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ABSTRACT
In this paper we propose a utility model that accounts for both sales
and branding advertisers. We first study the computational com-
plexity of optimization problems related to both online and offline
allocation of display advertisements. Next, we focus on a particu-
lar instance of the online allocation problem, and design a simple
online algorithm with provable approximation guarantees. Our al-
gorithm is near optimal as is shown by a matching lower bound.
Finally, we report on experiments to establish actual case behavior
on some real datasets, with encouraging results.

Categories and Subject Descriptors
F.2 [Theory of Computation]: Analysis of Algorithms and Prob-
lem Complexity - general; J.m [Computer Applications]: Miscel-
laneous

General Terms
Algorithms, Experimentation, Modeling

Keywords
Display Advertising, Online algorithms, Simulation, Optimization

1. INTRODUCTION
The current system for allocating and pricing display advertise-

ments relies on two separate markets. On the one hand, contracts
are set between the publisher and advertisers interested in large vol-
umes of impressions. This is done through bilateral bargaining be-
tween the advertisers and the sales force of the publisher. On the
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other hand, the remaining inventory is sold on a per-impression ba-
sis through an auction mechanism.

There are several justifications for the co-existence of such dif-
ferent products in the same market place. At first sight, the sale
of advance purchase contracts seems to indicate that the publisher
seeks to protect itself against uncertain demand [7]. While simple
and appealing, this explanation fails to account for the ease with
which some contracts are sold. Assuming the publisher only sells
advance purchase contracts for products with uncertain demand,
and price them accordingly, one does not expect impressions sub-
ject to uncertain demand to sell-out early on contracts alone.

Further inspection of the buyers of display advertisement impres-
sions reveals a different picture. Alongside regular retailers like
Macy’s or Nordstrom, one can see brands with no point of sale
such as Coca-Cola or Intel. While it is reasonable to assume a re-
tailer has sufficient information to determine the value of an unique
impression, as an impression can be linked to a sale and thus can
be assigned an expected value [8], it is unlikely for a brand like
Coca-Cola to be able to measure the value of an impression outside
the scope of a campaign.

More specifically, we can assume there are two extreme adver-
tisers’ profiles. The first extreme can be characterized by retailers
like Nordstrom, that can be thought of as sales driven as they seek
to transform impressions into sales. The second extreme can be
characterized by the likes of Coca-Cola, that can be thought of as
branding driven, as they seek to create brand equity [10] from their
advertisement campaigns.

The utility function of sales driven advertisers can be modeled
assuming they view impressions as commodities. Modeling the
utility function of branding driven advertisers requires bundling
more than one impression together. Thus there is an implicit com-
plementarity between impressions (or groups of impressions) for
branding driven advertisers, alongside the inherent substitutability
of impressions.

The contributions of the present paper are as follows. We first
propose a utility model that accounts for both sales and branding
advertisers. Next, we study the computational complexity of opti-
mization problems related to both online and offline allocation of
display advertisements. We then focus on a particular instance of
the online allocation problem, and design a simple online algorithm
with provable approximation guarantees. Our algorithm is near op-



timal as is shown by a matching lower bound. Finally, we report on
experiments to establish actual case behavior on some real datasets,
with encouraging results.

It is important to note that even highly idealized versions of the
problems we seek to model are NP-hard. Assuming we have full
information about the supply of impressions and the advertisers’
types, we show that the problem of optimally allocating impres-
sions to advertisers is NP-hard. We explicitly reduce problems such
as the Santa Claus Problem [2], which is known to be NP-hard (in
fact, the first non-trivial approximation to the Santa Claus prob-
lem was only recently given by Asadpour and Saberi in [1]), to our
problem. In the more restricted case where only one type of im-
pression is available, we show that Resource Allocation [3] can be
reduced to our problem, which shows that our problem is NP-hard
even in the simplest of settings.

We then consider the online case where advertisers (and thus
contracts) arrive online. Is such setting, we show that even the
case where one impression is available per round is hard to approx-
imate [11]. Inspired by the results from [11], we consider a setting
where contracts can be dropped without penalties (it is important to
note that the - offline- problem where penalties are generated upon
dropping a contract has been studied in [5]). There we present an
online algorithm with approximation ratio linear in the number of
contracts, and provide a matching lower bound. Note that, as in
[11], we consider a deterministic algorithm. Recently, in [6] and
[4], the authors considered the use of randomized algorithms in the
online setting.

We simulate the performance of our algorithm using 2007 data
derived from Yahoo!’s display advertisement business. We con-
clude that the instances encountered allow our algorithm to perform
with little performance loss.

Organization of the Paper
The rest of the paper is organized as follows. In Section 2 we
present a simple utility model considered for both advertisers’ types.
In this model only one type of impression is assumed to exist. We
deferred the presentation of the full model to Appendix A as most
of the paper deals with the case where only one type of impression
is available. In Section 3 we explore the computational complex-
ity of problems related to the allocation of display advertisements
with agents’ utilities given by our model. In Subsection 3.1 we
show that in a general setting, the problem of maximizing the util-
ity of the least happy advertiser is NP-hard, even when all contracts
have unit duration. In such formulation of the problem, the hard-
ness comes from the multiplicity of impression types, and from the
assumption that they can be considered as substitutes.

Next, in Subsection 3.2, we explore the computational complex-
ity associated with contracts having different durations. To do so,
we assume that there is only one impression type, thus avoiding the
computational complexity of Subsection 3.1. We there show that
it is NP-hard to maximize social welfare (or revenue) even if all
information about supply and advertisers types’ is known.

In Section 4 we present an online setting motivated by the proce-
dure followed when advanced sales contracts are booked. In Sub-
section 4.1 We first show that, in general, it is impossible to approx-
imate social welfare to any constant in the general case. Next, we
consider the case where contracts can be dropped without penalties.
There we extend the results found in [11] from one impression per
round to an arbitrary number of impressions per round. We provide
an approximation algorithm together with a matching lower bound.

Finally, in Subsection 4.3 we test the performance of our algo-
rithm against data extracted from Yahoo!’s display advertisement
business.

Summary of Contributions
We provide a utility model for display advertisement that encom-
passes both branding and sales advertisement. The model is rich
enough to express settings where multiple types of impressions are
available, and allows to model both substitution and temporal com-
plementarity effects between impressions.

We prove that, for the case of multiple impression types, it is
NP-hard to compute a max-min fair allocation of impressions. We
then prove that the problem reduces to a linear program if the im-
pressions are assumed to be divisible. In that same setting, even
when one type of impression is available, we prove it is NP-hard
to maximize social welfare. The rest of the paper deals with this
setting.

We then assume contracts arrive online and provide a lower bound
on the competitive ratio of any online algorithm. We provide a sim-
ple greedy algorithm that is optimal (up to a constant factor). Since
the lower bound on the competitive ratio is quite pessimistic, we
simulate the performance of our greedy algorithm on actual data
from Yahoo!’s display advertisement business. We find that our al-
gorithm performs very well in practice as the observed performance
loss is very small to that predicted in the lower bound.

2. UTILITY MODEL
We assume that advertisers work over business periods spanning

T > 0 individual rounds. One can think of the business period as
the time horizon advertisers’ decide to maximize their utility with
respect to, and of rounds as the smallest quanta of time over which
an advertiser might have a constraint in defining its utility. As an
example, a typical business period is one quarter (four months). For
branding purposes, one can assume that an advertiser is not willing
to see a day pass without an impression being allocated to him/her.
Thus, in this example, a round would be defined as a day. More
generally, one can think of the business period as defining the long
term objectives of the advertiser, and of a round as providing short
term utility constraints for the advertisers.

In all that follows we use the following notation. Each round
is labeled by t ∈ {1, . . . , T}. We assume that during round t, nt

identical items will be available for sale. We note

S =

T∏
t=1

{0, . . . , nt}

where s ∈ S represents a possible allocation of impressions to a
given advertiser. Let N =

∑T
t=1 nt be the total supply over the

business period.
We index advertisers by k ∈ {1, . . . , K} and note them Ak. An

allocation S = {s1, . . . , sK} is a k-partition of the set impressions
such that,

• for all k ∈ {1, . . . , K}, sk ∈ S; and

•
∑

k sk ≤ (n1, . . . , nT ).

The vector sk represents the set of impressions allocated to adver-
tiser Ak. The second condition states that we do not allocate more
impressions during a given round than available.

We consider a general utility model for advertisers. Advertiser
Ak is fully characterized by a 5-tuple (tk, τk, δk, bk, Vk) where

• tk ∈ {1, . . . , T} is the start date advertiser Ak is interested
in; and

• τk ∈ {1, . . . , T} is the duration advertiser Ak is interested
in; and



• δk ∈ {1, . . . , n} is the minimum impressions per round ad-
vertiser Ak seeks to receive starting at tk and for τk rounds;
and

• bk ∈ R+ is the utility drawn from receiving δk impressions
per round during τk consecutive rounds; and

• Vk is the additional value function

Vk : {0, 1, . . . , N} → R
q 7→ Vk(q)

where Vk(q) is the value drawn by advertiser Ak of being
allocated q additional impressions given that it is guaranteed
to receive δk impressions per round during τk consecutive
rounds. Note that Vk(q) < 0 can model ad-fatigue.

Given an allocation sk ∈ S, the utility to agent Ak is

U(sk; Ak) = bk + Vk(|sk| − δkτk) (1)

provided ∀t ∈ [tk, tk + τk − 1], sk(t) ≥ δk. Otherwise the utility
to agent Ak is assumed to be nil.

The previous utility function simply says that, if agent Ak is not
given an allocation where it receives at least δk items per round
during rounds in [tk, tk + τk − 1], then Ak’s utility is nil. This
accounts for branding activities linked to display advertising.

In Examples 1 and 2 we use the utility function form Equation 1
to model both branding and sales advertisers’ utilities.

Example 1 (Sales Advertisers)
As noted in Section 1, sales driven advertisers view impressions
as commodities. Thus if we set tk = τk = 1 and δk = 0, we
conclude that such advertiser, impressions across rounds are perfect
substitutes, and thus the utility function obtained models the setting
where impressions are commodities (here the value advertiser Ak

has for q impressions is given by Vk(q))

Example 2 (Branding Advertisers)
An extreme branding example would be to consider tk = 1, τk =
T and δk ≤ mint nt. Thus, in this example, the advertiser does not
value an allocation unless it is guaranteed at least δk impressions
per round during every round!

In order to best serve advertisers interested in branding activi-
ties, we assume the publisher proposes advanced sales contracts as
defined bellow.

Definition 1 ((Advanced Sales) Contracts)
A contract Γ(t, τ, δ, p) is a guarantee that the publisher will provide
δ impressions per round over τ consecutive rounds starting at round
t at a price of p. We call t the start of the contract, τ the duration, δ
the quantity and p the price.

It is important to note that an advanced sales contract is a guar-
antee of delivery of a given set of impressions to a given advertiser
during a given period of time. As such, we will consider (unless
explicitly stated) a contract to be an obligation, and thus will not
deal with penalties associated with under-delivery. To do so, we
assume that the supply of impressions per round is known.

In order to deal exclusively with contracts, we assume that spot
sales of impressions are represented by a contract (there t = τ = 1
and δ = 1).

3. COMPUTATIONAL COMPLEXITY
In this section we explore the computational complexity of two

problems associated with the sale and allocation of display adver-
tisements. We consider two main components necessary to fully
model the utility of advertisers interested in display advertisements.
The first is the inherent substitutability of impression types. The
second is induced by the complementarity of impressions across
time due to branding effects.

In Subsection 3.1, we show that substitutability across different
impressions types makes the problem NP-hard even in the absence
of complementarity effects. We do so by reducing the Santa Claus
problem to our setting. Next we show in Subsection 3.2, that com-
plementarity of impressions across time (as induced by branding)
makes the problem NP-hard even in the presence of a unique type
of impressions. We do so by reducing the Resource Allocation
problem to our setting.

3.1 Multiple Impressions - Santa Claus
In this subsection we present a well known NP-hard problem,

the Santa Claus problem. We then point out how it is included as a
special case of our display advertisement allocation problem.

Santa Claus seeks to allocate each of n distinct toys, call them
g1, . . . , gn, to K distinct children, call them C1, . . . , CK . Each
child Ck has a personal value of ukj ≥ 0 for the toy gj . We assume
that if a child receives more than one toy, then the value of the
bundle it receives is the sum of the values of the toys included in
the bundle.

Santa Claus seeks to allocate all n toys in order to make the
least lucky child as happy as possible. In other words, Santa Claus
seeks to maximize the minimum utility across all children. Such
and allocation is usually referred to as a max-min fair allocation.

Formally, given an allocation vector S ∈ {1, . . . , K}n, where
Sj = k implies that toy gj was given to child Ck. Let Jk(S) =
{j : Sj = k} be the set of indices of the goods given to child Ck

under allocation S. Then an allocation SSC that solves the Santa
Claus problem is such that

SSC ∈ arg max
S′∈{1,...,K}n

 min
k∈{1,...,K}

∑
j∈Jk(S′)

ukj


In our setting, assume that we have just one round, n different

types of impressions, and only one impression per type. Assume
that all advertisers are “sales advertisers” as defined in Example 1,
but that their utility is given by Equation 17.

If we are interested in making the least lucky advertiser as happy
as possible, it is clear that the setting described above is identical
to the Santa Claus problem. We now need to provide a justification
about using max-min fair allocation as a solution concept.

There are two important aspects not modeled in our current set-
ting. First, advertisers transact with the publisher repeatedly. This
implies that the objective maximized by advertisers can depend on
past transactions. Further, we do not consider competition from
other publishers. By considering max-min fair allocations, we are
trying to account for maintaining “good business relationships” with
advertisers. With this in mind, one can conceivably see how we can
indirectly incorporate those two important aspects into our model
with the proper choice of objective function.

3.2 Single Impression - Resource Allocation
In Subsection 3.1 we proved that our setting includes NP-had

problems that are difficult to approximate. Upon further inspection
of the reduction used, it is clear that we did not used what makes
our problem novel, namely the utility model used to account for



branding effects.
In this subsection we restrict ourselves to a setting not including

the Santa Claus problem as a special case. We show that consid-
ering branding effects when only a unique type of impression is
available is of individual interest. We first show that, in this setting,
the max-min fair allocation problem is easy to solve. We then show
that maximizing social welfare (or revenue) is NP-hard.

In all that follows, we assume that the number of impressions per
round is sufficiently large so that impressions can be considered a
divisible good. This is needed as one can easily reduce knapsack to
our setting. Assume K advertisers, named A1, . . . , AK are inter-
ested in buying impressions. We further assume that all attributes
(tk, τk, δk, bk, Vk) for advertiser Ak are known. We assume that
Vk(q) = vkq is a linear function in q (possibly equal to zero). In
order to simplify notation, we assume without loss of generality
that during each round n impressions are available.

3.2.1 Problem Formulation - LP
Let st,k ∈ [0, n] denote the number of impressions (possibly

fractional) allocated to advertiser Ak during round t ∈ {1, . . . , T}.
Let us first describe the supply constraints:

∀t ∈ {1, . . . , T},
K∑

k=1

st,k ≤ n. (2)

Next, we describe the branding constraint associated with adver-
tiser Ak:

∀t ∈ {tk, . . . , tk + τk − 1}, st,k ≥ δk. (3)

Thus we can see that all constraints associated with our utility
function for advertisers are simply linear constraints. In the next
Subsubsection, we show how the max-min fair allocation problem
can be modeled as an LP, and thus is easy to solve.

3.2.2 Max-Min Fair Allocation Problem
Consider adding the following constraints to those represented

by Equations 2 and 3.

∀k ∈ {1, . . . , K}, bk+vk

tk+τk−1∑
t=tk

(st,k − δk) +
∑

t=tk+τk

st,k

 ≥ y

(4)
and let the objective be to maximize y > 0. First, note that

if the supply is not enough to satisfy all contracts, then the LP is
not feasible. In that case, set the objective to zero as the utility
of the least happy advertiser is zero. In all other cases, the LP we
formulated maximizes y, which, according to the inequalities from
Equation 4, is equal to the utility of the least lucky advertiser.

Since the number of constraints is T + k + k, this problem can
be solved efficiently.

3.2.3 A Difficult Problem - Resource Allocation
In Subsubsection 3.2.2 we showed how the problem of finding

a max-min fair allocation is equivalent to solving an LP. Here we
argue that even in such idealized conditions (namely impressions
being fractionally allocated, and only one type of impressions) a
natural problem related to admission control is NP-hard.

What makes the max-min fair allocation problem easy to solve is
the assumption that all advertisers must meet their branding con-
straints. Even one advertiser not meeting its branding constraint
implies a max-min fair allocation value of zero. If the LP is not
feasible (i.e. if supply is not enough to serve all advertisers), we
can ask what is the maximum social welfare(or revenue) we can
obtain subject to supply constraints?

It turns out that maximizing social welfare in our setting is NP-
hard. A special instance of our problem, called “Resource Alloca-
tion”, can be approximated to within a constant factor (1/2 − ε)
efficiently (see [3]). The setting for Resource Allocation is such
that, for all k, Vk = 0. In other words, if advertisers are only inter-
ested in satisfying their branding constraints, and we are interested
in maximizing social welfare (or revenue), our problem is identical
to Resource Allocation.

A very interesting result from [3] is the existence of a determinis-
tic algorithm with approximation ratio of 3 that takes O(K2 log2(K)).

4. ONLINE SETTING
In Section 3 we implicitly assumed that all advertisers arrived at

the same time, and thus that all contract data was available simul-
taneously. In practice contracts are negotiated at different times,
and the decision to accept or reject a proposed contract is done
online. We consider an online variant of the setting from Subsub-
section 3.2.3.

In Subsection 4.1 we show how, if contracts can be dropped with
no penalty and no prior is known on the distribution of the arriv-
ing contracts (i.e. in a fully adversary setting), then even the case
of allocating one impression per round cannot be approximated to
within any constant ratio. In a more restricted setting where im-
pressions are valued similarly by all advertisers, using results from
[11] we show that an approximation ratio of 4 is optimal.

Motivated by the setting and results form [11], in Subsection 4.2
we consider a setting where n resources are available and contracts
arrive online. We propose a greedy algorithm that, for a class of
valuations of the contracts similar to that studied in [11], achieves
a competitive ratio of at most 4n, thus generalizing the result from
[11] (where n = 1 and the competitive ratio obtained was 4). We
also present a matching lower bound for the competitive ratio of n,
thus showing that our algorithm is almost optimal.

In Subsection 4.3 we simulate the performance of our algorithm
against real data. Surprisingly, we find that our algorithm performs
within only a few percentage points of the optimal omniscient of-
fline algorithm.

4.1 Preliminary Results
Here we present the setting from [11] and some of its results.

Assume we are interested in the following problem. Advertisers
arrive online and request a contract. Upon arrival, advertiser k re-
veals all its information (tk, τk, qk, bk, Vk) and requests a contract.
We assume that advertiser Ak arrives at time tk. The publisher then
decides on the spot to accept or reject the contract.

In the setting considered in [11] it is assumed that

• n = 1 (only one impression per round is available )

• qk = 1 (all of the supply is exhausted by one advertiser at
any given time)

• Vk = 0 (advertisers are only interested in branding)

• payment is received once the contract is fully completed.

• contracts can be dropped without penalty (i.e. the publisher
can accept a contract and drop it later if a better one arrives)

The goal is to maximize social welfare (or revenue) under ad-
versarial arrival of advertisers. It is clear that no online algorithm
can have a bounded approximation ratio without further assump-
tions, thus there is an extra assumption that links the duration of
the contract τ to its value b (which look a lot like convexity).



Under such assumptions the authors give a 4 approximation al-
gorithm. It is interesting to note that the approximation ratio is
tight, and that the algorithm is very simple (greedy algorithm on
contract value).

4.2 Online Algorithm
In [11] the assumption is that nt = 1, 1 ≤ t ≤ T . However it

is not the correct assumption for our problem. The basic model is
the same: Advertisers arrive online and request a contract. Upon
arrival, advertiser k reveals all its information (tk, τk, qk, bk, Vk)
and requests a contract. We assume that advertiser Ak arrives at
time tk. The publisher then decides on the spot to accept or reject
the contract.

However the constraints in our problem, should be relaxed as
follows:

• n ≥ 1 we can have more than one resource per day but it is
the same for all rounds.

• qk ≤ n and it is possible to have more than one active adver-
tiser per round however their total demand should not exceed
n.

• Vk = 0 (advertisers are only interested in branding)

• payment is received once the contract is fully completed.

• contracts can be dropped without penalty (i.e. the publisher
can accept a contract and drop it later if a better one arrives)

The goal is to maximize social welfare (or revenue) under adver-
sarial arrival of advertisers. We call this problem with the prop-
erties defined above Online Resource Allocation Problem. By an
argument similar to that given in [11], it is clear that no online al-
gorithm can have a bounded approximation ratio without further
assumptions. In our argument, we use the following assumption
which is very similar to the given constraint in [11] but defined
over q.τ . Assuming that bk = f(τk.qk), the requirement is that
function f is a C-benevolent function. We say f is C-benevolent if
we have:

1 f(0) = 0 and f(p) > 0 for all p > 0.

2 for 0 < ε ≤ p1 ≤ p2 ⇒ f(p1) + f(p2) ≤ f(p1 − ε) +
f(p2 + ε).

Under these assumptions, we will show that for arbitrary se-
quence of advertisers with C-benevolent profit functions, there is
no online algorithm that can have a worst case ratio smaller than
n. We then present an online greedy algorithm with a worst case
analysis for C-benevolent profit functions, and we show that our al-
gorithm is only a constant factor away from the best possible online
algorithm.

4.2.1 Lower Bounds
In this section, we prove that there is no online algorithm with

worst case ratio smaller than n for any C-benevolent profit function.

Theorem 1
There is no deterministic online algorithm for Online Resource Al-
location problem with a worst case ratio smaller than n.

PROOF. Before describing the strategy of the adversary, we de-
fine the two types of demands(contracts) that will be used by the
sequence of advertisers submitted by the adversary. For the rest of
this section, we use contracts and advertisers interchangeably.

Wide: An advertiser Ai is called wide if τi = n and also qi = n
meaning that they want n impressions per day for a duration
of n days.

Long: An advertiser Ai is called Long if τi = n2 and qi = 1.

Next, we describe the strategy of the adversary against any given
online algorithm and also give an analysis to prove the lower bound
of n. The strategy of the adversary against any given Heuristic H
is as follows:

• Start the sequence of contracts by sending a Wide contract at
each day.

• If H selects a Wide contract, then the adversary starts sending
long contracts one per day during the active period of the
Wide selected contract as long as it stays selected by H .

• If H selects a Long contract, the adversary starts sending
Wide contracts, during the active period of the Long contract
currently chosen by H as long as it stays active. Wide Con-
tracts are submitted as soon as the previous Wide Contract
sent by the adversary is finished.

• The adversary will stop sending any more contracts if he ei-
ther sends n Wide contracts or n Long contracts or the worst
case ratio is already n.

If H keeps the first Wide contract, then at day n the worst case
ratio is already n. Now suppose H switches to the Long contract.
Again if H keeps this contract, it will lose at day n2 so H should
switch to a Wide contract at some point. We can see that at the
end of each round, H still only keeps one contract and also after
each switch, the adversary will send at least one contract. It is clear
that if H holds on to one contract and stops switching it will lose
a factor of n by the finishing time of that contract. Now look at
the solution after 2n switches. Using the given facts above and the
pigeon hole principle, we can conclude that we have n contracts of
the same category. Also we know that Wide contracts don’t have
conflicts with each other at all and also any set of size less than or
equal to n of Long contracts can be scheduled together without any
conflict. That means that at this point, the optimal offline solution
will exceed n3 however the solution picked by H is n2 which gives
us the desired worst case ratio for any H .

4.2.2 The online Algorithm
In this section, we present the algorithm:

Algorithm ORA

1. If the new coming contract does not have conflict with any
currently scheduled contracts, schedule it.

2. Otherwise, find1 the set of contracts with the minimum total
profit that if we dropped them from the schedule the new
coming contract can be scheduled. If the profit of the new
contract is more than twice the total profit of these contracts
schedule it.

3. In the rest of situations, drop the new contract.

Next, we show that in the worst case, the ratio of Online Resource
Allocation Algorithm is 8n.

9 1This involves running an algorithm for a knapsack like problem
on the accepted set of contracts.



Lemma 1
The Algorithm ORA has the worst case ratio of at most 8n + 2 on
C-benevolent Profit functions.

PROOF. To make the analysis more clear, we first categorize all
the contracts to three groups simply based by how they are dealt
with by algorithm ORA.

Final: are the contracts that are selected, and retained until the end
by Algorithm ORA.

Dropped: are the contracts that are (initially) selected by the algo-
rithm but dropped later on in favor of other contracts.

Ignored: are the ones that are not selected by Algorithm ORA at
all.

We first show that the total profit of Dropped contracts is at most
equal to the total profit of Final contracts. We also show that the to-
tal profit of the Ignored contracts belonging to the optimal solution
is at most 4n times of the sum of Dropped and Final contracts.

Lemma 2
The total profit of the dropped contracts is at most equal to the total
profit of the Final contracts.

PROOF. Consider all the Dropped and Final contracts. Create
one node corresponding to each of these contracts. If a contract is
dropped because of another contract, put a directed edge between
them. It can be seen that the outdegree of each node corresponding
to a Dropped contract is 1 and it is 0 for all the Final contracts.
The structure of this graph is a directed forest rooted at Final con-
tracts. We show that the total profit of all the internal nodes in each
tree is at most equal to the profit of its root. The proof is by in-
duction. Assume that for all trees of height less than h the total
profit of the all the internal nodes in the subtree are less than the
profit of the root. Now consider a tree of height h. We know by
the way we put the edges that the profit of the root is at least twice
the total profit of all the roots of the subtrees. But by induction,
we also know that the total profit of the vertices of the subtrees are
greater or equal to the profit of the nodes in the subtrees so that
means that the profit of root of tree is greater or equal to the profit
of all the nodes in the tree. Each Dropped contract belongs to ex-
actly one tree since it should have exactly one outgoing edge which
completes the proof.

Next, we show that the total profit of Ignored contracts belonging
to the optimal solution is at most 4n times of the total profit of Final
and Dropped contracts.

Lemma 3
The total profit of Ignored contracts in OPT are at most 4n times
the total profit of Final and em Dropped contracts assuming the
profit of each contract is computed by a C-benevolent function of
the size of the contract.

PROOF. We again use the charging method. We define the allo-
cation for a contract and a heuristic as follows:

Alloc(Ai, H): Assuming that we named the items available at each
day by I = i1, . . . , in, we define Alloc(Ai, H) as the the
exact set of items assigned to Ai by H at each day. Without
loss of generality we assume that we have 1 copy available
from it each day.

Without loss of generality in the rest of the proof we make the fol-
lowing assumptions:

• We assume that for a given algorithm H and a contract Ai,
the allocations can be set in a way that as long as Ai is not
dropped Alloc(Ai, H) does not change for the duration of
each contract.

• The assigned items to each contract are staying the same dur-
ing its active period. However the assigned resource might
or might not be consecutive.

Consider an Ignored contract Ai that belongs to the optimal so-
lution. We define the set Conf(Ai) as follows:

Conf(Ai): Consider Alloc(Ai, OPT ). Also consider all Aj con-
tracts that are either Final or dropped and also tj ≤ ti and
Alloc(Aj , ORA)

⋂
Alloc(Ai, OPT ) 6= ∅. Call it PConf(Ai).

Now define Conf(Ai) ⊆ PConf(Ai) as follows:

• Initialize Conf(Ai) = PConf(Ai).

• Sort Aj ∈ Conf(Ai) in the increasing order of bj .

• If the bi <
∑

Aj∈Conf(Ai)
bj and |Conf(Ai)| > 1,

remove the contract with minimum bj from Conf(Ai).

• Repeat until either |Conf(Ai)| = 1
or bi ≥

∑
Aj∈Conf(Ai)

bj .

Defining the Conf(Ai) as above, we can guarantee that if |Conf(Ai) >
1| then

∑
Aj∈Conf(Ai)

bj ≤ bi ≤ 2.
∑

Aj∈Conf(Ai)
bj . Next, we

replace Ai with |Conf(Ai)| virtual copies Av
i,j corresponding to

each Aj ∈ Conf(Ai) and set virtual profit bv
i,j =≤ 2.bj so that∑

Aj∈Conf(Ai)
bv
i,j = bi. So Av

i,j = (ti, τi, qi, b
v
i,j , 0).It is easy

to show that it is always possible to do this. Now we can show the
following lemma:

Lemma 4
Defining the price per unit of a contract(virtual contract) Ai by
ppu(Ai) = bi

τi.qi
, then ppu(Av

i,j ≤ 2.ppu(Aj) for all Aj ∈
Conf(Ai).

PROOF. If |Conf(Ai)| = 1 and bi ≤ bj where Aj ∈ Conf(Ai),
then since profit function is C-benevolent, we can conclude that
ppu(Av

i,j) = ppu(Ai) ≤ ppu(Aj). In the rest of the cases we can
argue as follows:

Since the profit function is monotonically non decreasing, with
the way we defined Conf(Ai) we can conclude that τi.qi ≥ τj .qj

∀Aj ∈ Conf(Ai). Now considering Av
i,j we know that bv

i,j ≤
2.bj . So we have:

ppu(Av
i,j) =

bv
i,j

τi.qi
(5)

≤ 2.bj

τi.qi
(6)

≤ 2.bj

τj .qj
(7)

= 2.ppu(Aj) (8)
(9)

Next, we partition Conf(Ai) into two subsets:

Tail(Ai): Tail(Ai) ⊆ Conf(Ai) is the set of all Aj ∈ Conf(Ai)
that has overlap with Alloc(Ai, OPT ) at their finishing time
in Alloc(Aj , ORA).



Mid(Ai): Mid(Ai) ⊆ Conf(Ai) contains all the rest of con-
tracts in Conf(Ai).

Now the method we are using for charging is as follows:

• For each Aj ∈ Conf(Ai) do the following:

–
If Aj ∈ Tail(Ai) then charge Aj twice the
profit of Av

i,j
(10)

–
Otherwise, for each day t that Aj and
Ai have overlap in Alloc(Ai, OPT ) and
Alloc(Aj , ORA), charge one of the common
items in Aj , 2n times the ppu(Av

i,j).

(11)

We show that the profit of each Av
i,j is charged completely at least

once to some Aj ∈ Conf(Ai). Also, we will show that each
Aj is not charged more than 4.n times considering all the Ignored
contracts in the optimal solution.

We first show that:

Lemma 5
∀Aj ∈ Conf(Ai), By the charging method described above, the
total profit of Av

i,j is charged to Aj .

PROOF. With the way we defined Av
i,j , we know that bv

i,j ≤
2.bj . Now if Aj ∈ Tail(Ai), we charge its profit twice which
will directly cover bv

i,j . Now consider the situation where Aj ∈
Mid(Ai). Since Aj ∈ Mid(Ai) we know that ti ≥ tj and
ti + τi ≤ tj + τj . We conclude that if Alloc(Ai, OPT ) and
Alloc(Aj , ORA) are overlapping in at least one day, they should
have an overlap on every day t where ti ≤ t ≤ ti + τi. That means
in 11, we charge the profit of one unit of Aj 2n times for t satisfy-
ing ti ≤ t ≤ ti + τi.Also we know that bv

i,j = ppu(Av
i,j).τi.qi ≤

2.ppu(Aj).τi.n. So we can conclude that the total profit of Av
i,j is

completely covered in our charging scheme.

Next, we show that:

Lemma 6
Each contract that belongs to Final or Dropped set, is charged at
most 4n times.

PROOF. Consider a contract Aj that belongs to Final or dropped.
It can be shown that the total number of ignored contracts in the op-
timal solution that contain Aj in their Tail(Ai) are at most n. The
reason is that Aj can occupy at most n resources on its finishing
day and since we are considering a feasible fixed allocation of the
optimal solution, each of these resource can belong to at most one
contract in the optimal solution and in total at most n contracts in
OPT have overlap with Aj at its finishing time. Also, each resource
of Aj will be charged once and for an amount equal to 2n times the
price per unit of that resource because the charged resource should
belong to the overlap of Aj and Ai and Ai belongs to the optimal
solution and we consider a fixed feasible allocation of OPT, so no
other Ak where k 6= i, can have overlap with Aj at the same re-
source. Therefore in 11, each unit will be charged at most 2n times.
Putting all these together, we can conclude that each Aj in either
Final or Dropped is charged at most 4n times.

The final goal is to compare the profit of Final contracts with the
total profit of optimal. Partition the total profit of OPT to OPTf +
OPTd +OPTi based on the category that they belong to in ORA.
Also call the profit of Final contracts Pf and profit of dropped con-
tracts, Pd. We know that OPTf ≤ Pf , OPTd ≤ Pd ≤ Pf and fi-
nally Pi ≤ 4n.(Pf +Pd) ≤ 8n.Pf . So OPTf +OPTd+OPTi ≤
(8n + 2)Pf which completes the proof.

4.3 Simulation
In this subsection we test the performance of our algorithm on

real data derived from the Yahoo! display advertisement business.
To do so, we selected four different types of impressions and con-
sidered all those contracts they could be used to satisfy. The types
of impressions represent different sets of properties (e.g. mail, Fi-
nance, etc.) and positions (e.g. top, bottom, side). We then parti-
tioned the business period into rounds. This partition determined
the value of T for each dataset. Data is derived from proprietary
but real contract data from 2007.

The simulation methodology is the following. We first assumed
that all advertisers were interested only in being delivered the min-
imum number of impressions. Hence Vk = 0 for all advertisers.
Next, we parameterized the simulation by n, the number of im-
pressions available per round, and ran the simulation for 5 distinct
values of n. In order to calculate the optimal revenue, we attempted
to solve the following integer program:

maxx

K∑
k=1

bkxk subject to (12)

K∑
k=1

qkat,kxk ≤ n, for all 1 ≤ t ≤ T (13)

x ∈ {0, 1}K (14)

where at,k = 1 if advertiser k is interested in impressions during
round t, and at,k = 0 otherwise. The variable xk = 1 indicates
that a contract will be sold to advertised Ak. Note that the number
of variables is equal to K, and that the number of constraints is
given by T , the number of periods.

Since the number of contracts may be large, it is important to
note that the ability to solve the previous integer program depends
both on the number of constraints (as given by Inequalities 13) ac-
tive at optimality, and on the total number of contracts selected at an
optimal allocation. We capture both effects by varying the number
of impressions available per round. If n is large enough, all adver-
tisers can book a contract. As n decreases, the number of rounds
where a potential contention exists increases, and the solution be-
comes "lumpier".

In the course of solving the integer program, we also obtained the
solution to the LP relaxation, where the Inequalities 14 are replaced
with

0 ≤ xk ≤ 1, for all 1 ≤ k ≤ K (15)

Since for some of the datasets the integer program produced a
worse solution than that of our algorithm, we report the results of
our algorithm as compared to the solution obtained by the LP relax-
ation. We note that we used default settings for the IP solver, which
might account for its inability to handle some of the datasets. The
results of our simulations are summarized in Table1 1-4.

Table 1: Results for the first dataset
n Number Booked Performance loss
n1 2450 0
n2 1709 3.71
n3 803 14.2
n4 88 10.5
n5 33 8.36

The parameters for each dataset are summarized in Table 5.



Table 2: Results for the second dataset
n Number Booked Performance loss
n1 1581 0
n2 1070 10.4
n3 551 12.6
n4 169 14.4
n5 111 37.9

Table 3: Results for the third dataset
n Number Booked Performance loss
n1 9169 0
n2 9124 0.05
n3 8323 0.52
n4 6615 0.84
n5 1285 4.99

The performance loss is given in percentage points with respect
to the LP solution. Note that our algorithm performs orders of mag-
nitude better than the guaranteed performance (note that even in the
case on n = 1, the performance guarantee would be of 25%, or a
performance loss of 75%!). This indicates that the instances typ-
ically encountered in real setting are far from those necessary to
make our algorithm perform poorly.

In Table 6 we compare the performance of the IP solution to that
of the LP solution. Note that for datasets two to four, the perfor-
mance of the integer programming solution was sometimes below
that of our solution, and in some instances was not even available.
We used the open source branch and cut code Cbc from the COIN-
OR repository [9], with default parameter settings, but with the at-
tempted addition of the probing, Gomory, knapsack, redsplit and
clique cuts. In general, the number of cuts obtained was small. The
branch and bound algorithm was run until either the 10th integer
solution was obtained, or twenty minutes have elapsed.
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APPENDIX
A. MULTIPLE IMPRESSION TYPES

In this appendix we present the relevant utility model when more
than one impression type is available. This is the model used in
Subsection 3.1. Assume there are L > 1 impression types, corre-
sponding to different advertising selection criteria used by adver-
tisers. For instance, an impression type could represent the set of
all finance related webpages, and another one the set of all sports
related webpages. For ease of exposition, we assume each impres-
sion has a unique type (note that, in general, a given impression
could potentially be of several types, specially in the presence of
behavioral targeting).

We note by n`
t the number of impressions of type ` ∈ {1, . . . , L}

available at round t ∈ {1, . . . , T}. Thus the set of possible alloca-
tions is now given by

S =

L∏
`=1

[
T∏

t=1

{0, . . . , n`
t}

]
where s ∈ S represents a possible allocation of impressions to a
given advertiser with s(`, t) ∈ {0, . . . , n`

t} represents the number
of impressions of type ` allocated at round t to the advertiser. We
note by s(`) ∈

∏T
t=1{0, . . . , n`

t} the set of impressions of type
` allocated in s. Let N` =

∑T
t=1 n`

t be the total supply over the
business period of impressions of type `.

Again, we index advertisers by k ∈ {1, . . . , K} and note them
Ak. An allocation S = {s1, . . . , sK} is a k-partition of the set
impressions such that,



Table 6: Performance of the Integer Program solution
n Dataset1 Dataset2 Dataset3 Dataset4
n1 0 0 0 0
n2 0.04 5.01 0.02 N/A
n3 0.10 8.53 17.7 N/A
n4 1.77 36.7 8.27 91.1
n5 2.80 32.1 9.54 N/A

• for all k ∈ {1, . . . , K}, sk ∈ S; and

• for all ` ∈ {1, . . . , L},
∑

k sk(`) ≤ (n`
1, . . . , n

`
T ).

The vector sk represents the set of impressions allocated to adver-
tiser Ak, with sk(`) representing the set of impressions of type `.
The second condition states that, for any type `, we do not allocate
more impressions of that type during a given round than available.

In order to meet branding requirements, we assume that adver-
tiser Ak is interested only in a subset Lk ⊆ {1, . . . , L} of the
impressions’ types available. More precisely, starting from round
tk and for τk consecutive rounds, advertiser Ak is interested in re-
ceiving at least a given number δk of impressions per round of any
type ` ∈ Lk. The value drawn from receiving those impressions is
bk.

If Ak meets its branding constraints and receives an additional
q` impressions of type ` ∈ {1, . . . , L}, then Ak draws an addi-
tional V `

k (q`) units of utility. More formally, advertiser Ak is fully
characterized by the 5 + L-tuple (Lk, tk, τk, δk, bk, V1, . . . , VL)
where

• Lk ∈ {1, . . . , L} is the set of impressions types’ advertiser
Ak is interested in for branding purposes; and

• tk ∈ {1, . . . , T} is the start date advertiser Ak is interested
in; and

• τk ∈ {1, . . . , T} is the duration advertiser Ak is interested
in; and

• δk ∈ {1, . . . , n} is the minimum impressions per round ad-
vertiser Ak seeks to receive starting at tk and for τk rounds
from the types specified in Lk; and

• bk ∈ R+ is the utility drawn from receiving δk impressions
per round during τk consecutive rounds; and

• for all ` ∈ {1, dots, L}, V `
k is the additional value function

for impressions of type `

V ell
k : {0, 1, . . . , N`} → R

q 7→ V `
k (q)

where V `
k (q) is the value drawn by advertiser Ak of being

allocated q additional impressions of type ` given that it is
guaranteed to receive δk impressions per round during τk con-
secutive rounds of type from the set Lk. Note that V `

k (q) < 0
can model ad-fatigue.

Given an allocation sk ∈ S, if for all t ∈ [tk, tk + τk − 1], it
holds that ∑

`∈Lk

s(`, t) ≥ δk, (16)

then the utility to agent Ak is

U(sk; Ak) = bk +

L∑
`=1

V `
k

(
T∑

t=1

s′k(`, t)

)
(17)

where s′k is the residual allocation obtained by subtracting the im-
pressions used for branding purposes to sk. Note that there are po-
tentially several ways to define s′k. We assume s′k is defined such
that the utility to Ak is maximized.

Otherwise, if any of the Inequalities 16 is not satisfied, the utility
to agent Ak is assumed to be nil.

Again, the previous utility function simply says that, if agent Ak

is not given an allocation where it receives at least δk impressions
of types in Lk per round during rounds in [tk, tk + τk − 1], then
Ak’s utility is nil. This accounts for branding activities linked to
display advertising.

Notice that the utility drawn from impressions of different types
not used to satisfy branding constraints are added together. This is
consistent with the idea that, once branding constraints are satisfied,
advertisers treat impressions as substitutes (not necessarily perfect
substitutes).
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