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Abstract

This paper is on the Apollonian circles and isodynamic points of a triangle. Here we discuss some
of the most intriguing properties of Apollonian circles and isodynamic points, along with several
Olympiad problems, which can be solved using those properties.

Introduction

The idea of Apollonian circles of a triangle is derived from a problem that was first proposed by a
geometer of ancient Greece. Isodynamic points are two common points of three Apollonian Circles of a
triangle.
In this paper, we shall first explore several properties of Apollonian circles; then we shall discuss some
of the most interesting results related to isodynamic points. After that we shall analyze several related
problems, which will demonstrate how the knowledge of these properties can help a problem solver to
solve some interesting problems.

1 Apollonian Circle

Apollonius of Perga, a geometer of ancient Greece, proposed the following problem:

Problem 1. Find the locus of a point the ratio of whose from two fixed points is constant.

Solution We assume that we are given two fixed points A,B on a plane, and we need to find the locus
of a point P such that AP

PB = r, where r is a given ratio. We assume that P is a point on the locus. Now
we divide the line AB internally and externally in the given ratio. We have:

AU : UB = AV : V B = AP : PB = r

A

P

B
V

UM

But from the angle bisector theorem we know that PU and PV are the internal and external angle
bisectors of the ∠APB respectively. As the internal and external bisectors of an angle are inclined at
right angle, we have ∠V PU = π

2 ,. Let M be the midpoint of V U . Then the locus is indeed a circle with
radius r = MU , and center M .
However, there is a special case. When r = 1, V →∞, and therefore the circle degenerates into a line.
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Now we define the Apollonian circles of a triangle. If the internal and external bisectors of the angles
A,B,C of a triangle ABC meet the opposite sides BC,CA,AB in the points U,U ′; V, V ′; W,W ′,
respectively, then the circles with UU ′, V V ′,WW ′ as diameters are called the A−, B−, C− Apollonian
circles(respectively) or the circles of Apollonius of a triangle ABC. (Section 3,Figure 1)
From Problem 1 we can infer that the Apollonian circles pass through the respective vertices of the
triangle, and BU : UC = BU ′ : U ′C = BA : AC etc.
We continue our discussion with a classic problem related to the Apollonian circle. [1]

Problem 2. Let (M)1, the A-Apollonian circle of 4ABC meet (O), the circumcircle of this triangle,
at A and D. Prove that ∠ODM = π

2 .

First Solution We know that MO is the perpendicular bisector of the segment AD. So from symmetry,
it is enough to prove that ∠MAO = π

2 , i.e. MA is tangent to (O) at A.We have

∠MAB +
∠A
2

= ∠MAU = ∠MUA =
∠A
2

+ ∠C ⇐⇒ ∠MAB = ∠C

Hence by the alternate segment theorem the result follows.

A

B CU
U'

M

O

D

Before showing another solution to this problem, we would like to inform the reader that we shall
frequently use the ideas of pole-polar, inversion, and harmonic conjugates in this paper. So, interested
readers may refer to [1], [3], [4], [5].

Second Solution The problem actually asks to prove that these two circles are orthogonal. 2 From the
definition of harmonic conjugate it follows that (BCUU ′) = −1. Now we prove a well known lemma for
the convenience of the reader.

Lemma 1. If (BCUU ′) = −1, i.e. U,U ′ divide the segment BC harmonically, B and C are inverses
w.r.t.3 the circle with diameter UU ′.

Proof. Let M be the midpoint of BC, and MU = MU ′ = MA = R. We have

BU

UC
=
BU ′

U ′C
⇐⇒ BU

BU ′
=

UC

U ′C
⇐⇒ (R−MB)

(R+MB)
=

(MC −R)
(MC +R)

⇐⇒ R2 = MB ×MC

So B and C are inverses with respect to the circle (M). Therefore we have MB ·MC = MA2. Hence
from the converse of the power of the point theorem MA is tangent to (O) from M . We have proved a
very useful theorem:

1For brevity we shall denote a circle with diameter r and center O by (O, r), or simply by (O).
2Two circles (O, r) and (O′, r′) are called orthogonal iff |OO′|2 = r2 + r′2.
3w.r.t.=with respect to.
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Theorem 1.1. The Apollonian circle and the circumcircle of a triangle are orthogonal.

Problem 3. If A′ is the midpoint of segment BC, with the same conditions of the previous problem
prove that ∠A′AC = ∠BAD.

Solution Let the tangents to (O) at B and C meet at P . We draw a diameter XX ′ through P . Now
we prove a lemma.

Lemma 2. P lies on the extension of AD.

Proof. From symmetry X, the midpoint of the arc BC; A′, the midpoint of the segment BC, lies on
PX ′. From Problem 2 MA,MD are tangents to (O). So M is the pole of the polar AD, and M lies
on BC, which is the polar of of the pole P . So from La Hire’s Theorem, we deduce that P lies on the
extension of AD.

A

B C
U

U'
M

O

D

A'

P

X

X'

Here P is the inverse of A′ w.r.t (O). Thus (PA′XX ′) = −1. As XX ′ is a diameter, ∠XAX ′ = π
2 . So

we deduce that XA and X ′A are the internal and external angle bisectors of ∠PAA′, respectively. So
∠XAA′ = ∠PAX. Therefore the conclusion follows.
Actually this is a very interesting property of the symmedians - the reader may have already noticed
that AD is the A-symmedian of 4ABC.

Theorem 1.2. The common chord of the circumcircle and the Apollonian circle is a symmedian of the
triangle.

Problem 4. If P1, P2, P3 are feet of perpendiculars from a point P to the sides BC,CA,AB respectively,
find the locus of the point P such that P1P2 = P1P3. [2]
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P
P3

P2

P1

Solution We shall prove that the locus is the Apollonian Circle. We can prove by the Sine Law that

P1P3 = BP sinB, and P1P2 = CP sinC

So
P1P2 = P1P3 ⇐⇒

BP

CP
=

sinC
sinB

=
AB

AC

So the locus is the A-Apollonian circle of 4ABC.

2 Isodynamic Points

Now we are ready to prove the main result, the existence of the isodynamic points.

Theorem 2.1. The three Apollonian circles of a triangle have two points in common.

A

B

C

V

V'

M

W

W'

N

U

U'

L

O

J

J'

Figure 1: Three Apollonian circles (L), (M), (N); and the isodynamic points J, J ′.

Before proving the theorem, we examine the figure carefully. Here J , the intersection point inside
the triangle, is called the first isodynamic point, while J ′ is called the second isodynamic point. We can
also see from the figure that J, J ′ are two points of intersection of the Apollonian circles. So JJ ′ is the
radical axis of these three circles. Several other interesting properties that are evident from the diagram
will be proved in this section.
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Proof. From the definition of Apollonian circles we have:

JB : JC = BA : CA, JC : JA = BC : BA ⇐⇒ JB : JA = BC : CA

Therefore J lies on the circle (N).

Theorem 2.2. L,M,N are collinear.4

Proof. We shall at first prove that BL : LC = c2 : b2.
From Theorem 1.1 we know that AM is tangent to (O) at A. So 4LAB ∼ 4LCA. Therefore

AL : LC = c : b ⇐⇒ AL2 : LC2 = c2 : b2

But from power of the point L we have LA2 = LB · LC. So BL : LC = c2 : b2.
Now multiplying three similar expressions, from the converse of the Menelaus’s theorem we conclude
that L,M,N are collinear.

Theorem 2.3. (L), (M), (N) are coaxal.

Proof. L,M,N are collinear, and they share the same radical axis JJ ′. So they are coaxal.

Problem 5. Let O and K be the circumcenter and the Lemoine point (the point of concurrency of the
symmedians). Prove that J, J ′,K,O are collinear. Also prove that J is the inverse of J ′ w.r.t. (O).

Solution We prove a lemma before we start.

Lemma 3. If a circle is orthogonal to two given circles, its center lies on the radical axis of those two
circles.

Proof. If a circle (O, r) is orthogonal to two given circles (A, p) and (B, q), the power of O w.r.t (A),
P(A)(O) = OA2 − p2 = r2. Similarly the power of O w.r.t. (B) is equal to r2. So O lies on the radical
axis of those two circles.

From Lemma 3, apparently O lies on JJ ′. From Problem 3 (or Theorem 1.2) we can deduce that L
is the pole of symmedian AD (We use the notations of Figure 1). Applying the same logic we can say
that N,M are the pole of the other two symmedians. We know that the symmedians are concurrent at
Lemonie point, K. So K is the pole of the polar LNM . But the pole of the polar LNM must be on the
perpendicular line from O to LMN . As OJJ ′ is the radical axis of the circles (L), (M), (N); K lies on
the line OJJ ′.
We need to prove another lemma to complete the second part.

Lemma 4. If two orthogonal circles are given, one remains invariant under inversion w.r.t. the other.

O'

P

OA*A

Q

4Throughout this paper we shall often refer to Figure 1 and its notations.
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Proof. Let (O, r), (O′, R) be two orthogonal circles, and OO′ intersect (O′) at A and A∗. It is enough
to prove that A and A∗ are inverses w.r.t. (O). We have

OA×OA∗ = (OO′ +R)(OO′ −R) = |OO′|2 −R2 = r2

Hence the conclusion follows.
The most important implication of this lemma is that if we take any line passing through O (or O′),
and if the line intersects (O′) (or (O)) at A and A∗; A,A∗ are inverses. This is because the center of the
circle and A,A∗ are collinear.

As J, J ′ are points collinear with O; and (O), (L) are orthogonal, from Lemma 4 we deduce that J and
J ′ are inverses of each other w.r.t. (O).

Theorem 2.4. If OK intersects (O) at Q and R,5 (QRJJ ′) = −1.

Proof. By the previous problem J and J ′ are inverses w.r.t. (O). So by Lemma 1 (QRJJ ′) = −1.

Now here is a problem that appeared in the Tournament of the Towns 1995. [7]

Problem 6. Show that there are exactly two points for a triangle such that the feet of the perpendiculars
to the three sides form an equilateral triangle.

Solution From problem 4 we know that the Apollonian circle is the locus of the point P , which has
isosceles pedal triangle. So the points for which we get an equilateral pedal triangle are their intersec-
tions, i.e. the isodynamic points of a triangle.

The pedal triangle of the isodynamic points has many other marvelous features.

Theorem 2.5. Among all equilateral triangles having vertices on the sides of a triangle, the pedal triangle
of J , the first isodynamic point, has the minimum area.

A

B
C

J

N'

M'

L'

M

N

L

Proof. Let LMN be an equilateral triangle which has vertices on the sides of 4ABC. If we draw the
circumcircles of the triangles LCM,MAN,NBL, they will concur in a point J , by Miquel’s Theorem
(we can prove this easily by angle chasing). Now we draw the pedal triangle L′M ′N ′ of the point J .
From the cyclic quadrilaterals we have

∠JLM =∠JCM = ∠JL′M ′

∠JLN =∠JBN = ∠JL′N ′.

5QR is called the Brocard diameter of a triangle.
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Adding these two we get, ∠MLN = ∠M ′L′N ′ = 60◦. So a spiral similarity with center J , ratio
r = JL′

JL ≤ 1, and angle α = ∠LJL′ maps 4LMN → 4L′M ′N ′. From Problem 6, we deduce that J is
the first isodynamic point of 4ABC. Hence the conclusion follows.

Several interesting problems can be solved using this property. For example:

Let P,Q, and R be the points on sides BC,CA, and AB of an acute triangle ABC such that
triangle PQR is equilateral and has minimal area among all such equilateral triangles. Prove that the
perpendiculars from A to line QR, from B to line RP , and from C to line PQ are concurrent.

We end this section with a real gem: the relation between the famous Fermat point and isodynamic
point.

Theorem 2.6. The isodynamic point and the Fermat point are isogonal conjugates.

Proof. At first we prove this for the first Fermat point. From the construction of the first Fermat
point, (i.e. by erecting equilateral triangles externally on the sides of the triangle, and drawing their
circumcircles) we can easily see that it is the only point satisfying

∠AFB = ∠BFC = ∠CFA = 120◦.

A

B C

F

So it will be enough to prove that the isogonal conjugate F (suppose) of J satisfies the property. We
prove the following lemma at first6.

Lemma 5. For any two isogonal conjugate points F and J we have:

∠BFC + ∠BJC = 180◦ + ∠A.
6The proof would be more rigorous if we used directed angles modulo π, but we compromise rigor for the sake of

simplicity.
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Proof. As J and F are isogonal conjugates. We have ∠FBC = ∠JBA, and ∠FCB = ∠JCA. Also

∠BFC + ∠BJC =(180◦ − ∠FBC − ∠FCB) + (180◦ − ∠JBC − ∠JCB)
=360◦ − (∠B + ∠C)
=180◦ + ∠A

B

A

C

J
N

L

M

F

Let LMN be the pedal triangle of J . Then from the cyclic quadrilaterals JMAN, JNBL, and JLCM
we have

∠BJC =∠JBA+ ∠A+ ∠JCB = ∠JLN + ∠A+ ∠MLJ

=60◦ + ∠A

⇐⇒ ∠BFC =180◦ + ∠A− (60◦ + ∠A) = 120◦

Similarly we can show that
∠AFB = ∠CFA = 120◦

So F is the isogonal conjugate of J . In the same way we can prove the result for the second Fermat
point. We leave this as an exercise for the reader.

3 Olympiad Problems and More Applications

In this section we discuss some Olympiad caliber problems, several of which appeared in different
Olympiads. We shall also prove more properties of the Apollonian circles and the isodynamic points.

Problem 7. Show that the intersections of the perpendicular bisectors of the internal angle bisectors
meet the respective sides of the triangle in three collinear points.

Solution It is easy to notice that the perpendicular bisector of the AU , intersect AB at L. We have
proved the required collinearity as Theorem 2.2 .
A similar problem asks to show that U ′, J ′,W ′ are collinear. We have BU ′

U ′C = BA
AC etc. Multiplying the

similar expressions, again we can easily prove the result by Menelaus’s Theorem.
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Problem 8. 4ABC and a point P is given. Draw Apollonius circles of ∠APB,∠APC, and ∠CPB.
Prove that these three circles pass through a common point other than P .

(MathLinks) [10]

A

B
C

P

M

L

N

P'

Solution Let the centers of the Apollonian circles of those angles be M,N,L respectively. By Theorem
2.2 we have BL : LC = BP 2 : PC2, etc. So

BL

LC
· CM
MA

· AN
NB

=
BP 2

PC2
· CP

2

PA2
· AP

2

PB2
= 1

Thus L,M,N are collinear by the converse of Menelaus’s Theorem. As these circles have one point, P ,
in common they must have another point in common, which will be on the common radical axis of these
three circles.

The following problem is from 9th Iberoamerican Olympiad 1994. [13]

Problem 9. Let A,B and C be given points on a circle K such that the triangle 4ABC is acute. Let
P be a point in the interior of K. Let X,Y, and Z be the other intersection of AP,BP and CP with
the circle. Determine the position of P to obtain 4XY Z equilateral.

First Solution We shall prove the point is the first isodynamic point of 4ABC. We invert 4ABC
w.r.t a circle (P ), which has an arbitrary radius r. Now we have

A′B′ = AB · r2

PA · PB
,B′C ′ = BC · r2

PB · PC
,C ′A′ = CA · r2

PC · PA
As P is on the Appolonian circles, we have

AB

BC
=
PA

PC
and

A′B′

B′C ′
=
AB

BC
· PB · PC
PA · PB

= 1

Similarly B′C ′ = C ′A′. Thus the inverted triangle is equilateral. Now we are going to prove two very
useful lemmas to finish this problem. These two lemmas are true for any point P which is not on the
circumcircle of 4ABC.

Lemma 6. Let P be any point inside a triangle ABC, and let X,Y, Z be the intersection of AP,BP,CP
with the circumcircle of 4ABC. Then 4LMN , the pedal triangle of P , is similar to 4XY Z.

Proof. Here ∠AXY = ∠ABP = ∠NLP and ∠AXZ = ∠ACP = ∠MLP . Adding these two, we get
∠ZXY = ∠NLM .
Similarly we get the relations for the other angles.
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B

A

C

P

N

L

M

K

Z

X

Y

Lemma 7. With the same configuration, if 4A′B′C ′ is obtained from 4ABC by an inversion w.r.t a
circle with center P and arbitrary radius (= r), 4LMN ∼ 4A′B′C ′ ∼ 4XY Z.

Proof. From the power of the point P , we have,

AP ·XP = BP · Y P = CP · ZP.

From the definition of inversion

AP ·A′P = BP ·B′P = CP · C ′P = r2.

Therefore
XP

A′P
=

Y P

B′P
=

ZP

C ′P

Hence 4LMN ∼ 4A′B′C ′ ∼ 4XY Z.

From these lemmas we get the conclusion.
In this problem, we have proved a terrific property of isodynamic points. The isodynamic points of a
triangle are the only points, w.r.t which we can invert the triangle into an equilateral triangle.
However there is a shorter solution which does not use inversion, but rather uses the idea of Theorem
2.6.

Second Solution Let F be the isogonal conjugate of P . From the proof of Theorem 2.6 we know that
∠APC + ∠AFC = 180◦ +A. But

∠APC =180◦ − (∠PAC + ∠ACP ) = 180◦ − (∠XY C + ∠AY Z)
=180◦ − (∠AY C − ∠ZY X) = 180◦ − (180◦ − ∠A− 60◦)
=60 + ∠A

So ∠AFC = 120◦. We know that the Fermat point is the only point satisfying the condition. So P is
the isogonal conjugate of F, i.e., the isodynamic point.

Problem 10. Let D be a point in the interior of an acute angled ABC such that AB = a · b, AC = a · c,
AD = a · d, BC = b · c, BD = b · d and CD = c · d. Prove that ∠ABD + ∠ACD = π

3 .

(Singapore TST 2004) [11]
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Solution From the relations we get

AB

AC
=
a · b
a · c

=
b · d
c · d

=
BD

CD
AC

BC
=
a · c
b · c

=
a · d
b · d

=
AD

BD
BC

AB
=
b · c
a · b

=
c · d
a · d

=
CD

AD
.

A

B
C

DN'

M'

L'

So we conclude that D is the first isodynamic point of 4ABC. Let L′M ′N ′ be the pedal triangle of D.
From Problem 7 we know L′M ′N ′ is equilateral. Finally, from the cyclic quadrilaterals CL′DM ′ and
BL′DN ′,

∠ABD + ∠ACD = ∠N ′L′D + ∠M ′N ′D = ∠N ′L′M ′ = 60◦

We end our discussion with a geometric inequality that appeared as G 8 in the IMO shortlist 1993.
Indeed, this problem would be a quite hard one if we did not know the properties of the Apollonian
cirlces and isodynamic points (or Fermat point). This solution is due to Vladimir Zajic [15].

Problem 11. The vertices D,E, F of an equilateral triangle lie on the sides BC,CA,AB respectively
of a triangle ABC. If a, b, c are the respective lengths of these sides, and S the area of ABC, prove that

DE ≥ 2 ·
√

2 · S√
a2 + b2 + c2 + 4 ·

√
3 · S

.

Solution We shall prove that the given length, in the right hand side, is the side length of the pedal
triangle of the first isodynamic point J . By Problem 6 4DEF , the pedal triangle of J , is equilateral.
From the second solution of Problem 9 we have ∠AJB = ∠C + 60◦ and also, ∠BJC = ∠A + 60◦,
∠CJA = ∠B + 60◦. Let e = DE = EF = FD be the side length of the equilateral pedal triangle
4DEF .
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B

A

C

J

F

D

E

The area S of the triangle 4ABC with circumradius R is

S =
1
2

[AJ ·BJ sin(C + 60◦) +BJ · CJ sin(A+ 60◦) + CJ ·AJ sin(B + 60◦)]

=
e2

2

[
sin(C + 60◦)
sinA sinB

+
sin(A+ 60◦)
sinB sinC

+
sin(B + 60◦)
sinC sinA

]
=

4R3e2

abc
[sinA sin(A+ 60◦) + sinB sin(B + 60◦) + sinC sin(C + 60◦)]

=
R2e2

S

[
1
2

(sin2A+ sin2B + sin2 C) +
√

3
2

(sinA cosA+ sinB cosB + sinC cosC)

]

=
e2

8S

[
a2 + b2 + c2 +

4
√

3R2

2
(sin 2A+ sin 2B + sin 2C)

]

=
e2

8S
(a2 + b2 + c2 + 4S

√
3)

⇐⇒ e =
2S
√

2√
a2 + b2 + c2 + 4S

√
3
.

Here we have used the identity

sin 2A+ sin 2B + sin 2C = 4 sinA sinB sinC

Thus the expression on the right side of the inequality in question is precisely the side length of the
equilateral pedal triangle 4DEF of the 1st isodynamic point J . Any other equilateral triangle 4D′E′F ′
inscribed in the triangle 4ABC, so that D′ ∈ BC, E′ ∈ CA, F ′ ∈ AB, is obviously obtained from the
equilateral pedal triangle4DEF by a spiral similarity with the center J and similarity coefficient greater
than 1, hence its side e′ = D′E′ is greater than the side e = DE. (This part was discussed as Theorem
2.5)
So the inequality follows.

4 More Problems!

Here are a few problems that are related to the discussion of this paper. Using the properties we have
discussed will often be the crux move for solving these problems. However, some problems may have
solutions that do not use the ideas we have discussed, and obviously they will often need other ideas that
we have not discussed.
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Problem 1. An Apollonian circle of a triangle make an angle of 120◦ with the remaining two circles.

Problem 2. Let 4ABC be right and AH be the altitude to the hypotenuse. Prove that Apollonius
circles of ∠AHB and ∠AHC intersect at the center of Apollonius circle of ∠BAC.

Problem 3. Consider a triangle ABC and its internal angle bisector BD (D ∈ BC). The line BD
intersects the circumcircle Ω of triangle ABC at B and E. Circle ω with diameter DE cuts Ω again at
F . Prove that BF is the symmedian line of triangle ABC.

Problem 4. Let F be the Fermat’s point of a triangle ABC. Let X,Y, Z be the feet of the perpendiculars
from this Fermat point F to the sides BC,CA,AB of triangle ABC. The circumcircle of triangle XY Z
intersects the sides BC,CA,AB at the points X ′, Y ′, Z ′ (apart from X,Y, Z). Show that the triangle
X ′Y ′Z ′ is equilateral.
(Hint: F, J are isogonal conjugates.)

Problem 5 (Romanian Olympiad). Given four points A1, A2, A3, A4 in the plane, no three collinear,
such that

A1A2 ·A3A4 = A1A3 ·A2A4 = A1A4 ·A2A3,

denote by Oi the circumcenter of 4AjAkAl with {i, j, k, l} = {1, 2, 3, 4}. Assuming ∀i, Ai 6= Oi, prove
that the four lines AiOi are concurrent or parallel.

Problem 6. An equilateral triangle XY Z is inscribed in the circle (O). Let P be an arbitrary point
inside the triangle which is not on the sides, so PX,PY, PZ cut (O) at A,B,C, respectively. Let
D,E, F be the centers of the inscribed circles of the triangle PBC,PCA,PAB respectively. Prove that
AD,BE,CF are concurrent.

Problem 7. A circle with chord BC is given. A is an arbitrary point on the circle. Prove that

1. When A varies, the loci of isodynamic points are a pair of circles.

2. Let R be the radius of the given circle, R1 and R2 be the radii of the locus circles. Then∣∣∣∣ 1
R1
± 1
R2

∣∣∣∣ =
1
R
.

Problem 8. Let ABC be a triangle inscribed in circumcircle (O). Denote A1, B1, C1 respectively
to be the projections of A,B,C onto BC,CA,AB. Let A2, B2, C2 respectively be the intersections of
AO,BO,CO with BC,CA, and AB. A circle Ωa passes through A1, A2 and lies tangent to the arc of
BC that does not contain A of (O) at Ta. The same definition holds for Tb, Tc. Prove that ATa, BTb
and CTc are concurrent.

Problem 9. Prove that FF ′ ‖ OH where F is the Fermat point, F ′ the isogonal conjugate of the
Fermat point, and O and H are the circumcenter and orthocenter of a triangle.

Problem 10 (USA MOSP 1996). Let AB1C1, AB2C2, AB3C3 be directly congruent equilateral
triangles. Prove that the pairwise intersections of the circumcircles of triangles AB1C2, AB2C3, AB3C1

form an equilateral triangle congruent to the first three.
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