The Apollonian Circles and Isodynamic Points

Tarik Adnan Moon

Abstract

This paper is on the Apollonian circles and isodynamic points of a triangle. Here we discuss some of the most intriguing properties of Apollonian circles and isodynamic points, along with several Olympiad problems, which can be solved using those properties.

Introduction

The idea of Apollonian circles of a triangle is derived from a problem that was first proposed by a geometer of ancient Greece. Isodynamic points are two common points of three Apollonian Circles of a triangle.
In this paper, we shall first explore several properties of Apollonian circles; then we shall discuss some of the most interesting results related to isodynamic points. After that we shall analyze several related problems, which will demonstrate how the knowledge of these properties can help a problem solver to solve some interesting problems.

1 Apollonian Circle

Apollonius of Perga, a geometer of ancient Greece, proposed the following problem:
Problem 1. Find the locus of a point the ratio of whose from two fixed points is constant.
Solution We assume that we are given two fixed points A, B on a plane, and we need to find the locus of a point P such that $\frac{A P}{P B}=r$, where r is a given ratio. We assume that P is a point on the locus. Now we divide the line $A B$ internally and externally in the given ratio. We have:

But from the angle bisector theorem we know that $P U$ and $P V$ are the internal and external angle bisectors of the $\angle A P B$ respectively. As the internal and external bisectors of an angle are inclined at right angle, we have $\angle V P U=\frac{\pi}{2}$,. Let M be the midpoint of $V U$. Then the locus is indeed a circle with radius $r=M U$, and center M.
However, there is a special case. When $r=1, V \rightarrow \infty$, and therefore the circle degenerates into a line.

Now we define the Apollonian circles of a triangle. If the internal and external bisectors of the angles A, B, C of a triangle $A B C$ meet the opposite sides $B C, C A, A B$ in the points $U, U^{\prime} ; V, V^{\prime} ; W, W^{\prime}$, respectively, then the circles with $U U^{\prime}, V V^{\prime}, W W^{\prime}$ as diameters are called the $A-, B-, C-$ Apollonian circles(respectively) or the circles of Apollonius of a triangle ABC. (Section 3,Figure 1)
From Problem 1 we can infer that the Apollonian circles pass through the respective vertices of the triangle, and $B U: U C=B U^{\prime}: U^{\prime} C=B A: A C$ etc.
We continue our discussion with a classic problem related to the Apollonian circle. [1]
Problem 2. Let $(M)^{1}$, the A-Apollonian circle of $\triangle A B C$ meet (O), the circumcircle of this triangle, at A and D. Prove that $\angle O D M=\frac{\pi}{2}$.
First Solution We know that $M O$ is the perpendicular bisector of the segment $A D$. So from symmetry, it is enough to prove that $\angle M A O=\frac{\pi}{2}$, i.e. $M A$ is tangent to (O) at A.We have

$$
\angle M A B+\frac{\angle A}{2}=\angle M A U=\angle M U A=\frac{\angle A}{2}+\angle C \Longleftrightarrow \angle M A B=\angle C
$$

Hence by the alternate segment theorem the result follows.

Before showing another solution to this problem, we would like to inform the reader that we shall frequently use the ideas of pole-polar, inversion, and harmonic conjugates in this paper. So, interested readers may refer to [1], [3], [4], [5].
Second Solution The problem actually asks to prove that these two circles are orthogonal. ${ }^{2}$ From the definition of harmonic conjugate it follows that $\left(B C U U^{\prime}\right)=-1$. Now we prove a well known lemma for the convenience of the reader.
Lemma 1. If $\left(B C U U^{\prime}\right)=-1$, i.e. U, U^{\prime} divide the segment $B C$ harmonically, B and C are inverses w.r.t. ${ }^{3}$ the circle with diameter $U U^{\prime}$.

Proof. Let M be the midpoint of $B C$, and $M U=M U^{\prime}=M A=R$. We have

$$
\frac{B U}{U C}=\frac{B U^{\prime}}{U^{\prime} C} \Longleftrightarrow \frac{B U}{B U^{\prime}}=\frac{U C}{U^{\prime} C} \Longleftrightarrow \frac{(R-M B)}{(R+M B)}=\frac{(M C-R)}{(M C+R)} \Longleftrightarrow R^{2}=M B \times M C
$$

So B and C are inverses with respect to the circle (M). Therefore we have $M B \cdot M C=M A^{2}$. Hence from the converse of the power of the point theorem $M A$ is tangent to (O) from M. We have proved a very useful theorem:

[^0]Theorem 1.1. The Apollonian circle and the circumcircle of a triangle are orthogonal.
Problem 3. If A^{\prime} is the midpoint of segment $B C$, with the same conditions of the previous problem prove that $\angle A^{\prime} A C=\angle B A D$.
Solution Let the tangents to (O) at B and C meet at P. We draw a diameter $X X^{\prime}$ through P. Now we prove a lemma.
Lemma 2. P lies on the extension of $A D$.
Proof. From symmetry X, the midpoint of the arc $B C ; A^{\prime}$, the midpoint of the segment $B C$, lies on $P X^{\prime}$. From Problem $2 M A, M D$ are tangents to (O). So M is the pole of the polar $A D$, and M lies on $B C$, which is the polar of of the pole P. So from La Hire's Theorem, we deduce that P lies on the extension of $A D$.

Here P is the inverse of A^{\prime} w.r.t (O). Thus $\left(P A^{\prime} X X^{\prime}\right)=-1$. As $X X^{\prime}$ is a diameter, $\angle X A X^{\prime}=\frac{\pi}{2}$. So we deduce that $X A$ and $X^{\prime} A$ are the internal and external angle bisectors of $\angle P A A^{\prime}$, respectively. So $\angle X A A^{\prime}=\angle P A X$. Therefore the conclusion follows.
Actually this is a very interesting property of the symmedians - the reader may have already noticed that $A D$ is the A-symmedian of $\triangle A B C$.

Theorem 1.2. The common chord of the circumcircle and the Apollonian circle is a symmedian of the triangle.

Problem 4. If P_{1}, P_{2}, P_{3} are feet of perpendiculars from a point P to the sides $B C, C A, A B$ respectively, find the locus of the point P such that $P_{1} P_{2}=P_{1} P_{3}$. [2]

Solution We shall prove that the locus is the Apollonian Circle. We can prove by the Sine Law that

$$
P_{1} P_{3}=B P \sin B, \quad \text { and } \quad P_{1} P_{2}=C P \sin C
$$

So

$$
P_{1} P_{2}=P_{1} P_{3} \Longleftrightarrow \frac{B P}{C P}=\frac{\sin C}{\sin B}=\frac{A B}{A C}
$$

So the locus is the A-Apollonian circle of $\triangle A B C$.

2 Isodynamic Points

Now we are ready to prove the main result, the existence of the isodynamic points.
Theorem 2.1. The three Apollonian circles of a triangle have two points in common.

Figure 1: Three Apollonian circles $(L),(M),(N)$; and the isodynamic points J, J^{\prime}.
Before proving the theorem, we examine the figure carefully. Here J, the intersection point inside the triangle, is called the first isodynamic point, while J^{\prime} is called the second isodynamic point. We can also see from the figure that J, J^{\prime} are two points of intersection of the Apollonian circles. So $J J^{\prime}$ is the radical axis of these three circles. Several other interesting properties that are evident from the diagram will be proved in this section.

Proof. From the definition of Apollonian circles we have:

$$
J B: J C=B A: C A, \quad J C: J A=B C: B A \Longleftrightarrow J B: J A=B C: C A
$$

Therefore J lies on the circle (N).
Theorem 2.2. L, M, N are collinear. ${ }^{4}$
Proof. We shall at first prove that $B L: L C=c^{2}: b^{2}$.
From Theorem 1.1 we know that $A M$ is tangent to (O) at A. So $\triangle L A B \sim \triangle L C A$. Therefore

$$
A L: L C=c: b \quad \Longleftrightarrow A L^{2}: L C^{2}=c^{2}: b^{2}
$$

But from power of the point L we have $L A^{2}=L B \cdot L C$. So $B L: L C=c^{2}: b^{2}$.
Now multiplying three similar expressions, from the converse of the Menelaus's theorem we conclude that L, M, N are collinear.

Theorem 2.3. $(L),(M),(N)$ are coaxal.
Proof. L, M, N are collinear, and they share the same radical axis $J J^{\prime}$. So they are coaxal.
Problem 5. Let O and K be the circumcenter and the Lemoine point (the point of concurrency of the symmedians). Prove that J, J^{\prime}, K, O are collinear. Also prove that J is the inverse of J^{\prime} w.r.t. (O).
Solution We prove a lemma before we start.
Lemma 3. If a circle is orthogonal to two given circles, its center lies on the radical axis of those two circles.

Proof. If a circle (O, r) is orthogonal to two given circles (A, p) and (B, q), the power of O w.r.t (A), $P_{(A)}(O)=O A^{2}-p^{2}=r^{2}$. Similarly the power of O w.r.t. (B) is equal to r^{2}. So O lies on the radical axis of those two circles.

From Lemma 3, apparently O lies on $J J^{\prime}$. From Problem 3 (or Theorem 1.2) we can deduce that L is the pole of symmedian $A D$ (We use the notations of Figure 1). Applying the same logic we can say that N, M are the pole of the other two symmedians. We know that the symmedians are concurrent at Lemonie point, K. So K is the pole of the polar $L N M$. But the pole of the polar $L N M$ must be on the perpendicular line from O to $L M N$. As $O J J^{\prime}$ is the radical axis of the circles $(L),(M),(N) ; K$ lies on the line $O J J^{\prime}$.
We need to prove another lemma to complete the second part.
Lemma 4. If two orthogonal circles are given, one remains invariant under inversion w.r.t. the other.

[^1]Proof. Let $(O, r),\left(O^{\prime}, R\right)$ be two orthogonal circles, and $O O^{\prime}$ intersect $\left(O^{\prime}\right)$ at A and A^{*}. It is enough to prove that A and A^{*} are inverses w.r.t. (O). We have

$$
O A \times O A^{*}=\left(O O^{\prime}+R\right)\left(O O^{\prime}-R\right)=\left|O O^{\prime}\right|^{2}-R^{2}=r^{2}
$$

Hence the conclusion follows.
The most important implication of this lemma is that if we take any line passing through O (or O^{\prime}), and if the line intersects $\left(O^{\prime}\right)$ (or $\left.(O)\right)$ at A and $A^{*} ; A, A^{*}$ are inverses. This is because the center of the circle and A, A^{*} are collinear.

As J, J^{\prime} are points collinear with O; and $(O),(L)$ are orthogonal, from Lemma 4 we deduce that J and J^{\prime} are inverses of each other w.r.t. (O).

Theorem 2.4. If $O K$ intersects (O) at Q and $R,{ }^{5}\left(Q R J J^{\prime}\right)=-1$.
Proof. By the previous problem J and J^{\prime} are inverses w.r.t. (O). So by Lemma $1\left(Q R J J^{\prime}\right)=-1$.
Now here is a problem that appeared in the Tournament of the Towns 1995. [7]
Problem 6. Show that there are exactly two points for a triangle such that the feet of the perpendiculars to the three sides form an equilateral triangle.
Solution From problem 4 we know that the Apollonian circle is the locus of the point P, which has isosceles pedal triangle. So the points for which we get an equilateral pedal triangle are their intersections, i.e. the isodynamic points of a triangle.

The pedal triangle of the isodynamic points has many other marvelous features.
Theorem 2.5. Among all equilateral triangles having vertices on the sides of a triangle, the pedal triangle of J, the first isodynamic point, has the minimum area.

Proof. Let $L M N$ be an equilateral triangle which has vertices on the sides of $\triangle A B C$. If we draw the circumcircles of the triangles $L C M, M A N, N B L$, they will concur in a point J, by Miquel's Theorem (we can prove this easily by angle chasing). Now we draw the pedal triangle $L^{\prime} M^{\prime} N^{\prime}$ of the point J. From the cyclic quadrilaterals we have

$$
\begin{aligned}
\angle J L M & =\angle J C M
\end{aligned}=\angle J L^{\prime} M^{\prime} .
$$

[^2]Adding these two we get, $\angle M L N=\angle M^{\prime} L^{\prime} N^{\prime}=60^{\circ}$. So a spiral similarity with center J, ratio $r=\frac{J L^{\prime}}{J L} \leq 1$, and angle $\alpha=\angle L J L^{\prime}$ maps $\triangle L M N \rightarrow \triangle L^{\prime} M^{\prime} N^{\prime}$. From Problem 6 , we deduce that J is the first isodynamic point of $\triangle A B C$. Hence the conclusion follows.

Several interesting problems can be solved using this property. For example:
Let P, Q, and R be the points on sides $B C, C A$, and $A B$ of an acute triangle $A B C$ such that triangle $P Q R$ is equilateral and has minimal area among all such equilateral triangles. Prove that the perpendiculars from A to line $Q R$, from B to line $R P$, and from C to line $P Q$ are concurrent.

We end this section with a real gem: the relation between the famous Fermat point and isodynamic point.

Theorem 2.6. The isodynamic point and the Fermat point are isogonal conjugates.
Proof. At first we prove this for the first Fermat point. From the construction of the first Fermat point, (i.e. by erecting equilateral triangles externally on the sides of the triangle, and drawing their circumcircles) we can easily see that it is the only point satisfying

$$
\angle A F B=\angle B F C=\angle C F A=120^{\circ} .
$$

So it will be enough to prove that the isogonal conjugate F (suppose) of J satisfies the property. We prove the following lemma at first ${ }^{6}$.
Lemma 5. For any two isogonal conjugate points F and J we have:

$$
\angle B F C+\angle B J C=180^{\circ}+\angle A
$$

[^3]Proof. As J and F are isogonal conjugates. We have $\angle F B C=\angle J B A$, and $\angle F C B=\angle J C A$. Also

$$
\begin{aligned}
\angle B F C+\angle B J C & =\left(180^{\circ}-\angle F B C-\angle F C B\right)+\left(180^{\circ}-\angle J B C-\angle J C B\right) \\
& =360^{\circ}-(\angle B+\angle C) \\
& =180^{\circ}+\angle A
\end{aligned}
$$

Let $L M N$ be the pedal triangle of J. Then from the cyclic quadrilaterals $J M A N, J N B L$, and $J L C M$ we have

$$
\begin{aligned}
\angle B J C & =\angle J B A+\angle A+\angle J C B=\angle J L N+\angle A+\angle M L J \\
& =60^{\circ}+\angle A \\
\Longleftrightarrow \angle B F C & =180^{\circ}+\angle A-\left(60^{\circ}+\angle A\right)=120^{\circ}
\end{aligned}
$$

Similarly we can show that

$$
\angle A F B=\angle C F A=120^{\circ}
$$

So F is the isogonal conjugate of J. In the same way we can prove the result for the second Fermat point. We leave this as an exercise for the reader.

3 Olympiad Problems and More Applications

In this section we discuss some Olympiad caliber problems, several of which appeared in different Olympiads. We shall also prove more properties of the Apollonian circles and the isodynamic points.
Problem 7. Show that the intersections of the perpendicular bisectors of the internal angle bisectors meet the respective sides of the triangle in three collinear points.
Solution It is easy to notice that the perpendicular bisector of the $A U$, intersect $A B$ at L. We have proved the required collinearity as Theorem 2.2 .
A similar problem asks to show that $U^{\prime}, J^{\prime}, W^{\prime}$ are collinear. We have $\frac{B U^{\prime}}{U^{\prime} C}=\frac{B A}{A C}$ etc. Multiplying the similar expressions, again we can easily prove the result by Menelaus's Theorem.

Problem 8. $\triangle A B C$ and a point P is given. Draw Apollonius circles of $\angle A P B, \angle A P C$, and $\angle C P B$. Prove that these three circles pass through a common point other than P.
(MathLinks) [10]

Solution Let the centers of the Apollonian circles of those angles be M, N, L respectively. By Theorem 2.2 we have $B L: L C=B P^{2}: P C^{2}$, etc. So

$$
\frac{B L}{L C} \cdot \frac{C M}{M A} \cdot \frac{A N}{N B}=\frac{B P^{2}}{P C^{2}} \cdot \frac{C P^{2}}{P A^{2}} \cdot \frac{A P^{2}}{P B^{2}}=1
$$

Thus L, M, N are collinear by the converse of Menelaus's Theorem. As these circles have one point, P, in common they must have another point in common, which will be on the common radical axis of these three circles.

The following problem is from $9^{\text {th }}$ Iberoamerican Olympiad 1994. [13]
Problem 9. Let A, B and C be given points on a circle K such that the triangle $\triangle A B C$ is acute. Let P be a point in the interior of K. Let X, Y, and Z be the other intersection of $A P, B P$ and $C P$ with the circle. Determine the position of P to obtain $\triangle X Y Z$ equilateral.
First Solution We shall prove the point is the first isodynamic point of $\triangle A B C$. We invert $\triangle A B C$ w.r.t a circle (P), which has an arbitrary radius r. Now we have

$$
A^{\prime} B^{\prime}=A B \cdot \frac{r^{2}}{P A \cdot P B}, B^{\prime} C^{\prime}=B C \cdot \frac{r^{2}}{P B \cdot P C}, C^{\prime} A^{\prime}=C A \cdot \frac{r^{2}}{P C \cdot P A}
$$

As P is on the Appolonian circles, we have

$$
\frac{A B}{B C}=\frac{P A}{P C} \quad \text { and } \quad \frac{A^{\prime} B^{\prime}}{B^{\prime} C^{\prime}}=\frac{A B}{B C} \cdot \frac{P B \cdot P C}{P A \cdot P B}=1
$$

Similarly $B^{\prime} C^{\prime}=C^{\prime} A^{\prime}$. Thus the inverted triangle is equilateral. Now we are going to prove two very useful lemmas to finish this problem. These two lemmas are true for any point P which is not on the circumcircle of $\triangle A B C$.

Lemma 6. Let P be any point inside a triangle $A B C$, and let X, Y, Z be the intersection of $A P, B P, C P$ with the circumcircle of $\triangle A B C$. Then $\triangle L M N$, the pedal triangle of P, is similar to $\triangle X Y Z$.

Proof. Here $\angle A X Y=\angle A B P=\angle N L P$ and $\angle A X Z=\angle A C P=\angle M L P$. Adding these two, we get $\angle Z X Y=\angle N L M$.
Similarly we get the relations for the other angles.

Lemma 7. With the same configuration, if $\triangle A^{\prime} B^{\prime} C^{\prime}$ is obtained from $\triangle A B C$ by an inversion w.r.t a circle with center P and arbitrary radius $(=r), \triangle L M N \sim \triangle A^{\prime} B^{\prime} C^{\prime} \sim \triangle X Y Z$.

Proof. From the power of the point P, we have,

$$
A P \cdot X P=B P \cdot Y P=C P \cdot Z P
$$

From the definition of inversion

$$
A P \cdot A^{\prime} P=B P \cdot B^{\prime} P=C P \cdot C^{\prime} P=r^{2}
$$

Therefore

$$
\frac{X P}{A^{\prime} P}=\frac{Y P}{B^{\prime} P}=\frac{Z P}{C^{\prime} P}
$$

Hence $\triangle L M N \sim \triangle A^{\prime} B^{\prime} C^{\prime} \sim \triangle X Y Z$.
From these lemmas we get the conclusion.
In this problem, we have proved a terrific property of isodynamic points. The isodynamic points of a triangle are the only points, w.r.t which we can invert the triangle into an equilateral triangle.
However there is a shorter solution which does not use inversion, but rather uses the idea of Theorem 2.6.

Second Solution Let F be the isogonal conjugate of P. From the proof of Theorem 2.6 we know that $\angle A P C+\angle A F C=180^{\circ}+A$. But

$$
\begin{aligned}
\angle A P C & =180^{\circ}-(\angle P A C+\angle A C P)=180^{\circ}-(\angle X Y C+\angle A Y Z) \\
& =180^{\circ}-(\angle A Y C-\angle Z Y X)=180^{\circ}-\left(180^{\circ}-\angle A-60^{\circ}\right) \\
& =60+\angle A
\end{aligned}
$$

So $\angle A F C=120^{\circ}$. We know that the Fermat point is the only point satisfying the condition. So P is the isogonal conjugate of F, i.e., the isodynamic point.
Problem 10. Let D be a point in the interior of an acute angled $A B C$ such that $A B=a \cdot b, A C=a \cdot c$, $A D=a \cdot d, B C=b \cdot c, B D=b \cdot d$ and $C D=c \cdot d$. Prove that $\angle A B D+\angle A C D=\frac{\pi}{3}$.
(Singapore TST 2004) [11]

Solution From the relations we get

$$
\begin{aligned}
& \frac{A B}{A C}=\frac{a \cdot b}{a \cdot c}=\frac{b \cdot d}{c \cdot d}=\frac{B D}{C D} \\
& \frac{A C}{B C}=\frac{a \cdot c}{b \cdot c}=\frac{a \cdot d}{b \cdot d}=\frac{A D}{B D} \\
& \frac{B C}{A B}=\frac{b \cdot c}{a \cdot b}=\frac{c \cdot d}{a \cdot d}=\frac{C D}{A D} .
\end{aligned}
$$

So we conclude that D is the first isodynamic point of $\triangle A B C$. Let $L^{\prime} M^{\prime} N^{\prime}$ be the pedal triangle of D. From Problem 7 we know $L^{\prime} M^{\prime} N^{\prime}$ is equilateral. Finally, from the cyclic quadrilaterals $C L^{\prime} D M^{\prime}$ and $B L^{\prime} D N^{\prime}$,

$$
\angle A B D+\angle A C D=\angle N^{\prime} L^{\prime} D+\angle M^{\prime} N^{\prime} D=\angle N^{\prime} L^{\prime} M^{\prime}=60^{\circ}
$$

We end our discussion with a geometric inequality that appeared as $G 8$ in the IMO shortlist 1993. Indeed, this problem would be a quite hard one if we did not know the properties of the Apollonian cirlces and isodynamic points (or Fermat point). This solution is due to Vladimir Zajic [15].
Problem 11. The vertices D, E, F of an equilateral triangle lie on the sides $B C, C A, A B$ respectively of a triangle $A B C$. If a, b, c are the respective lengths of these sides, and S the area of $A B C$, prove that

$$
D E \geq \frac{2 \cdot \sqrt{2} \cdot S}{\sqrt{a^{2}+b^{2}+c^{2}+4 \cdot \sqrt{3} \cdot S}}
$$

Solution We shall prove that the given length, in the right hand side, is the side length of the pedal triangle of the first isodynamic point J. By Problem $6 \triangle D E F$, the pedal triangle of J, is equilateral. From the second solution of Problem 9 we have $\angle A J B=\angle C+60^{\circ}$ and also, $\angle B J C=\angle A+60^{\circ}$, $\angle C J A=\angle B+60^{\circ}$. Let $e=D E=E F=F D$ be the side length of the equilateral pedal triangle $\triangle D E F$.

The area S of the triangle $\triangle A B C$ with circumradius R is

$$
\begin{aligned}
S & =\frac{1}{2}\left[A J \cdot B J \sin \left(C+60^{\circ}\right)+B J \cdot C J \sin \left(A+60^{\circ}\right)+C J \cdot A J \sin \left(B+60^{\circ}\right)\right] \\
& =\frac{e^{2}}{2}\left[\frac{\sin \left(C+60^{\circ}\right)}{\sin A \sin B}+\frac{\sin \left(A+60^{\circ}\right)}{\sin B \sin C}+\frac{\sin \left(B+60^{\circ}\right)}{\sin C \sin A}\right] \\
& =\frac{4 R^{3} e^{2}}{a b c}\left[\sin A \sin \left(A+60^{\circ}\right)+\sin B \sin \left(B+60^{\circ}\right)+\sin C \sin \left(C+60^{\circ}\right)\right] \\
& =\frac{R^{2} e^{2}}{S}\left[\frac{1}{2}\left(\sin ^{2} A+\sin ^{2} B+\sin ^{2} C\right)+\frac{\sqrt{3}}{2}(\sin A \cos A+\sin B \cos B+\sin C \cos C)\right] \\
& =\frac{e^{2}}{8 S}\left[a^{2}+b^{2}+c^{2}+\frac{4 \sqrt{3} R^{2}}{2}(\sin 2 A+\sin 2 B+\sin 2 C)\right] \\
& =\frac{e^{2}}{8 S}\left(a^{2}+b^{2}+c^{2}+4 S \sqrt{3}\right) \\
\Longleftrightarrow e & =\frac{2 S \sqrt{2}}{\sqrt{a^{2}+b^{2}+c^{2}+4 S \sqrt{3}}} .
\end{aligned}
$$

Here we have used the identity

$$
\sin 2 A+\sin 2 B+\sin 2 C=4 \sin A \sin B \sin C
$$

Thus the expression on the right side of the inequality in question is precisely the side length of the equilateral pedal triangle $\triangle D E F$ of the 1st isodynamic point J. Any other equilateral triangle $\triangle D^{\prime} E^{\prime} F^{\prime}$ inscribed in the triangle $\triangle A B C$, so that $D^{\prime} \in B C, E^{\prime} \in C A, F^{\prime} \in A B$, is obviously obtained from the equilateral pedal triangle $\triangle D E F$ by a spiral similarity with the center J and similarity coefficient greater than 1 , hence its side $e^{\prime}=D^{\prime} E^{\prime}$ is greater than the side $e=D E$. (This part was discussed as Theorem 2.5)

So the inequality follows.

4 More Problems!

Here are a few problems that are related to the discussion of this paper. Using the properties we have discussed will often be the crux move for solving these problems. However, some problems may have solutions that do not use the ideas we have discussed, and obviously they will often need other ideas that we have not discussed.

Problem 1. An Apollonian circle of a triangle make an angle of 120° with the remaining two circles.
Problem 2. Let $\triangle A B C$ be right and $A H$ be the altitude to the hypotenuse. Prove that Apollonius circles of $\angle A H B$ and $\angle A H C$ intersect at the center of Apollonius circle of $\angle B A C$.
Problem 3. Consider a triangle $A B C$ and its internal angle bisector $B D(D \in B C)$. The line $B D$ intersects the circumcircle Ω of triangle $A B C$ at B and E. Circle ω with diameter $D E$ cuts Ω again at F. Prove that $B F$ is the symmedian line of triangle $A B C$.
Problem 4. Let F be the Fermat's point of a triangle $A B C$. Let X, Y, Z be the feet of the perpendiculars from this Fermat point F to the sides $B C, C A, A B$ of triangle $A B C$. The circumcircle of triangle $X Y Z$ intersects the sides $B C, C A, A B$ at the points $X^{\prime}, Y^{\prime}, Z^{\prime}$ (apart from X, Y, Z). Show that the triangle $X^{\prime} Y^{\prime} Z^{\prime}$ is equilateral.
(Hint: F, J are isogonal conjugates.)
Problem 5 (Romanian Olympiad). Given four points $A_{1}, A_{2}, A_{3}, A_{4}$ in the plane, no three collinear, such that

$$
A_{1} A_{2} \cdot A_{3} A_{4}=A_{1} A_{3} \cdot A_{2} A_{4}=A_{1} A_{4} \cdot A_{2} A_{3}
$$

denote by O_{i} the circumcenter of $\triangle A_{j} A_{k} A_{l}$ with $\{i, j, k, l\}=\{1,2,3,4\}$. Assuming $\forall i, A_{i} \neq O_{i}$, prove that the four lines $A_{i} O_{i}$ are concurrent or parallel.
Problem 6. An equilateral triangle $X Y Z$ is inscribed in the circle (O). Let P be an arbitrary point inside the triangle which is not on the sides, so $P X, P Y, P Z$ cut (O) at A, B, C, respectively. Let D, E, F be the centers of the inscribed circles of the triangle $P B C, P C A, P A B$ respectively. Prove that $A D, B E, C F$ are concurrent.
Problem 7. A circle with chord $B C$ is given. A is an arbitrary point on the circle. Prove that

1. When A varies, the loci of isodynamic points are a pair of circles.
2. Let R be the radius of the given circle, R_{1} and R_{2} be the radii of the locus circles. Then

$$
\left|\frac{1}{R_{1}} \pm \frac{1}{R_{2}}\right|=\frac{1}{R}
$$

Problem 8. Let $A B C$ be a triangle inscribed in circumcircle (O). Denote A_{1}, B_{1}, C_{1} respectively to be the projections of A, B, C onto $B C, C A, A B$. Let A_{2}, B_{2}, C_{2} respectively be the intersections of $A O, B O, C O$ with $B C, C A$, and $A B$. A circle Ω_{a} passes through A_{1}, A_{2} and lies tangent to the arc of $B C$ that does not contain A of (O) at T_{a}. The same definition holds for T_{b}, T_{c}. Prove that $A T_{a}, B T_{b}$ and $C T_{c}$ are concurrent.
Problem 9. Prove that $F F^{\prime} \| O H$ where F is the Fermat point, F^{\prime} the isogonal conjugate of the Fermat point, and O and H are the circumcenter and orthocenter of a triangle.

Problem 10 (USA MOSP 1996). Let $A B_{1} C_{1}, A B_{2} C_{2}, A B_{3} C_{3}$ be directly congruent equilateral triangles. Prove that the pairwise intersections of the circumcircles of triangles $A B_{1} C_{2}, A B_{2} C_{3}, A B_{3} C_{1}$ form an equilateral triangle congruent to the first three.

Acknowledgments

The author would like to thank Son Hong Ta, Pranon Rahman Khan, and Kazi Hasan Zubaer for their helpful comments and encouragement. The author would also like to thank Vladimir Zajic for providing an excellent solution to Problem 11, and motivation for several other problems. Most of these problems have been taken from MathLinks forum. This document was prepared using $\mathrm{IA}_{\mathrm{E}} \mathrm{X}$, and the figures were drawn using Cabri Geometry ${ }^{\circledR}$ II Plus.

References

[1] Nathan Altshiller-Court, College Geometry: An Introduction to the Modern Geometry of the Triangle and the Circle, Dover Books on Mathematics.
[2] Roger A. Johnson, Advanced Euclidean Geometry, Dover Books on Mathematics.
[3] Kiran Kedlaya, Geometry Unbound, version of January 18, 2006.
http://math.mit.edu/~kedlaya/geometryunbound/
[4] Cosmin Pohoata, Harmonic Division and its Applications, Mathematical Reflection 4, 2007.
http://reflections.awesomemath.org/2007_4/harmonic_division.pdf
[5] Kin Y. Li, Pole and Polar, Mathematical Excalibur, Volume 11, Number 4. http://www.math.ust.hk/excalibur/v11_n4.pdf
[6] Tarik Adnan Moon, Pole-Polar: Key Facts. http://sites.google.com/site/kmckbd/Home/documents/pole_polar.pdf
[7] Alexander Bogomolny, Apollonian Circles Theorem. http://www.cut-the-knot.org/Curriculum/Geometry/ApollonianCircle.shtml
[8] MathLinks topic, 17th Junior Tournament of the Towns 1995 Autumn problems. http://www.mathlinks.ro/Forum/viewtopic.php?p=1365322
[9] Jean-Louis AYME, La fascinante figure de Cundy. http://pagesperso-orange.fr/jl.ayme/Docs/La\ fascinante\ figure\ de\ Cundy.pdf
[10] MathLinks topic, 3 Apollonius circles pass through one point. http://www.mathlinks.ro/Forum/viewtopic.php?p=1602320
[11] MathLinks topic, Singapore TST 2004.
http://www.mathlinks.ro/Forum/viewtopic.php?p=18403
[12] MathLinks topic, Smallest equilateral triangle.
http://www.mathlinks.ro/Forum/viewtopic.php?p=272246
[13] MathLinks topic, 9th ibmo - brazil 1994/q4. http://www.mathlinks.ro/Forum/viewtopic.php?p=506218
[14] MathLinks topic, Two fermat points - variety of hard results. http://www.mathlinks.ro/Forum/viewtopic.php?p=497143
[15] MathLinks topic, Highly recommended by the Problem Committee. http://www.mathlinks.ro/Forum/viewtopic.php?p=463149

Tarik Adnan Moon

Student, Class 12, Kushtia Government College,
Kushtia, Bangladesh
Email: moonmathpi469@gmail.com

[^0]: ${ }^{1}$ For brevity we shall denote a circle with diameter r and center O by (O, r), or simply by (O).
 ${ }^{2}$ Two circles (O, r) and $\left(O^{\prime}, r^{\prime}\right)$ are called orthogonal iff $\left|O O^{\prime}\right|^{2}=r^{2}+r^{\prime 2}$.
 3^{3} w.r.t. $=$ with respect to.

[^1]: ${ }^{4}$ Throughout this paper we shall often refer to Figure 1 and its notations.

[^2]: ${ }^{5} Q R$ is called the Brocard diameter of a triangle.

[^3]: ${ }^{6}$ The proof would be more rigorous if we used directed angles modulo π, but we compromise rigor for the sake of simplicity.

