
As anyone with a healthy fear of sticking their fingers
into a plug socket will know, the behaviour of electrons
in different materials varies dramatically. The first
“electronic phases” of matter to be defined were the
electrical conductor and insulator, and then came the
semiconductor, the magnet and more exotic phases
such as the superconductor. Recent work has, how-
ever, now uncovered a new electronic phase called a
topological insulator. Putting the name to one side for
now, the meaning of which will become clear later,
what is really getting everyone excited is the behaviour
of materials in this phase. Strangely, they can insulate
on the inside but conduct on the outside – acting like a
thick plastic cable covered with a layer of metal, except
that the material is actually the same throughout.
What is more, the conducting electrons arrange them-
selves into spin-up electrons travelling in one direc-
tion, and spin-down electrons travelling in the other;
this “spin current” is a milestone in the realization of
practical “spintronics”.

Topological insulators have a rather unusual history
because – unlike almost every other exotic phase of
matter – they were characterized theoretically before
being discovered experimentally. Both of the present
authors, among others, were involved in that early
work, which was based on the band theory of solids –
the standard quantum-mechanical framework for
understanding the electronic properties of materials.
We showed two things. First, special edge states (in 2D
objects) or surface states (in 3D objects) allow elec-
trons to conduct at the surface of a material that oth-
erwise behaves as an insulator. Second, these states
necessarily occur when the band structure has a certain
property – a value associated with an abstract quantity
called the topology (more about this later). For one of
us (CK) it was an attempt to contribute to the theory 
of graphene – the one-atom-thick sheets of carbon

celebrated by the 2010 Nobel prize – that inspired these
new ideas about topology.

But only when topological insulators were discov-
ered experimentally in 2007 did the attention of the
condensed-matter-physics community become firmly
focused on this new class of materials. A related topo-
logical property known as the quantum Hall effect had
already been found in 2D ribbons in the early 1980s,
but the discovery of the first example of a 3D topologi-
cal phase reignited that earlier interest. Given that the
3D topological insulators are fairly standard bulk semi-
conductors and their topological characteristics can
survive to high temperatures, their novel properties
could lead to some exciting applications.

How they work
Many of the most remarkable phenomena in con-
densed-matter physics are consequences of the quan-
tum-mechanical behaviour of electrons in materials.
Even the insulating state (figure 1a), the most basic
electronic state of matter, exhibits a conductivity that is
precisely zero near a temperature of absolute zero
because of a uniquely quantum-mechanical phenom-
enon. The insulating state occurs when an energy gap
separates the occupied and empty electronic states – a
behaviour that can ultimately be traced to the quant-
ization of energy levels in an atom.

The quantum Hall state has a dramatic quantum-
mechanical feature in its electrical transport. Its Hall
conductance (the ratio of the electrical current to the
voltage perpendicular to the current flow) is precisely
quantized in units of fundamental constants when the
material is near absolute zero. Topological insulators
are similar to the quantum Hall state in that they exhibit
“topological order”. Unlike superconductors and mag-
nets, which have order associated with a broken sym-
metry, topologically ordered states are distinguished
by a kind of knotting of the quantum states of the elec-
trons. This topological order “protects” the surface
states, so that they cannot be eliminated by disorder or
chemical passivation, and it endows them with special
properties that may be useful for applications ranging
from spintronics to quantum computation.

The quantum Hall state, which is the simplest topo-
logically ordered state, occurs when electrons confined
to a 2D interface between two semiconductors experi-
ence a strong magnetic field (figure 1b). The field makes
the electrons experience a perpendicular Lorentz force,
which causes their motion to curve into a circle, rather
like the circular motion of electrons bound to an atom.
And just as in an atom, quantum mechanics replaces
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Topological insulators

● Topological insulators are insulating materials that conduct electricity on their
surface via special surface electronic states

● The surface states of topological insulators are topologically protected, which
means that unlike ordinary surface states they cannot be destroyed by impurities
or imperfections

● Topological insulators are made possible because of two features of quantum
mechanics: symmetry under the reversal of the direction of time; and the spin–orbit
interaction, which occurs in heavy elements such as mercury and bismuth

● The topological insulator states in 2D and 3D materials were predicted
theoretically in 2005 and 2007, prior to their experimental discovery
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this circular motion by orbitals that have quantized
energies. This leads to an energy gap separating the
occupied and empty states, just like in an ordinary insu-
lator. At the boundary of the system, however, the elec-
trons undergo a different kind of motion, because the
circular orbits can bounce off the edge, leading to “skip-
ping orbits”, as shown in figure 1b. In quantum theory,
these skipping orbits lead to electronic states that pro-
pagate along the edge in one direction only and do not
have quantized energies. Given that there is no energy
gap, these states can conduct. Moreover, the one-way

flow makes the electronic transport in the edge states
perfect: normally, electrons can scatter off impurities,
but given that there are no backward-moving modes,
the electrons have no choice but to propagate forwards.
This leads to what is known as “dissipationless” trans-
port by the edge states – no electrons scatter and so no
energy is lost as heat – and is ultimately responsible for
the precise quantized transport.

Unlike the quantum Hall effect, which is only seen
when a strong magnetic field is present, topological
insulators occur in the absence of a magnetic field. In
these materials the role of the magnetic field is played
by spin–orbit coupling. This is the interaction of an
electron’s intrinsic angular momentum, or spin, with
the orbital motion of the electrons through space. In
atoms with a high atomic number, such as mercury and
bismuth, the spin–orbit force is strong because the elec-
trons move at relativistic speeds. Electrons travelling
through materials composed of such atoms therefore
feel a strong spin- and momentum-dependent force
that resembles a magnetic field, the direction of which
changes when the spin changes.

This analogy between spin–orbit coupling and a spin-
dependent magnetic field provides a way to understand
the simplest 2D topological insulator – the quantum
spin Hall state (figure 1c). This was first predicted in
2005, and occurs when the spin-up and spin-down elec-
trons, which feel equal and opposite spin–orbit “mag-
netic fields”, are each in quantum Hall states. Like in
an ordinary insulator there is thus a gap separating the
occupied and empty states in the interior, but there are
edge states in which the spin-up and spin-down elec-
trons propagate in opposite directions. The Hall con-
ductance of this state is zero because the spin-up and
spin-down electrons cancel each other. The edge states
can, however, conduct. They form a 1D conductor that
is essentially half of an ordinary 1D conductor (a
“quantum wire”, which can have spin-up and spin-
down electrons moving in either direction). Like the
quantum-Hall edge states, the quantum-spin-Hall edge
states are protected from backscattering. However, in
this case, given that there are states that propagate in
both directions, the protection arises for more subtle
reasons. A key role is played by time-reversal sym-
metry. Time reversal switches both the direction of
propagation and the spin direction, interchanging the
two counter-propagating modes. We will see below that
time-reversal symmetry plays a fundamental role in
guaranteeing the topological stability of these states.

Finally, the next tier of complication in this family of
electronic phases is the 3D topological insulator. This
cannot be understood using the simple picture of a
spin-dependent magnetic field. Nonetheless, the sur-
face states of a 3D topological insulator do strongly
resemble the edge states of a 2D topological insulator.
As in the 2D case, the direction of electron motion
along the surface of a 3D topological insulator is deter-
mined by the spin direction, which now varies continu-
ously as a function of propagation direction (figure 1d).
The result is an unusual “planar metal” where the spin
direction is locked to the direction of propagation. As
in the 2D case, the surface states of a 3D topological
insulator are like half of an ordinary 2D conductor, and
are topologically protected against backscattering.

(a) The insulating state is characterized by an energy gap separating the occupied and empty

electronic states, which is a consequence of the quantization of the energy of atomic orbitals.

(b) In the quantum Hall effect, the circular motion of electrons in a magnetic field, B, is

interrupted by the sample boundary. At the edge, electrons execute “skipping orbits” as shown,

ultimately leading to perfect conduction in one direction along the edge. (c) The edge of the

“quantum spin Hall effect state” or 2D topological insulator contains left-moving and right-

moving modes that have opposite spin and are related by time-reversal symmetry. This edge

can also be viewed as half of a quantum wire, which would have spin-up and spin-down

electrons propagating in both directions. (d) The surface of a 3D topological insulator supports

electronic motion in any direction along the surface, but the direction of the electron’s motion

uniquely determines its spin direction and vice versa. The 2D energy–momentum relation has a

“Dirac cone” structure similar to that in graphene.
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Experimental discovery
The first key experiment in this field was the observa-
tion of the 2D quantum spin Hall effect in a quantum-
well structure made by sandwiching a thin layer of
mercury telluride (HgTe) between layers of mercury
cadmium telluride (Hg xCd1–xTe). Earlier theoretical
work had predicted that, for an appropriate range of
layer thicknesses, this structure should realize the 2D
quantum spin Hall effect. The prediction was therefore
that the structure should conduct electricity only at its
edge, and also that the edge conductance at zero tem-
perature should be 2e2/h, where e is the electron charge
and h is Planck’s constant. Experimental results pub-
lished in 2007 by a research group from the University
of Würzburg, Germany, led by Laurens Molenkamp
measured the electrical transport properties of such
quantum-well structures and observed the predicted
2e2/h conductance. It was also independent of the width
of the sample, as expected for a conductance resulting
only from edge states.

Measurements of electrical transport, which are ideal
for probing the 2D quantum spin Hall effect, are more
problematic for 3D topological insulators. The snag is
that even when there is an insulating gap on the interior,
there is, in practice, always a small bulk conductivity,
and it is hard to separate the bulk and surface contribu-
tions to the current. A probe that couples mainly to the
surface would be better and researchers therefore
turned to angle-resolved photoemission spectroscopy
(ARPES), which is ideally suited to the task. ARPES
uses the photoelectric effect: high-energy photons are
shone onto the sample and electrons are ejected. By
analysing the energy, momentum and spin of these elec-
trons, the electronic structure and spin polarization of
the surface states can be directly measured.

The first 3D topological insulator to be probed in this
way was the semiconducting alloy bismuth antimonide
(BixSb1–x), which had previously been predicted the-
oretically to be a topological insulator. In work pub-
lished in 2008, a group from Princeton University led
by Zahid Hasan used ARPES to map out the surface
states of BixSb1–x and found that they had the special
property (described below) characteristic of a topo-
logical insulator. Unfortunately, however, the surface
states were more complicated than they had to be,
prompting Hasan (and others) to search for other
classes of materials that might have a simpler structure.

This search led to the discovery that bismuth selenide
(Bi2Se3) and bismuth telluride (Bi2Te3) are topological
insulators. These materials, which are well-known
semiconductors with strong spin–orbit interactions,
have a relatively large bulk energy gap (0.3 eV for
Bi2Te3), which means that they work at room tempera-
ture. They also have the simplest possible surface-state
structure (figure 2). The advantages of these materials
have unleashed a worldwide experimental effort to
understand their electrical and magnetic properties
and to find other classes of topological insulators.

Topological phases, invariants and insulators
Two weaknesses of the simple description of topologi-
cal insulators given above are that it fails to capture how
robust the surface states are and how their existence is
determined by the bulk of the material, rather than by
how it was cut to make the surface. To understand the
robustness and the determination by bulk properties
we need to explain why these surface states are “topo-
logical” while surface states in other materials are not.

Topology is the branch of mathematics that deals
with quantities that are invariant under continuous

(a) A Fermi-surface map for the surface of the topological insulator bismuth calcium selenide (Bi2–xCaxSe3) measured by spin-resolved, angle-

resolved photoemission spectroscopy as a function of the surface momentum, kx and ky. The spin direction precesses with electron momentum

around the circular Fermi surface, and opposite momenta have opposite spin. (b) The surface bands intersect at a “Dirac point” marked by the

cross that is inside the bulk band gap at approximately 0.25 eV. The calcium concentration, x, is tuned so that the Fermi energy lies between the

bulk valence and conduction bands.

2 Topological-insulator surface states
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changes. While topology can be a quite abstruse branch
of mathematics, some of its concepts are familiar to
anyone who has tied a knot. Consider the linked rings in
the Olympic symbol, for example. Without cutting a
ring it is impossible to separate them, even if the rings
are bent, enlarged or shrunk. The “linking number”
that formalizes this idea is an example of a topological
invariant, which is a quantity that does not change
under continuous changes of the rings.

Topological ideas of this type were first applied to
quantum condensed-matter physics in the 1980s to
understand the integer quantum Hall effect. The effect
of a magnetic field in this phase, which breaks time-
reversal symmetry, is to “knot” the electronic wave-
function in a non-trivial way – the wavefunctions in a
quantum-Hall sample cannot be smoothly changed,
with the system remaining insulating, to those of an
ordinary insulator or vacuum. As a result, a metallic
layer appears at the surface where the wavefunction
topology changes, and the properties of this layer are
not very sensitive to exactly how the surface is made.

But how can the electron wavefunctions be viewed as
being knotted? Electrons in a material have wavefunc-
tions that change as a function of the electron momen-
tum. Changing the momentum is like moving along a
piece of string in a knot, and in some materials it can be
that the wavefunction evolution is so complicated that
the wavefunctions cannot be continuously changed to
those of an ordinary material. More specifically, the evo-
lution of wavefunctions with momentum can be char-
acterized by an integer, n, that is analogous to the linking
number discussed above. Remarkably, there is a deep
correspondence between this invariant, which comes
from the interior of the sample, and the number of one-
way edge modes that propagate on the boundary.

For more than 20 years it was thought that this knot-
ting of wavefunctions required the time-reversal-break-
ing effect of a magnetic field and was limited to 2D
quantum-well materials. In 2005 it was reported that a
new kind of topological invariant (a new kind of “knot-
ting”) was found to apply to time-reversal-invariant 2D
materials and could be generated purely by spin–orbit
coupling, an intrinsic property of all solids. When time-
reversal symmetry is not present, this invariant no longer
exists and as a result the surface state is not protected –

microscopically, the backscattering of electrons at the
surface that was discussed earlier is now allowed and can
cause the surface to become insulating. Further devel-
opment of these ideas led to the understanding two
years later that 3D materials could be in a topological
phase as well, with protected surface states determined
by the topology of bulk electron wavefunctions, and such
materials were named “topological insulators”.

Where next?
In applied magnetic materials, spin–orbit coupling has
long been studied as it determines properties such as
magnetic anisotropy (that is, which directions of the
magnetization are favoured) that are crucial for appli-
cations. The study of spin–orbit coupling in non-mag-
netic materials, in contrast, took off only recently with
the advent of spintronics – electronic devices based on
electron spin – and it is here that topological insulators
could find their greatest potential.

The application that may be most exciting to physi-
cists at the moment is the potential to use topological
insulators to create the elusive “Majorana fermion”.
Like all fermions, Majorana fermions have half-inte-
ger spin, but they are different in one regard: they are
identical to their own antiparticles, which means that
a pair can annihilate each other (see box above). The
creation of Majorana fermions would represent a truly
significant breakthrough in physics.

In the six years since the initial theoretical explor-
ations into topological insulators, the level of interest
and activity has grown exponentially. There are now
dozens of experimental groups around the world, along
with countless theorists, studying all aspects of these
materials. With this level of activity there is great hope
that some of the ambitious proposals based on topo-
logical insulators can be realized, along with others that
have not yet even been conceived. ■
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One of the most exciting potential applications of
topological insulators is the creation of Majorana
fermions. These elusive fundamental particles
have been discussed in particle physics for
decades, though as yet there has been no
definitive proof of their existence. Current and
proposed experiments searching for a rare
nuclear decay called neutrinoless double-beta
decay are largely motivated by the possibility
that the neutrino may be a Majorana fermion. In
condensed-matter physics, Majorana fermions
can occur as (non-fundamental) quasiparticles
in certain special superconductors. This is
allowed because a pair of quasiparticles can
form a Cooper pair and disappear into the

superconductor. It is a high priority in
condensed-matter physics to engineer a true
Majorana fermion, in part because they could in
principle be harnessed to make a fault-tolerant
topological quantum computer. The race is on to
come up with the best way to realize them.

The difficulty with using superconductors to
make Majorana fermions is that it requires a
particular kind of superconductor – called a
topological superconductor – that has not yet
been found. However, Majorana fermions could
be made with an ordinary superconductor such
as niobium if it is combined with a topological
insulator. If a superconductor is placed in
contact with a topological insulator, the surface

states become superconducting. Since the
surface states are “half” an ordinary 2D electron
system, their superconducting state is “half” an
ordinary superconductor. This is precisely what is
required to host Majorana fermions. There are a
number of other proposals for realizing 
Majorana fermions with different techniques.
Which one proves most feasible will depend 
on several practical issues. There is 
considerable motivation to make this happen,
however, because in addition to the potential
quantum-information applications, having an
experimental handle on Majorana fermions
would allow some of the most bizarre features of
quantum mechanics to be probed.

Majorana fermions
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