ARTIFICIAL INTELLIGENCE 29

General Branch and Bound and Its
b Relatlon to A* and AO*

-Dana S. Nau, Vipin Kumar and Laveen Kanal’
Laboratory for Pattern Analysis, Computer Science
Department, University of Maryland College Park MD .20742

US.A.

Recommended by Erik Sandewall

ABSTRACT :
Branch and Bound (B&B) is a problem —solumg technique which is wzdely used for various problems
encountered in operations research and combinatorial mathematics. Various heuristic search pro-
cedures used in artificial intelligence (AT} are considered to be related to B&B procedures. However,
_ in the absence of any generally accepted terminology for B&B procedures, there have been widely
differing opinions regarding the relationships between these procedures and B&B. This paper presents
a formulation of B&B general enough to include previous formulations as special cases, and shows
how two well-known AT search procedures (A* and AQ®) are special cases of this general
formulation. .

1. Introduction

A wide class of problems arising in operations research, decision making and
artificial intelligence can be (abstractly) stated in the following form:

Given a (possibly infinite) discrete set X and a real-valued objective
function F whose domain is X, find an optimal element x* € X such
that F(x*)=min{F(x)| x € X} !

Unless there is enough problem spec:lﬁc knowledge avaﬂable to obtain the

: optimum element of the set in some straightforward manner, the only course
: available may be to enumerate some or all of the elements of X until an
optimal element is found. However, the sets X and {F(x)|x € X} are usually

"This work was supported by NSF Grant ENG-7822159 to the Laboratory for Pattern Analysis at
the University of Maryland.
" 'In some applications, the maximal element (i.e., x* such that F(x *) max{F(x}|x € X} is
desired rather than the minimal element
Artificial Intelligence 23 (1984) 20-58

0004-3702/84/$3.00 © 1984, Elsevier Science Publishers B.V. (North-Holland)

30 D.S. NAU ET AL.

defined in such a way that their elements are not readily available, but instead
require some computation to- be generated. Thus, for problems of practical
interest, exhaustive enumeration is often prohibitively time-consuming.

There are many examples of this kind of problem in Al For example, the set.
X may be the set of solutions to an And/Or graph, game tree, or state-space
search problem. While various comments have been made regarding the
relationships of B&B procedures to heuristic search procedures, the comments
have often been contradictory. Whereas Hall {2] and Ibaraki [4, 6] consider
" B&B and heuristic search procedures to be very similar, Pohl [22] does not
agree. Similar differences in assessment may be found in Reingold et al. [23]
and Knuth {7] concerning alpha-beta and B&B, in Kumar and Kanal [13] and
Berliner [1] concerning B*, and in Ibaraki [6] and Martelli and Montanari [16]
concerning AO*, A plausible explanation for some of the confusion concerning
the relationships bétween B&B and AI search procedures is that B&B tech-
niques have continued to evolve since the early 1960s, whereas the carly survey
by Lawler and Wood [14] is often the only reference used in the AT literature.
Additional confusion results, however, from other factors as described below.

One reason for the present confusion about B&B is the differing conceptions
of the basic entities operated on by B&B. For example, the characterization of
B&B presented by Kohler and Steiglitz [8] is developed in the context of
permutation problems and uses ‘“partial combination vectors” as the basic

entities. The one presented by .Ibaraki [6] attempts to serve as a model for
state-space search procedures, and formulates B&B as a procedure operating
on strings over an alphabet. In Reingold, Nievergelt, and Deo [23], the basic
“entities are partial solution vectors. '
In our opinion, much of the above confusion can be resolved by making a
distinction between the entities operated on by B&B and the structures used to
‘represent these entities, We argue that the fundamental entities operated upon
by a B&B procedure are not the partial vectors, alphabetic strings, or other
problem-specific entities. These are merely representations of subsets of the set
of solutions X mentioned at the beginning of this section, and confusion results
from the lack of distinction between the entity and its representation.
In this paper, we unify the various previous formulations of B&B by
considering B&B as a procedure which operates on members of an arbitrary
"set of representations of subsets of X, These representations can be vectors,
strings, paths in a graph, solution trees, or any other convenient structures.
Another source of confusion about B&B is that different writers define B&B
to have different and non-equivalent pruning criteria. Until recently, the only
_test used for pruning in B&B was based on upper and lower bounds on subsets
of X (e.g., Mitten [17]); hence the name Branch and Bound. The introduction
of more sophisticated pruning techniques seems to have been initiated by
Kohler and Steiglitz |9] with their concept of dominance, although similar ideas
have been used heuristically in many other branch and bound algorithms

GENERAL B&B, AND ITS RELATION TO A* AND AO* 31

(Ibaraki [5] gives a long list). The formal introduction of dominance in B&B
procedures was a major step towards formalizing the use of problem-specific
knowledge in optimization procedures. Kohler and Steiglitz [9] and Ibaraki [6]
have given a formal description of B&B with dominance. They have proved
" several results using this formulation.
~ To unify the varying conceptions of B&B pruning techniques, we allow any
generated set to be pruned if it can be shown that at least one of the remaining
sets contains an optimal element. A look at the references cited above will
show that our approach to pruning is simpler than previous formulations while
including them as special cases of our approach.
Using our formulation of B&B, we show that A* and AO* are spec;al cases
of B&B. A number of other search procedures (e.g., alpha-beta [20], SS8* [25],
and B* [1}) can also be considered special cases of our general formulation; this
is shown in another paper [12]. This general formulation can be used to shed
light on the similarities and differences among these various search procedures.
This topic is investigated further in [10].
Section 2-describes the general formulation, which we call General Branch
and Bound (GBB). This section discusses the basic concepts of B&B, the
necessity of distinguishing between a set and its representation, the use of
auxiliary data in B&B, and a fundamental property of B&B. Section 3
discusses an important special case of GBB. This special case is used in
subsequent sections to show that other procedures are special cases of GBB.
Section 5 discusses how ordinary B&B (in which all pruning is done by means
of upper and lower bounds) may be considered a special case of GBB, and
- Section 6 does the same thing for B&B with dominance. Sections 7 and 8 show
that A* and AQO*, respectwely, are’ GBB procedures. Section 9 contains
“concluding remadrks. Appendices A, B, C, and D contam proofs of results
discussed in Sections 3 4, 6 and 7, respectlvely

, 2. A General Formulatlon 0f Branch and Bound
2.1. The basnc concept of branch and bound ‘ '

Consider the procedural scheme below (comments are 1ndtcated by double

slashes ks //)

procedure PO: o ’
-ACT:={X} fJACT is the current active setff
loop fthe main loopf _
if ACT = {Z} for some Z and Z is a singleton {z} then
return z
endif
SEL:= select (ACT)
,v',n'select some of the.sets in ACT,"[
SPL = split(SEL) [/split the setg in SPLJ/

.m.dw:ns»a.m,—‘

32 D.S. NAU ET AL.

8. ACT = prune({ACT — SEL) U SPL)
Jremove the selected sets from ACT, replacef
Jthem by the newly generated sets, and then [/
Jorune unneeded sets from ACT/

9. repeat

end PG

— ACT, the active set, is a collection of subsets of X,
~select, the selection function, is any function which returns a collection
SEL € ACT. The domain of select is the set of all possible values which ACT
might have at line 6 of PO,
—split, the splitting function, has as its domain the set of all possible values
which the collection SEL might have at line 7 of P0. split{SEL) returns a
colilection SPL of subsets of X such that:

(1) every set in SPL is a subset of some set in SEL;

@) U{Y'| Y eSPL}= U{Y| Y ESEL}; i.e, the sets in SPL contain pre-
cisely those clements which are members of SEL.
—prune, the pruning function, has as its domain the set of all possible values
which the collection of sets R = (ACT — SEL)U SPL might have at line 8 of PO,
prune returns a collection of sets R’ C R such that '

min{F(y)!y€ Y forsome YE R} =
= min{F(y)| y € Y for some Y € R} ;

1.e., at least one of the minimum elements of R is also present in R".

The procedure PO describes our basic concept of B&B. We note that the
selection and splitting functions of PO are essentially those of Mitten [17]. Most
of versions of B&B familiar to the reader (such as Ibaraki’s formulation [6])
will select and split only one member of ACT at a time (see Sections 4 and 3).
Our use of the capability of selecting and splitting several members of ACT at
once turns cut to be essential for explaining procedures which operate on
And/Or graphs or game trees (which are special cases of And/Or graphs). Such
procedures include AQ*, which is discussed in Section 7, and §S§* and B*,
which are discussed in [12].

The pruning function in PO is more general than that of Mitten [17], which
allows pruning only by bounding. Our pruning function is conceptually simpler
than the formulation of pruning used by Ibaraki [6], and includes Ibaraki’s
formulation as a special case (see Section 5).

' 2.2. Inadequacies of PO

Despite the generality of PO, it is not adequate to describe the behavior of all
.B&B procedures. (This is also true of all other B&B formulations which use
abstract sets, e.g., [17, 24].) In practical implementations of B&B procedures, a
subset Y of X is usually not given a direct or explicit representation (such as a

GENERAL B&B, AND ITS RELATION TO A* AND AO* 33

list of its elements), but instead is usually represented by a data structure from
which the elements of Y can be obtained by computation. This representation
often incorporates problem-specific knowledge which is used in selection,
splitting, and pruning. Different choices of representation for a problem can
lead to different B&B procedures.

Even within a single B&B procedure, there may be several different ways to
represent the same set. Depending on which representations are used for some
collection of sets {Y, Ys..., Y.}, the values returned by
select({Y, Yo, ..., Yi}), split{Yy, Yo, ..., ¥i}), and prune({Yy, Y, ..., YD
may vary. This means that if select, split, and prune are considered as functions
only of Yy, Y,, ..., Y}, then they are not well-defined. Furthermore, it may not
be readily apparent whether a data structure representing a subset of X
represents a singleton set Z = {z} or not, and thus the result of the termination
test in line 3 of PO may not be well-defined.

As an example, we consider the least-cost path problem. Let G be a directed
graph, and {m, n) be an arc in G. Then m is called a parent of n, and n is called
a child of m. If P is a path in G, then the last node in P is denoted by tip(P).

Suppose that P = (s, 112, ..., ;) and Q = (n;, jer, . . ., i) are paths in G, and
(n; n}is an arc in G: Then Pn is the path (1, ns, . . ., n, n), and PQ is the path
(n1, n2, .o, 1y, Myar, ooy M)

Suppose that each arc (m, n) in G has a cost c¢(m, r) =0, and that for every
path P in G, cost(P) is defined as the sum of the arc costs of P. Consider the
problem of finding a path from a source node s in (¢ to any member of a set T
of terminal nodes. The set X of solutions to this prob]em is the set containing
each path from s to any member of T. The least-cost path problem is the
problem of finding a path P in X which minimizes the value of the objective
" function cost(P).

In B&B procedures to solve the least-cost path problem, a path P from s to
some node n in G is typically used to represent the set of all extensions of P to
members of T (i.¢., the set of all paths PQ such that Q is a path from tip(P) to

.a member of T and the only member of T in Q is tip(Q)). The splitting
function split is typically defined in the following way as a function of
~ collections of representations of sets (rather than collections of sets):

split({Py, Pa, ..., Pi})={Pn|1=<i=<k and n is a child of tip(P)}.
- @1

Let & be the directed graph having node set {a, b, ¢, d, e, f, g} and arc set
{(a, B), (b, c), (¢, d), (d, e), (¢,), (f,), (g h)}, and let s = @ and T = {e, g} (see
Fig. 1). If split is defined as in (2.1), then 7

split{{(a, &)} = {(a, b,)} B ' 7 2.2
and -

smﬁmmmm=«¢a;@4¢aany | o L (@23)

34 : ~ D.S.NAU ET AL,

SQURCE

FiG. 1.

Suppose split were defined (as it is in P0) as a function of the sets represented
- rather than a function of the representations. The paths (a) and (a, b) both
represent {(a, b, ¢, d, e), (4, b, ¢, f, g)}; (a, b, ¢, d) represents {(a, b, ¢, d, e)}; and
(a,b,c, f) represents {(a, b,c, 1. g% Thus (2. 2) would be replaced by -

splitf{(a, b, ¢, d, e), (a, b, ¢, f, g, KD = , S
- ={{(a, b, ¢, d,e), (abcfg,h)}} _ . @22y

and (2.3) would be replaced by

split({{(a, b, ¢, d, ¢), (a, b, c, f, g, h)}}) =
= {{(a: b, ¢, d, e)}s {(a: b, c, fs & h)}} . o (23)'

Since (2.2) and (2.3 assign two different values to split{{(a, b, c, d, e),
(a, b, ¢, f, g, A}, split is ill-defined when considered as a function of the sets
represented rather than their representations. This demonstrates that PO is
inadequate to describe the behavior of the splitting functions used in some
B&B procedures. Similar examplcs can be found for the selection and pruning
. functions. :

This example also illustrates that the termination test used in PO does not
adequately model the termination tests used in practical B&B procedures.

GENERAL B&B, AND ITS RELATION TO A* AND AQ* 35

Suppose ACT were a collection containing the single path (a, b, ¢, d, f, g). This
path represents the singleton set {(a, b, ¢, d, f, g, h)}. However, a B&B pro-
cedure for the least-cost path problem could not terminate before splitting
{{a, b, ¢, d, f, g)} to obtain {{a, b, ¢, d, f, g, h)}. This is because the tip node of the
~path (a,b,c,d,e,f,g) is not in. T, and so it is not known whether
(a,b. ¢, d, e f, g) represents a single path (or more than one path, or any path
at all) between s and some node in T In order for the termination test in P0 to
be well-defined, a goal function is needed to tell whether or not a represen-
tation is known to represent a singleton set {y} such that F(y) may be obtained
directly.

2.3. An improved model of branch and bound

The previous section described the inadequacies of PO as a general model of
B&B. To eliminate these inadequacies, PO is modified in this section to contain
both a goal function and an explicit distinction between representations of sets
and the sets represented.

A representation scheme is defined as a pair (S, tf), where § is a set of
representations and 1f: S — 2% is a representation function. If r € § and 1i(r} =Y,
we say that r is an rf-representation of Y (or, if the identity of #f is obvious,
that r is a representation of Y).

Throughout this paper, r denotes a representation and R denotes a collec-
tion of representations. For convenience, we define

Fmin(r) = min{F(x)| x € rl(r}
and . ‘
Frin(R)=min{F(x)| x € rf(r) for some r € R}.

A goal function, goal, is any predicate such that whenever goal(r) holds, rf(r)
is a singleton set {x} such that F(x) can be computed directly from r.2 Thus
when goal(r) holds, Fun(r)= F(x). When goal(r) does not hold, it' does not
necessarily mean that rf(r) is not a singleton set.

When PO is modified to include a goal function and to make explicit use of
Tepresentations of sets, the result is the procedure P1 below,

procedure P1: /General Branch and Bound {GBB)j/
1. ACT1:={r0} JACT1 is the current active setff

fr0 is the initial representation of X; i.e., f1{r0) = X
2. loop [the main toopff

It is sometimes useful to have goal(r) hold even if » does not repfesent a singleton. However, it
is usually possible to define rf in such a way that all goals are singletons (as we have done for the:
“search problems discussed in this paper). The modification of our model to mclude non-singleton
‘goals is fairly straightforward but would require additional notatlon

36 : D.S. NAU ET AL.

3 if ACT1 = {r1} for some r1 and goati{r1) holds then
4 return ri

5. endif

6. SEL1 = selecti(ACT1)

7 SPL1 = split1(SEL1)

8 ACT1 1= prunet{{(ACT1 — SEL1), SPL1)

9. repeat ')

end P1

_ In P1 above; rfl is a representation function and ACTI is a set of represen-
tations. The other functions, which are.defined below, are analogous to the
corresponding functions for PO except that they refer to representations instead
of sets.)
~selectl, the selection function, is any function which returns a subset of ACT1.
The domain of selectl is the set of all p0551b1e values which ACT1 might have
at line 6 of P1.

—splitl, the splitting function, has as its§ domain the set of all possible values
which SEL1 might have at line 7 of P1. split1(SELI1) returns a collccnon SPL1
of representations such that

if ¥ € SPL1, then there is an r € SEL1

such that rl1(r") C rfl{r) : (2.4)
and ' ' :
UHrf1(r)| r € SPL1} = U {rf1(r) | r € SEL1}. (2.5)
—prunel, the pruning function, has as its domain the set of all possible values
which the pair of collections of representations (ACT1 - SEL1, SPL1) might

have at line 8 of P1. prunel returns a collection ACT1’ of representations such
that

{tf1(r') | ¥ € ACT1} C{rf1(r)| r € (ACT1 - SEL1) U SPL1} (2.6)
and
Fria(ACT1") = Frin((ACT1 = SEL1) U SPL). : 2.7

Most B&B procedures make use of auxiliary information not explicitly
represented in P1. The auxiliary information, for example, might be in-
formation about various relationships among the members of ACT2 for use in
pruning, or might take the form of maintaining ACT2 as an ordered list rather

- than an unordered set. If such information is made an explicit part of P1, the
result is the procedure P2 given below.

procedure P2: J(GBB.with an auxiliary database (DB2){/
1. initialize DB2
. //DB2 consists of all auxiliary information used by P2J
2. ACT2:={r0}

Jr0 is the initial representation of X/

GENERAL B&B, AND ITS RELATION TO A* AND AQ* 37

3. loop fthe main loop/
4 if ACT2 = {r2} for some r2 and goal2(r2,DB2) holds then
5. return r2
6. endif
7. SEL2 = select2(ACT2,DB2)
8. (SPL2,DB2) = split2(SEL2,DB2)
9. {ACT2,DB2) := prune2(ACT2 - SEL2,SPL2,DB2)
10. repeat
end P2

In P2, rf2 is a representation function. Except for the use of the auxiliary
database DB2, the properties of select2, split2, and prune2 are identical to
those of selectl, splitl, and splitl.

In practice, nearly every B&B procedure makes use of auxiliary information,
and hence has more in common with P2 than P1. However, it would be quite
cumbersome to refer to this information explicitly every time such procedures
are discussed. Thus we write:

(1) goal2(r2) for goal2(r2,DB2);

(2) selectZ(ACT2) for select2(ACT2,DB2);

(3) SPL2 = split2(SEL2) for (SPL2,DB2') = split2(SEL2,DB2);

4) ACT2' = prune2(ACT2 - SEL2,SPL2) for (ACT2,DB2") =

prune2(ACT2 — SEL2,SPL.2,DB2). '
. From now on, when we speak of representation, goal, selection, splitting,
and pruning functions, we mean functions having the properties of rf2 goalZ
'select2 and prune?, respectrvely

2.4. A fundamental properfy

Each of the procedures discussed in this paper has a loop labeled ‘the main
loop’ (e.g., lines 2-9 of P2). If V is a variable used by one of these procedures,
then the value of V at the end of the ith iteration of the main loop is denoted
by V. For example, let P2 be called with some initial representation r0 and
instantiations of rf2, goai2, select?, split2, and prune2, and let ¢ be the number
“of times the main loop is fully executed before a return occurs. (Thus, if the
test at line 3 suceeeds and P2 returns during the ith iteration of the loop, then
- t=i-1; and if P2 never returns, then ¢ =) We have ACTZ" = {rO} and for
O0=i<y

ACT2! = prune2((ACTZ — SEL2*Y), SPL2*1), @8)

We now present a correctness proof for P2. This theorem and its corollary are
similar to resulits proved for previous formulations of B&B. '

Theorem 2.1. For every integer i such that 0 =i <t, at least one of the optimal

38 D.3. NAU ET AL.

elements of X represented in ACTZ‘ is also represenied in ACT2!; ie
Frin(ACT27Y) = Fri(ACT2Y} .

Proof.

Fruin(ACT27Y) = min(prune2((ACT2 _
~ SEL21*T), SPL2*)) (from (2.8))

= Frin((ACT2! ~ SEL21) U SPL27Y)y (by (2.7))
win((ACT2 — SEL2*1) | SELZ"“) (by (2.5))
o = Fuin{ACT2%)
since SEL2"' C ACT2 . '
Corollary 2.1.1. For every integer i such that 0 <i <t + 1,
len(Acth) = min{F(x) E x e X} N
whence if P2 termiﬁates, it returns an optimal so.l'm‘ion_h3

-Proof. By induction on.i using Theorem 2.1.

- There are severa! different conditions under which P2 can be guaranteed to
terminate. In the case of B&B procedures in which all pruning is done using
bounding functions, some conditions under which termmatmn can be guaran-
teed are discussed by Mitten [17].

- Procedure P2 is our prototypical General Branch and Bound procedure. In
this paper, for each procedure P claimed to be a special case of GBB, the claim
is justified either by

(1) showing that P is an instantiation of P2 {or some other procedure known
to be a special case of GBB); or

(2) exhibiting an instantiation of P2 (or some other procedure known to be a
special case of GBB) such that on the ith iteration of the main loop of P, it
computes representations of the same sets {rf2(r)|r € SEL2?},
{rf2(r)| r € SPL2%}, {rf2(r)| r€ ACT2'} computed on the ith iteration of the
main loop of P2.)

3Procedure P2 was formulated for the case in which a single optimal solution is desired. P2 may
be generalized slightly by replacing lines 3 and 4 by
3. if goal(r) holds for every r € ACT2 and
) F(tf2{r)y = F{ri2(r"}) for every r, r' € ACT2 then
4, return ACT2 }
In this case; depending on the properties of prune2, P2 will return an optimal solution, some of the
) bptimal solutions, or all of the optimal solutions.

GENERAL B&B, AND ITS RELATION TO A* AND AQ* 39

3. A Special Case

For ease in pruning, many B&B procedures maintain a record of the ‘best
solution seen so far’ separately from the active list. Such procedures usually are
instances of the procedure P3 below. As discussed above, we assume the
existence of an auxiliary database which is used implicitly by the functions in
P3. ' ' '

procedure P3: Ja special case of GBBY/
1. BEST3:= ‘unknown’ _

Jwe define ri3('unknown’) to be @)/
[whence Fp('unknown’) = «f
ACT3 = {r0=}
Jr0 is the initial representation of X/

3. loop [the main loop)f
4 . if ACT3 = @ then return BEST3 endlf
5. SEL3 = select3(ACT3)
6
7
8

N

if SEL3 is a singleton {r3} and goal3(r3) then .
if Frin(r3) < Frn(BEST3) then ’

BEST3:=r3
9. endif
10. else
11. SPL3:= splltS(SELS)
12 ACT3 = prune3{ACT3 — SEL3,SPL3}
13. endif '
14, ‘repeat
end P3

In P3 above, the functions rf3, goal3, select3, and split3 are representation,
goal, selection, and splitting functions, respectively. Often, instantiations of
split3 are used which always select a single representation (i.e., they always
return sets SEL3 containing exactly one element). prune3 is similar to a
pruning function: prune3(ACT3—SEL3,SPL3)} returns a collection of
representations ACT3 such that

{rf3(r"}| 'r’ € ACT3} C {rf3(r) | r € (ACT3 — SEL3) U SPL.3}
and
Fri(ACT3 U{BEST3}) = F((ACT3—-SEL3)U SPL3 U {BES’I_‘3}))

~ Any functions having the properties of rf3, goal3, select3, split3, and prune3
are called P3-representation, -goal ~selection, -splitting, and -prunmg func—
tions, respectively.

To justify the claim that P3 is a special case of GBB, functions 12, goal2,
select2; split2, and prune2 must be found such that P2 and P3 compute the
same sets {rf2(r) | r € SEL2'}, {rf2(r) | r € SPL2'}, {rf2(r) | r € ACT2'} on the ith
iterations of their main loops. This is done in Appendix A. The representation
goal selectlon and splitting functions used in the appendm to 1nstant1ate P2

40 ' D.S. NAU ET AL.

are almost the same as those for P3. The pruning function is somewhat more
complicated: depending on whether a goal has been selected or not, it
simulates either lines 79 or line 12 of P3.

In. some versions of P3, the selection function always selects the ‘bcst
member of ACT3 for splitting. Which member is best is always defined relative
to a P3-lower bound function. This is any real-valued function I.3 such that for
any rf3-representation r,

(1) L3(r) = Foin(r);

(2) if goal3(r) holds (whence ri3(r)= {x} for some x € X), then L3(r) F(x).

Suppose there is always at least one r* € SEL3 such that L3{r*}= L3(r) for
every r € ACT3. Then select3 is called an L3-best-first selection function, and
P3 is called an L3-best-first procedure.

If select3 is L3-best-first for some L3, then the first smgleton set SEL3 = {r3}
selected at line 5 of P3 such that goal3(r3) holds represents an optimal member
of X. This is proven as Theorem A.2 in Appendix A. As a consequence of this
result, if selectd is L3-best-first for some L3 then P3 can be rewritten as
follows: -

. procedure P3B: [best-first P3{
ACT3:={r0} :
_fir0 is the initial representation of Xj/
2. loop fthe main loopf
3 if ACT3 = ¢ then return ‘unknown’ endif
4. SEL3 = select3(ACT3)
5. if SEL3 is a singleton {r3} and goal(r3} then
6
7
8

—

return r3
else
SPL3 = split3(SEL3)
9. ACT3 = prune3(ACT3 SEL3,5PL3)
" 10. endif
11, repeat
end P3B

4. Ordinary Branch and Bound

.Most conventional B&B procedures look similar to P3, except for the following
properties.
(1) The selection function always selects a single representation.

(2) All pruning is done using a lower bound function similar to the one used
for selection in P3B. Lower bounds are computed on all generated subsets of
X, and a subset is pruned only if its lower bound is greater than the value of
the best solution seen so far. _

- Every B&B procedure which operates in this manner we call an Ordinary
‘Branch and Bound (OBB) procedure. As discussed later, there are many in-
stantiations of GBB which are not OBB procedures, because their pruning
functions are stronger than simple bounding functions. However, as shown in

GENERAL B&B, AND ITS RELATION TO A* AND AQ* 41

Appendix B, every OBB procedure is an instantiation of P3 and hence is a
special case of GBB. :

‘We take an OBB procedure to be any procedure Wthh can be rewritten as
an.instance of procedure P4 below. :

procedure P4: JOBB/

1. BEST4:= ‘unknown’
Jwe define rf4(‘unknown’) to be 8,
Jwhence Funl{'unknown’) = o ff

2. ACT4:=list containing r0

' Jr0 is the initial representation of X/

3. while ACT4#@do [the main loopf
" [lselect the first member of ACT4/

4, {r4} .= select4{ACT4}

5. if goald(rd) then
6. it Frinlrd) < Frin(BEST4) then BEST4 := r4 endif
/BEST4 is the best node seen so farf
7. else
B. SPL4:=splitd({r4))
: . Mlines 9-14 compute ACT4Y .
9. ACT4:= ACT4— {r4}
" - Jjgo through the members of SPL4 in orderf
10. - for each rESPL4 do
11. if L4(r") < Frin(BEST4) then
finsert r' into the list ACT4//
12, ACT4 := insert4(r' ACT4)
13. endif
14. endfor
15. endif
- 16. -endwhile
- 17. return BEST4
end P4

Although ACT4 is an ordered list in procedure P4 above, it may be
considered as a set, with the ordering information stored in the auxiliary
database. rf4 is a P3-representation function, and goal4 is a P3-goal function.
selectd removes the first element of a list, and hence is a P3-selection function.
L4 is a P3-lower bound function. insert4 inserts a representation into a'list of
representations (thus, considering ACT4 as a set, inseri4(r' , ACT4)=
ACTAU{r'}.

The function split4 has the characteristics of a P3-splitting function, except
that it returns a list of rf4-representations rather than an unordered set. By
considering the ordering information to be auxiliary information, splitd can be
considered a P3-splitting fuaction. As shown in Appcndlx B, lines 9-14 of P4
constitute a P3-pruning function.

-Theorem 4.1. P4 is an instantiation of P3.

¢

42 . D.S. NAU ET AL.

Proof. The preceding discussion shows that the functions used in P4 have the
properties of P3-goal, -selection, -splitting, and -pruning functions. It only
remains to show that each of the functions is defined for all arguments which
tight be given to them during the operation of P4, and this is easily proved by
induction. ‘

From Theorem 4.1, it is clear that P4 is a special case of GBB.

Suppose that for every rf4-representation r', insertd(r', ACT4) inserts r' into
ACT4 just after the last r € ACT4 for which L4(r) < L4(+"). Then the first
member of ACT4 will always be the member with the lowest value of L4,
- whence selectd is an L4-best-first selection function. In this case (as with P3),
the first r4 selected such that goal(rd) holds will be an optimal solution, whence
P4 may be modified analogously to the way P3 was modified to P3B.

5. Dominance Relations

Some researchers [6, 9] have augmented OBB to use dominance relations for
pruning. The lower and upper bounding functions used for pruning in Horowitz
and Sahni’s description of the 0-1 Knapsack Problem [3] are a special case of
dominance. As shown in Kohler and Steiglitz [9], the use of dominance
relations allows pruning to be done which may not be possible in OBB
procedures. Thus not every B&B procedure is an OBB procedure.

Several different ways {6, 9] have been proposed for the use of dominance in
B&B procedures. However, all branch-and-bound procedures with dominance
are similar to the procedure P5 given below.

procedure P5: J/OBB augmented by dominance]f
1. BESTS:=‘unknown’
Jiwe define rf5('unknown’) to be @,/
Jwhence Fy('unknown’} = . ff
2. ACT5 = list containing r0
- fr0 is the initial representation of X/
3. GENS:=ACTS or @
JGENS will contain some or all representations generated)/
" Jlduring the operation of P5, and will be updated by}
Jladding or deleting representations at various points.j
JThese points are not given explicitly below.
while ACTS5 = @ do ffthe main loop/f
Jselect the first member of ACTSff
{r&} = select5(ACT5)
if goalb{ro) then
if Frin(rS) < Fain{BESTS) then BESTS = r5 endif
else '
SPL5 = split{{r5})
Hines 10-16 compute ACTS
10. ACT5:= ACT5 - {r5}
Jlgo through the members of SPLS in order J/
1. for each r' € SPL5 do '

b

e N O

GENERAL B&B, AND ITS RELATION TO A* AND AQ* ' 43

12 it £L5(r") << Fnin(BESTS) then
Jlchoose a dominated set A5, subject to [
Jrestrictions (see the text)/

13 R5 = choose{ACT5 U {r'},GENS)
14, ACT5:= (ACT5U{r'— AR5
15, endif
16. endfor
17. endif
" 18. endwhile
19. return BESTS
end P5

The functions rf5, goal5, select5, splity, L5, and insert5. have the same
properties as the corresponding functions in P4. Thus rf5, goalS5, removetop5,
split5, and L5 are P3-representation, -goal, -selection, -splitting, and -lower
" bound functions, respectively.

The function choose in line 13 makes use of a dominance relation. This is any
"relation D such that if g and r are rf5-representations and gDr, then F.(g)=

Frrin(r). choose(ACT5U{r'}, GENS) returns a dominated set; i.e., a set
"R5C ACT5U{r'} such that for every g € R5 there is an p € GENS5 such that

pDq. There are additional restrictions on I and on the way R5 is selected.

These restrictions, which vary dependmg on the particular version of P5 [9] are
- formulated to guarantee that

Foin({BESTS} U (ACT5 U {1}~ R5)) = Fnu((BESTS) UACTS U {r'}) .

Because of this, it can be shown that lines 10-16 of P5 hﬁve the properties of a
P3-pruning function. The proof of this is similar to the corresponding proof for -
‘P4. : ‘ ‘

Theorem 5.1. P5 is an instantiation of P3.
Proof. The proof is sim.ilar to the proof of Theorem 4.1,

Theorem 5.1 justifies calling P35 a special case of GBB.
Suppose that for every rf5-representation r', insert5(r',ACTS) inserts r’ into
- JACTS5 just after the last r € ACTS such that L5(r) < L5(r). Then select5 is an
L5-best-first selection function. Thus, as with P3 and P4, the first r5 selected
such that goal5(r5) holds i is the optimal solution, whence P5 may be modified
accordmgly

6. A*

The least-cost path problem was described in Section 2.1. One procedure for
solving this problem is the well- known A* procedure [20], which appears below
as procedure Pé. ' :

44 & D.S. NAU ET AL.

In P6, c(n, n') is the cost of the arc (n, n'); g(m) is the cost of the least-cost
path P seen so far from the source node s to m; and P = path(m) is the path
(s, ..., parent(parent(n)), parent(n), n). h(m)=0 is a lower bound on the cost
of any path from m to a member of T, and f(n) = g(n) + h(n) is a lower bound
on the cost of extending P to a member of T, '

procedure P6: A"/

2. OPEN := list containing the source node s
3. CLOSED:=NIL
4. while OPEN # NIL do jfthe main loop/
5. n = removetop(OPEN} [remove first slement]f
- 6. insert n into CLOSED
7. ifne T then
8. return path(n)
Jpath(n) is the pathyf
(s, - .., parent{parent(m)}, parent{n), n)ff
. else '
-10. for every child n” of n in G do
Jcompute g(n") and f(n"))
1. gg = gln) +c{nn)
12. ff = gg-+ h{n")
13. for all nodes m in OPEN or CLOSED do
14. it m=n'and f(m) <ff then
15. goto PRUNE Jiprune n’ff
16. : else it m=n’ and ff < f{m) then
17. call remove6(m)
18. endif
19. endfor
20, parent(n}:=n
21, g(n)=gg
22. fin'y:=1
23. OPEN := insent6(r’, OPEN)
Jinsert n’ into OPEN just after the lastf
Jnode n such that f(n) < f(n")}]
24. PRUNE: endfor ’
25. endif
26. endwhile
27. return ‘unknown’
end P6 '

procedure removet(m)

1. if m € OPEN then remove m from OPEN endif

2. if m € CLOSED then remove m from CLOSED endif
3. for every n such that parent{n) =m do

4. cail removet{n)

5. endfor

end removeb

In P6, each node n in OPEN or CLOSED represents the path

- path(n)= (s, ..., parent(parent(n)), parent(n), n).

GENERAL B&B, AND ITS RELATION TO A* AND AO* 45

In order to make this representation explicit, P6 is rewritten as procedure P7
below. The active list .for P7 is ACT7 = {path(n}| n € OPEN}, and the set
GEN?7 (similar to GENS5 in P5) is such that GEN7 = {path(n)| n € CLOSED}.

Let m be any node generated by P6, and let P = path(m). Note that
tip(P) = m. To write P7, the following definitions are used.

(1) r£7(P) is the set of all extensions of P to members of the set of terminal
nodes T (i.e., the set of all paths PQ such that Q is a path from tip(P) to a
member of T and the only member of T in Q is tip(Q)). Thus rf7 is a
representation function,

(2) goal7(P) holds if and only if tip(P)}E T.

(3) select7(L) returns a set whose only element is the first element of the list
L. Since the list ACT7 is always kept ordered according to the lower bounds of
its members, select” corresponds to removetop in Pé6.

(4) split7Z(P)={Pn|n is a child of tip(P)}. Expanding a node m in P6
corresponds to computing split{{path{m)}} in P7.

(5) L7(P)=cost{P)+ h(tip(P)). Thus from the definitions of f, g, and A,
L7(P)= f(tip(P)), whence L7(P) is a lower bound on F;,(P).

(6) insert7(P, L) inserts P into the kst L just after the last path Q in L such
‘that L7(Q) < L7(P). Thus select7 is an L7-best-first selection function.

Usmg these deﬁmtlons it is clear that P6 can be rewritten as procedure P7
below.* :

procedure P7: [A*, rewritten/

2. ACT7 = list containing the null. path from stos
3. GEN7:=NIL
. 4. while ACT7 # NIL do fithe main loopf
5. {P} = select7(ACT7) [select first member P of ACT?//
6. insert P into GEN7
7. if goal7{P} then
8. return P
9. else
10. SPL7 = split7({P})
11. ACT7 :=ACT7-{P}
12. for every path P’ in SPL7 do
13. for every @ in ACT7 or GEN7 do
14. if tip(Q) = tip(P") -and L7(Q) < L7(P") then
15, goto PRUNE fprune P'ff
16. else if ip{Q) = tip(P") and L7(P’) < L7{Q) then
17. call removeT(Q)
18. endif - .
19. endfor
20. predecessor(P) .= P

*In some versions of A¥, remove6(m) simply removes m from CLOSED. Thus any descendants
of m which have already been generated suddenly represent a new path from s, but their f and g

values represent the cost of the old path. Such versions of A* can also be described as GBB |

procedures simply by defining such nedes not to represent any sets of sobutions. However, it is
.. cleaner to use the version of A* presented above.

46 , D.S. NAU ET AL.

21, . ACT7 :=insert7(P',ACT7)
Jinsert P’ into ACT7 after all paths Qff
Jsuch that F{Q) < F(P)

22. PRUNE: endfor

.23, endif

24. endwhile

25. return ‘unknown’

end P7 .

procedure remove7(F}

1. if P € ACT7 then remove P from ACT7 endif
2. if P € GEN7 then remove P from GEN7 endif
3. for every Q such that predecessor(O) P do
4, call remove7(Q}

5. endfor

end remove?

We show in Appendix C that P7 is an instantiation of P3B.°

7. AQ*

AQ* is an algorithm {21] for searching hypergraphs, which are conceptually the
same as And/OQr graphs. A hypergraph is a pair G = (N, H), where N is a set of
nodes, and H C N x 2V is a set of hyperarcs or connectors. Members of N-and
H are called G-nodes and G-hyperarcs, respectively. Let m and n be G-
nodes. Then m is a G-parent of n (or n is a G-child of m) if there is a
G- hyperarc (m,K) such that n€ K. m is a G- -ancestor of u (or n is a
G-descendant of mY if

(1} m is a G-parent of n; or

(2) there is 2 G-descendant. m' of m which is a G—parent of n.

m is a G-leaf node if m has no G-children. G is acyclic if nonode in G is a
-G-ancestor of itself. If G = (N, H) and G’ = (N', H") are hypergraphs then the
- union of G and G’ is the hypergraph

GUG'=(NUN,HUH"),
and the intersection of G and (' is the hypergraph
GNG' =(NNN,HNH'". | .
When the identity of & is obvious, the. ‘preﬁx ‘G-’ will be dropped from

‘G-node’, ‘G-hyperarc’, ‘G-parent’, ‘G-child’, ‘G-ancestor’, ‘G-descendant’,
and ‘G-leaf’.

5 Alternatively, it would be possible to show that P7 is an L7-best-first instantiation of P5 by
noting that ‘PDQ if tip(P) = tip(Q) and L7{P}= L7{QY is a dominance relation. . -

3

GENERAL B&B, AND ITS RELATION TO A* AND AO* 47

Let G = (N, H) be a hypergraph, and let m € N and T C N. Suppose that

~ each hyperarc (m, K)€ H has a cost ¢c(m, K)=0. A hyperpath in G from m io

T, and the cost of that hyperpath, are defined recursively as follows.
(1) Suppose m is in T. Then the hyperpath is the hypergraph ({m}, 9, The
cost of this hyperpath is

cost{{m}, M)=10.

(2) Suppose m is not in T, and m is a leaf. Then there is no hyperpath from
m to T.

(3) Suppose m isnotin T, and m is not a leaf. Then there is at least one set
K ={my, ..., m} such that (m, K)E H. Let G, be the hypergraph ({m}UK,
{(m, K}}). Suppose that for every m; € K there is a hyperpath G; from m; to T
of cost C. Then the hypergraph

G'=G UG U UG,
is a hyperpath from m to T of cost
cost(G) = c(m, K}+ Ci+ Co+ -+ + G

Note that there may be 0, 1, or many hypergraphs G’ satisfying the above
properties. ' '

Let G = (N, H) be a hypergraph, s € N be a source node, and T G N be a set
of terminal nodes. The least-cost hyperpath problem is the problem of finding a
hyperpath (N', H') from s to T which minimizes the value of the objective
function cost({N’, H')). '

One procedure for solving the least-cost hyperpath problem is the procedure
AO* discussed by Nilsson [19]. Other similar procedures are- discussed by
Nilsson [21] and Martelli and Montanari [15]. AO* is given below as procedure
PS. .

-AO* makes use of a lower bound k() on the least cost of any hyperpath
from m to T. As discussed by Nilsson [21], £ must be such that:

(1) h(m)=0 for every G-node m (whence h(m)}=0if m € T)

(2) ‘for every G-hyperarc (m, K), : .

h(m)<c(m K)+ > h(n).

nexk

procedure P8: JaQ+]
. (NH):=(s},® [ihe portion of G searched so farff
2. qgis):= h(s)
Jig{n) is the bast known [ower bound for each node n,ﬁ’
3. ifs €T then solved(s):=1)

48 D.S. NAU ET AL.

4. else solved(s) = 0 endif
5. loop fihe main loop)f
6. let BEST be the hyperpath in (M.H) formed by tracing
the ‘best’ pointers from s through (N,H) to the
lpaves of (N,H}
/these pointers are set in line 20,//
7. if solved(s)= 1 then return BEST endif
8. let m be a BEST-leaf notin T
/INilsson discusses several possible waysf/
Jlof choosing m, but the procedure will work,",f
Jregardless of how m is chosen.f/
Jexpand mjf
-9. for every K such that (m,K) is a G- hyperarc do
10. - foreveryne K- N do .
11. © ifn €T then solved(n}:= 1 else solved{n) := 0 endif
12. g(n)i=hin) '
13. endfor
14 (NH) = (N UK, HU{(mK)}
15. endfor
Jupdate the 'best’ pointers and the g-values byj/
Jlsearching bottom-up//
16. Vi={m}
17. while V # i do
18. remove from V a node u such that no (N,H)- descendants
of v arein V
19. Cglu)i= min{c(uK)JrE L aW (KY€ HY
. 20. . K’':=any K such that (u,K} € H and (u,K) produces the
S minimum value g(u) found in line 18
. He,K? is currently the best hyperarc from uff
21, best{u) = K
22, if solved(v) = 1 for every v © K’ then solved() := 1 endif
23. . if solved(u) =1 or g{u} was changed in line 19 then
24, V=VU{veN|ue best(v)}
25. endif
26. endwhile
27. repeat
end P8

We now discuss how to rewrite P8 as an instantiation P9 of P3B.

Let P be a hyperpath in G from some node m of G. An extension of P in G
is any hyperpath’ P’ from m containing P. We define the representatlon
functlon 9 by :

rf9(P) {P'| P’ is an extension of P to T},
Note that if P’ is an extension of P then rf9(P") C rf9(F), and that

Froin(P) = mi_n{cost(P'*) | P* is an extension of P to T}.

GENERAL B&B, AND ITS RELATION TO A* AND AOQ* 49
We define
LY(P)=cost(P)+ >\ {h(n)| n is a P-leaf}. .

To see that 1.9 is a P3-lower bound function, we note that
(1) if P’ is any extension of P in G to T, then

Cost(P") = cost(P) + cost(Py) + * - - + cost(P,)
Zcost{P)+ h(n)+ -+ h(m)
= L9(P),

whence LY(P)= F,(P); :

(2) it P is a hyperpath to T, then LI(P) = cost(P) = Fun(P).

Let goal9(P) hold if and only if P is a hyperpath from s to T. Clearly, goal?
is a goal function.

Let ACT9 be the set of all hyperpaths in {(N,H) from s to the leaves of
(N.H). Let SEL9 = select)(ACT9) be {BEST} if goal9(BEST) holds, and
'otherwise let it be the set of all hyperpaths in ACT9 containing the node m
chosen in line 8 of P8, Clearly, select9 is a selection function.

It may be proved by induction that for every u € N, lines 16—26 of P8
‘maintain g(u) such that . :

hw), if u is an (N, H)-leat
)= minfe(w, K)+ S q(0)| (u, K)E€ H} otherwise .

veK
Thus, by induction on the distance from u to the leaves of (N, H), it may be
proved that

q(u)=min{L9Y(P}| P is a hyperpath in (N, H)
from u to the leaves of (N, H)}.

The hyperpath found by tracing the ‘best’ pointers from u to the leaves of
(M, H) is the one which achieves this minimum. In particular, g(s)=
L9(BEST). Since it is always the case that BEST € SELY, select9 is L9-best-
first.

Let SPL9 = spht9(SEL9) be the set of,all hyperpaths from s to the leaves of
(N', H') which contain m, where (N’, H') is the expanded version of (N, H)
-computed i lines 9-15 of P8. Let prune9(ACTY — SEL9, SPLY) be the set of all
- hyperpaths in (N', H') from s to the leaves of (N’,H’). It is proved in

Appendix D that split9 and prune9 have the propertles of splitting and- prunmg
“functions, respectwcly : . -

50 . DS, NAU ET AL.
Using the above definitions, P8 may be rewritten as procedure P9 below.

procedure P9: jAO*, rewrittenf

1. ACT9:={{{s}#}}

2, loop
Jthe test below will never succeed, and is mc!uded,f,f
Jimerely to illustrate that P9 is an instantiationf/
Jiof P3BJ/

3 it ACT9 = @l then return ‘unknown’ endif

4, SELS = select9(ACT9)

5. if SEL9 is a singleton {r9} and goal(r9) then
6. return r9

7 else

8 SPL9 = splitd(SEL9)

9. ACT9 = prune®(ACT9 — SEL9,SPL9)

10. endif

11. repeat

end P9
Theorem 7.1, P9 is an instantiation of P3B.

Proof. From the preceding discussion, we see that the functions used in P9
have the properties of P3-goal, -selection, -splitting, and -pruning functions,
_respectively, and that select9 is L9-best-first. It only remains to show that cach
‘of the functions is defined for all arguments which might be given to thém
during the operation of P9, and this is easily proved by induction.

8. Summary and Cenclusions

This paper contains a general formulation of B&B called General Branch and
Bound (GBB). The main features of GBB include '
(1) a formal treatment of the way subsets of the domain of solutions -are
represented;
(2) the formulation of a procedural scheme for GBB using abstract goal,
selection, splitting, and pruning functions;
(3) the discussion of how these functions may be generalized to make use of
. problem-specific auxiliary data; - ‘
(4) a discussion of the conditions under which an arbltrary optlmlzanon‘
procedure may be considered a special case of GBB.
" " GBB is powerful enough to include as special cases the formulations of B&B
used by Mitten [17], Kohler and Steigliiz [9], and Ibaraki [6]. In addition, the
AI search procedures A* and AO* have been proven to be instances of GBB.
"It can be shown that a number of other Al search procedures are also special
cases of GBB [13]. It is possible to visualize many variations of existing search
procedures being generated from this general branch-and-bound paradigm,
which provides a theoretical basis for a better understanding of the per-

GENERAL B&B, AND ITS RELATION TO A* AND AO* o 51

formance of such algorithms and the relationships among them (for example,
see [11, 13, 18]). In particular, we conjecture that all procedures for top-down
search of problem-reduction representations can be examined and understood
- as instantiations of this general branch-and-bound procedure.

Appendix A. Theorems a'bout P3

To justify the claim that P3 is a special case of GBB, functions tf2, goal2,
select2, split2, and pruneZ must be found such that P2 and P3 compute
representations of the same sets {rf2(r)|r € SEL2Y, {tf2(r)|r e SPL2},
{rf2(r)| r € ACT2'} on the ith iterations of their main loops. P3 is a version of
P2 in which the active list ACT2 is separated into two parts: ACT3 and
{BEST3}. Furthermore, the pruning operation which would be done by prune?
in P2 is split into the two different operations performed in lines 7-9 and 12 of
P3. To reproduce this behavior in P2, we define prune2 to flag every
representation in ACT?2 to indicate whether it is in ACT3 or (BEST3}. Let

tf2(r) = tf3(r), goal2(r) = goal3(r),
and
- select2(ACT?2) = {select3(ACT2— {BEST3})} . -

“Let split2 and prune? be the procedures given below.

procedure split2(SEL2): /simulate lines 6 and 10-11 of P'S,ﬁf

1. if SEL2 is a singleton {r} and goal2(r) then
2. goalfound = 1

3. return SEL2

4. else

5. goalfound:=0

6. return split3(SEL2)

7. endif

end split2

procedure prune2(ACT2,8PL2): [simulate lines 7-9, 12 of P3f
[ffor every representation r, flag(r) is taken to be 0,f,"
Jlunless it is set to 1 in tine 5 below
1. if goalfound = 1 then
[lselect2 has selected a goal r2 and SPL2 {ra}ff
Jsimulate lines 7-9 of P3j/
2. if flag{r*) = 1-for some r* e ACT2
Jlat most one such r* exists; this r* is BEST3/
and Foinlr*) < Fuinlr®) then

3. return ACT2
4. else

fmake r2 the new BEST3/
5. flag{r2}:=1

2

~ return {r € ACT2 | flag{r) = 0} U {r2}

52 D.S. NAU ET AL,

7. else

8. return {r € ACT2 | flag(r) = 1} U prune3({r = ACT2| flag(r) = 0}
9. endif

end prune2

Theorem A.1. Suppose P2 is instantiated using the definitions of rf2, goal2,
select2, split2, and prune? given above. Then ri2 and goal2 are representation
and goal functions, and for every initial representation r0, the computations of P2
and P3 are such that for every i, : :

() {r€ ACTZ'|flag(r) = 0} = ACT3;
@) {r€ ACT2 |flag(r)= 1} = {BEST3}; |
(3) SEL2 = SEL3; |

SEL3, if SEL3 is a smgleton {r} and goal(r) holds,

) csee2i={oo
@) SPL2 SPL3, otherwise;

~(9) select2(ACT?2), split2(SELYY), and pruneZI(ACTZ"‘1 SEL2, SPL2Y) are
defined for the arguments given to them, and hence are selection, splitting, and
pruning functions, respectively.

Proof. By -induction on i
.Corbllary A1l Let t be the number of times the main loop of P3 is fully
executed for some initial representation r0 and instantiations of rf3, goal3,
select3, split3, and prune3. For every integer i such that 0 <i<f+1,

Foin{ ACT3 U{BEST3'}) = min{F(x)| x € X}.

Proof. Immediate from Theorem A.1 and Corollary 2.1.1.

Theorem A.1 justifies the claim that P3 is a special case of GBB. Theorem .
" A2 below justifies rewriting P3 as P3B when the selection function is best-first.

.Theorem A.2. If select3 is L3-best-first for some L3, then the first singleton set
SEL3 = {r} selected at line 5 of P3 such that goal3(r3) holds represents an
optimal member of X.

Proof. Consider the ﬁrst singleton set SEL3 = {r3} selected at line 5 of P3 such
~ that goal3(3) holds, and suppose r3 is selected durmg the ith iteration of the
main loop of P3. Then for every r € ACT3

GENERAL B&B, AND ITS RELATION TQ A* AND AO* .53

Frin(r3)= L3(r3) < L3(r)

= Frin(r) = min{F(x) | x € rf3(r)} .
- Thus since ‘ '

Frio(BEST3 ") = Fu(‘unknown’) = =,
it follows from Corollary A.1.1 that
Frior3) = Fuis(ACT3" Y = min{F(x) | x €X}.

Appendix B. Properties of P4
Theorem B.1. Lines 9-14 of P4 constitute a P3-pruning function.
Proof. When lines 9-14 of P4 are executed during the ith iteration of the main
loop, they compute
ACT4 = (ACT4 — {rd Y U {r ESPL4 | L4(r) < L4(BEST4")}

C (ACT4"" — {r4'}) U SPLA4' .
Thus .
{rf4(r') | ¥ € ACT4} C {tfA(r) | r € (ACT4"! — {r4}) U SPL#}

The above is the first property of a P3- -pruning function.

To prove that lines 9-14 of P4 have the second property of a P3-prunmg
-function, there are two cases to be considered.

. Case 1.

Frin(rd') 2 Frin((ACT4 ' = {rdh U {BEST4})
In this case,

Fuinl(ACT47 — {r47}) U {BEST4}) = |
= Fu((ACT4™ = {r&i}) U {r4} U {BEST4Y)
= Fuin((ACT4"! — {r4'}) U SPL4‘ U {BEST4'}).

Thus since

(ACT4"* - {r4) U {BEST4'} C ACT4 U {BEST4}
- (ACT4“] —{r#}}U SPL4* U {BEST4} ,
Fuin(ACT4 U{BEST4'}) = F;,((ACT4! {r4‘}) USPL4U {BEST4‘}) .

54 _ D.S. NAU ET AL.

Case 2.
Froin(t4) < Fran((ACT4! - {r4'}) U {BEST4}).

According to the definition of split4, there is an r € SPL4 such that Fon(r) =
Frin(r4"). This means that
La(r}y= Fualr) = Fmin(r4i)
< len(BEST4') - me(BEST&) s

whence r € ACT#. Thlis

Frin ACT4) = Froinr)
= Frin((ACT4 7 — {rd'}) U SPL4' U {BEST4}).

In both cases, the second property of a P3-pruning function is satisfied.

Appendix C. Properties of A*

In this appendix, it is shown that P7 (and hence A*) is a special case of GBB.
Let G be a graph for a shortest path problem with start node s and goal set
T, and let P and Q be paths in G from s. Then P covers Q if Fpn(P) = Frin(Q)
and there are paths P’ and P” such that P = P'P" and tip(P"} = tip(Q). If P covers
(, this means that for every extension OF of Q to a member of T, there is an
extension P* of P to a member of T such that '

Fmin(P*) = me(Q*) >

whence Q can be pruned if Q# P and P € ACT7. Note that the covering
relation is transitive: if P covers Q and Q covers R, then P covers R.

Lemma C.1. If P prunes Q in lines 15 or 17 of P17, then P covers Q.
Proof. If P prunes Q, then tip(P) = tip(Q) and L7(P)= L7(Q). But

L7(P)= cost(P)+ h(P)
‘and '
L7(Q) = cost(Q) + h(Q) = cost(Q)+ h(P),

SO
' cost(P) =< cost(Q) .

Since tip(P) = tip(Q), this means that Fuu(P) < Fuuu(Q), whence P covers Q.

GENERAL B&B, AND ITS RELATION TO A* AND AQ* 55

Let t be the number of times the main loop of P7 is fully executed for some
input graph G (thus ¢ may be infinite). Let k(i) be the number of times lines
12-22 of P7 are executed during the ith iteration of the main loop. Note that

k(i) = |split7(P") .

We define (i, j) to be a loop index of P7 if it corresponds to the jth iteration of
the inner loop of P7 during the ith iteration of the main loop; i.e., if
O0=i<t+1 and 0<j=<k(i). We say that (i’,) is older than () if (',)
corresponds to an iteration of the inner and main loops of P7 previous to the
iteration corresponding to (i, j); i.e., if i’ <i orif i’ =i and j' <j.

Let ACT7% and GEN7Y, respectively, be the values of ACT7 and GEN7
computed on the jth iteration of lines 12-22 of P7 during the ith iteration of
the main.loop. Let Py, Py, . . ., Piiy be the members of SPL7' computed at line
10 of P7, and let S :

frontier(i, j') = ACT7% U {P,-JH, cees P,"jc(,-)} .

Note that for each i,

@) - ACT7H = ACTTF - {Pi};

~(2) GEN7%¥= GEN7!,
. (3) frontier(i, 0) = (ACT7'— {P}) USPL7 ;
4) GENT*®= GENT, |

" (5) frontier(i, k(i) = ACT7T*® = ACT7:.

Theorem C.2. For every loop index (i, j), every loop index (i,]") older than (i, j),

and every path V € frontier(i’, j"), there is a path W € frontier(i, j) such that W

covers V. : '
. Proof (by induction on (i j)). There is no (', j) older than (1,0), so the
theorem holds vacuously for (i, j)= (1,0). For the induction hypothesis, let

O0=i<<t+1 and 0=i=<k(i), and suppose that the theorem holds for every
(i", j") older than (i, j). To prove that the theorem holds for (i, j), there are two

" . possible cases to consider: j =0 and j > 0.

Case 1. j=0. Let (i",) be older than (;,0). If / <i—1orif i'=i—1 and
J'<k(i—1), then by the induction hypothesis every V & frontier(i’,j") is
covered by a W € frontier(i — 1, k(i — 1)). Thus since covering is transitive, it
. suffices to show that every V & frontier(i — 1, k(i — 1)) is covered by a W&

56 D.S. NAU ET AL,

frontier(i, 0). If V € frontier(i — 1, k(i — 1)), then either V€ ACT7? or V = P
In the first case, V covers itself. In the second case, it follows from the
definition of split7 that

FoallPiss - - - Puep}) = Frnin PY), . _
whence one of Py, ..., Py covers P In either case, the theorem holds for
G0 : '

Case 2. j > 0. Let (i’, j) be older than (i, j). If i’ <<i orif i'=1i and j' <<j— 1,
then by the induction hypothesis every V € frontier(i’, ;") is covered by a
W & frontier(j, j — 1). Thus since covering is transitive, it suffices to show that
every V € frontier(i, j — 1) is covered by a W € frontier(i, /). There are three
possible cases to consider. _

Case 2(a). VE{Pi1,..., Pyt Then V € frontier(i, j} and V covers V.

Case 2(b). V=P, If V& ACT7%, then V € frontier(,) and V covers V.

Otherwise, V was pruned at line 15 of P7 by some a Q&
{ACT74'U GEN7%'. By Lemma C.1, Q covers V, and by the induction
hypothesis, there is a W € frontier(i, j — 1) covering Q, whence W covers V.
Since V could not have pruned W,

W € ACT¥ C frontier{j, j) .
Case 2(c). V€ ACT7% !, If V& ACT7% then V covers V. Otherwise, V

was pruned at line 17 of P7 by P;;, whence from Lemma C.1, P;; covers V.
Thus, since covering is transitive, this case reduces to Case 2(b).

-Corollary C.2.1. P7 is an instance of P3B.

Proof. It is clear that goal7 is a goal function, and that select7 and split7 have
the properties of P3-selection and -splitting functions, and that select7 is
© L7-bestfirst. If we define prune7 to be lines 11-22 of P7, it follows from
Theorem C.2 it follows that prune7 has the properties of a P3-pruning function.
It only remains to show that select7 split7, and prune7 are defined for all
arguments which might be given to thém during the operation of P7, and this is
easily proved by induction.

From Corollary C.2.1, it is clear that P7 (and hence A*) is a special case of
GBB.
Appendix D. Properties of AQ* ‘
Theorem D.1. split9 satisfies properties (2.4) and (2.5).
Proof. Let (N, H) and (N’, H') be as in Section 8. We first show that if

P’ € SPLY, then there is a P € SELY such that rf9(P') C ri9(P). Let P’ € SPL9,
and let @ = P'N (N, H). Clearly, Q contains at least one hyperpath P from s

GENERAL B&B, AND ITS RELATION TO A* AND AQ* 57

to the leaves of (N, H} containing m. Since P is a subgraph of P’, P’ is an
extention of P, whence rf(P") C rf(P).

It follows. directly from the above that U{f9(P)|P & SPL9}C
UHrf9(P) | P € SEL9}. To prove that U{rf9(P}| P € SEL9} C
U{rf9(P)| P € SPLY}, let P € SELY and let P* be an extension of P in G to T,
Let QO ={N', HYN P*. Clearly, ©Q contains at least one hyperpath P’ from s to
the leaves of (N', H"), and by definition of SPL9, P’ € SPL9. Since P’ is a subgraph
of P*, P* is an extension of P’ to T, whence P* & rf(P').

Theorem D.2. prune9 satisfies properties (2.6) and (2.7).

Proof. Let (N, H), m, and (N', H") be as in Section 8. Since prune9((ACT9 -
SEL9)USPLY) is the set ACTY of all hyperpaths in (N', H') from s to the
leaves of (N, H'), the theorem will follow trivially if we show that '

ACTY = (ACT9 - SEL9)YU SPL9 .

Let P be a path in SPLY. Then P is a hyperpath in (N', H") from s to the
leaves of (N', H") containing m, so P is clearly in ACTY. Let P be a path in
ACT9 -~ SEL9. Then P is a hyperpath in (N, H) from s to the leaves of (N, H)
which does not contain m. Since the only difference between (N, H) and
(N', H") is the addition of some hyperarcs at m, P is also a hyperpath in
(N', H') from s to the leaves of (N', H’). Thus P € ACT9Y'. Finally, let P be a
hyperpath in ACTY'. If P does not contain m, then PN (N, H)= P, whence
Pc ACT9~SEL9. If P does contain m, then P is an extension of some
' P’'€ SELY, whence P € SPLY.

REFERENCES

1. Berliner, H., The B* tree search algorithm: A best-first proof procedure, Artificial Intelligence
12 (1979} 23-40.

2. Hall, P.A.V., Branch-and-bound and beyond, Proceedings Second International Joint Con-
ference on Artificial Intelligence (1971) 641-658,

3. Horowitz, E. and Sahni, S., Fundamentals of Computer Algorithms {(Computer Science Press,
Potomac, MD, 1978).

4. Ibaraki, T., On the optimality of algorithms for finite state sequential decision processes, J.
Math. Anal. Appi. 53 (1976) 618-643. '

5. Ibaraki, T., The power of dominance relations in branch and bound algorithms, 7. ACM 24
(1977) 264-279.

6. Ibaraki, T., Branch-and-bound procedure and state-space representation of combinatorial

" optimization problems, Inform. Control 36 (1978) 1-27,

7. Knuth, D.E. and Moore, R.W., An analysis of alpha-beta pruning, Arificial Intelligence 6
(1975) 293-326. .

8. Kohler, W.H. and Steiglitz, K., Characterization and theoretical comparison of branch and
bound algorithms for permutation problems, J. ACM 21 (1974) 140-156.

9. Kohler, W.H. and Steiglitz, K., Enumerative and iterative computational approaches, in: E.G,

' Coftman, Jr. (Ed.), Computer and Job-Shop Scheduling Theory (Wiley, New York, 1976).

58

10.

11.

12.
13.
14,
15.
16.
17.
18.
19.
20.

21
22,

D.S. NAU ET AL.

Kumar, V., A unified approach to problem solving secarch procedures, Ph.D. Dissertation,
Dept. of Computer Science, University of Maryland, College Park, MD, 1982,

Kumar, V. and Kanal, L., Branch and bound formulations for andfor tree search with
applications in pattern recognition and game playing, 1982 International Conference on Pattern
Recognition and Image Processing, Munich, 1982, '

Kumar, V. and Kanal, L., A general branch and bound formulation for understanding and
synthesizing and/or tree search procedures Artificial Intelligence 21 (1,2) (1983) 170-198.
Kumar, V., Nau, DS, and Kanal, LN., A general model for problem reduction and game
search (1984) in preparation. _

Lawler, EL. and Wood, D.E., Branch-and-bound methods: A survey, Oper. Res. 14 (1966)
699-719, '

Martelli, A, and Montanari, U., Additive AND/OR graphs, Proceedings Third International
Joint Conference on Artificial Intelligence (1973) 1-11.

Martelli, A. and Montanari, U., Optimizing decision trees through heuristically guided search,
Comm. ACM 21 (1978) 1025-1039. .
Mitten, L.G., Branch and bound methods: General formulations and propertles Oper. Res. 18
(1970) 23-34. Errata in Oper. Res. 19 (1971) 550.

Nau, D.S., Kumar, V. and Kanal, LN., A general paradigm for A.l. search procedures
National Conference on Artificial Intelligence, 1982. -

Nilsson, N., Searching problem solving and game playing trees for minimum COST solutions,
in: A.LH. Morrel (Ed.), Information Processing-68 (North-Holland, Amsterdam, 1968).
Nilsson, N.J., Problem- Solvmg Methods in Ardficial Intelligence (McGraw-Hill, New York
1971).

Nilsson, N.J.; Principles of Artificial Intelligence (Tioga, Palo Alto, CA. 1980).

Pohl, L, Is heuristic search really branch and bound?, Proceedings Sixth Annual Princeton
Congress on Information Science and Systems (1972) 370-373.

. Reingold, E., Nievergelt, J. and Deo, N., Combinatorial Optimization (Prentice- Hall Engle-

wood Cliffs, NJ, 1977).

. ‘Smith, D.R., On the computational complexity of branch and bound search strategies, Ph.D.

Dissertation, Duke Univ., Durham, NC, 1979; Tech. Rept. NPS 52- 79.114, Naval Postgraduate
School, Monterey, CA, 1979,

. Stockman, G.C., A mtmmax algorithm better than alpha-beta?, Amﬁaal Intelligence 12 (1979)

179-196.

Received May 1982; revised version received March 19583

