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HEBREW UNIVERSITY 

ON THE SHORTEST SPANNING SUBTREE OF A GRAPH 
AND THE TRAVELING SALESMAN PROBLEM 

JOSEPH B. KRUSKAL, JR. 

Several years ago a typewritten translation (of obscure origin) of 
[1] raised some interest. This paper is devoted to the following 
theorem: If a (finite) connected graph has a positive real number 
attached to each edge (the length of the edge), and if these lengths 
are all distinct, then among the spanning' trees (German: Geriist) 
of the graph there is only one, the sum of whose edges is a mini- 
mum; that is, the shortest spanning tree of the graph is unique. 
(Actually in [1i this theorem is stated and proved in terms of the 
"matrix of lengths" of the graph, that is, the matrix [|aij|| where ai; 
is the length of the edge connecting vertices i and j. Of course, it is 
assumed that aij=aji and that aii=O for all i and j.) 

The proof in [1 ] is based on a not unreasonable method of con- 
structing a spanning subtree of minimum length. It is in this con- 
struction that the interest largely lies, for it is a solution to a prob- 
lem (Problem 1 below) which on the surface is closely related to one 
version (Problem 2 below) of the well-known traveling salesman 
problem. 

PROBLEM 1. Give a practical method for constructing a spanning 
subtree of minimum length. 

PROBLEM 2. Give a practical method for constructing an un- 
branched spanning subtree of minimum length. 

The construction given in [1] is unnecessarily elaborate. In the 
present paper I give several simpler constructions which solve Prob- 
lem 1, and I show how one of these constructions may be used to 
prove the theorem of [1]. Probably it is true that any construction 

Received by the editors April 11, 1955. 
1 A subgraph spans a graph if it contains all the vertices of the graph. 
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which solves Problem 1 may be used to prove this theorem. 
First I would like to point out that there is no loss of generality in 

assuming that the given connected graph G is complete, that is, that 
every pair of vertices is connected by an edge. For if any edge of G 
is "missing," an edge of great length may be inserted, and this does 
not alter the graph in any way which is relevant to the present pur- 
poses. Also, it is possible and intuitively appealing to think of missing 
edges as edges of infinite length. 

CONSTRUCTION A. Perform the following step as many times as 
possible: Among the edges of G not yet chosen, choose the shortest 
edge which does not form any loops with those edges already chosen. 
Clearly the set of edges eventually chosen must form a spanning 
tree of G, and in fact it forms a shortest spanning tree. 

CONSTRUCTION B. ILet V be an arbitrary but fixed (nonempty) 
subset of the vertices of G. Then perform the following step as many 
times as possible: Among the edges of G which are not yet chosen but 
which are connected eitlher to a vertex of V or to an edge already 
chosen, pick the shortest edge which does not form any loops with 
the edges already chosen. Clearly the set of edges eventually chosen 
forms a spanning tree of G, and in fact it forms a shortest spanning 
tree. In case V is the set of all vertices of G, then Construction B 
reduces to Construction A. 

CONSTRUCTION A'. This method is in some sense dual to A. Per- 
form the following step as many times as possible: Among the edges 
not yet chosen, choose the longest edge whose removal will not dis- 
connect them. Clearly the set of edges not eventually chosen forms a 
spanning tree of G, and in fact it forms a shortest spanning tree. It 
is not clear to me whether Construction B in general has a dual 
analogous to this. 

Before showing how Construction A may be used to prove the 
theorem of [1], I find it convenient to combine into a theorem a num- 
ber of elementary facts of graph theory. The reader should have no 
trouble convincing himself that these are true. For aesthetic reasons, 
I state considerably more than I need. 

PRELIMINARY THEOREM. If G is a connected graph with i vertices, 
and T is a subgraph of G, then the following conditions are all equivalent: 

(a) T is a spanning tree of G; 
(b) T is a maximal2 forest3 in G; 

2 A graph is "maximal" if it is not contained in any larger graph of the same sort; 
it is "minimal" if it does not contain any smaller graph of the saine sort. 

3 A "forest" is a graph which does not have any loops. 
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(c) T is a minimal2 connected spanning graph of G; 
(d) T is a forest with n -1 edges; 
(e) T is a connected spanning graph with n -1 edges. 

The theorem to be proved states that if the edges of G all have dis- 
tinct lengths, then T is unique, where T is any shortest spanning tree 
of G. Clearly T may be redefined as any shortest forest with n-I 
edges. 

In Construction A, let the edges chosen be called a1, , an in 
the order chosen. Let A i be the forest consisting of edges a, through ai. 
It will be proved that T=A.-1. From the hypothesis that the edges 
of G have distinct lengths, it is easily seen that Construction A pro- 
ceeds in a unique manner. Thus the Ai are unique, and hence also T. 

It remains to prove that T=An1. If T$&An,1, let as be the first 
edge of An-1 which is not in T. Then a1, * * *, ai-i are in T. TUai 
must have exactly one loop, which must contain as. This loop must 
also contain some edge e which is not in An1. Then TUai-e is a 
forest with n-I edges. 

As A i1'Je is contained in the last named forest, it is a forest, so 
from Construction A, 

length (e) > length (as). 

But then TUai-e is shorter than T. This contradicts the definition 
of T, and hence proves indirectly that T=An-l 
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