they need not 'infect' all code that was compiled with the software with
the requirement that it be covered under the license agreement as well. At
the same time, they also accommodated more restrictive licenses, such as
the General Public License.

The past few years have seen unprecedented growth of open source
software. At the same time, the movement has faced a number of
challenges. We will highlight two of these here: the 'forking' of projects
(the development of competing variations) and the development of
products for high-end users.

One issue that has emerged in a number of open source projects is
the potential for programs splintering into various variants. In some
cases, passionate disputes over product design have led to the
splintering of open source projects into different variants. Examples of
such splintering are the Berkeley Unix program and Sendmail during
the late 1980s.

Another challenge has been the apparently lesser emphasis on
documentation and support, user interfaces,7 and backward compatibility
found in at least some open source projects. The relative technological
features of software developed in open source and traditional environ-
ments are a matter of passionate discussion. Some members of the
community believe that this production method dominates traditional
software development in all respects. But many open source advocates
argue that open source software tends to be geared to the more
sophisticated users.8 This point is made colorfully by one open source
developer:

[I]n every release cycle Microsoft always listens to its most ignorant
customers. This is the key to dumbing down each release cycle of
software for further assaulting the non personal-computing
population. Linux and OS/2 developers, on the other hand, tend to
listen to their smartest customers ... The good that Microsoft does
in bringing computers to non-users is outdone by the curse that they
bring on experienced users [Nadeau, 1999].

7Two main open source projects (GNOME and KDE) are meant to remedy Linux's
limitations on desktop computers (by developing mouse and windows interfaces).

8 For example, Torvalds [1999] argues that the Linux model works best with developer-type
software. Ghosh [1999] views the open source process as a large repeated game process of
give-and-take among developer-users (the 'cooking pot' model).
? Blackwell Publishers Ltd. 2002.

204 JOSH LERNER AND JEAN TIROLE

Certainly, the greatest diffusion of open source projects appears to be
in settings where the end users are sophisticated, such as the Apache server
installed by systems administrators. In these cases, users are apparently
more willing to tolerate the lack of detailed documentation or easy-to-
understand user interfaces in exchange for the cost savings and the
possibility of modifying the source code themselves. In several projects,
such as Sendmail, project administrators chose to abandon backward
compatibility in the interests of preserving program simplicity.9 One of the
rationales for this decision was that administrators using the Sendmail
system were responsive to announcements that these changes would be
taking place, and rapidly upgraded their systems. In a number of com-
mercial software projects, it has been noted, these types of rapid responses
are not as common. Once again, this reflects the greater sophistication
and awareness of the users of open source software.

The debate about the ability of open source software to accommodate
high-end users' needs has direct implications for the choice of license. The
recent popularity of more liberal licenses and the concomitant decline of
the GNU license are related to the rise in the 'pragmatists' influence. These
individuals believe that allowing proprietary code and for-profit activities
in segments that would otherwise be poorly served by the open-source
community will provide the movement with its best chance for success.

II(iv). Who Contributes?

Computer system administrators, database administrators, computer pro-
grammers, and other computer scientists and engineers represented about
2.1 million jobs in the United States in 1998. (Unless otherwise noted, the
information in this paragraph is from U.S. Department of Labor [2000].)
A large number of these workers-estimated at between five and ten
percent-are either self-employed or retained on a project-by-project basis
by employers. Computer-related positions are projected by the federal
government to be among the fastest-growing professions in the next
decade.

The distribution of contributors to open source projects appears to be
quite skewed. This is highlighted by an analysis of 25 million lines of open
source code, constituting 3149 distinct projects [Ghosh and Prakash,
2000]. The distribution of contributions is shown in Figure 1. More than
three-quarters of the nearly 13 thousand contributors made only one
contribution; only one in twenty-five had more than five contributions.
Yet the top decile of contributors accounted for fully 72% of the code

9 To be certain, backward compatibility efforts may sometimes be exerted by status-seeking
open source programmers. For example, Linux has been made to run on Atari machines, a

pure bravado effort since no one uses Ataris anymore.
? Blackwell Publishers Ltd. 2002.

SOME SIMPLE ECONOMICS OF OPEN SOURCE 205

1924

928

1 2
O 3-5
0 6-24

1 >25

9617

Figure 1
Distribution of Contributions Made, by Number of Participants

contributed to the open source projects, and the top two deciles for 81%
(see Figure 2). This distribution would be even more skewed if those who
simply reported errors, or 'bugs', were considered: for every individual
who contributes code, five will simply report errors [Valloppillil, 1998]. To

2nd decile

3rd dedle

4th decile

5th declile

6th decile 7th dedle
8th decile

9th dedcile

10th decile

Top dedle

Does not indclude 9% of code, where contrbutor could not be identified.

Figure 2
Distribution of Code Contributed, by Decile

? Blackwell Publishers Ltd. 2002.

206 JOSH LERNER AND JEAN TIROLE

what extent this distribution is unique to open source software is unclear:
the same skewness of output is also observed among programmers
employed in commercial software development facilities [e.g., see Brooks,
1975, and Cusumano, 1991], but it is unclear whether these distributions
are similar in their properties.

The overall picture that we drew from our interviews and from the
responses we received in reaction to the first draft of the paper is that the
open source process is quite elitist. Important contributors are few and
ascend to the 'core group' status, the ultimate recognition by one's peers.
The 61itist view is also supported by Mockus, et al's [1999] study of
contributions to Apache. For Apache, the (core) 'developers mailing list'
is considered as the key list of problems to be solved, while other lists play
a smaller role. The top 15 developers contribute 83% to 91% of changes
(problem reports by way of contrast offer a much less elitist pattern).

Some evidence consistent with the suggestion that contributions to open
source projects are being driven by signaling concerns can be found in
the analysis of contributors to a long-standing archive of Linux postings
maintained at the University of North Carolina by Dempsey, et al. [1999].
These authors examine the suffix of the contributors' e-mail addresses.
While the location of many contributors cannot be precisely identified (for
instance, contributors at '.com' entities may be located anywhere in the
world), the results are nonetheless suggestive. As Figure 3 depicts, 12% of
the contributors are from entities with a suffix '.edu' (typically, U.S.

Other

org

Europe

n e t
....

. . :.
...

. . .
.

. . .

?

.
... .

edu

com
Figure 3

Suffix of Linux Contributors

? Blackwell Publishers Ltd. 2002.

SOME SIMPLE ECONOMICS OF OPEN SOURCE 207

educational institutions), 7% from '.orgs' (traditionally reserved from
U.S. non-profits), fully 37% are from Europe (e.g., with suffixes such as
'.de' and '.uk'), and 11% have other suffixes, many of which represent
other foreign countries. This suggests that many of the contributions are
coming from individuals outside the major software centers.

III. THE ORIGINS OF FOUR PROGRAMS

Each of the four case studies was developed through the review of printed
materials and interviews (as well as those posted on various web sites)
and face-to-face meetings with one or more key participants in the
development effort. In addition, we held a number of conversations with
knowledgeable observers of the open source movement. In Sections IV
and V, we will frequently draw on examples from the four cases.
Nonetheless, we felt it would be helpful to first provide a brief overview of
the development projects.

III(i). Apache

The development of Apache began in 1994. Brian Behlendorf, then 21,
had the responsibility for operating one of the first commercial Internet
servers in the country, that powering Wired magazine's HotWired web
site. This server, like most others in the country, was at the time running
the Unix-based software written at the National Center for Supercomputer
Applications (NCSA) at the University of Illinois. (The only competitive
product at the time was the server developed at the joint European particle
physics research facility, CERN.) The NCSA had distributed its source
code freely and had a development group actively involved in refining the
code in consultation with the pioneering users. As Behlendorf and other
users wrote emendations, or 'patches', for the NCSA server, they would
post them as well to mailing lists of individuals interested in Internet
technology.

Behlendorf and a number of other users, however, encountered
increasing frustrations in getting the NCSA staff to respond to their
suggestions. (During this time, a number of the NCSA staff had departed
to begin Netscape, and the University was in the process of negotiating a
series of licenses of its software with commercial companies.) As a result,
he and six other pioneering developers decided to establish a mailing list to
collect and integrate the patches to the NCSA server software. They
agreed that the process would be a collegial one. While a large number of
individuals would be able to suggest changes, only a smaller set would be
able to actually make changes to the physical code. In August 1995, the
group released Apache 0.8, which represented a substantial departure from
earlier approaches. A particular area of revision was the Application
? Blackwell Publishers Ltd. 2002.

208 JOSH LERNER AND JEAN TIROLE

Program Interface (API), which allowed the development of Apache
features to be very 'modular'. This step enabled programmers to make
contributions to particular areas without affecting other aspects of the
programs.

At the time that Apache was introduced, there was little in the way of
competitive products: in fact, the absence of a good commercial
alternative was a powerful motivation for the launching of the project. A
variety of commercial software vendors, most notably Microsoft and
Netscape, have subsequently targeted server software. Despite this
competition, Apache has retained its dominant position. The November
2000 Netcraft survey [2000] of nearly 24 million Internet domains found
that Apache had a dominant position: 59.7% of the sites used this server
software. The closest competitors, Microsoft's IIS and Netscape's
Enterprise software, were at 20.2% and 6.7% respectively.10

In 1999, the Apache Software Foundation was established to oversee
the development and diffusion of the program. The current status of
Apache, as well as the other open source projects that we focused on, is
summarized in Table I.

III(ii). Linux

Linux, an amalgam of 'Linus' and 'Unix', was created by Linus Torvalds
in 1991. Unlike the other case studies considered here, Torvalds was
motivated to pursue this project by intellectual curiosity, rather than by a
pressing practical need. A 21-year-old graduate student, he sought to build
the 'kernel'-or core element-of a truly open source operating system.

Torvalds based his system on Minix, a public domain Unix system for
personal computers. After approximately six months of development, a
friend allowed him to post the operating system on a university server. He
began encouraging contributions in a series of postings to on-line bulletin
boards, such as one that posed the question 'are you without a project and
just dying to cut your teeth on an [operating system] you can try to modify
to your needs?'

Torvalds initially distributed Linux under a licensing agreement that
restricted any payment for the program, as well as requiring that all
programs distributed or used with Linux be freely available. After half a
year, however, he relaxed these restrictions. The number of users grew
rapidly, from about one hundred after one year to half-a-million in 1994.

'0A complication is introduced by the fact that firewall-protected servers may be quite
different in nature. For instance, a survey of both protected and unprotected servers in the
summer of 1996 by Zoma Research concluded that open source server programs, including
Apache, accounted for only 7% of all installations, far less than the contemporaneous
Netcraft estimate.
? Blackwell Publishers Ltd. 2002.

6

B

P

r-

cr

W

o
A

co OL

TABLE I
THE OPEN SOURCE PROGRAMS STUDIED

Program Apache Perl Sendmail

Nature of program: World wide web (HTTP) server System administration and programming language Internet mail transfer agent

Year of introduction: 1994 1987 1979 (predecessor program)

Governing body: Apache Software Foundation Selected programmers (among the 'perl-5-porters') Sendmail Consortium
(formerly, The Perl Institute)

Competitors: Internet Information Server Java (Sun) Exchange (Microsoft)
(Microsoft) Python (open source program) IMail (Ipswich)
Various servers (Netscape) Visual Basic, ActiveX (Microsoft) Post.Office (Software.com)

Market penetration: 55% (September 1999) Estimated to have 1 million users Handles - 80% of Internet e-mail

(of publicly observable sites only) traffic

Web site: www.apache.org www.perl.org www.sendmail.com

0

E~l

C)

rA

0 z
0

C)

0
'TI

0
11l
M

El

0

c)
Zl

0

?

?3

210 JOSH LERNER AND JEAN TIROLE

From the beginning, Torvalds retained clear leadership of the Linux
project. He rapidly moved to writing less code and coordinating the
software development project, assessing contributions and arbitrating
disputes. Over time, a set of lieutenants have assumed responsibility for
most of the decision-making, but Torvalds still retains authority for
making the ultimate decisions. While employed at California-based
semiconductor manufacturer Transmeta, Torvalds continues to devote
about half his time to the Linux project.

While the origin of Linux was largely driven by intellectual curiosity
on the part of Torvalds and his peers, the program has evolved into one
that represents a significant competitor to Microsoft's Windows operating
system. While the number of Linux users is difficult to determine because
of the numerous channels through which the program is distributed,
estimates range from 7 to 16 million users worldwide.

Reflecting its widespread diffusion, Linux has attracted a large share of
the commercial investment in open source projects. A number of firms
dedicated to supporting Linux have been established: pioneers included
VA Linux, founded in 1993, and Red Hat, established in 1995. These
commercial firms sell Linux software 'packages', which are often far easier
to install and operate than free versions available, provide technical
support to end users and computer resellers, and sell complementary
proprietary products. In addition, a number of established computer
hardware and software firms have made extensive investments in Linux
development.

III(iii). Perl

Perl, or the Practical Extraction and Reporting Language, was created by
Larry Wall in 1987. Wall, a programmer with Burroughs (a computer
mainframe manufacturer now part of Unisys) had already written a
number of widely adopted software programs. These included a program
for reading postings on on-line newsgroups and a program that enabled
users to readily update old source code with new patches.

The specific genesis of Perl was the large number of repetitive system
administration tasks that Wall was asked to undertake while at Burroughs.
In particular, Wall was required to synchronize and generate reports on
two Unix-based computers as part of a project that Burroughs was
undertaking for the U.S. National Security Agency. He realized that there
was a need for a program language that was somewhere between the Unix
shell language and the C language (suitable for developing complex
programming applications). The Perl language sought to enable pro-
grammers rapidly to undertake a wide variety of tasks, particularly
relating to system administration. The program was first introduced in
1987 via the Internet. It has become widely accepted as a language for
? Blackwell Publishers Ltd. 2002.

SOME SIMPLE ECONOMICS OF OPEN SOURCE 211

developing scripts for Apache web servers, and is incorporated in a
number of other programs.

Perl is administered on a rotating basis: the ten to twenty programmers
(the number fluctuates over time) who have been most actively involved in
the program take turns managing different aspects of the project. Wall
himself has joined the staff of O'Reilly & Associates, a publisher
specializing in manuals documenting open source programs. While he is
no longer actively contributing to the programming, he remains active in
managing the project.

As in the case of Apache, Perl's success has attracted competition
from commercial developers. In particular, Sun's Java and
Microsoft's ActiveX, both of which were introduced well after the
diffusion of Perl, incorporate many of the same features. Rough
estimates suggest that the number of Perl users is about one million.
Some observers believe (see, for instance, the conversations archived
at http://www.mail-archive.com/advocacy%40perl.org) that the growth
usage of Perl has largely stabilized, and that many of the new users
are turning to Java. As is often the case in this sector, confirming
these claims is exceedingly difficult.

Two efforts to establish a Perl-related foundation have foundered. For
instance, the Perl Institute had been intended to ensure that less glamorous
tasks, such as documentation, were undertaken, in order to enhance the
long-run growth of Perl. The failure of these efforts, however, may have
reflected more about the specifics of the individual personalities involved
than the prospects of the program itself.

III(iv). Sendmail

Sendmail was originally developed in the late 1970s by Eric Allman, a
graduate student in computer science at the University of California at
Berkeley. As part of his responsibilities, Allman worked on a variety of
software development and system administration tasks at Berkeley.

One of the major challenges that Allman faced was the incompatibility
of the two major computer networks on campus. The approximately one
dozen Unix-based computers had been originally connected through
'BerkNet', a locally developed program that provided continuous inter-
connection. These computers, in turn, connected to those on other
campuses through telephone lines, using the UUCP protocol (Unix-to-
Unix Copy Protocol). Finally, the Arpanet, the direct predecessor of the
Internet, was introduced on the Berkeley campus around this time. Each
of the networks used a different communications protocol: for instance,
each person had multiple e-mail addresses, depending on the network from
which the message was sent. To cope with this problem, Allman developed
in 1979 a program called 'Delivermail', which provided a way to greatly
? Blackwell Publishers Ltd. 2002.

212 JOSH LERNER AND JEAN TIROLE

simplify the addressing problem. In an emendated form that allowed it to
address a large number of domains, it was released two years later as
'Sendmail'.

Sendmail was soon adopted as the standard method of routing e-mail
on the Arpanet. As the network grew, however, its limitations became
increasingly apparent. A variety of enhanced versions of Sendmail were
released in the 1980s and early 1990s which were incompatible with each
other-in the argot of the open source community, the development of the
program 'forked'. In 1993, Allman, who had returned to working at
Berkeley after being employed at a number of software firms, undertook a
wholesale rewrite of Sendmail. The development was sufficiently successful
that the incompatible versions were largely abandoned in favor of the
new version. While a variety of competitive products had appeared, such
as Software.com's Post Office, Microsoft's Exchange, and Ipswitch's Imail,
the open source program appeared to have a dominant competitive
position. Observers have attributed this to the presence of an installed base
of users and the ease of customizing the program. The program was
estimated to handle about 75% of all Internet e-mail traffic in 2000.

In 1997, Allman established Sendmail, Inc. The company, which has
been financed by a leading venture capital group, Benchmark Capital, is
seeking to sell Sendmail-related software enhancements (such as more
user-friendly interfaces) and services. At the same time, the company seeks
to encourage the continuing development of the software on an open
source basis. For instance, Sendmail, Inc. employs two engineers who
work almost full time on contributions to the open source program, which
is run by the non-profit Sendmail Consortium.

IV. WHAT DOES ECONOMIC THEORY TELL US ABOUT OPEN SOURCE?

This section and the next use economic theory to shed light on the three
key questions: Why do people participate?" Why are there open source
projects in the first place? And how do commercial vendors react to the
open source movement?

IV(i). What Motivates Programmers?

A programmer participates in a project, whether commercial or open
source, only if she derives a net benefit (broadly defined) from engaging in

" We focus primarily on programmers' contributions to code. A related field of study
concerns field support, which is usually also provided free of charge in the open source
community. Lakhani and von Hippel [2000] provide empirical evidence for field support in
the Apache project. They show that providers of help often gain learning for themselves, and
that the cost of delivering help is therefore usually low.
0 Blackwell Publishers Ltd. 2002.

SOME SIMPLE ECONOMICS OF OPEN SOURCE 213

the activity. The net benefit is equal to the immediate payoff (current
benefit minus current cost) plus the delayed payoff (delayed benefit minus
delayed cost).

A programmer working on an open source software development
project incurs a variety of benefits and costs. The programmer incurs an
opportunity cost of her time. While she is working on this project, she is
unable to engage in another programming activity. This opportunity cost
exists at the extensive and intensive margins. First, a programmer who
would work as an independent on open source projects would forgo the
monetary compensation she would receive if she were working for a
commercial firm or a university. Second, and more to the point, for a
programmer with an affiliation with a commercial company, a university
or research lab, the opportunity cost is the cost of not focusing on her
primary mission. For example, the academic's research output may sag,
and the student's progress towards a degree slow down; these involve
delayed costs. The size of this opportunity cost of not focusing on the
primary mission of course depends on the extent of monitoring by the
employer and more generally, the pressure on the job.

Two immediate benefits may counter this cost. First, the programmer,
when fixing a bug or customizing an open source program, may actually
improve rather than reduce her performance in the mission endowed upon
her by her employer. This is particularly relevant for system administra-
tors looking for specific solutions for their company. Second, the pro-
grammer compares how enjoyable the mission set by the employer and the
open source alternative are. A 'cool' open source project may be more
fun than a routine task.

The delayed reward covers two distinct, although hard-to-distinguish,
incentives. The career concern incentive refers to future job offers, shares in
commercial open source-based companies,12 or future access to the
venture capital market.'3 The ego gratification incentive stems from a
desire for peer recognition. Probably most programmers respond to both

12 Linus Torvalds and others have been awarded shares in Linux-based companies that went
public. Most certainly, these rewards were unexpected and did not affect the motivation of
open source programmers. If this practice becomes 'institutionalized', such rewards will in the
future be expected and therefore impact the motivation of open source leaders. More
generally, leaders of open source movements may initially not have been motivated by ego
gratification and career concerns. Like Behlendorf, Wall, and Allman, the 'bug fixing'
motivation may have originally been paramount. The private benefits of leadership may have
grown in importance as the sector matured.

13 Success at a commercial software firm is likely to be a function of many attributes. Some
of these (e.g., programming talent) can be signaled through participation in open source
projects. Other important attributes, however, are not readily signaled through these projects.
For instance, commercial projects employing a top-down architecture require that pro-
grammers work effectively in teams, while many open source projects are initiated by
relatively modest pieces of code, small enough to be written by a single individual.
0 Blackwell Publishers Ltd. 2002.

214 JOSH LERNER AND JEAN TIROLE

incentives. There are some differences between the two. The programmer
mainly preoccupied by peer recognition may shun future monetary
rewards, and may also want to signal her talent to a slightly different
audience than those motivated by career concerns. From an economic
perspective, however, the incentives are similar in most respects. We will
group the career concern incentive and the ego gratification incentive
under a single heading: the signaling incentive.

Economic theory [e.g., Holmstr6m, 1999] suggests that this signaling
incentive is stronger,

(i) the more visible the performance to the relevant audience (peers,
labor market, venture capital community),

(ii) the higher the impact of effort on performance, and
(iii) the more informative the performance about talent.

The first condition gives rise to what economists call 'strategic
complementarities'. To have an 'audience', programmers will want to
work on software projects that will attract a large number of other pro-
grammers. This suggests the possibility of multiple equilibria. The same
project may attract few programmers because programmers expect that
other programmers will not be interested; or it may flourish as pro-
grammers (rationally) have faith in the project.

The same point applies to forking in a given open source project. Open
source processes are in this respect quite similar to academic research. The
latter is well known to exhibit fads: see the many historical examples of
simultaneous discoveries discussed by Merton [1973]. Fields are com-
pletely neglected for years, while others with apparently no superior
intrinsic interest attract large numbers of researchers. Fads in academia
are frowned upon for their inefficient impact on the allocation of research.
It should not be ignored, however, that fads also have benefits. A fad can
create a strong signaling incentive: researchers working in a popular area
may be highly motivated to produce a high-quality work, since they can be
confident that a large audience will examine their work.14

Turning to the leadership more specifically, it may still be a puzzle that
the leader initially turns over valuable code to the community.15 Despite
the substantial status and career-concerns benefits of being a leader of an

14Dasgupta and David [1994] suggest an alternative explanation for these patterns: the
need to impress less-informed patrons who are likely to be impressed by the academic's
undertaking research in a 'hot' area. These patterns probably are driven by academic career
concerns. New fields tend to be relatively more attractive to younger researchers, since older
researchers have already invested in established fields and therefore have lower marginal costs
of continuing in these fields. At the same time, younger researchers need to impress senior
colleagues who will evaluate them for promotion. Thus, they need the presence of some of
their seniors in the new fields.

15 Section V will discuss companies' incentives to release code.
? Blackwell Publishers Ltd. 2002.

SOME SIMPLE ECONOMICS OF OPEN SOURCE 215

important open source project, it would seem that most should not resist
the large monetary gains from taking a promising technology private. We
can only conjecture as to why this is not the case. One possibility is that
taking the technology private may meet layers of resistance within the
leader's corporation. To the extent that the innovation was made while
working in-house, the programmer must secure a license from the
employer;16 and her division, which does not want to lose a key pro-
grammer, may not be supportive of her demand. Another possibility is
that the open source process may be a more credible way of harnessing
energies when, say, fighting against a dominant player in the industry.

IV(ii). Comparison Between Open Source and Closed Source Programming
Incentives.

To compare programmers' incentives in the open source and proprietary
settings, we need to examine how the fundamental features of the two
environments shape the incentives just reviewed. We will first consider the
relative short-term rewards, and then turn to the deferred compensation.

Commercial projects have an edge on the current-compensation
dimension because the proprietary nature of the code generates income.
This makes it privately worthwhile for private companies to offer salaries.17
This contention is the old argument in economics that the prospect of profit
encourages investment, which is used, for instance, to justify the awarding
of patents to encourage invention.

By way of contrast, an open source project may well lower the cost for
the programmer, for two reasons:

(i) 'Alumni effect'.- Because the code is freely available to all, it can be
used in schools and universities for learning purposes; so it is already
familiar to programmers. This reduces their cost of programming
for UNIX, for example.18

(ii) Customization and bug-fixing benefits: The cost of contributing to an
open source project can be offset if the activity brings about a private

16Open source projects may be seen as imposing less of a competitive threat to the
firm. As a result, the firm may be less inclined to enforce its property rights on innovations
turned open source. Alternatively, the firm may be unaware that the open source project is
progressing.

17To be certain, commercial firms (e.g., Netscape, Sun, O'Reilly, Transmeta) supporting
open source projects are also able to compensate programmers, because they indirectly benefit
financially from these projects. Similarly, the government and not-for-profit corporations
have done some subsidizing of open source projects. Still, there should be an edge for
commercial companies.

18While we are here interested in private incentives to participate, note that this
complementarity between apprenticeship and projects is socially beneficial. The social benefits
might not increase linearly with open source market share, however, since the competing open
source projects may end up competing for attention in the same common pool of students.
? Blackwell Publishers Ltd. 2002.

216 JOSH LERNER AND JEAN TIROLE

benefit (bug fixing, customization) for the programmer and her firm.
Note again that this factor of cost reduction is directly linked to the
openness of the source code.19

Let us now turn to the delayed reward (signaling incentive) component.
In this respect too, the open source process has some benefits over the
closed source approach. As we noted, signaling incentives are stronger, the
more visible the performance and the more attributable the performance
to a given individual. Signaling incentives therefore may be stronger in the
open source mode for three reasons:

(i) Better performance measurement: Outsiders can only observe
inexactly the functionality and/or quality of individual elements of a
typical commercially developed program, as they are unable to
observe the proprietary source code. By way of contrast, in an open
source project, the outsiders are able to see not only what the contri-
bution of each individual was and whether that component 'worked',
but also whether the task was hard, if the problem was addressed in
a clever way, whether the code can be useful for other programming
tasks in the future, and so forth.

(ii) Full initiative: The open source programmer is her own boss and
takes full responsibility for the success of a subproject. In a hier-
archical commercial firm, however, the programmer's performance
depends on her supervisor's interference, advice, etc. Economic
theory would predict that the programmer's performance is more
precisely measured in the former case.20

(iii) Greater fluidity: It may be argued that the labor market is more fluid
in an open source environment. Programmers are likely to have less
idiosyncratic, or firm-specific, hufnan capital that limits shifting one's
efforts to a new program or work environment. (Since many
elements of the source code are shared across open source projects,
more of the knowledge they have accumulated can be transferred to
the new environment).

These theoretical arguments also provide insights as to who is more
likely to contribute and what tasks are best suited to open source projects.

19To be certain, commercial companies leave Application Programming Interfaces for
other people to provide add-ons, but this is still quite different from opening the source
code.

20 On the relationship between empowerment and career concerns, see Ortega [2000]. In
Cassiman's [1998] analysis of research corporations (for-profit centers bringing together firms
with similar research goals), free riding by parent companies boosts the researchers'
autonomy and helps attracting better talents. Cassiman argues that it is difficult to sustain a
reputation for respecting the autonomy of researchers within firms. Cassiman's analysis looks
at real control, while our argument here results from the absence of formal control over the
OS programmer's activity.
? Blackwell Publishers Ltd. 2002.

SOME SIMPLE ECONOMICS OF OPEN SOURCE 217

Sophisticated users derive direct benefits when they customize or fix a
bug in open source software.21 A second category of potential contributors
consists of individuals with strong signaling incentives; these may use open
source software as a port of entry. For instance, open source processes
may give a talented system administrator at a small academic institution
(who is also a user!) a unique opportunity to signal her talent to peers,
prospective employers, and the venture capital community.22

As to the tasks that may appeal to the open source community, one
would expect that tasks such as those related to the operating systems and
programming languages, whose natural audience is the community of
programmers, would give rise to strong signaling incentives. (For instance,
the use of Perl is largely restricted to system administrators.) By way of
contrast, tasks aiming at helping the much-less-sophisticated end user-
e.g., design of easy-to-use interfaces, technical support, and ensuring
backward compatibility-usually provide lower signaling incentives.23

IV(iii). Evidence on Individual Incentives

A considerable amount of evidence is consistent with an economic
perspective.

First, user benefits are key to a number of open source projects. One of

21 A standard argument in favor of open source processes is their massive parallel
debugging. Typically, commercial software firms can only ask users to point at problems: beta
testers do not fix the bugs, they just report them. It is also interesting to note that many
commercial companies do not discourage their employees from working on open source
projects. In many cases where companies encourage such involvement, programmers use open
source tools to fix problems. Johnson [1999] builds a model of open source production by a
community of user-developers. There is one software program or module to be developed,
which is a public good for the potential developers. Each of the potential developers has a
private cost of working on the project and a private value of using it; both of which are
private information. Johnson shows that the probability that the innovation is made need not
increase with the number of developers, as free-riding is stronger when the number of
potential developers increases.

22 An argument often heard in the open source community is that people participate in open
source projects because programming is fun and because they want to be 'part of a team'.
While this argument may contain a grain of truth, it is somewhat puzzling as it stands; for
example, it is not clear why programmers who are part of a commercial team could not enjoy
the same intellectual challenges and the same team interaction as those engaged in open
source development. (To be sure, it may be challenging for programmers to readily switch
employers if their peers in the commercial entity are not congenial.) The argument may reflect
the ability of programmers to use participation in open source projects to overcome the
barriers that make signaling in other ways problematic.

23 Valloppillil [1998] further argues that reaching commercial grade quality often involves
unglamorous work on power management, management infrastructure, wizards, etc., that
makes it unlikely to attract open source developers. Valloppillil's argument seems a fair
description of past developments in open source software. Some open source proponents do
not confer much predictive power on his argument, though; they predict, for example, that
open source user interfaces such as GNOME and KDE will achieve commercial grade
quality.
? Blackwell Publishers Ltd. 2002.

218 JOSH LERNER AND JEAN TIROLE

the origins of the free software movement was Stallman's inability to
improve a printer program because Xerox refused to release the source
code. In three of the four scenarios described in Section III, the project
founders were motivated by information technology problems that they
had encountered in their day-to-day work. For instance, in the case of
Apache, the initial set of contributors was almost entirely system admin-
istrators who were struggling with the same types of problems as
Behlendorf. In each case, the initial release was 'runnable and testable': it
provided a potential, even if imperfect, solution to a problem that was
vexing considerable numbers of data processing professionals.

Second, it is clear that giving credit to authors is essential in the open
source movement. This principle is included as part of the nine key
requirements in the 'Open Source Definition' [Open Source Initiative,
1999]. This point is also emphasized by Raymond [1999b], who points out
'surreptitiously filing someone's name off a project is, in cultural context,
one of the ultimate crimes'.

More generally, the reputational benefits that accrue from successful
contributions to open source projects appear to have real effects on the
developers. This is acknowledged within the open source community itself.
For instance, according to Raymond [1999b], the primary benefits that
accrue to successful contributors of open source projects 'good reputation
among one's peers, attention and cooperation from others, . . . [and]
higher status [in the] . .. exchange economy'. Thus, while some of benefits
conferred from participation in open source projects may be less concrete
in nature, there also appear be quite tangible-if delayed-rewards.

The Apache project provides a good illustration of these observations.
The project makes a point of recognizing all contributors on its web site,
even those who simply identify a problem without proposing a solution.
Similarly, the organization highlights its most committed contributors,
who have the ultimate control over the project's evolution. Moreover, it
appears that many of the skilled Apache programmers have benefited
materially from their association with the organization. Numerous contri-
butors have been hired into Apache development groups within companies
such as IBM, become involved in process-oriented companies such as
Collab.Net which seek to make open source projects more feasible (see
below), or else moved into other Internet tools companies in ways that
were facilitated by their expertise and relationships built up during their
involvement in the open source movement. Meanwhile, many of the new
contributors are already employed by corporations, and working on
Apache development as part of their regular assignments.

There is also substantial evidence that open source work may be a good
stepping stone for securing access to venture capital. For example, the
founders of Sun, Netscape, and Red Hat had signaled their talent in the
open source world. In Table II, we summarize some of the subsequent
? Blackwell Publishers Ltd. 2002.

o

t-

TABLE II
COMMERCIAL ROLES PLAYED BY SELECTED INDIVIDUALS ACTIVE IN OPEN SOURCE MOVEMENT

Individual Role and Company

Eric Allman Chief Technical Officer, Sendmail, Inc. (support for open source software product)

Brain Behlendorf Founder, President, and Chief Technical Officer, Collab.Net (management of open source projects)

Keith Bostic Founder and President, Sleepycat Software

L. Peter Deutsch Founder, Aladdin Enterprises (support for open source software product)

William Joy Founder and Chief Scientist, Sun Microsystems (workstation and software manufacture)

Michael Tiemann Founder, Cygnus Solutions (open source support)

Linus Torvalds Employee, Transmeta Corporation (chip design company)

Paul Vixie President, Vixie Enterprises (engineering and consulting services)

Larry Wall Employee, O'Reilly & Associates (software documentation publisher)

VT1

C,,

r

?

tZ:
o

ct-

o

Cd

613
z
C,,

C-6

1NJ

220 JOSH LERNER AND JEAN TIROLE

commercial roles played by individuals active in the open source
movement.

IV(iv). Organization and Governance

Favorable characteristics for open source production are (a) its
modularity (the overall project is divided into much smaller and well-
defined tasks ('modules') that individuals can tackle independently from
other tasks) and (b) the existence of fun challenges to pursue.24 A
successful open source project also requires a credible leader or leader-
ship, and an organization consistent with the nature of the process.
Although the leader is often at the origin a user who attempts to solve a
particular program, the leader over time performs less and less pro-
gramming. The leader must provide a 'vision', attract other pro-
grammers, and, last but not least, 'keep the project together' (prevent it
from forking or being abandoned).

Initial Characteristics
The success of an open source project is dependent on the ability to break
the project into distinct components. Without an ability to parcel out work
in different areas to programming teams who need little contact with one
another, the effort is likely to be unmanageable. Some observers argue that
the underlying Unix architecture lent itself well to the ability to break
development tasks into distinct components. It may be that as new open
source projects move beyond their Unix origins and encounter new
programming challenges, the ability to break projects into distinct units
will be less possible. But recent developments in computer science and
programming languages (e.g., the development of object-oriented pro-
gramming) have encouraged further modularization, and may facilitate
future open source projects.

The initial leader must also assemble a critical mass of code to which
the programming community can react. Enough work must be done to
show that the project is doable and has merit. At the same time, to attract
additional programmers, it may be important that the leader does not
perform too much of the job on his own and leaves challenging
programming problems to others.25 Indeed, programmers will initially be
reluctant to join a project unless they identify an exciting challenge.

24Open source projects have trouble attracting people initially unless they leave fun
challenges 'up for grabs'. On the other hand, the more programmers an open source project
attracts, the more quickly the fun activities are completed. The reason why the projects need
not burn out once they grow in ranks is that the 'fixed cost' that individual programmers incur
when they first contribute to the project is sunk and so the marginal cost of continuing to
contribute is smaller than the initial cost of contributing.

25 For example, Valloppillil's [1998] discussion of the Mozilla release.
? Blackwell Publishers Ltd. 2002.

SOME SIMPLE ECONOMICS OF OPEN SOURCE 221

Another reason why programmers are easier to attract at an early stage
is that, if successful, the project will keep attracting a large number of
programmers in the future, making early contributions very visible.

Consistent with this argument, it is interesting to note that each of the
four cases described above appeared to pose challenging programming
problems.26 When the initial release of each of these open source programs
was made, considerable programming problems were unresolved. The
promise that the project was not near a 'dead end', but rather would
continue to attract ongoing participation from programmers in the years
to come, appears to be an important aspect of its appeal.

In this respect, Linux is perhaps the quintessential example. The initial
Linux operating system was quite minimal, on the order of a few tens of
thousands of lines of code. In Torvalds' initial postings in which he sought
to generate interest in Linux, he explicitly highlighted the extent to which
the version would require creative programming in order to achieve full
functionality. Similarly, Larry Wall attributes the much of the success of
Perl to the fact that it 'put the focus on the creativity of the programmer'.
Because it has a very limited number of rules, the program has evolved in
a variety of directions that were largely unanticipated when Wall initiated
the project.

Leadership
Another important determinant of project success appears to be the nature
of its leadership. In some respects, the governance structures of open
source projects are quite different. In a number of instances, such as Linux,
there is an undisputed leader. While certain aspects are delegated to
others, a strong centralization of authority characterizes these projects. In
other cases, such as Apache, a committee will resolve the disputes by
voting or a consensus process.

At the same time, leaders of open source projects share some common
features. Most leaders are the programmers who developed the initial code
for the project (or made another important contribution early in the
project's development). While many make fewer programming con-
tributions, having moved on to broader project management tasks, the
individuals that we talked to believed that the initial experience was
important in establishing credibility to manage the project. The splintering
of the Berkeley-derived Unix development programs has been attributed
in part to the absence of a single credible leader.

But what does the leadership of an open source project do? It might
appear at first sight that the unconstrained, quasi-anarchistic nature of the

26 It should be cautioned that these observations are based on a small sample of successful
projects. Observing which projects succeed or fail and the reasons for these divergent
outcomes in an informal setting such as this one is quite challenging.
? Blackwell Publishers Ltd. 2002.

222 JOSH LERNER AND JEAN TIROLE

open source process leaves little scope for a leadership. This, however, is
incorrect. While the leader has no 'formal authority' (she is unable to
instruct anyone to do anything), she has substantial 'real authority' in
successful open source projects.27 That is, her 'recommendations', broadly
viewed, tend to be followed by the vast majority of programmers working on
the project. These recommendations include the initial 'vision' (agenda for
work, milestones), the subsequent updating of goals as the project evolves,
the appointment of key leaders, the cajoling of programmers so as to avoid
attrition or forking, and the overall assessment of what has been and should
be achieved. (Even though participants are free to take the project where
they want as long as they release the modified code, acceptance by the
leadership of a modification or addition provides some certification as to its
quality and its integration/compatibility with the overall project. The
certification of quality is quite crucial to the open source project because the
absence of liability raises concerns among users that are stronger than for
commercial software, for which the vendor is liable).

The key to a successful leadership is the programmers' trust in the
leadership: that is, they must believe that the leader's objectives are
sufficiently congruent with theirs and not polluted by ego-driven,
commercial, or political biases. In the end, the leader's recommendations
are only meant to convey her information to the community of parti-
cipants. The recommendations receive support from the community only if
they are likely to benefit the programmers, that is only if the leadership's
goals are believed to be aligned with the programmers' interests.

For instance, the leadership must be willing to accept meritorious
improvements, even though they do not fit within the leader's original
blueprint. Trust in the leadership is also key to the prevention of forking.
While there are natural forces against forking (the loss of economies of
scale due to the creation of smaller communities, the hesitations of
programmers in complementary segments to port to multiple versions, and
the stigma attached to the existence of a conflict), other factors may
encourage forking. User-developers may have conflicting interests as to
the evolution of the technology. Ego (signaling) concerns may also prevent
a faction from admitting that another approach is more promising, or
simply from accepting that it may socially be preferable to have one group
join the other's efforts even if no clear winner has emerged. The presence
of a charismatic (i.e., trusted) leader is likely to substantially reduce the
probability of forking in two ways. First, indecisive programmers are
likely to rally behind the leadership's preferred alternative. Second, the
dissenting faction may not have an obvious leader of its own.

27 The terminology and the conceptual framework are here borrowed from Aghion-Tirole
[1997].
? Blackwell Publishers Ltd. 2002.

SOME SIMPLE ECONOMICS OF OPEN SOURCE 223

A good leadership should also clearly communicate its goals and evaluation
procedures. Indeed, the open source organizations go to considerable efforts
to make the nature of their decision making process transparent: the process
by which the operating committee reviews new software proposals is
frequently posted and all postings archived. For instance, on the Apache web
site, it is explained how proposed changes to the program are reviewed by
the program's governing body, whose membership is largely based on
contributions to the project. (Any significant change requires at least three
'yes' votes-and no vetoes-by these key decision-makers.)

V. COMMERCIAL SOFTWARE COMPANIES' REACTIONS TO

THE OPEN SOURCE MOVEMENT

This section examines the interface between open and closed source software
development. Challenged by the successes of the open source movement, the
commercial software corporations may employ one of the following two
strategies. The first is to emulate some incentive features of open source
processes in a distinctively closed source environment. Another is to try to
mix open and closed source processes to get the best of both worlds.

V(i). Why Don't Corporations Duplicate the Open Source Incentives?

As we already noted, owners of proprietary code are not able to enjoy
the benefits of getting free programmer training in schools and universities
(the alumni effect); nor can they easily allow users to modify their code
and customize it without jeopardizing intellectual property rights.

Similarly, and for the reasons developed in Section IV, commercial
companies will never be able to fully duplicate the visibility of performance
reached in the open source world. At most can they duplicate to some extent
some of the signaling incentives of the open source world. Indeed, a number
of commercial software companies (e.g., video game companies, Qualcomm
for the Eudora email program) list people who have developed the software.
It is an interesting question why others do not. To be certain, commercial
companies do not like their key employees to become highly visible, lest they
be hired away by competitors.28 But, to a large extent, firms also realize that
this very visibility enables them to attract talented individuals and provides
a powerful incentive to existing employees.29

28 For instance, concerns about the 'poaching' of key employees was one of the reasons
cited for Steve Jobs' recent decision to cease giving credit to key programmers in Apple
products [Claymon, 1999].

29For the economic analysis of employee visibility, see Gibbons [1997] and Gibbons and
Waldman's [1999] review essays. Ronde [1999] models the firms' incentives to 'hide' their
workers from the competition in order to preserve their trade secrets.
? Blackwell Publishers Ltd. 2002.

224 JOSH LERNER AND JEAN TIROLE

To be certain, team leaders in commercial software build reputations
and get identified with proprietary software just as they can on open
source projects; but the ability of reputations to spread beyond the leaders
is more limited, due to the non-verifiability of claims about who did
what.30

Another area in which software companies might try to emulate open
source development is the promotion of widespread code sharing within the
company. This may enable them to reduce code duplication and to broaden
a programmer's audience. Interestingly, existing organizational forms may
preclude the adoption of open source systems within commercial software
firms. An internal Microsoft document on open source [Valloppillil, 1998]
describes a number of pressures that limit the implementation of features of
open source development within Microsoft. Most importantly, each
software development group appears to be largely autonomous. Software
routines developed by one group are not shared with others. In some
instances, the groups seek to prevent being broken up by not documenting a
large number of program features. These organizational attributes, the
document suggests, lead to very complex and interdependent programs that
do not lend themselves to development in a 'compartmentalized' manner
nor to widespread sharing of source code.31

V(ii). The Commercial Software Companies' Open Source Strategies

As should be expected, many commercial companies have undertaken
strategies to capitalize on the open source movement. In a nutshell, they
expect to benefit from their expertise in some segment whose demand is
boosted by the success of a complementary open source program. While
improvements in the open source software are not appropriable, com-
mercial companies can benefit indirectly in a complementary proprietary
segment.32

Living symbiotically off an open source project
One such strategy is straightforward. It consists of commercially providing
complementary services and products that are not supplied efficiently by

30 Commercial vendors try to address this problem in various ways. For example, Microsoft
developers now have the right to present their work to their users. Promotions to
'distinguished engineer' or to a higher rank more generally as well as the granting of stock
options as a recognition of contributions also make the individual performance more visible
to the outside world.

31 Cusamano and Selby (1995), however, document a number of management institutions
at Microsoft that attempt to limit these pressures.

32 Another motivation for commercial companies to interface with the open source world
may be public relations. Furthermore, firms may temporarily encourage programmers to
participate in open source projects to learn about the strengths and weaknesses of this
development approach.
? Blackwell Publishers Ltd. 2002.

SOME SIMPLE ECONOMICS OF OPEN SOURCE 225

the open source community. Red Hat and VA Linux for example,
exemplify this 'reactive' strategy.33

In principle, a 'reactive' commercial company may want to encourage
and subsidize the open source movement, for example by allocating a few
programmers to the open source project.34 Red Hat will make more money
on support if Linux is successful. Similarly, if logic semiconductors and
operating systems for personal computers are complements, one can show
by a revealed preference argument that Intel's profits will increase if Linux
(which unlike Windows is free) takes over the PC operating system
market. Sun may benefit if Microsoft's position is weakened; Oracle may
wish to port its database products to a Linux environment in order to
lessen its dependence on Sun's Solaris operating system; and so forth.
Because firms do not capture all the benefits of the investments, however,
the free-rider problem often discussed in the economics of innovation
should apply here as well. Subsidies by commercial companies for open
source projects should remain limited unless the potential beneficiaries
succeed in organizing a consortium (which will limit the free-riding
problem).

Code Release
A second strategy is to take a more proactive role in the development of
open source software. Companies can release existing proprietary code and
create some governance structure for the resulting open source process.
For example, Hewlett-Packard recently released its Spectrum Object
Model-Linker to the open source community in order to help the Linux
community port Linux to Hewlett Packard's RISC architecture.35 This is
similar to the strategy of giving away the razor (the released code) to sell
more razor blades (the related consulting services that HP will provide).

When can it be advantageous for a commercial company to release
proprietary code under an open source license? The first condition is, as we
have noted, that the company expects to thereby boost its profit on a
complementary segment. A second is that the increase in profit in the
proprietary complementary segment offsets any profit that would have
been made in the primary segment, had it not been converted to open
source. Thus, the temptation to go open source is particularly strong when

33Red Hat provides support for Linux-based products, while VA Linux provides
hardware products optimized for the Linux environment. In December 1999, their market
capitalizations were $17 and $10 billion respectively, though they have subsequently declined
significantly.

34 Of course, these programmers also increase the company's ability to learn from scientific
and technical discoveries elsewhere and help the company with the development of the
proprietary segment.

35 Companies could even (though probably less likely) encourage ex nihilo development of
new pieces of open source software.
? Blackwell Publishers Ltd. 2002.

226 JOSH LERNER AND JEAN TIROLE

the company is too small to compete commercially in the primary segment
or when it is lagging behind the leader and about to become extinct in that
segment.36,37

Various efforts by corporations selling proprietary software products
to develop additional products through an open source approach have
been undertaken. One of the most visible of these efforts was Netscape's
1998 decision to make 'Mozilla', a portion of its browser source code,
freely available. This effort encountered severe difficulties in its first year,
only receiving approximately two dozen postings by outside developers.
Much of the problems appeared to stem from the insufficiently modular
nature of the software: reflecting its origins as a proprietary commercial
product, the different portions of the program were highly interdependent
and interwoven. Netscape eventually realized it needed to undertake a
major restructuring of the program, in order to enhance the ability of open
source programmers to contribute to individual sections. It is also likely
that Netscape raised some suspicions by not initially adopting the
right governance structure. Leadership by a commercial entity may not
internalize enough of the objectives of the open source community. In
particular, a corporation may not be able to credibly commit to keeping
all source code in the public domain and to adequately highlighting
important contributions.38

For instance, in the Mozilla project, Netscape's unwillingness to make
large amounts of browser code public was seen as an indication of its
questionable commitment to the open source process. In addition,
Netscape's initial insistence on the licensing terms that allowed the
corporation to relicense the software developed in the open source project
on a proprietary basis was viewed as problematic [Hamerly, Paquin and
Walton, 1999]. (The argument is here the mirror image of the standard
argument in industrial economics that a firm may want to license its
technology to several licensees in order to commit not to expropriate
producers of complementary goods and services in the future: see Shepard

36 See, for example, the discussion of SGI's open source strategy in Taschek [1999].
37It should also be noted that many small developers are uncomfortable doing business

with leading software firms, feeling them to be exploitative, and that these barriers may be
overcome by the adoption of open source practices by the large firms. A rationalization of this
story is that, along the lines of Farrell and Katz [2000], the commercial platform owner has
an incentive to introduce substitutes in a complementary segment, in order to force prices
down in that segment and to raise the demand for licenses to the software platform. When,
however, the platform is available through (say) a BSD-style license, the platform owner has
no such incentives, as he cannot raise the platform's price. Vertical relationships between
small and large firms in the software industry are not fully understood, and would reward
further study.

38 An interesting question is why corporations do not replicate the modular structure of
open source software in commercial products more generally. One possibility may be that
modular code, whatever its virtues for a team of programmers working independently, is not
necessarily better for a team of programmers and managers working together.
? Blackwell Publishers Ltd. 2002.

SOME SIMPLE ECONOMICS OF OPEN SOURCE 227

[1987] and Farrell and Gallini [1988].) Netscape initially proposed the
'Netscape Public License', a cousin to the BSD license that allowed
Netscape to take pieces of the open source code and turn them back into a
proprietary project again. The licensing terms, however, may not have
been the hindering factor, since the terms of the final license are even
stricter than those of the GPL. Under this new license (the 'Mozilla Public
License'), Netscape cannot relicense the modifications to the code.

Intermediaries
In this light, it is tempting to interpret the creation of organizations such
as Collab.Net as efforts to certify corporate open source development
programs, just as investment banks and venture capitalists play a
certification role for new firms. Collab.Net, a new venture funded by the
venture capital group Benchmark Partners, will organize open source
projects for corporations who wish to develop part of their software in this
manner. Collab.Net will receive fees for its online marketplace
(SourceXchange, through which corporations will contact open source
developers), for preparing contracts, for helping select and monitor
developers, and for settling disputes. Hewlett Packard released the core of
its E-speak technology (which enable brokering capabilities) to open
source39 and posted six projects related to this technology.

Hewlett Packard's management of the open source process seems
consistent with Dessein [1999]. Dessein shows that a principal with
formal control rights over an agent's activity in general gains by dele-
gating his control rights to an intermediary with preferences or incentives
that are intermediate between his and the agent's. The partial alignment
of the intermediary's preferences with the agent's fosters trust and boosts
the agent's initiative, ultimately offsetting the partial loss of control for
the principal. In the case of Collab.Net, the congruence with the open
source developers is obtained through the employment of visible open
source developers (for example, the president and chief technical officer is
Brian Behlendorf, one of the cofounders of the Apache project) and the
involvement of O'Reilly, a technical book publisher with strong ties to
the open source community.

VI. FOUR OPEN ECONOMIC QUESTIONS ABOUT OPEN SOURCE

There are many other issues posed by open source development that
require further thought. This section will highlight a number of these as
suggestions for future work.

39Some of the E-speak code remains proprietary to Hewlett Packard; so will some
applications and utilities developed in the future. It should also be noted that HP can profit
by providing services to E-speak users, which, while not proprietary, should be an arena in
which HP has a natural advantage.
? Blackwell Publishers Ltd. 2002.

228 JOSH LERNER AND JEAN TIROLE

VI(i). Which Technological Characteristics are Conducive to a Smooth
Open Source Development?

This paper has identified a number of attributes that make a project a good
or poor candidate for open source development. But it has stopped short
of providing a comprehensive picture of determinants of a smooth open
source development. Let us mention a few topics that are worth further
investigation:
* Role of applications and related programs. Open source projects differ

in the functionalities they offer and in the number of add-ons that are
required to make them attractive. As the open source movement comes
to maturity, it will confront some of the same problems as commercial
software does, namely the synchronization of upgrades and the efficient
level of backward compatibility. A user who upgrades a program (which
is very cheap in the open source case) will want either the new program
to be backward compatible or applications to have themselves been
upgraded to the new version.40 We know from commercial software that
both approaches to compatibility are costly; for example, Windows
programmers devote a lot of time to backward compatibility issues, and
encouraging application development requires fixing applications pro-
gramming interfaces about three years before the commercial release of
the operating system. A reasonable conjecture could be that open source
programming would be appropriate when there are fewer applications
or when IT professionals can easily adjust the code so as to ensure
compatibility themselves.

* Influence of competitive environment. Based on very casual observation, it
seems that open source projects sometimes gain momentum when facing a
battle against a dominant firm, although our examples show open source
projects can do well even in the absence of competition.41 To understand
why this might be the case (assuming this is an empirical fact, which
remains to be established!), it would be useful to go back to the economics
of cooperative joint ventures. The latter are known to work better when
the members have similar objectives.42 The existence of a dominant
competitor in this respect tends to align the goals of the members, and the

40The former solution may be particularly desirable if the user has customized last
generation's applications. 41 Wayner [2000] argues that the open source movement is not about battling Microsoft
or other leviathans and notes that in the early days of computing (say, until the late seventies)
code sharing was the only way to go as 'the computers were new, complicated, and
temperamental. Cooperation was the only way that anyone could accomplish anything'. This
argument is consistent with the hypothesis stated below, according to which the key factor
behind cooperation is the alignment of objectives and this alignment may come from the need
to get a new technology of the ground, from the presence of a dominant firm, or from other
causes.

42 See, e.g., Hansmann [1996].
? Blackwell Publishers Ltd. 2002.

SOME SIMPLE ECONOMICS OF OPEN SOURCE 229

best way to fight an uphill battle against the dominant player is to remain
united. To be certain, open source software development works differently
from joint venture production, but it also relies on cooperation within a
heterogeneous group; the analogy is well worth pursuing.

* Project lifespan. One of the arguments offered by open source advocates
is that because their source code is publicly available, and at least some
contributions will continue to be made, its software will have a longer
duration. (Many software products by commercial vendors are aban-
doned or no longer upgraded after the developer is acquired or liquidated,
or even when the company develops a new product to replace the old
program.) But another argument is that the nature of incentives being
offered open source developers-which as discussed above, lead them to
work on highly visible projects-might lead to a 'too early' abandonment
of projects that experience a relative loss in popularity. An example is
the XEmacs project, an open source project to create a graphical environ-
ment with multiple 'windows' that originated at Stanford. Once this
development effort encountered an initial decline in popularity, many of
the open source developers appeared to move onto alternative projects.

VI(ii). Optimal Licensing

Our discussion of open source licensing has been unsatisfactory. Some
licenses (e.g., BSD and its close cousin the Apache license) are relatively
permissive, while others (e.g., GPL) force the user to distribute any changes
or improvements (share them) if they distribute the software at all.

Little is known about the trade-off between encouraging add-ons that
would not be properly supplied by the open source movement and
preventing commercial vendors (including open source participants) from
free riding on the movement or even 'hijacking it'. An open source project
may be 'hijacked' by a participant who builds a valuable module and then
offers proprietary APIs to which application developers start writing. The
innovator has then built a platform that appropriates some of the benefits
of the project. To be certain, open source participants might then be
outraged, but it is unclear whether this would suffice to prevent the
hijacking. The open source community would then be as powerless as the
commercial owner of a platform above which a 'middleware' producer
superimposes a new platform.43

43The increasing number of software patents being granted by the U.S. Patent and
Trademark Office provide another avenue through which such a 'hijacking' might occur. In a
number of cases, industry observers have alleged that patent examiners-not being very
familiar with the unpatented 'prior art' of earlier software code-have granted unreasonably
broad patents, in some cases giving the applicant rights to software that was originally
developed through open source processes.
? Blackwell Publishers Ltd. 2002.

230 JOSH LERNER AND JEAN TIROLE

The exact meaning of the 'viral' provisions in the GPL license, say, or
more generally the implications of open source licenses have not yet been
tested in court. Several issues may arise in such litigation: for instance,
who has standing for representing the project if the community is
fragmented, and how a remedy would be implemented (e.g., the awarding
of damages for breach of copyright agreement may require incorporating
the beneficiaries).

VI(iii). Coexistence of Commercial and Open Source Software
On a related note, the existence of commercial entities living symbiotically
off the efforts of open source programmers as well as participating in open
source projects raises new questions.

The flexible open source licenses allow for the coexistence of open and
closed source code. While it represents in our view (and in that of many
open source participants) a reasonable compromise, it is not without
hazards.

The coexistence of commercial activities may alter the programmers'
incentives. Programmers working on an open source project may be
tempted to stop interacting and contributing freely if they think they have
an idea for a module that might yield a huge commercial payoff. Too many
programmers may start focusing on the commercial side, making the open
source process less exciting. Although they refer to a different environ-
ment, the concerns that arise about academics' involvement in start-up
firms, consulting projects, and patenting may be relevant here as well.
While it is too early to tell, some of these same issues may appear in the
open source world.44

VI(iv). Can the Open Source Process be Transposed to Other Industries?

An interesting final question is whether the open source model can
be transposed to other industries. Could automobile components be
developed in an open source mode, with GM and Toyota performing an
assembler function similar to that of Red Hat for Linux? Many industries
involve forms of cooperation between commercial entities in the form of
for-profit or not-for-profit joint ventures. Others exhibit user-driven
innovation or open science cultures. Thus, a number of ingredients of
open source software are not specific to the software industry. Yet no

44A related phenomenon that would reward academic scrutiny is 'shareware'. Many of
packages employed by researchers (including several used by economists, such as MATLAB,
SAS, and SPSS) have grown by accepting modules contributed by users. The commercial
vendors co-exist with the academic user community in a positive symbiotic relationship. These
patterns provide a useful parallel to open source.
? Blackwell Publishers Ltd. 2002.

SOME SIMPLE ECONOMICS OF OPEN SOURCE 231

other industry has yet produced anything quite like open source
development. An important research question is whether other industries
ever will.

Although some aspects of open source software collaboration (such as
electronic information exchange across the world) could easily be
duplicated, other aspects would be harder to emulate. Consider, for
example, the case of biotechnology. It may be impossible to break up large
projects into small manageable and independent modules and there may
not be sufficient sophisticated users who can customize the molecules to
their own needs. The tasks that are involved in making the product
available to the end user involve much more than consumer support and
even friendlier user interfaces. Finally, the costs of designing, testing, and
seeking regulatory approval for a new drug are enormous.

More generally, in many industries the development of individual
components require large team work and substantial capital costs, as
opposed to (for some software programs) individual contributions and no
capital investment (besides the computer the programmer already has).
Another obstacle is that in mass-market industries users are numerous and
rather unsophisticated, and so deliver few services of peer recognition
and ego gratification. This suggests that the open source model may not
easily be transposed to other industries, but further investigation is
warranted.

Our ability to answer confidently these and related questions is likely
to increase as the open source movement itself grows and evolves. At the
same time, it is heartening to us how much of open source activities can be
understood within existing economic frameworks, despite the presence
of claims to the contrary. The literatures on 'career concerns' and on
competitive strategies provide lenses through which the structure of open
source projects, the role of contributors, and the movement's ongoing
evolution can be viewed.

REFERENCES

Aghion, P. and Tirole, J., 1997, 'Formal and Real Authority in Organizations',
Journal of Political Economy, 105, pp. 1-29.

Brooks, F., 1975, The Mythical Man Month: Essays on Software Engineering
(Addison-Wesley, Reading, Mass).

Browne, C. B., 1999, 'Linux and Decentralized Development', http://

www.firstmonday.dk/issues/issue3_3
/browne/index.html (accessed December

17, 1999).
Caminer, D., Aris, J., Hermon, P. and Land, F., 1996, User Driven Innovation.

The World's First Business Computer (McGraw-Hill, New York).
Cassiman, B., 1998, 'The Organization of Research Corporations and Researcher

Ability', Unpublished working paper, University Pompeu Fabra.
Claymon, D., 1999, 'Apple in Tiff with Programmers over Signature Work', San

Jose Mercury News, December 2.
? Blackwell Publishers Ltd. 2002.

232 JOSH LERNER AND JEAN TIROLE

Cockburn, I., Henderson, R. and Stern, S., 1999, 'Balancing Incentives: The
Tension Between Basic and Applied Research', Working Paper 6882, National
Bureau of Economic Research.

Cusumano, M. A., 1991, Japan's Software Factories: A Challenge to U.S.
Management (Oxford University Press, New York, NY).

Cusumano, M. A. and Selby, R. W., 1995, Microsoft Secrets: How the World's
Most Powerful Software Company Creates Technology, Shapes Markets, and
Manages People (Free Press, New York).

Darwall, C. and Lerner, J., 2000, 'A Note on Open Source Software', Harvard
Business School Note 9-201-078.

Dasgupta, P. and David, P., 1994, 'Towards a New Economics of Science',
Research Policy, 23, pp. 487-521.

Dempsey, B. J., Weiss, D., Jones, P. and Grenberg, J., 1999, 'A Quantitative
Profile of a Community of Open Source Linux Developers', Unpublished
working paper, School of Information and Library Science, University of North
Carolina at Chapel Hill, http://metalab.unc.edu/osrt/develpro.html (accessed
November 1, 1999).

Dessein, W., 1999, 'Authority and Communication in Organizations', Unpublished
working paper, Universit6 Libre de Bruxelles.

DiBona, C., Ockman, S. and Stone, M. eds, 1999, Open Sources: Voices from the
Open Source Revolution (O'Reilly, Sebastopol, California).

Edwards, K., 2000, 'When Beggars Become Choosers', http: / /www.firstmonday.org/
issues/issue5_10/edwards/index.html (accessed Oct. 5, 2000).

Farrell, J. and Gallini, N., 1988, 'Second Sourcing as a Commitment: Monopoly
Incentives to Attract Competition', Quarterly Journal of Economics, 103, pp.
673-694.

Farrell, J. and Katz, M. L., 2000, 'Innovation, Rent Extraction, and Integration
in Systems Markets', Journal of Industrial Economics, 48, pp. 413-432.

Gambardella, A., 1995, Science and Innovation: The US Pharmaceutical Industry
During the 1980's (Cambridge University Press , Cambridge, U.K).

Ghosh, R. A., 1999, 'Cooking Pot Markets: An Economic Model for the Trade in
Free Goods and Services on the Internet', http://www.firstmonday.dk/issues/
issue3-3/ghosh/index.html (accessed December 17, 1999).

Ghosh, R. A. and Prakash, V. V., 'The Oribiten Free Software Survey: May
2000', http: / / orniten.org/ ofss /01.html (accessed May 10, 2000).

Gibbons, R., 1997, 'Incentives and Careers in Organizations', in D. Kreps and
K. Wallis (eds), Advances in Economic Theory and Econometrics, vol. 2
(Cambridge University Press).

Gibbons, R. and Waldman, M., 1999, 'Careers in Organizations: Theory and
Evidence', in O. Ashenfelter and D. Card (eds), Handbook of Labor Economics,
vol. 3B, Chapter 36 (North Holland, New York).

Gomulkiewicz, R. W., 1999, 'How Copyleft Uses License Rights to Succeed in
the Open Source Software Revolution and the Implications for Article 2B',
Houston Law Review, 36, pp. 179-194.

Hammerly, J., Paquin, T. and Walton, S., 1999, 'Freeing the Source: The Story of
Mozilla', in C. DiBona, S. Ockman and M. Stone (eds), Open Sources: Voices
from the Open Source Revolution (O'Reilly, Sebastopol, California), pp.
197-206.

Hansmann, H., 1996, The Ownership ofEnterprise, (Belknap Harvard, New York).
Henderson, R. and Cockburn, I., 1994, 'Measuring Competence? Exploring Firm

Effects in Pharmaceutical Research', Strategic Management Journal, 15 (Winter
Special Issue), pp. 63-84.

? Blackwell Publishers Ltd. 2002.

SOME SIMPLE ECONOMICS OF OPEN SOURCE 233

Holmstr6m, B., 1999, 'Managerial Incentive Problems: A Dynamic Perspective',
Review of Economic Studies, 66, pp. 169-182.

Johnson, J. P., 1999, 'Economics of Open-Source Software', Unpublished working
paper, Massachusetts Institute of Technology.

Lakhani, K. and von Hippel, E., 2000, 'How Open Source Software Works: 'Free'
User-to-User Assistance', Working Paper 4117, Sloan School of Management,
Massachusetts Institute of Technology.

Levy, S., 1984, Hackers: Heroes of the Computer Revolution (Anchor Press/
Doubleday, Garden City, NY).

Merton, R. K., 1973, The Sociology of Science: Theoretical and Empirical
Investigations (University of Chicago Press, Chicago, IL).

Mockus, A., Fielding, R. and Herbsleb, J., 2000, 'A Case Study of Open Source
Software Program Movement: The Apache Server', herbsleb@research.bell-
labs.com (accessed December 30, 2000).

Nadeau, T., 1999, 'Learning from Linux', http://www.os2hq.com/archives/
linmemol.htm (accessed November 12, 1999).

Netcraft, 2000, 'The Netcraft Web Server Survey', http://www.netcraftcom/
survey (accessed December 24, 2000).

Open Source Initiative, 1999, 'Open Source Definition', http://www.opensource.org/
osd.html (accessed November 14, 1999).

Ortega, J., 2000, 'Power in the Firm and Managerial Career Concerns',
Unpublished working paper, Universidad Carlos III de Madrid.

Raymond, E. S., 1999a, 'The Cathedral and the Bazaar', http://www.tuxedo.org/-
esr/writings/ catherdral-bazaar (accessed November 9, 1999).

Raymond, E. S., 1999b, 'Homesteading the Noosphere: An Introductory
Contradiction', http://www.tuxedo.org/-esr/writings/homesteading (accessed
November 11, 1999).

Ronde, T., 1999, 'Trade Secrets and Information Sharing', Unpublished working
paper, University of Mannheim.

Rosenberg, N., 1976, Perspectives on Technology (Cambridge University Press,
Cambridge).

Rosenbloom, R. S. and Spencer, W. J., ed, 1996, Engines of Innovation: U.S.
Industrial Research at the End of an Era (Harvard Business School Press,
Boston).

Shepard, A., 1987, 'Licensing to Enhance Demand for New Technologies', Rand
Journal of Economics, 18, pp. 360-368.

Stallman, R., 1999, 'The GNU Operating System and the Free Software
Movement', in C. DiBona, S. Ockman and M. Stone (eds), Open Sources.
Voices from the Open Source Revolution (O'Reilly, Sebastopol, California), pp.
53-70.

Taschek, J., 1999, 'Vendor Seeks Salvation By Giving Away Technology',
http:/ /www.zdnet.com/pcweek/stories/news/0,4153,404867,00.html (accessed
December 17, 1999).

Torvalds, L., 1999, 'Interview with Linus Torvalds: What Motivates Free Software
Developers?', http: / /www.firstmonday.dk/issues/issue3_3 /torvalds/index.html
(accessed December 17, 1999).

U.S. Department of Labor, Bureau of Labor Statistics, 2000, Occupational Outlook
Handbook: 2000-2001 Edition (Government Printing Office, Washington).

Valloppillil, V., 1998, 'Open Source Software: A (New?) Development
Methodology', [also referred to as The Halloween Document], Unpublished
working paper, Microsoft Corporation, http://www.opensource.org/hallowen/
halloweenl.html (accessed November 9, 1999).

? Blackwell Publishers Ltd. 2002.

234 JOSH LERNER AND JEAN TIROLE

von Hippel, E., 1988, The Sources of Invention (Oxford University Press, New
York).

Wayner, P., 2000, Free for All: How Linux and the Free Software Movement
Undercut the High-Tech Titans (Harper Collins, New York).

? Blackwell Publishers Ltd. 2002.

	Article Contents
	p. 197
	p. 198
	p. 199
	p. 200
	p. 201
	p. 202
	p. 203
	p. 204
	p. 205
	p. 206
	p. 207
	p. 208
	p. 209
	p. 210
	p. 211
	p. 212
	p. 213
	p. 214
	p. 215
	p. 216
	p. 217
	p. 218
	p. 219
	p. 220
	p. 221
	p. 222
	p. 223
	p. 224
	p. 225
	p. 226
	p. 227
	p. 228
	p. 229
	p. 230
	p. 231
	p. 232
	p. 233
	p. 234

	Issue Table of Contents
	The Journal of Industrial Economics, Vol. 50, No. 2 (Jun., 2002), pp. 103-236
	Front Matter
	Payment Systems and Interchange Fees [pp. 103-122]
	Who Initiates Recalls and Who Cares? Evidence from the Automobile Industry [pp. 123-149]
	Spillovers and the Growth of Local Industries [pp. 151-171]
	The Impact of Divestment on Firm Performance: Empirical Evidence from a Panel of UK Companies [pp. 173-196]
	Some Simple Economics of Open Source [pp. 197-234]
	Notes on the Journal of Industrial Economics Website
	A Note on 'Third-Degree Price Discrimination with Interdependent Demands' [p. 235]
	A Note on 'Emissions Taxation in Durable Goods Oligopoly' [pp. 235-236]

	Back Matter

