

Gosu Reference Guide

Gosu RELEASE 0.10.0-C

Copyright © 2001-2012 Guidewire Software, Inc. All rights reserved. Guidewire, Guidewire Software, Guidewire

ClaimCenter, Guidewire PolicyCenter, Guidewire BillingCenter, Guidewire InsuranceSuite, Gosu, Deliver Insur-

ance Your Way, and the Guidewire logo are trademarks or registered trademarks of Guidewire Software, Inc. in

the United States and/or other countries.

This product includes software developed by the Apache Software Foundation (http://www.apache.org).

Product Name: Gosu COMMUNITY RELEASE

Product Release: 0.10.0-C

Document Name: Gosu Reference Guide

Document Revision: 29-November-2012

Gosu Reference Guide

Contents

About This Document. 11
Downloads, Technical Questions, and Submitting Feedback. 11
Conventions in This Document . 11

1 Gosu Introduction . 13
Welcome to Gosu . 13

Control Flow . 15
Blocks . 16
Enhancements . 17
Collections . 17
Access to Java Types . 17
Gosu Classes and Properties . 18
Interfaces . 22
List and Array Expansion Operator *. . 22
Comparisons . 23
Case Sensitivity. 23
Compound Assignment Statements . 23
Delegating Interface Implementation with Composition . 24
Concurrency . 24
Exceptions . 25
Annotations . 26
Gosu Templates. 26
XML and XSD Support . 27
Web Service Support (Consuming WSDL) . 28
Gosu Character Set . 28

Running Gosu Programs and Calling Other Classes . 28
More About the Gosu Type System . 29

Compile Time Error Prevention . 29
Type Inference . 30
Intelligent Code Completion and Other Gosu Editor Tools . 30
Null Safety for Properties and Other Operators . 30
Generics in Gosu . 32
Gosu Primitives Types . 33

Gosu Case Sensitivity . 33
Gosu Statement Terminators . 34
Gosu Comments . 35
Gosu Reserved Words . 35
Notable Differences Between Gosu and Java. 36
Get Ready for Gosu . 40

2 Getting Started with Gosu Community Release . 43
System Requirements . 43
Getting Started With IntelliJ IDEA Gosu Plugin . 44

Install the IntelliJ Gosu Plugin . 44
Do Not Depend Directly on Gosu JARs . 46
The Gosu Scratchpad . 46
Keep Only One Project Open at a Time . 47

Getting Started With Gosu Command Line Tools . 47
Advanced Gosu Command Line Tool Usage . 48
Contents 3

Gosu Reference Guide

Using XML and SOAP Libraries with Gosu Community Release . 48
Advanced Examples . 49

Servlet Example . 49

3 Gosu Command Line Shell . 51
Gosu Command Line Tool Basics . 51

Command Line Tool Options . 51
Writing a Simple Gosu Command Line Program . 52

Command Line Arguments. 52
Gosu Interactive Shell. 55
Helpful APIs for Command Line Gosu Programs . 56

4 Gosu Programs . 57
The Structure of a Gosu Program . 57

Metaline as First Line . 57
Functions in a Gosu Program . 58
Setting the Class Path to Call Other Gosu or Java Classes . 58
Advanced Remote Maven-style Configuration of Dependencies (Command Line Only) 59

5 Types . 61
Access to Java Types . 61
Primitive Types. 62
Objects . 62

Object Instantiation . 63
Object Property Assignment . 63
Object Property Access . 63
Object Methods . 64

Boolean Values . 64
Sequences of Characters . 65
Array Types . 67

List Access Using Array Index Notation . 68
Array Expansion . 69
Associative Array Syntax for Property Access. 69
Legacy Array Type . 69

Numeric Literals . 70
Compatibility with Earlier Gosu Releases . 71

DateTime. 71
Number . 73
Array . 73

6 Gosu Operators and Expressions . 75
Gosu Operators . 75

Operator Precedence . 76
Standard Gosu Expressions . 77
Arithmetic Expressions. 77
Equality Expressions. 80
Evaluation Expressions. 82
Existence Testing Expressions . 82
Logical Expressions . 82
New Object Expressions . 84
Relational Expressions . 87
Unary Expressions . 89
Importing Types and Package Namespaces . 90
Conditional Ternary Expressions . 91
4 Contents

Gosu Reference Guide

Special Gosu Expressions . 93
Function Calls . 93
Static Method Calls . 93
Static Property Paths . 94

Handling Null Values In Expressions. 94
Null-safe Property Access. 94
Null-safe Default Operator . 95
Null-safe Indexing for Arrays, Lists, and Maps . 95
Null-safe Math Operators . 95

7 Statements. 97
Gosu Statements . 97

Statement Lists . 97
Gosu Variables . 98

Variable Type Declaration . 98
Variable Assignment. 98

Gosu Conditional Execution and Looping . 102
If() … Else() Statements . 102
For() Statements . 103
While() Statements . 104
Do…While() Statements. 105
Switch() Statements . 105

Gosu Functions . 106
Named Arguments and Argument Defaults . 108
Public and Private Functions. 108

8 Intervals . 111
What are Intervals? . 111

Reversing Interval Order. 112
Granularity (Step and Unit). 113

Writing Your Own Interval Type . 113
Custom Iterable Intervals Using Sequenceable Items. 113
Custom Iterable Intervals Using Manually-written Iterators . 115
Custom Non-iterable Interval Types. 118

9 Exception Handling. 119
Try-Catch-Finally Constructions . 119
Throw Statements . 120
Catching Exceptions in Gosu . 121
Object Lifecycle Management (‘using’ Clauses) . 122

Disposable Objects . 122
Closeable Objects and ‘using’ Clauses . 123
Reentrant Objects and ‘using’ Clauses . 124
Returning Values from ‘using’ Clauses . 126

10 Classes. 127
What Are Classes? . 127
Creating and Instantiating Classes . 128

Creating a New Instance of a Class. 130
Naming Conventions for Packages and Classes . 130

Properties . 130
Properties Act Like Data But They Are Dynamic and Virtual Functions 132
Property Paths are Null Tolerant. 132
Static Properties . 134
More Property Examples. 134
Contents 5

Gosu Reference Guide

Modifiers. 135
Access Modifiers. 136
Override Modifier . 137
Abstract Modifier . 137
Final Modifier . 138
Static Modifier . 140

Inner Classes . 141
Named Inner Classes. 141
Anonymous Inner Classes. 142

11 Enumerations . 145
Using Enumerations . 145

Extracting Information from Enumerations . 146
Comparing Enumerations . 146

12 Interfaces . 147
What is an Interface? . 147
Defining and Using an Interface . 148

Defining and Using Properties with Interfaces . 149
Modifiers and Interfaces . 150

13 Composition . 151
Using Gosu Composition . 151

Overriding Methods Independent of the Delegate Class . 153
Declaring Delegate Implementation Type in the Variable Definition 153
Using One Delegate for Multiple Interfaces . 154
Using Composition With Built-in Interfaces . 154

14 Annotations . 155
Annotating a Class, Method, Type, or Constructor . 155

Built-in Annotations . 156
Annotations at Run Time . 157
Defining Your Own Annotations . 158

Customizing Annotation Usage . 159

15 Enhancements. 161
Using Enhancements. 161

Syntax for Using Enhancements . 162
Creating a New Enhancement. 162
Syntax for Defining Enhancements . 162
Enhancement Naming and Package Conventions. 164
Enhancements on Arrays. 164

16 Gosu Blocks . 165
What Are Blocks? . 165
Basic Block Definition and Invocation. 166
Variable Scope and Capturing Variables In Blocks . 168
Argument Type Inference Shortcut In Certain Cases . 169
Block Type Literals . 169
Blocks and Collections . 171
Blocks as Shortcuts for Anonymous Classes . 171

17 Gosu Generics. 173
Gosu Generics Overview . 174
Using Gosu Generics . 175

Parameterized Classes. 176
Parameterized Methods. 177
6 Contents

Gosu Reference Guide

Other Unbounded Generics Wildcards . 177
Generics and Blocks . 178
How Generics Help Define Collection APIs . 180
Multiple Dimensionality Generics . 180
Generics With Custom ‘Containers’. 181

Generics with Non-Containers . 182

18 Collections. 183
Basic Lists. 183

Creating a List . 183
Type Inference and List Initialization . 184
Getting and Setting List Values . 184
Special Behavior of List in Gosu . 185

Basic Hash Maps . 185
Creating a Hash Map. 185
Getting and Setting Values in a Hash Map . 185
Creating a Hash Map with Type Inference . 185
Special Enhancements on Maps . 186

List and Array Expansion (*.). 187
Array Flattening to Single Dimensional Array . 188

Enhancement Reference for Collections and Related Types . 188
Collections Enhancement Methods. 189
Finding Data in Collections . 191
Sorting Collections . 192
Mapping Data in Collections . 192
Iterating Across Collections . 193
Partitioning Collections. 193
Converting Lists, Arrays, and Sets . 194
Flat Mapping a Series of Collections or Arrays . 194
Sizes and Length of Collections and Strings are Equivalent . 195

19 Gosu and XML. 197
Manipulating XML Overview . 198
Introduction to the XML Element in Gosu. 198

Dollar Sign Prefix for Properties that Are XSD Types. 201
Exporting XML Data . 202

Export-related Methods on an XML Element. 202
XML Serialization Options Reference and Examples . 203

Parsing XML Data into an XML Element . 204
Creating Many QNames in the Same Namespace . 206
XSD-based Properties and Types . 207

Important Concepts in XSD Properties and Types . 207
XSD Generated Type Examples . 211
Automatic Insertion into Lists. 212
XSD List Property Example . 213

Getting Data From an XML Element . 214
Manipulating Elements and Values (Works With or Without XSD) 214
Attributes. 217

Simple Values . 217
Methods to Create XML Simple Values. 218
XSD to Gosu Simple Type Mappings. 219
Facet Validation . 220

Access the Nillness of an Element . 220
Automatic Creation of Intermediary Elements . 221
Default and Fixed Attribute Values . 221
Contents 7

Gosu Reference Guide

Substitution Group Hierarchies . 222
Element Sorting for XSD-based Elements . 223
Built-in Schemas. 226

The XSD that Defines an XSD (The Metaschema) . 226
Schema Access Type . 227

20 Calling WS-I Web Services from Gosu . 229
Consuming WS-I Web Service Overview . 229

Loading WS-I WSDL Directly into the File System . 230
How Does Gosu Process WSDL? . 231
Learning Gosu XML APIs . 232
What Gosu Creates from Your WSDL . 233
A Real Example: Weather. 234
Request XML Complexity Affects Appearance of Method Arguments. 234

Adding WS-I Configuration Options . 234
HTTP Authentication . 235
Setting a Timeout . 235
Custom SOAP Headers . 235
Server Override URL . 235
Setting XML Serialization Options. 236
Implementing Advanced Web Service Security with WSS4J . 236

One-Way Methods . 237
Asynchronous Methods . 238
MTOM Attachments. 239

21 Java and Gosu. 241
Overview of Calling Java from Gosu . 241

Java Classes are First-Class Types . 242
Many Java Classes are Core Classes for Gosu . 242
Java Packages in Scope. 242
Static Members in Gosu . 242
Simple Java Example . 243
Java Get and Set Methods Convert to Gosu Properties . 243
Interfaces . 245
Enumerations . 245
Annotations . 245
Java Primitives . 245

Deploying Your Java Classes . 246
Java Class Loading, Delegation, and Package Naming . 247

Java Class Loading Rules . 247

22 Gosu Templates . 249
Template Overview. 249

Template Expressions . 249
When to Escape Special Characters for Templates. 250

Using Template Files . 251
Creating and Running a Template File . 252
Template Scriptlet Tags . 252
Template Parameters. 253
Extending a Template From a Class . 254
Template Comments . 254

Template Export Formats . 255

23 Type System . 257
The Type of All Types . 257
Basic Type Coercion. 258
8 Contents

Gosu Reference Guide

Basic Type Checking . 259
Automatic Downcasting for ‘typeis’ and ‘typeof’ . 260

Using Reflection . 262
Type Object Properties . 264
Java Type Reflection. 266
Type System Class . 266

Compound Types . 266
Type Loaders . 267

24 Running Local Shell Commands . 269
Running Command Line Tools from Gosu . 269

25 Checksums . 271
Overview of Checksums. 271
Creating Fingerprints . 272

How to Output Data Inside a Fingerprint . 273
Extending Fingerprints . 273

26 Concurrency . 275
Overview of Thread Safety and Concurrency . 275
Gosu Scoping Classes (Pre-scoped Maps) . 276
Concurrent Lazy Variables . 277
Concurrent Cache . 278
Concurrency with Monitor Locks and Reentrant Objects . 279

27 Properties Files . 283
Reading Properties Files . 283

28 Coding Style . 285
General Coding Guidelines. 285

Omit Semicolons. 285
Type Declarations . 285
The == and != Operator Recommendations and Warnings . 285
Class Variable and Class Property Recommendations . 286
Use ‘typeis’ Inference . 287
Contents 9

Gosu Reference Guide

10 Contents

Gosu Reference Guide

About This Document

This document is a guide for the syntax of Gosu expressions and statements. It also provides examples of how
the syntax can be constructed to write scripts (for example, in rules, libraries, and user interface elements).

Downloads, Technical Questions, and Submitting Feedback

To download latest version of the Gosu language and the Gosu documentation, go to:
http://gosu-lang.org

To ask questions about Gosu or offer general feedback about Gosu, join and post to the Gosu language forum:
http://groups.google.com/group/gosu-lang

To file bug reports, please submit them to the Gosu language bug tracking system:
http://code.google.com/p/gosu-lang/issues/list

Conventions in This Document

Text style Meaning Examples

italic Emphasis, special terminology, or a book title. A destination sends messages to an
external system.

bold Strong emphasis within standard text or table text. You must define this property.

narrow bold The name of a user interface element, such as a button
name, a menu item name, or a tab name.

Next, click Submit.

monospaced Literal text that you can type into code, computer output,
class names, URLs, code examples, parameter names,
string literals, and other objects that might appear in pro-
gramming code.

Get the field from the Address object.

monospaced italic Parameter names or other variable placeholder text within
URLs or other code snippets.

Use getName(first, last).

http://SERVERNAME/a.html.
About This Document 11

Gosu Reference Guide

12 About This Document

chapter 1

Gosu Introduction

This topic introduces the Gosu language, including basic syntax and a list of features.

This topic includes:

• “Welcome to Gosu” on page 13

• “Running Gosu Programs and Calling Other Classes” on page 28

• “More About the Gosu Type System” on page 29

• “Gosu Case Sensitivity” on page 33

• “Gosu Statement Terminators” on page 34

• “Gosu Comments” on page 35

• “Gosu Reserved Words” on page 35

• “Notable Differences Between Gosu and Java” on page 36

• “Get Ready for Gosu” on page 40

Welcome to Gosu

Welcome to the Gosu language. Gosu is a general-purpose programming language built on top of the Java Virtual
Machine. It includes the following features:

• object-oriented

• easy to learn, especially for programmers familiar with Java

• static typing, which helps you find errors at compile time

• imperative

• Java compatible, which means you can use Java types, extend Java types, and implement Java interfaces

• type inference, which greatly simplifies your code while still preserving static typing

• blocks, which are in-line functions that you can pass around as objects. Some languages call these closures or
lambda expressions.
Gosu Introduction 13

Gosu Reference Guide

• enhancements, which add functions and properties to other types, even Java types. Gosu includes built-in
enhancements to common Java classes, some of which add features that are unavailable in Java (such as
blocks).

• generics, which abstracts the behavior of a type to work with multiple types of objects. The Gosu generics
implementation is 100% compatible with Java, and adds additional powerful improvements. See “Generics in
Gosu” on page 32 for details.

• XML/XSD support

• web service (SOAP) support

• an extensible type system, which means that custom type loaders can dynamically inject types into the
language. You can use these new types as native objects in Gosu. For example, custom type loaders dynami-
cally add Gosu types for objects from XML schemas (XSDs) and from remote WS-I compliant web services
(SOAP).

• large companies around the world use Gosu every day in production systems for critical systems.

Basic Gosu

The following Gosu program outputs the text "Hello World" to the console using the built-in print function:
print("Hello World")

Gosu uses the Java type java.util.String as its native String type to manipulate texts. You can create in-line
String literals just as in Java. In addition, Gosu supports native in-line templates, which simplifies common text
substitution coding patterns. For more information, see “Gosu Templates” on page 26.

To declare a variable in the simplest way, use the var statement followed by the variable name. Typical Gosu
code also initializes the variable using the equals sign followed by any Gosu expression:

var x = 10
var y = x + x

Despite appearances in this example, Gosu is statically typed. All variables have a compile-time type that Gosu
enforces at compile time, even though in this example there is no explicit type declaration. In this example, Gosu
automatically assigns these variables the type int. Gosu infers the type int from the expressions on the right side
of the equals signs on lines that declare the variable. This language feature is called type inference. For more
information about type inference, see “Type Inference” on page 30.

Type inference helps keep Gosu code clean and simple, especially compared to other statically-typed program-
ming languages. This makes typical Gosu code easy to read but retains the power and safety of static typing. For
example, take the common pattern of declaring a variable and instantiating an object.

In Gosu, this looks like:
var c = new MyVeryLongClassName()

This is equivalent to the following Java code:
MyVeryLongClassName c = new MyVeryLongClassName();

As you can see, the Gosu version is easier to read and more concise.

Gosu also supports explicit type declarations of variables during declaration by adding a colon character and a
type name. The type name could be a language primitive, a class name, or interface name. For example:

var x : int = 3

Explicit type declarations are required if you are not initializing the variable on the same statement as the vari-
able declaration. Explicit type declarations are also required for all class variable declarations.

Note: For more information, see “More About the Gosu Type System” on page 29 and “Gosu Classes and
Properties” on page 18.

From the previous examples, you might notice another difference between Gosu and Java: no semicolons or
other line ending characters. Semicolons are unnecessary in nearly every case, and the standard style is to omit
them. For details, see “Gosu Statement Terminators” on page 34.
14 Chapter 1: Gosu Introduction

Gosu Reference Guide

Control Flow

Gosu has all the common control flow structures, including improvements on the Java versions.

Gosu has the familiar if, else if, and else statements:
if(myRecord.Open and myRecord.MyChildList.length > 10) {
 //some logic
 } else if(not myRecord.Open) {
 //some more logic
 } else {
 //yet more logic
 }

Gosu permits the more readable English words for the Boolean operators: and, or, and not. Optionally you can
use the symbolic versions from Java (&&, ||, and !). This makes typical control flow code easier to understand.

The for loop in Gosu is similar to the Java 1.5 syntax:
for(ad in addressList) {
 print(ad.Id)
 }

This works with arrays or any Iterable object. Despite appearances, the variable is strongly typed. Gosu infers
the type based on the iterated variable’s type. In the previous example, if addressList has type Address[], then
ad has type Address. If the addressList variable is null, the for statement is skipped entirely, and Gosu gener-
ates no error. In contrast, Java throws an null pointer exception if the iterable object is null.

If you want an index within the loop, use the following syntax to access the zero-based index:
for(a in addressList index i) {
 print(a.Id + " has index " + i)
}

Gosu has native support for intervals, which are sequences of values of the same type between a given pair of
endpoint values. For instance, the set of integers beginning with 0 and ending with 10 is an integer interval. If it
is a closed interval (contains the starting and ending values), it contains the values 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10.
The Gosu shorthand syntax for this is 0..10. Intervals are particularly useful to write concise easy-to-understand
for loops:

for(i in 1..10) {
 print(i)
}

You can optionaly specify an open interval at one or both ends of the interval, meaning not to include the speci-
fied values. The Gosu syntax 1|..|10 means an open interval on both sides, which means the values from 2
through 9.

Intervals do not need to represent numbers. Intervals can be a variety of types including numbers, dates, or other
abstractions such as names. Gosu includes the built-in shorthand syntax (the two periods, shown earlier) for
intervals of dates and common number types. You can also add custom interval types that support iterable
comparable sequences. As long as your interval type implements the required interfaces, you can use your new
intervals in for loop declarations:

for(i in new ColorInterval("red", "blue")) {
 print(i)
}

Gosu does not have a direct general purpose equivalent of the Java three-part for declaration:
for (i =1 ; i <20 ; ++i)

However, in practice the use of intervals makes most typical use of this pattern unnecessary, and you can use a
Gosu while loop to duplicate this pattern.

To use intervals with for loops, they must be an iterative interval. You can choose to make custom non-iterative
intervals if you want. They are mainly useful for math and theoretical work. For example, represent non-count-
able values like the infinite number of real numbers between two other real numbers.

The Gosu switch statement can test any type of object, with a special default case at the end:
var x = "b"
Welcome to Gosu 15

Gosu Reference Guide

switch(x) {
case "a":

print("a")
break

case "b":
print("b")
break

default:
print("c")

}

In Gosu, you must put a break statement at the end of each case to jump to the end of the switch statement.
Otherwise, Gosu falls through to the next case in the series. For example, for the previous example if you
remove the break statements, the code prints both "b" and "c". This is the same as Java, although some
languages do not require the break statement to prevent falling through to the next case.

Blocks

Gosu supports in-line functions that you can pass around as objects. Some languages call these closures or
lambda expressions. In Gosu, these are called blocks.

To define a block

1. start with the \ character

2. optionally add a list of arguments as name/type pairs separated by a colon character

3. add the -> characters, which mark the beginning of the block’s body

4. finally, add either a statement list surrounded by curly braces: { and }, or a Gosu expression.

For more information about blocks, see “Gosu Blocks” on page 165.

The following block multiplies a number with itself, which is known as squaring a number:
var square = \ x : Number-> x * x / /no need for braces here (it is an expression, not statements)
var myResult = square(10) // call the block

The value of myResult in this example is 100.

Blocks are incredibly useful as method parameters, which allows the method’s implementation to generalize
some task or algorithm but allow callers to inject code to customize it. For example, Gosu adds many useful
methods to Java collections classes that take a block as a parameter. That block could return an expression (for
example, a condition to test each item against) or could represent an action to perform on each item.

For example, the following Gosu code makes a list of strings, sorts it by length of each String, then iterates
across the result list to print each item in order:

var strings = {"aa", "ddddd", "c"}

strings.sortBy(\ str -> str.Length).each(\ str -> { print(str) })

For more information about blocks, see “Gosu Blocks” on page 165. For more information about collections
enhancement methods, many of which use blocks, see “Collections” on page 183.

Special Block Shortcut for One-Method Interfaces

If the anonymous inner class implements an interface and the interface has exactly one method, then you can
use a Gosu block to implement the interface as a block. This is an alternative to using an explicit anonymous
class. This is true for interfaces originally implemented in either Gosu or Java. For example:

_callbackHandler.execute(\ -> { /* your Gosu statements here */ })

For more information, see “Gosu Block Shortcut for Anonymous Classes Implementing an Interface” on
page 143.
16 Chapter 1: Gosu Introduction

Gosu Reference Guide

Enhancements

Gosu provides a feature called enhancements, which allow you to add functions (methods) and properties to
other types. This is especially powerful for enhancing native Java types, and types defined in other people’s code.

For example, Gosu includes built-in enhancements on collection classes (such as java.util.List) that signifi-
cantly improve the power and readability of collections-related code. For example, the example mentioned
earlier takes a list of String objects, sorts it by length of each String, and iterates across the result list to print
each item:

strings.sortBy(\ str -> str.Length).each(\ str -> print(str))

This works because the sortBy and each methods are Gosu enhancement methods on the List class. Both
methods return the result list, which makes them useful for chaining in series like this.

For more information, see “Enhancements” on page 161.

Collections

Gosu provides several features to make it easy to use collections like lists and maps. Gosu directly uses the built-
in Java collection classes like java.util.ArrayList and java.util.Hashmap. This makes it especially easy to
use Gosu to interact with pre-existing Java classes and libraries.

In addition, Gosu adds the following features:

• Shorthand syntax for creating lists and maps that is easy to read and still uses static typing:
var myList = {"aa", "bb}
var myMap = {"a" -> "b", "c" -> "d"}

• Shorthand syntax for getting and setting elements of lists and maps
var myList = {"aa", "bb}
myList[0] = "cc"
var myMap = {"a" -> "b", "c" -> "d"}
var mappedToC = myMap["c"]

• Gosu includes built-in enhancements that improve Java collection classes. Some enhancements enable you to
use Gosu features that are unavailable in Java. For example, the following Gosu code initializes a list of
String objects and then uses enhancement methods that use Gosu blocks, which are in-line functions. (See
“Blocks” on page 16).
// use Gosu shortcut to create a list of type ArrayList<String>

var myStrings = {"a", "abcd", "ab", "abc"}

// Sort the list by the length of the String values:
var resortedStrings = myStrings.sortBy(\ str -> str.Length)

// iterate across the list and run arbitrary code for each item:
resortedStrings.each(\ str -> print(str))

Notice how the collection APIs are chainable. For readability, you can also put each step on separate lines. The
following example declares some data, then searches for a subset of the items using a block, and then sorts the
results.

var minLength = 4
var strings = { "yellow", "red", "blue" }

var sorted = strings.where(\ s -> s.length() >= minLength)
 .sort()

For more information, see “Collections” on page 17.

Access to Java Types

Gosu provides full access to Java types from Gosu. You can continue to use your favorite Java classes or libraries
directly from Gosu with the same syntax as native Gosu objects.

For example, for standard Gosu coding with lists of objects, use the Java type java.util.ArrayList. The
following is a simple example using a Java-like syntax:
Welcome to Gosu 17

Gosu Reference Guide

var list = new java.util.ArrayList()
list.add("Hello Java, from Gosu")

For example:

• Gosu can instantiate Java types

• Gosu can manipulate Java objects (and primitives) as native Gosu objects.

• Gosu can get variables from Java types

• Gosu can call methods on Java types. For methods that look like getters and setters, Gosu exposes methods
instead as properties.

• Gosu extends and improves many common Java types using Gosu enhancements. (See “Enhancements” on
page 17.)

• You can also extend Java types and implement Java interfaces.

For more information, see “Java and Gosu” on page 241.

Gosu Classes and Properties

Gosu supports object-oriented programming using classes, interfaces and polymorphism. Also, Gosu is fully
compatible with Java types, so Gosu types can extend Java types, or implement Java interfaces.

At the top of a class file, use the package keyword to declare the package (namespace) of this class. To import
specific classes or package hierarchies for later use in the file, add lines with the uses keyword. This is equiva-
lent to the Java import statement. Gosu supports exact type names, or hierarchies with the * wildcard symbol:

uses gw.example.MyClass // exact type
uses gw.example.queues.jms.* // wildcard means a hierarchy

To create a class, use the class keyword, followed by the class name, and then define the variables, then the
methods for the class. To define one or more constructor (object instance initialization) methods, use the
construct keyword. The following is a simple class with one constructor that requires a String argument:

class ABC {
construct(id : String) {
}

}

Note: You can optionally specify that your class implements interfaces. See “Interfaces” on page 22.

To create a new instance of a class, use the new keyword in the same way as in Java. Pass any constructor argu-
ments in parentheses. Gosu decides what version of the class constructor to use based on the number and types of
the arguments. For example, the following calls the constructor for the ABC class defined earlier in this topic:

var a = new ABC("my initialization string")

Gosu improves on this basic pattern and introduces a standard compact syntax for property initialization during
object creation. For example, suppose you have the following Gosu code:

var myFileContainer = new my.company.FileContainer()
myFileContainer.DestFile = jarFile
myFileContainer.BaseDir = dir
myFileContainer.Update = true
myFileContainer.WhenManifestOnly = ScriptEnvironment.WHEN_EMPTY_SKIP

After the first line, there are four more lines, which contain repeated information (the object variable name).

You can optionally use Gosu object initializers to simplify this code to only a couple lines of code:
var myFileContainer = new my.company.FileContainer() { :DestFile = jarFile, :BaseDir = dir,

:Update = true, :WhenManifestOnly = ScriptEnvironment.WHEN_EMPTY_SKIP }

You can also choose to list each initialization on its own line, which takes up more lines but is more readable:
var myFileContainer = new my.company.FileContainer() {

:DestFile = jarFile,
:BaseDir = dir,
:Update = true,
:WhenManifestOnly = ScriptEnvironment.WHEN_EMPTY_SKIP

}

18 Chapter 1: Gosu Introduction

Gosu Reference Guide

Unlike Java, you can omit the type name entirely in a new expression if the type is known from its context. For
example:

class Person {
 private var _name : String as Name
 private var _age : int as Age
}

class Tutoring {
 private var _teacher : Person as Teacher
 private var _student : Person as Student
}

// declare a variable as a specific type to omit the type name in the "new" expression
// during assignment to that variable
var p : Person
var t : Tutoring
p = new() // notice the type name is omitted
t = new() // notice the type name is omitted

// if a class var or other data property has a declared type, optionally omit type name
t.Teacher = new()
t.Student = new()

// optionally OMIT 'new' keyword and still use the Gosu initialization syntax
t.Student = { :Name = "Bob Smith", :Age = 30 }

For more details, see “Creating and Instantiating Classes” on page 128 and “New Object Expressions” on
page 84.

Functions

Declare a function using the function keyword. When a function is part of another type, a function is called a
method. In Gosu, types follow the variable or function definition, separated by a colon. In contrast, Java types
precede the variable or parameter name with no delimiter. To return a value, add a statement with the return
keyword followed by the value. The following simple function returns a value:

public function createReport(user : User) : Boolean {
return ReportUtils.newReport(user, true)

 }

Method invocation in Gosu looks familiar to programmers of imperative languages, particularly Java. Just use
the period symbol followed by the method name and the argument list in parentheses:

obj.createReport(myUser)

Pass multiple parameters (including Gosu expressions) delimited by commas, just as in Java:
obj.calculate(1, t.Height + t.Width + t.Depth)

In some cases, such as in-line functions in Gosu programs, functions are not attached to a class or other type. In
such cases, simply call them. As you saw in earlier examples, there is a rare globally-available function for any
Gosu code, called print. Call that function with a String to write data to the system console or other default
output stream. For example, the following prints text to the console:

print("Hello Gosu!")

Gosu supports access control modifiers (public, private, internal, and protected) and they have the same
meaning as in Java. For example, if you mark a method public, any other code can call that method. For more
information, see “Access Modifiers” on page 136.

Gosu also supports static methods, which means methods on the type rather than on object instances. See “Static
Members” on page 21.

If the return type is not void, all possible code paths must return a value in a method that declares a return type.
In other words, if any code path contains a return statement, Gosu requires a return statement for all possible
paths through the function. The set of all paths includes all outcomes of conditional execution, such as if and
switch statements. This is identical to the analogous requirement in Java. The Gosu editor automatically notifies
you at compile time of this issue if it happens. For details, see “Gosu Functions” on page 106.
Welcome to Gosu 19

Gosu Reference Guide

Class Variables and Properties

Gosu supports instance variables and static variables in class declarations in basically the same way Java does,
although the syntax is slightly different. Use the var keyword in the class definition, and declare the type explic-
itly. Note that variables are private by default in Gosu.

var _id : String //vars are private by default

One special difference between Gosu and some languages (including Java) is full support in Gosu for proper-
ties, which are dynamic getter and setter methods for values. To set or get properties from an object (internally,
Gosu calls the property getter and setter methods), use natural syntax. Type the period (.) character followed by
the property name just as you would for an object variable:

var s = myobj.Name
myobj.Name = "John"

In addition, Gosu has a special null-safety behavior with pure property paths, which are the form
obj.Property1.Property2.Property3. For more information, see “Property Accessor Paths are Null Safe” on
page 21.

Define a property accessor function (a property getter) using the declaration property get instead of function.
Define a setter function using function declaration property set instead of function. These property accessors
can dynamically get or set the property, depending on whether it is defined as property get or property set.
Properties can be read/write, or can be read-only or write-only. Gosu provides a special shortcut to expose
internal variables as public properties with other names. Use the syntax as PROPERTY_NAME as follows in a class
definition for a variable. This makes it easy to separate the internal implementation of variables from how you
expose properties to other code

var _name : String as Name //Exposes the _name field as a readable and writable 'Name' property

Think of this is a shortcut for creating a property get function and a property set function for each variable.
This is the standard and recommended Gosu style for designing public properties. (In contrast, for new Gosu
code do not expose actual class variables as public, although Gosu supports it for compatibility with Java.)

The following is a simple Gosu class definition:
package example // declares the package (namespace) of this class

uses java.util.* // imports the java.util package

 class Person {

 var _name : String as Name // Exposes the _name field as a readable and writable 'Name' property
 var _id : String // vars are private by default

//Constructors are like functions called construct but omit the function keyword.
// You can supply multiple method signatures with different numbers or types of arguments

construct(id : String){
 _id = id
 }

 property get ID() : String { //_id is exposed as a read only 'ID' property
 return _id
 }

// Comment out the property set function to make ID read-only property:
property set ID(id : String) {
_id = id;

}

 //functions by default are public
 function printOut() {
 print(_name + ":" + _id)
 }
 }

This allows you to use concise code like the following:
n.ID = "12345" // set a property
print(n.ID) // get a property
n.Name = "John" // set a property -- see the "as Name" part of the class definition!
print(n.Name) // get a property -- see the "as Name" part of the class definition!
20 Chapter 1: Gosu Introduction

Gosu Reference Guide

From Gosu, Java Get and Set Methods Become Properties

For methods on Java types that look like getters and setters, Gosu exposes methods on the type as properties
rather than methods. Gosu uses the following rules for methods on Java types:

• If the method name starts with set and takes exactly one argument, Gosu exposes this as a property. The
property name matches the original method but without the prefix set. For example, suppose the Java method
signature is setName(String thename). Gosu exposes this a property set function for the property called
Name of type String.

• If the method name starts with get and takes no arguments and returns a value, Gosu exposes this as a getter
for the property. The property name matches the original method but without the prefix get. For example,
suppose the Java method signature is getName() and it returns a String. Gosu exposes this a property get
function for the property named Name of type String.

• Similar to the rules for get, the method name starts with is and takes no arguments and returns a Boolean
value, Gosu exposes this as a property accessor (a getter). The property name matches the original method
but without the prefix is. For example, suppose the Java method signature is isVisible(). Gosu exposes this
a property get function for the property named Visible.

If there is a setter and a getter, Gosu makes the property readable and writable. If the setter is absent, Gosu makes
the property read-only. If the getter is absent, Gosu makes the property write-only.

For example, consider a Java class called Circle with the following method declarations:
public double getRadius()
//...
public void setRadius(double dRadius)

Gosu exposes these methods as the Radius property, which is readable and writable. That means you could use
straightforward code such as:

circle.Radius = 5 // property SET
print(circle.Radius) // property GET

For a detailed example, see “Java Get and Set Methods Convert to Gosu Properties” on page 243.

Property Accessor Paths are Null Safe

For normal property access with the period character, all objects to the left of the period must be non-null at run
time or Gosu throws an exception. For example:

obj.Property1.Property2.Property3

Gosu provides a way to access properties in a way that is tolerant of unexpected null values, a feature called null
safety. To do this, add a question mark before the period to transform the operator into the null-safe version. For
example:

obj?.Property1?.Property2?.Property3

In most cases, if any object to the left of the ?. operator is null, the expression returns null and Gosu does not
throw a null pointer exception (NPE). Using null-safe property paths tends to simplify real-world code. Gosu
null-tolerant property accessor paths are a good reason to expose data as properties in Gosu classes and inter-
faces rather than as setter and getter methods.

There are additional null-safe operators. For example, specify default values with code like:
// Set display text to the String in the txt variable, or if it is null use "(empty)"

var displayText = txt ?: "(empty)"

For more about Gosu null safety, see “Null Safety for Properties and Other Operators” on page 30.

Static Members

Gosu supports static members on a type. This includes variables, functions, property declarations, and static
inner classes on a type. The static quality means that the member exists only on the type (which exists only once),
Welcome to Gosu 21

Gosu Reference Guide

not on instances of the type. The syntax is simple. After a type reference (just the type name), use the period (.)
character followed by the property name or method call. For example:

MyClass.PropertyName // get a static property name

MyClass.methodName() // call a static method

In Gosu, for each usage of a static member you must qualify the class that declares the static member. However,
you do not need to fully-qualify the type. In other words, you do not need to include the full package name if the
type is already imported with a uses statement or is already in scope. For example, to use the Math class’s cosine
function and its static reference to value PI, use the syntax:

Math.cos(Math.PI * 0.5)

Gosu does not have an equivalent of the static import feature of Java 1.5, which allows you to omit the enclosing
type name before static members. In the previous example, this means omitting the text Math and the following
period symbol. This is only a syntax difference for using static members in Gosu code, independent of whether
the type you want to import is a native Gosu or Java type.

To declare a type as static for a new Gosu class, use the static keyword just as in Java. For details, see “Modi-
fiers” on page 135.

Interfaces

Gosu supports interfaces, including full support for Java interfaces. An interface is a set of method signatures
that a type must implement. It is like a contract that specifies the minimum set of functionality to be considered
compatible. To implement an interface, use the interface keyword, then the interface name, and then a set of
method signatures without function bodies. The following is a simple interface definition using the interface
keyword:

package example

 interface ILoadable {
 function load()
 }

Next, a class can implement the interface with the implements keyword followed by a comma-delimited list of
interfaces. Implementing an interface means to create a class that contains all methods in the interface:

package example

class LoadableThing implements ILoadable {

 function load() {
 print("Loading...")
 }
 }

For more information, see “Interfaces” on page 22.

List and Array Expansion Operator *.

Gosu includes a special operator for array expansion and list expansion. This array and list expansion can be
useful and powerful. It expands and flattens complex object graphs and extracts one specific property from all
objects several levels down in an object hierarchy. The expansion operator is an asterisk followed by a period, for
example:

names*.Length

If you use the expansion operator on a list, it gets a property from every item in the list and returns all instances
of that property in a new list. It works similarly with arrays.

Let us consider the previous example names*.Length. Assume that names contains a list of String objects, and
each one represents a name. All String objects contain a Length field. The result of the above expression would
be a list containing the same number of items as in the original list. However, each item is the length (the
String.Length property) of the corresponding name.
22 Chapter 1: Gosu Introduction

Gosu Reference Guide

Gosu infers the type of the list as appropriate parameterized type using Gosu generics, an advanced type feature.
For more information about generics, see “Generics in Gosu” on page 32. Similarly, Gosu infers the type of the
result array if you originally call the operator on an array.

This feature also works with both arrays and lists. For detailed code examples, see “List and Array Expansion
(*.)” on page 187.

Comparisons

In general, the comparison operators work you might expect if you were familiar with most programming
languages. There are some notable differences:

• The operators >, <, >=, and <= operators work with all objects that implement the Comparable interface, not
just numbers.

• The standard equal comparison == operator implicitly uses the equals method on the first (leftmost) object.
This operator does not check for pointer equality. It is null safe in the sense that if either side of the operator
is null, Gosu does not throw a null pointer exception. (For related information, see “Property Accessor Paths
are Null Safe” on page 21.)

Note: In contrast, in the Java language, the == operator evaluates to true if and only if both operands have
the same exact reference value. In other words, it evaluates to true if they refer to the same object in
memory. This works well for primitive types like integers. For reference types, this usually is not what you
want to compare. Instead, to compare value equality, Java code typically uses object.equals(), not the ==
operator.

• There are cases in which you want to use identity reference, not simply comparing the values using the under-
lying object.equals() comparison. In other words, some times you want to know if two objects literally
reference the same in-memory object. Gosu provides a special equality operator called === (three equals
signs) to compare object equality. It always compares whether both references point to the same in-memory
object. The following examples illustrate some differences between == and === operators:

Case Sensitivity

Gosu language itself is case insensitive, but Gosu compiles and runs faster if you write all Gosu as case-sensitive
code matching the declaration of the language element. Additionally, proper capitalization makes your Gosu
code easier to read. For more information, including Gosu standards for capitalizing your own language
elements, see “Gosu Case Sensitivity” on page 33.

Compound Assignment Statements

Gosu supports all operators in the Java language, including bit-oriented operators. Additionally, Gosu has
compound operators such as:

• ++ , which is the increment-by-one operator, supported only after the variable name

• += , which is the add-and-assign operator, supported only after the variable name followed by a value to add
to the variable

• Similarly, Gosu supports -- (decrement-by-one) and -= (subtract-and-assign)

Expression Prints this Result Description

var x = 1 + 2

var s = x as String

print(s == "3")

true These two variables reference the same value but different
objects. If you use the double-equals operator, it returns true.

var x = 1 + 2

var s = x as String

print(s === "3")

false These two variables reference the same value but different
objects. If you use the triple-equals operator, it returns false.
Welcome to Gosu 23

Gosu Reference Guide

• Gosu supports additional compound assignment statements that mirror other common operators. See “Vari-
able Assignment” on page 98 for the full list.

For example, to increment the variable i by 1:
i++

It is important to note that these operators always form statements, not expressions. This means that the
following Gosu is valid:

var i = 1
while(i < 10) {

i++
print(i)

}

However, the following Gosu is invalid because statements are impermissible in an expression, which Gosu
requires in a while statement:

var i = 1
while(i++ < 10) { // Compilation error!

print(i)
}

Gosu supports the increment and decrement operator only after a variable, not before a variable. In other words,
i++ is valid but ++i is invalid. The ++i form exists in other languages to support expressions in which the result
is an expression that you pass to another statement or expression. As mentioned earlier, in Gosu these operators
do not form an expression. Thus you cannot use increment or decrement in while declarations, if declarations,
and for declarations.

See “Variable Assignment” on page 98 for more details.

Delegating Interface Implementation with Composition

Gosu supports the language feature called composition using the delegate and represents keywords in variable
definitions. Composition allows a class to delegate responsibility for implementing an interface to a different
object. This compositional model allows easy implementation of objects that are proxies for other objects, or
encapsulating shared code independent of the type inheritance hierarchy. The syntax looks like the following:

package test

class MyWindow implements IClipboardPart {
 delegate _clipboardPart represents IClipboardPart

 construct() {
 _clipboardPart = new ClipboardPart(this)
 }
}

In this example, the class definition uses the delegate keyword to delegate implementation of the
IClipboardPart interface. The constructor creates a concrete instance of an object (of type ClipboardPart) for
that class instance variable. That object must have all the methods defined in the IClipboardPart interface.

You can use a delegate to represent (handle methods for) multiple interfaces for the enclosing class. Instead of
providing a single interface name, specify a comma-separated list of interfaces. For example:

private delegate _employee represents ISalariedEmployee, IOfficer

The Gosu type system handles the type of the variable in the previous example using a special kind of type called
a compound type.

For more information, see “Composition” on page 151.

Concurrency

If more than one Gosu thread interacts with data structures that another thread needs, you must ensure that you
protect data access to avoid data corruption. Because this topic involves concurrent access from multiple threads,
this issue is generally called concurrency. If you design your code to safely get or set concurrently-accessed data,
your code is called thread safe.
24 Chapter 1: Gosu Introduction

Gosu Reference Guide

Gosu provides the following concurrency APIs:

• Support for Java monitor locks, reentrant locks, and custom reentrant objects. Gosu provides access to Java-
based classes for monitor locks and reentrant locks in the Java package java.util.concurrent. Gosu makes
it easier to access these classes with easy-to-read using clauses that also properly handle cleanup if excep-
tions occur. Additionally, Gosu makes it easy to create custom Gosu objects that support an easy-to-read
syntax for reentrant object handling (see following example). The following Gosu code shows the compact
readable syntax for using Java-defined reentrant locks using the using keyword. For example:
// in your class definition, define a static variable lock
static var _lock = new ReentrantLock()

// a property get function uses the lock and calls another method for the main work
property get SomeProp() : Object

using(_lock) {
return _someVar.someMethod() // do your work here and Gosu synchronizes it, and handles cleanup

}

• Scoping classes (pre-scoped maps). Scope-related utilities in the class gw.api.web.Scopes help synchronize
and protect access to shared data. These APIs return Map objects into which you can safely get and put data
using different scope semantics.

• Lazy concurrent variables. The LazyVar class (in gw.util.concurrent) implements what some people call a
lazy variable. This means Gosu constructs it only the first time some code uses it. For example the following
code is part of a class definition that defines the object instance. Only at run time at the first usage of it does
Gosu run the Gosu block that (in this case) creates an ArrayList:
var _lazy = LazyVar.make(\-> new ArrayList<String>())

• Concurrent cache. The Cache class (in gw.util.concurrent) declares a cache of values you can look up
quickly and in a thread-safe way. It declares a concurrent cache similar to a Least Recently Used (LRU)
cache. After you set up a cache object, to use it just call its get method and pass the input value (the key). If
the value is in the cache, it simply returns it from the cache. If it is not cached, Gosu calls the block and calcu-
lates it from the input value (the key) and then caches the result. For example:
print(myCache.get("Hello world")

For more information about concurrency APIs, see “Concurrency” on page 275

Exceptions

Gosu supports the full feature set for Java exception handling, including try/catch/finally blocks. However,
unlike Java, no exceptions are checked. Standard Gosu style is to avoid checked exceptions where possible. You
can throw any exception you like in Gosu, but if it is not a RuntimeException, Gosu wraps the exception in a
RuntimeException.

Catching Exceptions

The following is a simple try/catch/finally:
try {
 user.enter(bar)
 } catch(e){
 print("failed to enter the bar!")
 } finally {

// cleanup code here...
}

Note that the type of e is not explicit. Gosu infers the type of the variable e to be Throwable.

If you need to handle a specific exception, Gosu provides a simplified syntax to make your code readable. It lets
you catch only specific checked exceptions in an approach similar to Java’s try/catch syntax. Simply declare
the exception of the type of exception you wish to catch:

catch(e : ThrowableSubclass)

For example:
try {
 doSomethingThatMayThrowIOException()
}

Welcome to Gosu 25

Gosu Reference Guide

catch(e : IOException) {
 // Handle the IOException
}

Throwing Exceptions

In Gosu, throw an exception with the throw statement, which is the throw keyword followed by an object.

The following example creates an explicit RuntimeException exception:
if(user.Age < 21) {

throw new RuntimeException("User is not allowed in the bar")
}

You can also pass a non-exception object to the throw statement. If you pass a non-exception object, Gosu first
coerces it to a String. Next, Gosu wraps the String in a new RuntimeException. As a consequence, you could
rewrite the previous throw code example as the concise code:

if(user.Age < 21) {
throw "User is not allowed in the bar"

}

Annotations

Gosu annotations are a simple syntax to provide metadata about a Gosu class, constructor, method, class vari-
able, or property. This annotation can control the behavior of the class, the documentation for the class.

This code demonstrates adding a @Throws annotation to a method to indicate what exceptions it throws.
class MyClass{

@Throws(java.text.ParseException, "If text is invalid format, throws ParseException")
public function myMethod() {}

}

You can define custom annotations, and optionally have your annotations take arguments. If there are no argu-
ments, you can omit the parentheses.

You can get annotations from types at run time.

Gosu supports named arguments syntax for annotations:
@MyAnnotation(a = "myname", b = true)

For more information, se “Annotations” on page 155.

Gosu Templates

Gosu supports in-line dynamic templates using a simple syntax. Use these to combine static text with values
from variables or other calculations Gosu evaluates at run time. For example, suppose you want to display text
with some calculation in the middle of the text:

var s = "One plus one equals ${ 1 + 1 }."

If you print this variable, Gosu outputs:
One plus one equals 2.

Template expressions can include variables and dynamic calculations. Gosu substitutes the run time values of the
expressions in the template. The following is an example of a method call inside a template:

var s2 = "The total is ${ myVariable.calculateMyTotal() }."

At compile time, Gosu ensures all template expression are valid and type safe. At run time, Gosu runs the
template expression, which must return a String value or a type that can cast to a String.

In addition to in-line Gosu templates, Gosu supports a powerful file-based approach for Gosu templates with
optional parameter passing. Any use of the parameters is validated for type-safety, just like any other Gosu code.
For example, use a template to generate a customized notification email, and design the template to take parame-
ters. Parameters could include type safe references to the recipient email address, the sender email address, and
26 Chapter 1: Gosu Introduction

Gosu Reference Guide

other objects. Insert the parameters directly into template output, or call methods or get properties from parame-
ters to generate your customized email report.

For more information, see “Gosu Templates” on page 249.

XML and XSD Support

Gosu provides support for XML. XML files describe complex structured data in a text-based format with strict
syntax for easy data interchange. For more information on the Extensible Markup Language, refer to the World
Wide Web Consortium web page http://www.w3.org/XML. For important information about using these APIs,
see “Gosu and XML” on page 197.

Gosu can parse XML using an existing XML Schema Definition file (an XSD file) to produce a statically-typed
tree with structured data. Alternatively, Gosu can read or write to any XML document as a structured tree of
untyped nodes. In both cases, Gosu code interacts with XML elements as native in-memory Gosu objects assem-
bled into a graph, rather than as text data.

All the types from the XSD become native Gosu types, including element types and attributes. All these types
appear naturally in the namespace defined by the part of the class hierarchy that you place the XSD. In other
words, you put your XSDs side-by-side next to your Gosu classes and Gosu programs.

Suppose you put your XSD in the package directory for the package mycompany.mypackage and your XSD is
called mySchema.xsd. Gosu lowercases the schema name because the naming convention for packages is lower-
case. Gosu creates new types in the hierarchy:

mycompany.mypackage.myschema.*

For example, the following XSD file is called driver.xsd:
<xs:element name="DriverInfo">
 <xs:complexType>
 <xs:sequence>
 <xs:element ref="DriversLicense" minOccurs="0? maxOccurs="unbounded"/>
 <xs:element name="PurposeUse" type="String" minOccurs="0?/>
 <xs:element name="PermissionInd" type="String" minOccurs="0?/>
 <xs:element name="OperatorAtFaultInd" type="String" minOccurs="0?/>
 </xs:sequence>
 <xs:attribute name="id" type="xs:ID" use="optional"/>
 </xs:complexType>
</xs:element>
<xs:element name="DriversLicense">
 <xs:complexType>
 <xs:sequence>
 <xs:element name="DriversLicenseNumber" type="String"/>
 <xs:element name="StateProv" type="String" minOccurs="0?/>
 <xs:element name="CountryCd" type="String" minOccurs="0?/>
 </xs:sequence>
 <xs:attribute name="id" type="xs:ID" use="optional"/>
 </xs:complexType>
</xs:element>

The following Gosu code manipulates XML objects using XSD-based types:
uses xsd.driver.DriverInfo
uses xsd.driver.DriversLicense
uses java.util.ArrayList

function makeSampleDriver() : DriverInfo {
 var driver = new DriverInfo(){:PurposeUse = "Truck"}
 driver.DriversLicenses = new ArrayList<DriversLicense>()
 driver.DriversLicenses.add(new DriversLicense(){:CountryCd = "US", :StateProv = "AL"})
 return driver
}

For example, the following Gosu code uses an XSD called demochildprops to add two child elements and then
print the results:

// create a new element, whose type is *automatically* in the namespace of the XSD
var e = new com.guidewire.pl.docexamples.gosu.xml.demochildprops.Element1()

// create a new CHILD element that is legal in the XSD, and add it as child
var c1 = new com.guidewire.pl.docexamples.gosu.xml.demochildprops.anonymous.elements.Element1_Child1()
e.addChild(c1)
Welcome to Gosu 27

Gosu Reference Guide

// create a new CHILD element that is legal in the XSD (and which requires an int), and add it as child
var c2 = new com.guidewire.pl.docexamples.gosu.xml.demochildprops.anonymous.elements.Element1_Child2()
c2.$Value = 5 // this line automatically creates an XMLSimpleType -- but code is easy to read
e.addChild(c2)

Web Service Support (Consuming WSDL)

Gosu code can import web services (SOAP APIs) from external systems and call these services as a SOAP client
(an API consumer). The Gosu language handles all aspects of object serialization, object deserialization, basic
authentication, and SOAP fault handling. For important information about using these APIs, see “Calling WS-I
Web Services from Gosu” on page 229.

The following example uses a hypothetical web service SayHello.
// -- get a reference to the service in the package namespace of the WSDL
var service = new example.gosu.wsi.myservice.SayHello()

// -- set security options
service.Config.Http.Authentication.Basic.Username = "jms"
service.Config.Http.Authentication.Basic.Password = "b5"

// -- call a method on the service
var result = service.helloWorld()

Gosu Character Set

Because Gosu runs within a Java Virtual Machine (JVM), Gosu shares the same 16-bit Unicode character set as
Java. This allows you to represent a character in virtually any human language in Gosu.

Running Gosu Programs and Calling Other Classes

To use Gosu, the initial file that you run must be a Gosu program. A Gosu program file has the .gsp file name
extension. Gosu code in a program can call out to other Gosu classes and other types.

You can run Gosu programs (.gsp files) directly from the command line or from within an IDE such as IntelliJ.
You cannot run a Gosu class file or other types file directly from within an IDE such as IntelliJ. If you want to
call a Gosu class (or other type of file), make a simple Gosu program that uses your other types.

In Java, you would define a main() method in a class and tell Java which main class to run. It would call out to
other classes as needed.

In Gosu, your main Gosu program (.gsp file) can call any necessary code, including Gosu or Java classes. If you
want to mirror the Java style, your .gsp file can contain a single line that calls a main method on an important
Gosu class or Java class.

To tell Gosu where to load additional classes, do either of the following:

• Use the classpath argument on the command line tool. See “Command Line Tool Options” on page 51.

• Add a classpath statement at the top of your Gosu program.

To use other Gosu classes, Java classes, or Java libraries:

1. Create a package-style hierarchy for your class files somewhere on your disk. For example, if the root of your
files is Gosu/MyProject/, put the class files for the Gosu class com.example.MyClass at the location Gosu/
MyProject/com/example/MyClass.gs.

2. In your Gosu program, tell Gosu where to find your other Gosu classes and Java classes by adding the class-
path statement.

Typically you would place Java classes, Gosu classes, or libraries in subdirectories of your main Gosu program.
28 Chapter 1: Gosu Introduction

Gosu Reference Guide

For example, suppose you have a Gosu program at this location:
C:\gosu\myprograms\test1\test.gsp

Copy your class file for the class mypackage.MyClass to the location:
C:\gosu\myprograms\test1\src\mypackage\MyClass.class

Copy your library files to locations such as:
C:\gosu\myprograms\test1\lib\mylibrary.jar

For this example, add two directories to the class path with the following Gosu statement:
classpath "src,lib"

For more information about Gosu programs, see “Gosu Programs” on page 57.

More About the Gosu Type System

This topic further describes the Gosu type system and its advantages for programmers. Gosu is a statically-typed
language (in contrast to a dynamically-typed language). For statically-typed languages, all variables must be
assigned a type at compile time. Gosu enforces this type constraint at compile time and at run time. If any code
violates type constraints at compile time, Gosu flags this as a compile error. At run time, if your code makes
violates type constraints (for example, an invalid object type coercion), Gosu throws an exception.

Static typing of variables in Gosu provides a number of benefits:

• Compile Time Error Prevention

• Intelligent Code Completion and Other Gosu Editor Tools

• Type Usage Searching

For significantly more information about the Gosu type system, see the topics:

• “Type System” on page 257

• “Basic Type Coercion” on page 258

• “Variable Type Declaration” on page 98.

Although Gosu is a statically-typed language, Gosu supports a concept of generic types, called Gosu generics.
You can use generics in special cases to define a class or method so that it works with multiple types of objects.
Gosu generics are especially useful to design or use APIs that manipulate collections of objects. For a summary,
see “Generics in Gosu” on page 32, or the full topic “Gosu Generics” on page 173. Programmers familiar with
the Java implementation of generics quickly become comfortable with the Gosu implementation of generics.

Compile Time Error Prevention

Static typing allows you to detect most type-related errors at compile time. This increases reliability of your code
at run time. This is critical for real-world production systems. When the Gosu editor detects compilation compi-
lation errors and warnings, it displays them in the user interface as you edit Gosu source code.

For example, functions (including object methods) take parameters and return a value. The information about the
type of each parameter and the return type is known at compile time. During compilation, Gosu enforces the
following constraints:

• calls to this function must take as parameters the correct number of parameters and the appropriate types.

• within the code for the function, code must always treat the object as the appropriate type. For example, you
can call methods or get properties from the object, but only methods or properties declared for that compile-
time type. It is possible to cast the value to a different type, however. If the run time type is not a subtype of
the compile-time type, it is possible to introduce run time errors.

• for code that calls this function, if it assigns a variable to the result of this function, the variable type must
match the return type of this function
More About the Gosu Type System 29

Gosu Reference Guide

For example, consider the following function definition.
public function getLabel(person: Person) : String {

return person.LastName + ", " + person.FirstName
}

For instance, if any code tried to call this method and pass an integer instead of a Person, the code fails with a
type mismatch compiler error. That is because the parameter value is not a Person, which is the contract between
the function definition and the code that calls the function.

Similarly, Gosu ensures that all property access on the Person object (LastName and FirstName properties) are
valid properties on the class definition of Person. If the code inside the function called any methods on the
object, Gosu also ensures that the method name you are calling actually exists on that type.

Within the Gosu editor, any violations of these rules become compilation errors. This means that you can find a
large class of problems at compile time rather than experience unpleasant surprises at run time.

Type Inference

As mentioned earlier, Gosu supports type inference, in which Gosu sometimes can infer (determine) the type
without requiring explicit type declarations in the Gosu code. For instance, Gosu can determine the type of a
variable from its initialized value.

var length = 12
var list = new java.util.ArrayList()

In the first line, Gosu infers the length variable has the type int. In the second line, Gosu infers the type of the
list variable is of type ArrayList. In most cases, it is unnecessary to declare a variable’s type if Gosu can deter-
mine the type of the initialization value.

Gosu supports explicit declarations of the type of the variable during declaration using the syntax:
var c : MyClassName = new MyClassName()

However, for typical code, the Gosu coding style is to omit the type and use type inference to declare the vari-
able’s type.

Another standard Gosu coding style is to use a coercion on the right side of the expression with an explicit type.
For example, suppose you used a class called Vehicle and it had a subclass Car. If the variable v has the compile
time type Vehicle, the following code coerces the variable to the subtype:

var myCar = v as Car

Intelligent Code Completion and Other Gosu Editor Tools

When you type code into the Gosu editor, the editor uses its type system to help you write code quickly, easily,
and preserve the constraints for statically typed variables. When you type the “.” (period) character, the editor
displays a list of possible properties or subobjects that are allowable.

Similarly, the Gosu editor has a Complete Code feature. Choose this tool to display a list of properties or objects
that could complete the current code where the cursor is. If you try enter an incorrect type, Gosu displays an error
message immediately so you can fix your errors at compile time.

Type Usage Searching

Complete Gosu plugins for IDEs (such as IntelliJ IDEA) support search for all occurrences of the usage of an
object of a particular type. This is more than just textual search, but semantic search. See “Getting Started with
Gosu Community Release” on page 43.

Null Safety for Properties and Other Operators

In Gosu, a period character gets a property from an object or calls a method.
30 Chapter 1: Gosu Introduction

Gosu Reference Guide

By default, the period operator is not null-safe. This means that if the value on the left side of the period evalu-
ates to null at runtime, Gosu throws a null pointer exception (NPE). For example, obj.PropertyA.PropertyB
throws an exception if obj or obj.PropertyA are null at run time.

Gosu provides a variant of the period operator that is always null-safe for both property access and method
access. The null-safe period operator has a question mark before it: ?.

If the value on the left of the ?. operator is null, the expression evaluates to null.

For example, the following expression evaluates left-to-right and contains three null-safe property operators:
obj?.PropertyA?.PropertyB?.PropertyC

If any object to the left of the period character is null, the null-safe period operator does not throw a null pointer
exception (NPE) and the expression returns null. Gosu null-safe property paths tends to simplify real-world
code. Often, a null expression result has the same meaning whether the final property access is null or whether
earlier parts of the path are null. For such cases in Gosu, do not bother to check for null value at every level of
the path. This makes your Gosu code easier to read and understand.

For example, suppose you had a variable called house, which contained a property called Walls, and that object
had a property called Windows. You could get the Windows value with the following syntax:

house.Walls.Windows

In some languages, you must worry that if house is null or house.Walls is null, your code throws a null
pointer exception. This causes programmers to use the following common coding pattern:

// initialize to null
var x : ArrayList<Windows> = null

// check earlier parts of the path for null to avoid a null pointer exceptions (NPEs)
if(house != null and house.Walls != null) {
 x = house.Walls.Windows
}

The following concise Gosu code is equivalent to the previous example and avoids any null pointer exceptions:
 var x = house?.Walls?.Windows

Null Safe Method Calls

By default, method calls are not null safe. This means that if the right side of a period character is a method call,
Gosu throws a null pointer exception if the left side of the period is null.

For example:
house.myaction()

If house is null, Gosu throws an NPE exception. Gosu assumes that method calls might have side effects, so
Gosu cannot quietly skip the method call and return null.

In contrast, a null-safe method call does not throw an exception if the left side of the period character is null.
Gosu just returns null from that expression. In contrast, using the ?. operator calls the method with null safety:

house?.myaction()

If house is null, Gosu does not throw an exception. Gosu simply returns null from the expression.

Null-Safe Versions of Other Operators

Gosu provides other null-safe versions of other common operators:

• The null-safe default operator (?:). This operator lets you specify an alternate value if the value to the left of
the operator is null. For example:
var displayName = Book.Title ?: "(Unknown Title)" // return "(Unknown Title)" if Book.Title is null

• The null-safe index operator (?[]). Use this operator with lists and arrays. It returns null if the list or array
value is null at run time, rather than throwing an exception. For example:
var book = bookshelf?[bookNumber] // return null if bookshelf is null
More About the Gosu Type System 31

Gosu Reference Guide

• The null-safe math operators (?+, ?-, ?*, ?/, and ?%). For example:
var displayName = cost ?* 2 // multiply times 2, or return null if cost is null

See “Handling Null Values In Expressions” on page 94.

Design Code for Null Safety

Use null-safe operators where appropriate. They make code easy to read and easier to handle edge cases.

You can also design your code to take advantage of this special language feature. For example, expose data as
properties in Gosu classes and interfaces rather setter and getter methods. This allows you to use the null-safe
property operator (the ?. operator), which can make your code both powerful and concise.

See Also

• For more examples and discussion, see “Handling Null Values In Expressions” on page 94

IMPORTANT For more information about property accessor paths and designing your APIs around
this feature, see “Handling Null Values In Expressions” on page 94.

Generics in Gosu

Generics are a way of abstracting behavior of a type to support working with multiple types of objects. Generics
are particularly useful for implementing collections (lists, maps) in a type-safe way. At compile time, each use of
the collection can specify the specific type of its items. For example, instead of just referring to a list of objects,
you can refer to a list of Address objects or a list of Vehicle objects. To specify a type, add one or more parame-
ters types inside angle brackets (< and >). For example:

uses java.util.*

var mylist = new ArrayList<Date>()
var mymap = new Map<String, Date>() // a map that maps String to Date

This is called parameterizing a generic type. Read ArrayList<Date> in English as “an array list of date objects”.

Read Map<String, Date> as “a map that maps String to Date”.

The Gosu generics implementation is compatible with the Java 1.5 generics implementation, and adds additional
improvements:

• Gosu type inference greatly improves readability. You can omit unnecessary type declarations, which is espe-
cially important for generics because the syntax tends to be verbose.

• Gosu generics support array-style variance of different generic types. In Java, this is a compilation error, even
though it is natural to assume it works.

In Java, this is a compilation error:
ArrayList<Object> mylist;
mylist = new ArrayList<String>()

The analogous Gosu code works:
var mylist : ArrayList<Object>
mylist = new ArrayList<String>()

• Gosu types preserve generic type information at run time. This Gosu feature is called reified generics. This
means that in complex cases you could check the exact type of an object at run time, including any parameter-
ization. In contrast, Java discards this information completely after compilation, so it is unavailable at run
time.

Note: Even in Gosu, parameterization information is unavailable for all native Java types because Java does
not preserve this information beyond compile time. For example the run time type of
java.util.List<Address> in Gosu returns the unparameterized type java.util.List.
32 Chapter 1: Gosu Introduction

Gosu Reference Guide

• Gosu includes shortcut initialization syntax for common collection types so you do not need to actually see
the generics syntax, which tends to be verbose. For example, consider the following Gosu:
var strlist = {"a", "list", "of", "Strings"}

Despite appearances, the strlist variable is statically typed. Gosu detects the types of objects you are initial-
izing with and determines using type inference that strlist has the type
java.util.ArrayList<java.util.String>. This is generics syntax for the meaning “a list of String
objects”.

For more information, see “Gosu Generics” on page 173.

Gosu Primitives Types

Gosu supports the following primitive types: int, char, byte, short, long, float, double, boolean, and the
special value that means an empty object value: null. This is the full set that Java supports.

Additionally, every Gosu primitive type (other than the special value null) has an equivalent object type defined
in Java. For example, for int there is the java.lang.Integer type that descends from the Object class. This
category of object types that represent the equivalent of primitive types are called boxed primitive types. In
contrast, primitive types are also called unboxed primitives. In most cases, Gosu converts between boxed and
unboxed primitive as needed for typical use. However, they are slightly different types, just as in Java, and on
rare occasion these differences are important. Refer to “Type Object Properties” on page 264 for details.

Gosu Case Sensitivity

Gosu in the Community Release is case sensitive.

The following table lists various language elements and the standard Gosu capitalization for those language
elements:

Remember to access these items exactly as they are declared.

Language element Standard capitalization Example

Gosu keywords Always specify Gosu key-
words correctly as they
are declared, typically low-
ercase.

if

type names uppercase first character DateUtil

Claim

variable names lowercase first character myClaim

method names lowercase first character printReport

property names uppercase first character Name

package names (case sensitive) lowercase entire package
name when creating new
packages

Always specify package
names correctly as they
are declared..

com.mycompany.*

Java types (case sensitive) Java types require case
sensitivity

Always specify Java types
correctly as they are
declared..

java.util.String
Gosu Case Sensitivity 33

Gosu Reference Guide

For example, if an object has a Name property, do not write:
var n = myObject.name

Instead, use the code:
var n = myObject.Name

Similarly, use class names properly. Do not write:
var a = new address()

Instead, use the code:
var a = new Address()

Capitalization in the middle of a word is also important. Do not write:
var date1 = gw.api.util.DateUtil.currentdate()

Instead, use the code
var date2 = gw.api.util.DateUtil.currentDate()

It is best to change any existing code to be case sensitive, and write any new code to follow these guidelines.

Use the Gosu editor Code Completion feature to enter the names of types and properties correctly. This ensures
standard capitalization.

Use initial lower-case for your own variables (local variables and class variables). Use an initial uppercase letter
for type names and property names, and initial lowercase letters for method names.

Gosu Statement Terminators

The recommended way to terminate a Gosu statement and to separate statements is:

• a new line character, also known as the invisible \n character

Although not recommended, you may also use the following to terminate a Gosu statement:

• a semicolon character (;)

• white space, such as space characters or tab characters

In general, use new line characters to separate lines so Gosu code looks cleaner.

For typical code, omit semicolons as they are unnecessary in almost all cases. It is standard Gosu style to use
semicolons between multiple Gosu statements when they are all on one line. For example, as in a short Gosu
block definition (see “Gosu Blocks” on page 165). However, even in those case semicolons are optional in Gosu.

Valid and Recommended

//separated with newline characters

print(x)
print(y)

// if defining blocks, use semicolons to separate statements
var adder = \ x : Number, y : Number -> { print("I added!"); return x + y; }

Valid But Not Recommended
// NO - do not use semicolon
print(y);

// NO - generally do not rely on whitespace for line breaks. It is hard to read and errors are common.
print(x) print(y)
34 Chapter 1: Gosu Introduction

Gosu Reference Guide

// NO - generally do not rely on whitespace for line breaks. It is hard to read and errors are common.
var pnum = Policy.PolicyNumber cnum = Claim.ClaimNumber

IMPORTANT Generally speaking, omit semicolon characters in Gosu. Semicolons are unnecessary in
almost all cases. However, standard Gosu style to use semicolons between multiple Gosu statements on
one line (such as in short Gosu block definitions).

Invalid Statements
var pnum = Policy.PolicyNumbercnum = Claim.ClaimNumber

Gosu Comments

Comment your Gosu code as you write it. The following table lists the comment styles that Gosu supports.

Gosu Reserved Words

Gosu reserves a number of keywords for specialized use. The following list contains all the keywords recognized
by Gosu. Gosu does not use all of the keywords in the following table in the current Gosu grammar, and in such
cases they remain reserved for future use.

Block Use block comments to provide descriptions of classes and methods:

/*

* The following is a block comment

* This is good for documenting large blocks of text.

*/

Single-line, with
closing markers

Use single-line comments to insert a short comment about a statement or function, either on its own line
or embedded in or after other code

if(condition) {

/* Handle the condition. */

return true /* special case */

}

Single-line
short comment

Use end-of-line comments (//) to add a short comment on its own line or at the end of a line. Add this
type of comment marker (//) before a line to make it inactive. This is also known as commenting out a
line of code.

var mynum = 1 // short comment

// var mynumother var= 1 // this whole line is commented out -- it does not run

• application • new

• as • null

• break • override

• case • package

• catch • private

• class • property

• continue • protected

• default • public

• do • readonly

• else • request

• eval • return

• except • session

• execution • set

• extends • static
Gosu Comments 35

Gosu Reference Guide

Notable Differences Between Gosu and Java

The following table briefly summarizes notable differences between Gosu and Java, with particular attention to
changes in converting existing Java code to Gosu. If the rightmost column says Required, this is a change that
you must make to port existing Java code to Gosu. If it is listed as Optional, that item is either an optional
feature, a new feature, or Gosu optionally permits the Java syntax for this feature.

• finally • super

• final • switch

• find • this

• for • try

• foreach • typeas

• function • typeis

• get • typeof

• hide • unless

• implements • uses

• index • var

• interface • void

• internal • while

• native

Difference Java Gosu
Required
change?

General Differences

Gosu language itself is case insen-
sitive, but Gosu compiles and runs
faster if you write Gosu as case-
sensitive code. Match the declara-
tion of each language element. See
“Case Sensitivity” on page 23.

a.B = c.D

B and D must exactly match the
field declarations.

a.B = c.D

Match the code capitalization to
match the property declarations.

Other capitalizations work, but are
not recommended, such as:

a.b = c.d

Optional

Omit semicolons in most code.
Gosu supports the semicolon, but
standard coding style is to omit it.
(one exception is in block declara-
tions with multiple statements)

x = 1; x = 1 Optional

Print to console with the print
function. For compatibility with Java
code while porting to Gosu, you can
optionally call the Java class
java.lang.System.

System.out.println("hello"); print("hello")

uses java.lang.System
System.out.println("hello
world")

Optional

For Boolean operators, optionally
use more natural English versions.
The symbolic versions from Java
also work in Gosu.

(a && b) || c (a and b) or c

(a && b) || c

Optional

Functions and Variables

In function declarations:
• use the keyword function
• list the type after the variable, and

delimited by a colon. This is true
for both parameters and return
types.

public int addNumbers(int x,
String y) { ... }

public function addNumbers(x
: int, y : String) : int { ...
}

Required
36 Chapter 1: Gosu Introduction

Gosu Reference Guide

In variable declarations, use the var
keyword. Typically you can rely on
Gosu type inference and omit
explicit type declaration. To explicitly
declare the type, list the type after
the variable, delimited by a colon.
You can also coerce the expression
on the right side, which affects type
inference

Auto c = new Auto() Type inference

var c = new Auto()

Explicit:

var c : Auto = new Auto()

Type inference with coercion:

var c = new Auto() as Vehicle

Required

To declare variable argument func-
tions, also called vararg functions,
Gosu does not support the special
Java syntax. In other words, Gosu
does not support arguments with
“...” declarations, which indicates
variable number of arguments.
Instead, design APIs to use arrays
or lists.

To call variable argument functions,
pass an array of the declared type.
Internally, in Java, these variable
arguments are arrays. Gosu array
initialization syntax is useful for call-
ing these types of methods.

public String
format(Object... args);

// function declaration

public function format(args :
Object[])

// method call using

// initializer syntax

var c = format({"aa","bb"})

Required

Gosu supports the unary operator
assignment statements ++ and --.
However:
• only use the operator after the

variable (such as i++)
• these only form statements not

expressions.

There are other supported com-
pound assignment statements, such
as +=, -=, and others. see “Variable
Assignment” on page 98.

if (++i > 2) {

//

}

i++

if (i > 2) {

//

}

Required

For static members (static methods
and static properties), in Gosu you
must qualify the type on which the
static member appears. Use the
period character to access the
member. The type does not need to
be fully qualified, though.

cos(PI * 0.5) Math.cos(Math.PI * 0.5)

Note that you do not need to fully
qualify the type as
java.lang.Math.

Required
if you omit
type
names in
your Java
code
before
static
members

Type System

For coercions, use the as keyword.

Optionally, Gosu supports Java-
style coercion syntax for compatabil-
ity.

int x = (int) 2.1 // Gosu style

var x = 2.1 as int

//Java compatability style

var x = (int) 2.1

Optional

Check if an object is a specific type
or its subtypes using typeis. This is
similar to the Java instanceof
operator.

myobj instanceof String myobj typeis String Required

Difference Java Gosu
Required
change?
Notable Differences Between Gosu and Java 37

Gosu Reference Guide

Gosu automatically downcasts to a
more specific type in if and switch
statements. Omit casting to the spe-
cific type. See “Automatic Down-
casting for ‘typeis’ and ‘typeof’” on
page 260.

Object x = "nice"

Int sl = 0

if(x instanceof String) {

sl = ((String) x).length

}

var x : Object = "nice"

var sl = 0

if(x typeis String) {

sl = x.length // downcast

}

Optional

To reference the type directly, use
typeof. However, any direct com-
parisons to a type do not match on
subtypes. Generally, it is best to use
typeis for this type of comparison
rather than typeof.

myobj.class typeof myobj Optional

Types defined natively in Gosu as
generic types preserve their type
information (including parameteriza-
tion) at run time, generally speaking.
This feature is called
reified generics. In contrast, Java
removes this information (this is
called type erasure).

From Gosu, Java types lack param-
eterization even if instantiated in
Gosu.

However, for native Gosu types,
Gosu preserves type parameteriza-
tion at run time.

List<String> mylist = new
ArrayList<String>();

system.out.println(typeof
mylist)

This prints:

List

var mylist = new
ArrayList<String>()

print(typeof mylist)

This prints:

List

Note that String is a Java type.

However, for native Gosu types as
the main type, Gosu preserves the
parameterization as run time type
information. In the following exam-
ple, assume MyClass is a Gosu
class:

var mycustom = new
MyClass<String>()

print(typeof mycustom)

This prints:

MyClass<String>

Optional
for typical
use con-
suming
existing
Java
types.

If your
code
checks
type infor-
mation of
native
Gosu
types,
remem-
ber that
Gosu has
reified
generics.

Gosu generics support array-style
variance of different generic types.
In Java, this is a compilation error,
even though it is natural to assume
it works

In Java, this is a compilation error:

ArrayList<Object> mylist;

mylist = new
ArrayList<String>()

The analogous Gosu code works:

var mylist : ArrayList<Object>

mylist = new
ArrayList<String>()

Optional

In Gosu, type names are first-class
symbols for the type. Do not get the
class property from a type name.

Class sc = String.class var sc = String Required

Defining Classes

Declare that you use specific types
or package hierarchies with the key-
word uses rather than import.

import com.abc.MyClass uses com.abc.MyClass Required

To declare one or more class con-
structors, write them like functions
called construct but omit the key-
word function. Gosu does not sup-
port Java-style constructors.

class ABC {

public ABC (String id){

}

}

class ABC {

construct(id : String) {

}

}

Required

Control Flow

Difference Java Gosu
Required
change?
38 Chapter 1: Gosu Introduction

Gosu Reference Guide

The for loop syntax in Gosu is dif-
ferent for iterating across a list or
array. Use the same Gosu syntax for
iterating with any iterable object (if it
implements Iterable). Optionally
add “index indexVar” before the
close parenthesis to create an addi-
tional index variable. This index is
zero-based. If the object to iterate
across is null, the loop is skipped
and there is no exception (as there
is in Java).

int[] numbers = {1,2,3};

for (int item : numbers) {

//

}

var numbers : int[] = {1,2,3};

for (item in numbers) {

//

}

Required

The for loop syntax in Gosu is dif-
ferent for iterating a loop an integer
number of times. The loop variable
contains the a zero-based index.

Gosu has native support for inter-
vals, which are sequences of values
of the same type between a given
pair of endpoint values. For
instance, the set of integers begin-
ning with 0 and ending with 10 is the
shorthand syntax 0..10. Intervals
are particularly useful to write con-
cise easy-to-understand for loops.

Gosu does not support the for(initial-
ize;compare;increment) syntax in
Java. However, you can duplicate it
using a while statement (see exam-
ple).

for(int i=1; i<20; i++){

//

}

for (item in 20) {

//

}

Using Gosu intervals:

for(i in 1..50) {

 print(i)

}

verbose style:

var i = 0

while (i < 20) {

//

i++

}

Required

Other Gosu-specific features

Gosu enhancements, which allow
you to add additional methods and
properties to any type, even Java
types. See “Enhancements” on
page 161.

n/a enhancement StrLenEnhancement
: java.lang.String {

public property get
PrettyLength() : String {

return "length : " +
this.length()

}

}

Optional

Gosu blocks, which are in-line func-
tions that act like objects. They are
especially useful with the Gosu col-
lections enhancements See “Gosu
Blocks” on page 165. Blocks can
also be useful as a shortcut for
implementing one-method inter-
faces (see “Blocks as Shortcuts for
Anonymous Classes” on page 171).

n/a \ x : Number -> x * x Optional

Native XML support and XSD sup-
port. See “Gosu and XML” on
page 197.

n/a var e = schema.parse(xmlText) Optional

Difference Java Gosu
Required
change?
Notable Differences Between Gosu and Java 39

Gosu Reference Guide

Get Ready for Gosu

As you have read, Gosu is a powerful and easy-to-use object-oriented language. Gosu combines the best features
of Java (including compatibility with existing Java libraries), and adds significant improvements like blocks and
powerful type inference that change the way you write code. Now you can write easy-to-read, powerful, and type
safe type code built on top of the Java platform. To integrate with external systems, you can use native web
service and XML support built directly into the language. You can work with XSD types or external APIs like
native objects.

For these reasons and more, large companies all around the world use Gosu every day in their production servers
for their most business-critical systems.

The next step for you is to write your first Gosu program and become familiar with the Gosu editor, either the
built-in one or the plugin for JetBrains IntelliJ IDEA.

For the latest version of the Gosu language, the Gosu documentation, and information about IDE editors, refer to:
http://gosu-lang.org

To ask questions about Gosu or offer general feedback on the Gosu language, join and post to the gosu-lang
forum:

http://groups.google.com/group/gosu-lang

To file bug reports, please submit them to the gosu-lang bug tracking system:
http://code.google.com/p/gosu-lang/issues/list

Native support for consuming web
services with syntax similar to native
method calls. See “Consuming WS-I
Web Service Overview” on
page 229.

n/a extAPI.myMethod(1, true, "c") Optional

Native String templates and file-
based templates with type-safe
parameters. See “Gosu Templates”
on page 249.

n/a var s = "Total = ${ x }." Optional

Gosu uses the Java-based collec-
tions APIs but improves upon them:
• Simplified initialization syntax that

still preserves type safety.
• Simple array-like syntax for get-

ting and setting values in lists,
maps, and sets

• Gosu adds new methods and
properties to improve functionality
of the Java classes. Some
enhancements use Gosu blocks
for concise flexible code.

For new code, use the Gosu style
initialization and APIs. However, you
can call the more verbose Java style
for compatibility. See “Collections”
on page 183.

// easy initialization

var strs = {"a", "ab", "abc"}

// array-like "set" and "get"

strs[0] = "b"

var val = strs[1]

// new APIs on Java

// collections types

strList.each(\ str -> {
print(str) })

Optional

List and array expansion operator.
See “List and Array Expansion (*.)”
on page 187.

n/a names*.Length Optional

Difference Java Gosu
Required
change?
40 Chapter 1: Gosu Introduction

Gosu Reference Guide

To continue your introduction to the Gosu language, see the following topic: “Getting Started with Gosu
Community Release” on page 43.
Get Ready for Gosu 41

Gosu Reference Guide

42 Chapter 1: Gosu Introduction

chapter 2

Getting Started with Gosu Community

Release

This topic includes:

• “System Requirements” on page 43

• “Getting Started With IntelliJ IDEA Gosu Plugin” on page 44

• “Getting Started With Gosu Command Line Tools” on page 47

• “Using XML and SOAP Libraries with Gosu Community Release” on page 48

• “Advanced Examples” on page 49

System Requirements

The following table lists the system requirements for the community release of Gosu.

Requirement Supported versions Required?

Java language Java version 1.6 or 1.7, which corresponds to
Sun/Oracle J2SE release 6 or 7.

Gosu works with both the JRE version and the
SDK version of Java. For Java downloads, visit
http://java.com

Yes

Operating system Any operating system that supports Sun Java
version 1.6 or version 1.7

Yes

JetBrains IntelliJ IDEA IDE Version 11.1.1, 11.1.2, 11.1.3, or 11.1.4.

WARNING: This version of the plugin does not
support IDEA 11.1.5 or any other earlier or later
version not listed.

Required for use with the IntelliJ IDEA
IDE.

However, you do not need an IDE to run
Gosu programs from the command line.
For more information, see “Gosu Com-
mand Line Shell” on page 51.
Getting Started with Gosu Community Release 43

Gosu Reference Guide

Getting Started With IntelliJ IDEA Gosu Plugin

There is a Gosu plugin for the IntelliJ IDEA IDE. The Gosu plugin enables editing, debugging, and running Gosu
within the IDE. You can use Gosu code completion, semantic searching, and refactoring tools.

For installation instructions and full feature list for the Gosu plugin for the IntelliJ IDEA IDE, visit:
http://gosu-lang.org

To provide feedback to the Gosu team about this plugin, see “Get Ready for Gosu” on page 40.

Refer to the IntelliJ documentation for complete information about:

• creating new class files

• organizing modules

• refactoring tools

• file management (including Java JAR files)

Install the IntelliJ Gosu Plugin

To install the IntelliJ IDEA Gosu Plugin

1. Ensure you are using IntelliJ IDEA version 11.1.1, 11.1.2, 11.1.3, or 11.1.4.

WARNING This version of the plugin does not support IDEA 11.1.5 or any other earlier or later
version not listed.

2. If you used earlier versions of the Gosu plugin in IntelliJ, you must carefully clear out the old plugin:

a. Start IDEA.

b. Open the dialog for Project Structure, which on Windows is the keyboard shortcut Ctrl-Alt-Shift-S.

c. Click SDKs on the left part of the window.

d. If Default Gosu SDK is visible in the second column, right-click it, then click Delete.

e. Close the Project Structure dialog.

f. Open the dialog for Settings, which on Windows is the keyboard shortcut Ctrl-Alt-S.

g. Click Plugins on the left part of the window.

h. If Gosu is listed in the plugins list, right-click on it, and then click Uninstall.

i. If Gosu Debugger is listed in the plugins list, right-click on it, and then click Uninstall.

j. Close the Settings dialog. Restart IDEA when it prompts you to restart IDEA.

3. Install the new plugin

a. Open the dialog for Settings, which on Windows is the keyboard shortcut Ctrl-Alt-S.

b. Click Plugins on the left part of the window.

c. Confirm that Gosu is not listed.

d. Click Browse Repositories, scroll to the value Gosu.

WARNING Be very careful to not choose Gosu Debugger, which refers to an old incompatible version.

e. Right-click on Gosu, then click Download and Install.
44 Chapter 2: Getting Started with Gosu Community Release

Gosu Reference Guide

f. Click Yes in the confirmation dialog, click OK to close the Repository Browser dialog, then click OK to close
the Plugins dialog. You will see a progress bar in the lower-right of the main window.

g. If you wait for the download to complete fully before closing the Plugins dialog, IntelliJ prompts you in a
large dialog to restart, in which case restart IDEA immediately.

If you do not wait for the download to complete fully before closing the Plugins dialog, you get a different
notification that the download is complete. When the download completes, IntelliJ IDEA displays a green
alert in the upper-right part of the window suggesting to restart IntelliJ IDEA. If the alert mentions “plugin
error”, do not worry. That message does not necessarily indicate an actual problem. Click the Restart Now
link in the alert to restart IDEA.

IMPORTANT After installing the plugin, you must restart IntelliJ IDEA before proceeding. Otherwise,
the plugin is not installed correctly.

4. After IntelliJ IDEA restarts, verify the plugin version number. Check the Gosu web site for the latest version
number. In IntelliJ IDEA, open the dialog for Settings, which on Windows is the keyboard shortcut Ctrl-Alt-
S. Click Plugins on the left part of the window. Click Gosu. Read the description. Verify that the description
mentions the expected version number of the Gosu plugin.

5. Open the dialog for Project Structure, which on Windows is the keyboard shortcut Ctrl-Alt-Shift-S.

6. Click SDKs on the left side of the window.

7. Click Default Gosu SDK. If it is not visible, the Gosu plugin was not successfully installed.

8. Look in the JDK Used field, confirm that the path is to a local Java 1.6 or Java 1.7 directory.

9. Look in the list of class path directories. Verify that the list includes your Java 1.6 or Java 1.7 files. If they are
not visible, the Gosu plugin was not successfully installed, or you need to fix this list.

10. Look in the list of class path directories. Verify that the list includes 4-5 items under the directories similar to:
.../plugins/idea-gosu-plugin-VERSION/

This list must include gosu-core.jar and gosu-core-api.jar.

If these directories and files are not in the list, the Gosu plugin was not successfully installed.

11. Close the Project Structure dialog.

12. Open the dialog for Settings, which on Windows is the keyboard shortcut Ctrl-Alt-S.

To confirm basic functionality of the IntelliJ IDEA Gosu plugin

1. Quit and restart IntelliJ IDEA to ensure that all changes have taken effect.

2. Close all other projects in IntelliJ, no matter what type they are.

WARNING In the current early version of the Gosu plugin, it is the defined behavior that only one
project can be open at a time. This is a requirement for successful use of the plugin.

You can temporarily disable the Gosu plugin in the IntelliJ IDEA Plugins dialog if you need to view multiple
projects. Uncheck the checkbox next to the Gosu plugin in the list. However, ensure you remember to re-
enable it again later before attempting more Gosu development.

Alternatively, you can create separate instances of IDEA, one for each development project, or one for Gosu
development and one for non-Gosu development.

3. From the File menu, click New Project.

4. Select Create Project From Scratch, and click Next.

5. Type a project name, like gosutest1.
Getting Started With IntelliJ IDEA Gosu Plugin 45

Gosu Reference Guide

6. Under the text Select Type, there is a list of module types. Look for the item Gosu. If it is not visible, the Gosu
plugin was not successfully installed in this instance of IntelliJ IDEA. Review the installation instructions
carefully. You may need to uninstall the plugin and begin the installation again.

7. Under the text Select Type, click Gosu, then click Next.

WARNING The simplest test is a Gosu project with a Gosu project (a .gsp file) that is the main file in
the project. If this is your first time using the Gosu plugin, click Gosu in the module Select Type list when
creating the project. This is the most common mistake in initial setup of the Gosu plugin.

For more advanced use later, note that you can use a Java project and then later manually assigning the SDK
to a Gosu SDK afterward. However, for initial testing just create a Gosu project.

8. In the dialog to create source directory, just use the default value src then click Next.

9. In the dialog to select an SDK, click Default Gosu SDK, then click Finish.

10. In the project window for your new project, look for the first node in the list with your project name. Confirm
that node has the icon of a large letter G, which stands for Gosu. If it does not, you may not have set the project
type correctly in the previous steps, or the Gosu plugin is not installed correctly.

11. Under your project name icon, right-click on the src directory, then click New → Package. For the package
name, type test. IntelliJ creates a new top-level package called test.

12. Right-click on your new new top-level package called test, then click New → Gosu Program. For the program
name, type HelloWorld. If you do not see the menu item Gosu Program in the New menu, the Gosu plugin is not
installed correctly.

13. In your new program file, type the following:
print("HELLO " + "WORLD")

14. From the Run menu, click Run. Select your HelloWorld.gsp from a configuration dialog if it appears.

15. In the console area, look for text such as:
"C:\Program Files\...

HELLO WORLD

Process finished with exit code 0

16. If you see any exceptions or errors and you followed these instructions, go to the following web page to post
to the forums or to file bugs:
http://gosu-lang.org/intellij.html

Do Not Depend Directly on Gosu JARs

If you have IntelliJ iml files, confirm that they do not depend on Gosu JARs directly. Access to those APIs is
automatic when you correctly configure the SDK to Default Gosu SDK.

The Gosu Scratchpad

In IntelliJ IDEA, within a Gosu project you can at any time use the Gosu Scratchpad window. The Gosu
Scratchpad window is essentially a Gosu program in a temp directory that has access to the type system of all
classes in the current project.

In the Tools menu, click Gosu Scratchpad. The keyboard shortcut for this window on Windows is Alt-Shift-S.

You can type any text and then run the program using the commands in the Run menu.
46 Chapter 2: Getting Started with Gosu Community Release

Gosu Reference Guide

Keep Only One Project Open at a Time

In the current early version of the Gosu plugin for IntelliJ IDEA, it is the defined behavior that only one project
can be open at a time. This is a requirement for successful use of the plugin.

You can temporarily disable the Gosu plugin in the IntelliJ IDEA Plugins dialog if you need to view multiple proj-
ects. Uncheck the checkbox next to the Gosu plugin in the list. However, ensure you remember to re-enable it
again later before attempting more Gosu development.

Alternatively, you can create separate instances of IDEA, one for each development project, or one for Gosu
development and one for non-Gosu development.

Getting Started With Gosu Command Line Tools

To run Gosu programs from the command line, download the official Gosu ZIP file available at:
http://gosu-lang.org

That web site includes the latest Gosu language documentation also.

Unzip the file to the desired location on your local disk. The documentation refers to this root directory for gosu
simply as the name Gosu. Notice the subdirectories:

• The Gosu/bin directory contains binary executables. To use Gosu as a command line tool, run the appropriate
executable gosu.cmd (for Windows) or gosu (for Unix variants) in the bin directory in the Gosu download.

• The Gosu/lib directory contains Gosu libraries.

To test command line tool for Windows or Unix variants

1. Open a command prompt window

2. If your Gosu directory is at the Windows path C:\gosu, then run the command line tool as:
C:\gosu\bin\gosu.cmd

For Unix variants, run the following file, substituting the full path to this file on your local system:
Gosu/bin/gosu

3. Gosu starts a very simple interactive shell so you can confirm that the tool basically works.

4. When the Gosu prompt ("gs>") appears, type:
print("hello world!")

The console prints the following:
hello world!

5. Experiment by typing other Gosu expressions or programs.

6. When you are done, type the one-word command quit (or exit), and then press the Enter key.

7. Optionally, you may want to add your full local path to the Gosu/bin directory to your system path. That
allows you to type gosu at a command prompt independent of the current working directory.

In Windows, go to the Start menu and choose Control Panel → System → Environment Variables. Next, choose the
Path variable. At end of the current path, append a semicolon and the full path to the bin directory. For exam-
ple, suppose you installed (copied) the Gosu shell directory to the path:
C:\gosu\

Add the following to the system path:
;C:\gosu\bin

To test this, close any existing command prompt windows, then open a new command prompt window and
type the word gosu then the type the Enter key.

8. To run entire Gosu programs and use Gosu classes in your programs, see “Gosu Command Line Shell” on
page 51.
Getting Started With Gosu Command Line Tools 47

Gosu Reference Guide

Advanced Gosu Command Line Tool Usage

For more command line tool usage, see “Gosu Command Line Shell” on page 51

Using XML and SOAP Libraries with Gosu Community Release

The Gosu XML APIs and Gosu SOAP APIs are no longer built-in to the core Gosu Community Release
command line tool or the Gosu plugin for IntelliJ IDEA.

However, they are available as a separate download or using Maven-style remote configuration.

To use XML or SOAP by downloading JAR files (for IntelliJ IDEA or command line use)

1. Download the JAR files directly from the Gosu web site.

For XML, go to this URL:
http://gosu-lang.org/nexus/content/repositories/gosu/org/gosu-lang/gosu/gosu-xml/

For SOAP, go to this URL:
http://gosu-lang.org/nexus/content/repositories/gosu/org/gosu-lang/gosu/gosu-webservices

2. Click on the version number of your version of Gosu.

3. Right-click on the main JAR file in your browser, and save that file to a lib subdirectory of your project.

For XML, this has the file name gosu-xml-VERSIONNUMBER.jar.

For SOAP, this has the file name gosu-webservices-VERSIONNUMBER.jar.

4. Include the JAR files directly in your project as a dependency or add to your classpath.

For IntelliJ IDEA, if you are not using Maven, this requires configuring your project to explicitly add a
dependency for that JAR file.

For command line Gosu, add a classpath statement to your program. See “Setting the Class Path to Call
Other Gosu or Java Classes” on page 58.

IMPORTANT The Gosu plugin for IntelliJ IDEA ignores the syntax for Maven-style configuration
classpath configuration. For command line use, see “Advanced Remote Maven-style Configuration of
Dependencies (Command Line Only)” on page 59. Although IntelliJ IDEA does not report syntax
errors for that syntax, you must download JAR files and configure the IDE to add the JAR as a depen-
dency.

For command-line use only, use Maven-style remote configuration

If you are using command-line Gosu, you can use advanced Maven-style configuration classpath configuration.
See “Advanced Remote Maven-style Configuration of Dependencies (Command Line Only)” on page 59

IMPORTANT The Gosu plugin for IntelliJ IDEA ignores the syntax for Maven-style configuration
classpath configuration. To use IntelliJ IDEA with XML and SOAP APIs, see the earlier procedure for
downloading JARs.

To use XML and SOAP using Maven POM files in IntelliJ

If you are using IntelliJ with a Maven project file and POM file, the Maven plugin for IntelliJ IDEA adds the
dependencies automatically to the local cached IntelliJ file.

Use the following repository information:

• STATUS = releases

• REPOT_ID = gosu-lang.org-releases
48 Chapter 2: Getting Started with Gosu Community Release

Gosu Reference Guide

• REPOSITORY_URL = http://gosu-lang.org/nexus/content/groups/releases/

• group ID – org.gosu-lang.gosu

• artifact ID – For XML, use gosu-xml. For SOAP, use gosu-webservices

• version number – your current Gosu version

See the related section “Advanced Remote Maven-style Configuration of Dependencies (Command Line Only)”
on page 59.

Advanced Examples

Servlet Example

For the code to the Servlet example, see the project links at:
http://gosu-lang.org/links.html

It is a simple implementation of a web server servlet implemented in Gosu.

To use the Gosu servlet example:

1. Install the Apache Tomcat web server. This example was written for Tomcat 6.0, which you can download at:
http://tomcat.apache.org/download-60.cgi

2. Set the system environment variable CATALINA_HOME to the root directory of your Tomcat installation. In
Windows, go to Control Panel → System → Advanced → Set Environment Variables. In the bottom pane, click New and
then create a new variable called CATALINA_HOME with value C:\Program Files\apache-tomcat, or wher-
ever your installation is.

3. Create a servlet folder called GosuServlet in your web server’s webapps directory. For this example, we
assume you are using Apache Tomcat and the directory is called apache-tomcat. Copy the GosuServlet files
- apache-tomcat
 - webapps
 - GosuServlet

4. Add a WEB-INF folder under your new servlet directory:
- GosuServlet
 - WEB-INF

5. Create a web.xml file inside that folder to enable Gosu template support, such as
- GosuServlet
 - WEB-INF
 - web.xml

In this file paste the following:
<?xml version="1.0" encoding="ISO-8859-1"?>
 <web-app xmlns="http://java.sun.com/xml/ns/j2ee"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xsi:schemaLocation=

"http://java.sun.com/xml/ns/j2ee http://java.sun.com/xml/ns/j2ee/web-app_2_4.xsd"
 version="2.4">

 <display-name>Gosu Servlet Examples</display-name>
 <description>
 Gosu Servlet Examples.
 </description>

 <servlet>
 <servlet-name>GosuServlet</servlet-name>
 <servlet-class>gw.util.servlet.GosuServlet</servlet-class>
 </servlet>
 <servlet-mapping>
 <servlet-name>GosuServlet</servlet-name>
 <url-pattern>*.gst</url-pattern>
 </servlet-mapping>
 </web-app>
Advanced Examples 49

Gosu Reference Guide

6. Copy HelloWorld.gst from the example example/GosuServlet/src/sample directory into your servlet root
directory. After this step, your file hierarchy looks like:
- apache-tomcat

- webapps
- GosuServlet
 - sample

- hello
- HelloWorld.gst

7. Copy all JAR files from the root of the servlet example directory into your servlet WEB-INF directory. Next,
copy the JAR files from the lib subdirectory of the servlet example into your servlet WEB-INF directory. Your
servlet looks like this:
- apache-tomcat

- webapps
- GosuServlet

- WEB-INF
 - lib

- gw-gosu-core.jar
- gw-gosu-core-api.jar
- servlet-api
...[the rest of the JAR files]

8. Start up Apache Tomcat. You can do this by running the following script:
apache-tomcat/bin/startup.bat

9. Wait for Tomcat to startup. If you see any servlet startup errors in the console, make a note of them for debug-
ging or bug reporting.

10. Test this in your browser, remembering to set the domain name and port appropriately, such as:
 http://localhost:8080/GosuServlet/sample/hello/HelloWorld.gst
50 Chapter 2: Getting Started with Gosu Community Release

chapter 3

Gosu Command Line Shell

A Gosu program is a file with a .gsp file extension that you can run directly from a command-line tool. Addi-
tionally, you can run a Gosu program as the main file for a project in an IDE such as IntelliJ IDEA IDE. You can
run self-contained Gosu programs using the Gosu command line tool. The Gosu shell command-line tool encap-
sulates the Gosu language engine. You can run Gosu programs directly from the Windows command line as an
interactive session or run Gosu program files.

Gosu Command Line Tool Basics

You can use the Gosu shell tool to perform the following tasks:

• Invoke Gosu programs (.gsp files). These programs can use other Gosu classes, Gosu extensions, and Java
classes.

• Evaluate Gosu expressions interactively using a command-line interface

• Evaluate Gosu expressions passed on the command line

Command Line Tool Options

The following table lists the tool command line options:

Task Options Example

Run a Gosu program. Include the .gsp file exten-
sion when specifying the file name.

filename gosu myprogram.gsp

Default behavior of command line tool with no
options is same as interactive shell (-i) option

gosu

Enter interactive shell. Each line you type runs as
a Gosu statement. Any results print to the stan-
dard output. To exit, type the exit or quit com-
mand. For details, see “Gosu Interactive Shell”
on page 55. Also see the standard input option
(just a hyphen), discussed later in this table.

-i

-interactive

gosu -i
Gosu Command Line Shell 51

Gosu Reference Guide

Writing a Simple Gosu Command Line Program

The following instructions describe running a basic Gosu program after you install the gosu command line tool.
These instructions apply only to the command line shell for Gosu. If you are using the Gosu plugin for the IntelliJ
IDEA IDE, to get command line Gosu you must download the full distribution at:

http://gosu-lang.org/downloads.html

To run a program

1. Create a file called myprogram.gsp containing only the following line:
print("Hello World")

2. Open a command prompt.

3. Change your working directory to the directory with your program.

4. Type the following command :
gosu myprogram.gsp

If you have not yet added the gosu executable to your system path, instead type the full path to the gosu exe-
cutable. For more information, see “Getting Started With Gosu Command Line Tools” on page 47

5. The tool runs the program.

The program outputs the following:
Hello World

Command Line Arguments

There are two ways you can access command line arguments to programs:

• Manipulating raw arguments. You can get the full list of arguments as they appear on the command line. If any
option has multiple parts separated by space characters (such as -username jsmith), each component is a
separate raw argument.

Run a Gosu program entered from the standard
input stream. Use this to redirect output of one
command as Gosu code into the Gosu shell. For
a similar feature, refer to “Gosu Interactive Shell”
on page 55

-

(just the hyphen
character)

From DOS command prompt:

echo print(new DateTime()) | gosu -

Evaluate a Gosu expression on command line.
Surround the entire expression with quote signs.
For any quote sign in the expression, replace it
with three double-quote signs. For other special
DOS characters such as > and <, precede them
with a caret (^) symbol.

-e expression

-eval expression

gosu -e "new DateTime()"

gosu -e """"a"""+"""b""""

Add additional paths to the search path for Java
classes or Gosu classes. Separate paths with
semicolons. If you are running a .gsp file, it is
often easier to instead use the classpath com-
mand within the .gsp file rather than this option.
For related information, see class loading infor-
mation in “Setting the Class Path to Call Other
Gosu or Java Classes” on page 58.

-classpath path gosu -classpath C:\gosu\projects\libs

Print help for this tool. -h

-help

gosu -h

Task Options Example
52 Chapter 3: Gosu Command Line Shell

Gosu Reference Guide

• Advanced argument processing. You can use parse the command line for options with a hyphen prefix and
optional additional values associated with the preceding command line option. For example, "-username
jsmith" is a single option to set the username option to the value jsmith.

Raw Argument Processing

To get the full list of command line arguments as a list of String values, use the CommandLineAccess class. Call
its getRawArgs method, which returns an array of String values.

uses gw.lang.cli.CommandLineAccess
print("CommandLineArgs: " + CommandLineAccess.getRawArgs())

Advanced Argument Processing

A more advanced way to access command line arguments is to write your own class that populate all your prop-
erties from the individual command line options. This approach supports Boolean flags or setting values from the
command line.

This approach requires you to define a simple Gosu class upon which you define static properties. Define one
static property for each command line option. Static properties are properties stored exactly once on the class
itself, rather than on instances of the class.

You can then initialize those properties by passing your custom class to the
CommandLineAccess.initialize(...) method. The initialize method overrides the static property values
with values extracted from the command line. After processing, you can use an intuitive Gosu property syntax to
get the values from the static properties in your own Gosu class.

First, create a Gosu class that defines your properties. It does not need to extend from any particular class. The
following example defines two properties, one String property named Name and an a boolean property called
Hidden:

package test
uses gw.lang.cli.*

class Args {

// String argument
static var _name : String as Name

// boolean argument -- no value to set on the command line
static var _hidden : boolean as Hidden

}

Note that the publicly-exposed property name is the symbol after the “as” keyword (in this case Name and
Hidden), not the private static variable itself. These are the names that are the options, although the case can vary,
such as: “-name jsmith” instead of “-Name jsmith”.

Choose a directory to save your command line tool. Create a subdirectory named src. Inside that create a subdi-
rectory called test (the package name). Save this Gosu class file as the file Args.gs in that src/test directory.

Next, run the following command

Paste in the following code for your program:
classpath "src"
uses gw.lang.cli.*
uses test.*

CommandLineAccess.initialize (Args)

print("hello " + Args.Name)
print("you are " + (Args.Hidden ? "hidden" : "visible") + "!!!!")

Click Save As and save this new command line tool as myaction.gsp in the directory two levels up from the
Args.gs file.

From the command batch window, enter the following command
gosu myaction.gsp -name John -hidden false
Command Line Arguments 53

Gosu Reference Guide

This outputs:
hello John
you are visible!!!!

One nice benefit of this approach is that these properties are available globally to all Gosu code as static proper-
ties. After initialization, all Gosu code can access properties merely by accessing the type (the class), without
pass a object instance to contain the properties.

Note that you can access the properties uncapitalized to better fit normal command line conventions.

The String property in this example (Name) requires an argument value to follow the option. This is true of all
non-boolean property types.

However, the boolean property in this example (Hidden) does not require an argument value, and this type is
special for this reason. If a property is declared with type boolean and the option is specified with no following
value, Gosu assumes the value true by default.

Only properties declared with modifiers public, static, and writable properties on your command line class
participate in command line argument initialization.

If a user enters an incorrect option, CommandLineAccess.initialize() prints a help message and exits with a -1
return code. If you do not want this exit behavior, there is a secondary (overloaded) version of the initialize
method that you can use instead. Simply add the value false a second parameter to the method to suppress
exiting on bad arguments.

Special Annotations for Command Line Options

You can use Gosu annotations from the gw.lang.cli.* package on the static properties defined in your
command line class. Simply add one of the following annotation lines immediately before the line that defines
the property:

For example:
package test
uses gw.lang.cli.*

class Args {

// String argument
@Required()
static var _name : String as Name

// boolean argument -- no value to set on the command line
@ShortName("s")
static var _hidden : boolean as Hidden

Annotation Description

@Required() This command line tool will not parse unless this property is included

@DefaultValue(String) The default string value of this property.

@ShortName(String)

@LongName(String)

By default, Gosu also exposes the property name automatically with the single hyphen
option. If the property uses mixed case (camel case) after the first letter, Gosu converts
each capital letter to an underscore and the lowercase letter.

The short and long name of this option.
• Gosu uses the short name when used with a hyphen and one letter argument.
• Gosu uses the long name when used with a double hyphen and one-or-more letter

argument

For example, suppose you use the following annotations with the property called
DataBaseChoice.

@ShortName("d")
@LongName("database")

You can use either of the following arguments to the command line tool:
• -data_base_choice
• -d
• --database
54 Chapter 3: Gosu Command Line Shell

Gosu Reference Guide

}

Gosu Interactive Shell

Gosu includes an interactive text-based shell mode. Each line you type runs as a Gosu statement, and any results
print to the standard output.

To enter the interactive shell, run the Gosu batch file in the bin directory with the -i option:
gosu -i

Or, simply run the tool from the command with no extra options to enter interactive mode:
gosu

The program will display a prompt that indicates that you are in the interactive shell rather than the command
prompt environment that called this tool.

gs >

You can then enter a series of Gosu expressions and statements, including defining functions and variables.

For example, you can type the following series of lines at the prompt:
gs > var s = new java.util.ArrayList() {1,2,3}
gs > s.each(\ o : Object -> print(o))

The Gosu shell will output the following:
1
2
3

Type the command help to see all available commands in the interactive shell. Additional commands in the
interactive shell include the following:

If you enter a line of Gosu that necessarily requires additional lines, Gosu displays a different prompt (“...”) for
you to type the remaining lines. For example, if you type a statement block with an opening brace but no closing
brace, you can enter the remaining lines in the statement block. After you enter the line with the closing brace,
the shell returns to its regular prompt.

The shell provides code-completion using the TAB key. You must type at least one letter of a symbol, after which
you can type TAB and the shell will display various options. Note that package completion is not supported.

For example, type the following lines but do not press enter on the last line yet:
gs > var s = new java.util.ArrayList() {1,2,3}
gs > s.e

If you press TAB, the shell displays properties and methods that begin with the letter “e” and then redisplays the
current line you are typing:

each(block(java.lang.Object):void) eachWithIndex(block(java.lang.Object, int):void)
elementAt(int) ensureCapacity(int)
equals(java.lang.Object) except(java.lang.Iterable<java.lang.Object>)

gs > s.e

To exit, type the exit or quit command.

Command Description

quit Quit the interactive shell.

exit Quit the interactive shell

ls Show a list of all defined variables

rm VARNAME remove a variable from interactive shell memory

clear clears (removes) all variables from interactive shell memory
Gosu Interactive Shell 55

Gosu Reference Guide

Notes:

• Functions and blocks are supported in the interactive shell. However, defining new Gosu classes is not
supported in the interactive shell.

• The interactive shell is different from the standard in option for the tool, which may be appropriate for some
purposes. You can define the output of one tool to be in Gosu and then redirect (pipe) the contents of that tool
into the Gosu shell, using the hyphen option.

Helpful APIs for Command Line Gosu Programs

Read Line

Use the readLine API to read a line of input from the console using the given prompt. For example:
var res = gw.util.Shell.readLine("Are you sure you want to delete that directory?")

Is Windows

Call the gw.util.Shell.isWindows() method to determine if the current host system is Windows-based.
56 Chapter 3: Gosu Command Line Shell

chapter 4

Gosu Programs

A Gosu program is a file with a .gsp file extension that you can run directly from a command-line tool. Addi-
tionally, you can run a Gosu program as the main file for a project in an IDE such as IntelliJ IDEA IDE.

You can run self-contained Gosu programs using the Gosu command line tool. The Gosu shell command-line
tool encapsulates the Gosu language engine. You can run Gosu programs directly from the Windows command
line as an interactive session or run Gosu program files.

For more information about command line use, see “Gosu Command Line Shell” on page 51

For more information about Gosu programs in IntelliJ IDEA, see “Getting Started With IntelliJ IDEA Gosu
Plugin” on page 44

The following instructions describe running a basic Gosu program after you install the gosu command line tool.
These instructions apply only to the command line shell for Gosu. If you are using the Gosu plugin for the IntelliJ
IDEA IDE, to get command line Gosu you must download the full distribution at:

http://gosu-lang.org/downloads.html

The Structure of a Gosu Program

A simple Gosu program is one or more lines that contain Gosu statements. There are several important other
elements of a Gosu program:

• “Metaline as First Line” on page 57

• “Functions in a Gosu Program” on page 58

• “Setting the Class Path to Call Other Gosu or Java Classes” on page 58

Metaline as First Line

Gosu programs support a single line at the beginning of the program for specifying the executable with which to
run a file. This is for compliance with the UNIX standard for shell script files. The metaline is optional. If present
must the first line of the program. The meta line looks like the following.

 #!/usr/bin/env gosu
Gosu Programs 57

Gosu Reference Guide

Note that the # in the meta line does not mean that the # symbol can start a line comments later on in Gosu
programs. The # character is not a valid line comment start symbol.

Functions in a Gosu Program

Your Gosu program can also define functions in the same file and call them.

For example, the following program creates a simple function and calls it twice:

print (sum(10,4,7));
print (sum(222,4,3));

function sum (a: int, b: int, c: int) : int {
 return a + b + c;
 }

When run, this program outputs:
21
229

Setting the Class Path to Call Other Gosu or Java Classes

You can call out to any Java or Gosu class as needed. However, you cannot define Gosu classes directly inside
your Gosu program file.

To tell Gosu where to load additional classes, do either of the following:

• Use the classpath argument on the command line tool. See “Command Line Arguments” on page 52.

• Add a classpath statement to the top of your Gosu program.

The classpath statement in a Gosu program improves upon the Java approach, which is to invoke a full and
long classpath argument option when running the main class.

To add to the class path for a program from within the program, simply add classpath statements before all
other statements in the program. If you use a metaline (see “Metaline as First Line” on page 57), classpath
statements appear after the metaline.

The simple version of the classpath statement is simply a relative path in quote signs, for example:
classpath "src"

The first character of the path is important to determine the type of path:

• If the path starts with the forward slash ("/") character, Gosu assumes it is an absolute path.

• If the path starts with a character other than a forward slash ("/") character, Gosu assumes it is a relative path.
The path is relative to the folder in which the current program resides. This is the most common use. Use this
feature to neatly encapsulate your program and its supporting classes together in one location.

You can include multiple paths in the same string literal using a comma character as a separator.

Typically you place Java classes, Gosu classes, or libraries in subdirectories of your main Gosu program.

For example, suppose you have a Gosu program at this location:
C:\gosu\myprograms\test1\test.gsp

Copy your class file for the class mypackage.MyClass to the location:
C:\gosu\myprograms\test1\src\mypackage\MyClass.class

Copy your library files to locations such as:
C:\gosu\myprograms\test1\lib\mylibrary.jar
58 Chapter 4: Gosu Programs

Gosu Reference Guide

For this example, add classpath values with the following statement:
classpath "src,lib"

IMPORTANT If you are use Gosu as an IDE plugin, the host IDE may offer additional UI for adding
and configuring additional directories to the classpath.

Advanced Remote Maven-style Configuration of Dependencies (Command Line Only)

For advanced command line use, Gosu can import Maven GAV dependency configuration information over the
network. GAV dependency configuration allows you to specify your own project’s dependencies, and recursively
those dependencies can specify their dependencies. For example, this allows a Gosu program to be sent between
collaborators without having to explicitly send a ZIP file with libraries. GAV is an acronym for GroupId Arti-
factId Version, the basic three terms of a build artifact identity, also known as coordinates.

IMPORTANT This syntax only works with command line Gosu. The Gosu plugin for IntelliJ IDEA
ignores the syntax for Maven-style configuration classpath configuration. Although IntelliJ IDEA does
not report syntax errors for this syntax, you still must download JAR files and configure the IDE to add
the JAR as a dependency. For use with Gosu XML and SOAP APIs, see “Using XML and SOAP
Libraries with Gosu Community Release” on page 48

For more details on Maven coordinates, see:
https://en.wikipedia.org/wiki/Apache_Maven
https://maven.apache.org/pom.html#Maven_Coordinates

Using Maven terminology, you will need to know the following repository information:

• repository ID

• repository URL

• artifact coordinates

• group ID

• artifact ID

• version number

Declaring One or More Maven Repositories

Declare a Maven repository with a classpath directive with a String that starts with "remote:" using the
following syntax

classpath "remote:STATUS:REPOT_ID:REPOSITORY_URL"

In this syntax:

• STATUS – The release status, must be the value releases or snapshots.

• REPOT_ID – The repot ID, the canonical identifier for this repot. Be consistent about your use of repository IDs.
Sometimes organizations do Maven repository proxies for some repositories and not others, and operate
based on repository IDs.

• REPOSITORY_URL – The URL to the repository on the Internet or intranet.

For example, for official Gosu language releases, use these values:

• STATUS = releases

• REPOT_ID = gosu-lang.org-releases

• REPOSITORY_URL = http://gosu-lang.org/nexus/content/groups/releases/

To use this repository in Gosu Community Release, specify this repository as follows:
classpath "remote:releases:gosu-lang.org-releases:http://gosu-lang.org/nexus/content/groups/releases"
The Structure of a Gosu Program 59

Gosu Reference Guide

Importing Artifacts

After you declare one or more Maven repositories, you can access any resources within any of the repositories by
identifying the resource by group ID, artifact ID, and version number. The format of a Maven version number is
major.minor.[optional_incremental]-[optional_qualifier]. For example, version 5.6.7-beta1 or version 8.9.

For example, suppose you want your Gosu code to access the following resource by its artifact coordinates:

• group ID = org.gosu-lang.gosu

• artifact ID = gosu-xml

• version number = 0.10

Import the resource by its artifact coordinates in a separate classpath statement with following syntax
classpath "GROUP_ID:ARTIFACT_ID:VERSION_NUMBER"

For example:
classpath "org.gosu-lang.gosu:gosu-xml:0.10"

To import the XML and SOAP libraries for use with Gosu Community Release for version beta08:
classpath "remote:releases:gosu-lang.org-releases:http://gosu-lang.org/nexus/content/groups/releases"
classpath "org.gosu-lang.gosu:gosu-xml:0.10"
classpath "org.gosu-lang.gosu:gosu-webservices:0.10"

WARNING You must change the version number as appropriate for your desired release. The text
above may not correspond to the Gosu Community Release version number for your Gosu plugin or
your command line tool version of Gosu. If you are using the Gosu plugin to edit Gosu programs that
you will run from the command line use the same version of Gosu Community Release for both.
60 Chapter 4: Gosu Programs

chapter 5

Types

This topic describes common data types and how to use them in Gosu. For more information about manipulating
types or examining type information at run time, see “Type System” on page 257.

This topic includes:

• “Access to Java Types” on page 61

• “Primitive Types” on page 62

• “Objects” on page 62

• “Boolean Values” on page 64

• “Sequences of Characters” on page 65

• “Array Types” on page 67

• “Numeric Literals” on page 70

• “Compatibility with Earlier Gosu Releases” on page 71

Access to Java Types

Gosu is built on top of the Java language and runs within the Java Virtual Machine (JVM). Gosu automatically
loads all Java types, so you have full direct access to Java types, such as classes, libraries, and primitive (non-
object) types. Access to Java types includes:

• Instantiate Java classes with the new keyword

• Access to Java interfaces with the new keyword

• Call static methods on Java types

• Call object methods on instantiated objects

• Get properties from Java objects

• Support for Java primitive types

The most common Java object types maintain their fully-qualified name but are always in scope, so you do not
need to fully qualify in typical code. For example, Object, String, and Boolean. In the case of ambiguity with
Types 61

Gosu Reference Guide

similarly named types currently in scope, you must fully-qualify these types, such as java.lang.String. Other
Java types are available but must be fully qualified, for example java.util.ArrayList.

Gosu includes transformations on Java types that make your Gosu code more easily understandable. For example
turning getters and setters into Gosu properties. For details of Java-Gosu integration, see “Java and Gosu” on
page 241.

Primitive Types

Gosu supports the following Java primitive types, which are provided for compatibility with existing Java code.
From Gosu you can access the Java object versions (non-primitives) of the Java primitive types. For example,
java.lang.Boolean is an object type that wraps the behavior of the boolean primitive. Primitive types do not
perform better in terms of performance or space compared to their object versions.

The following table compares primitive types and object types.

The following table lists the Java primitives that you can access from Gosu. The table mentions IEEE 754, which
is the Institute of Electrical and Electronics Engineers standard for Binary Floating-Point Arithmetic. For more
information, refer to:

http://en.wikipedia.org/wiki/IEEE_754

For more information and related APIs, see “Working with Primitive Types” on page 265.

Objects

The root type for all object types in Gosu is the Java class java.lang.Object. An object encapsulates some data
(variables and properties) and methods (functions that act on the object). Because it is always in scope, simply
type Object unless a similarly-named type is in scope and requires disambiguation.

Type
Primitive
types

Object
Types

Extends from Object class •
Can reference an object •
A variable of this type could contain null at runtime •
Exposes methods •
Exposes properties •
Cannot be a member of a collection •

Primitive Type Value

boolean Boolean value true or false

byte Byte-length integer 8-bit two’s complement

char Single character 16-bit Unicode

double Double-precision floating point number 64-bit (IEEE 754)

float Single-precision floating point number 32-bit (IEEE 754)

int Integer 32-bit two’s complement

long Long integer 64-bit two’s complement

short Short integer 16-bit two’s complement
62 Chapter 5: Types

http://en.wikipedia.org/wiki/IEEE_754

Gosu Reference Guide

Do not create objects directly with the root object type Object. However, you can create classes that extend the
root object type Object. If you do not declare a new class to extend a specific class, your new class extends the
Object class.

In some cases you may need to declare a variable that use the type Object to support a variety of object
subclasses. For example, you can define a collection to can contain a heterogeneous mix of various object types,
all of which extend the root object type Object.

Examples

var a : Address
var map = new java.util.HashMap()

To create or use objects, see “Object Instantiation” on page 63.

For more information about the Gosu type system, see “Type System” on page 257.

Object Instantiation

A Gosu object is an instance of a type. A type can be a class or other construct exposed to Gosu through the type
system. A class is a collection of object data and methods. To instantiate the class means to use the class defini-
tion to create an in-memory copy of the object with its own object data. Other code can get or set properties on
the object. Other code can call methods on the object, which are functions that perform actions on that instance
unique of the object.

Creating New Objects

You use the Gosu new operator to create an instance from a class definition or other type that can be instantiated.

For example:
new java.util.ArrayList() // Create an instance of an ArrayList.
new Number[5] // Create an array of numbers.
new LossCause[3] // Create an array of loss causes.

See “New Object Expressions” on page 84 for more details.

Object Property Assignment

Property assignment is similar to variable assignment.

Syntax

<object-property-path> = <expression>

However, properties can be write-protected (as well as read-protected). For example, the following Gosu code:
Activity.UpdateTime = "Mar 17, 2006"

causes the following error:
Property, UpdateTime, of class Activity, is not writable

Example

myObject.Prop = "Test Value"
var startTime = myObject.UpdateTime

Object Property Access

Gosu retrieves a property’s value using the period operator. You can chain this expression with additional prop-
erty accessors. For important details about how Gosu handles null values in the expression to the left of the
period, see “Handling Null Values In Expressions” on page 94.

Syntax

object.PROPERTY_NAME
Objects 63

Gosu Reference Guide

Examples

Object Methods

An object property can be any valid data type, including an array, a function, or another object. An object func-
tion is generally called a method. Invoking a method on an object is similar to accessing an object property, with
the addition of parenthesis at the end to denote the function. Gosu uses the dot notation to call a method on a
object instance. For more details about how Gosu handles null values in the expression to the left of the period,
see “Handling Null Values In Expressions” on page 94.

Syntax

object.METHOD_NAME()

Example

See “Static Method Calls” on page 93 for more details. See also “Using Reflection” on page 262 for regarding
using type information to determine methods of an object.

Boolean Values

From Gosu code, two types represent the values true and false:

• The Java primitive type boolean. Possible values are true and false.

• The Java Boolean object, which is an object wrapper around the primitive type. Possible values for variables
declared to the Boolean data type are true, false, and null. The fully-qualified type name is
java.lang.Boolean. Because it is always in scope, simply type Boolean unless a similarly-named type is in
scope and requires disambiguation.

For both boolean and Boolean, some values can coerce to true or false. The following table describes coercion
rules. The rightmost column indicates whether the coercion requires the as keyword, for example 1 as boolean.

Expression Result

Claim.Contacts.Attorney.Name Some Name

Claim.Addresses.State New Mexico

Expression Result

claim.isClosed() Return a Boolean value indicating the status of Claim

claim.resetFlags() Reset flags for this claim

Value
Type of
value Coerces to

Explicit coer-
cion is required Comment

1 int true Yes
64 Chapter 5: Types

Gosu Reference Guide

Notice some important differences between primitive and object types:

• null coerced to a variable of type Boolean stores the original value null.

• null coerced to a variable of type boolean stores the value false because primitive types cannot be null.
Depending on the declared type of the variable, this coercion may be disallowed at compile time.

For important information about primitives and comparisons of boxed and unboxed types in Gosu, see “Working
with Primitive Types” on page 265.

Example

var hasMoreMembers == null
var isDone = false

Sequences of Characters

To represent a sequence of characters in Gosu, use the Java type java.lang.String. Because it is always in
scope, simply type String unless a similarly-named type is in scope and requires disambiguation. Create a
String object by enclosing a string of characters in beginning and ending double-quotation marks. Example
values for the String data type are "hello", "123456", and "" (the empty string).

String Variables Can Have Content, Be Empty, or Be Null

It is important to understand that the value null represents the absence of an object reference and it is distinct
from the empty String value "". The two are not interchangeable values. A variable declared to type String can
hold the value null, the empty String (""), or a non-empty String.

To test for a populated String object versus a null or empty String object, use the HasContent method. When
you combine it with the null-tolerant property access in Gosu, HasContent returns false if either the value is
null or an empty String object.

Compare the behavior of properties HasContent and Empty:
var s1 : String = null
var s2 : String = ""
var s3 : String = "hello"

print("has content = " + s1?.HasContent)
print("has content = " + s2?.HasContent)
print("has content = " + s3?.HasContent)

print("is empty = " + s1?.Empty)
print("is empty = " + s2?.Empty)
print("is empty = " + s3?.Empty)

This code outputs:

0 int false Yes

null null If coerced to the boolean
type, the result depends
on type of the declared
variable. For some types
including number types
such as Integer, null
coerces to the value
false. For other types,
coercion is disallowed at
compile time.

If coerced to the Boolean
type, value remains null.

No See note for column value "true".

Value
Type of
value Coerces to

Explicit coer-
cion is required Comment
Sequences of Characters 65

Gosu Reference Guide

has content = false
has content = false
has content = true
is empty = false
is empty = true
is empty = false

Notice that whether the variable holds an empty String or null, the HasContent method returns false. This
means that the HasContent method is more intuitive in typical cases where null represents absence of data.

Other Methods on String Objects

Gosu provides various methods to manipulate strings and characters. For example:
var str = "bat"
str = str.replace("b", "c")
print(str)

This prints:
cat

Type "new String()" into the Gosu Tester and then press period to see the full list of methods.

String Utilities

You can access additional String methods in API library gw.api.util.StringUtil. Type
gw.api.util.StringUtil into the Gosu Tester and press period to see the full list of methods.

For example, instead of the Java native method replace on java.lang.String, to perform search and replace
you can use the StringUtil method substituteGlobalCaseInsensitive.

In-line String Templates

If you define a String literal directly in your Gosu code, you can embed Gosu code directly in the String data.
This feature is called templates. For example, the following String assignment uses template features:

var s = "One plus one equals ${ 1 + 1 }."

If you print this variable, Gosu outputs:
One plus one equals 2.

For more information, see “Gosu Templates” on page 249.

Escaping Special Characters in Strings

In Gosu strings, the backslash character (\) indicates that the character directly after it requires special handling.
As it is used to “escape” the usual meaning of the character in the string, the backslash is called an escape char-
acter. The combination of the backslash and its following character is called an escape sequence.

For example, you use the backslash escape character to insert a double-quotation mark into a string without
terminating it. The following list describes some common uses for the backslash in Gosu strings.

Sequence Result

\\ Inserts a backslash into the string without forcing an escape sequence.

\" Inserts a double-quotation mark into the string without terminating it.

Note: This does not work inside embedded code within Gosu templates. In such cases, do not escape
the double quote characters. See “Gosu Templates” on page 249.

\n Inserts a new line into the string so that the remainder of the text begins on a new line if printed.

\t Inserts a tab into the string to add horizontal space in the line if printed.
66 Chapter 5: Types

Gosu Reference Guide

Examples

Claim["ClaimNumber"]
var address = "123 Main Street"
"LOGGING: \n\"Global Activity Assignment Rules\""

Gosu String Templates

In addition to simple text values surrounded by quote signs, you can embed small amounts of Gosu code directly
in the String as you define a String literal. Gosu provides two different template styles. At compile time, Gosu
uses its native type checking to ensure the embedded expression is valid and type safe. If the expression does not
return a value of type String, Gosu attempts to coerce the result to the type String.

Use the following syntax to embed a Gosu expression in the String text:
${ EXPRESSION }

For example, suppose you need to display text with some calculation in the middle of the text:
var mycalc = 1 + 1
var s = "One plus one equals " + mycalc + "."

Instead of this multiple-line code, embed the calculation directly in the String as a template:
var s = "One plus one equals ${ 1 + 1 }."

If you print this variable, Gosu outputs:
One plus one equals 2.

This style is the preferred String template style.

However, Gosu provides an alternative template style. Use the three-character text <%= to begin the expression.
Use the two-character text %> to end the expression. For example, you can rewrite the previous example as the
following concise code:

var s = "One plus one equals <%= 1 + 1 %>."

print("one")
var s = "Hello. <% print("two") %>We will go to France<% print("three") %>."
print(s)

Within a code expression, do not attempt to escape double quote characters inside templates using the special
syntax for quote characters in String values. In other words, the following is valid Gosu code:

 var s= "<% var myvalue = {"a", "b"} %>"

However, the following is invalid due to improper escaping of the internal double quotes:
 var foo = "<% var bar = {\"a\", \"b\"} %>"

For much more information about Gosu templates, see “Gosu Templates” on page 249.

Array Types

An array is a collection of data values, with each element of the array associated with a number or index. In
typical Gosu code, simply use angle brackets after the type name, such as String[] to represent an array of
String objects. Use a zero-based index number to access an array member.

If you create an array, you must explicitly define the size of the array or implicitly define the size by simultane-
ously defining the array elements.

For example:
// arrays of strings, all examples contain exactly four members
var s1 = new String[4]
var s2 = new String[] {"This", "is", "a", "test"}

// arrays of integers, all examples contain exactly three members
var int1 = new int[3]
var int2 = new int[] {1,2,3}
var int3 : int[] = {1,2,3}
Array Types 67

Gosu Reference Guide

To access the elements of an array, use the following syntax.

Syntax

EXPRESSION[INDEX_VALUE]

Examples

You can iterate through the members of an array using a for loop. See “Iteration in For() Statements” on
page 103 for details.

You can create a new array with a default value for each array member using an included Gosu enhancement on
the Arrays object. Call the makeArray method and pass a default value and the size of the array. Gosu uses the
type of the object to type the array. For example, create an array of 10 items initialized to the Boolean value
false with the following code:

var x = Arrays.makeArray(false, 10)

List Access Using Array Index Notation

In Gosu, you can Java language list members using standard array index notation. For much more information
about Java lists and other collections in Gosu, see “Collections” on page 183. Also see “For() Statements” on
page 103 for examples of lists with array-style access syntax.

Example

var list = new java.util.ArrayList()

//Populate the list with values.
list.add("zero")
list.add("one")
list.add("two")
list.add("three")
list.add("four")

//Assign a value to a member.
list[3] = "threeUPDATED"

//Automatically iterate through list members and print.
for (member in list) {

print(member)
}

//Iterate through list members using array notation and print.
for (member in list index i) {

print(list[i])
}

The output for this code is:
zero
one
two
threeUPDATED
four

In many situations, it is best to use collections such as java.util.List or java.util.Map rather than to use
arrays. The List and Map classes inherit from the Java language although Gosu adds additional enhancement
methods. For Gosu APIs related to using lists, maps, and other collections, see “Collections” on page 183.

Expression Result

Claim.Exposures[0] An exposure

gw.api.util.StringUtil.splitWhitespace("a b c d e")[2] "c"
68 Chapter 5: Types

Gosu Reference Guide

Array Expansion

Gosu supports an operator that expands arrays and lists: the *. operator. For more information, see “List and
Array Expansion (*.)” on page 187.

Associative Array Syntax for Property Access

For most types, you can use associative array syntax to access properties of the object. Instead of using a
numeric index surrounded by brackets, use a String value containing the property name. This syntax is useful if
the property name is unknown at compile time, but can be determined at run time with user-entered data.

WARNING Using associative array syntax, Gosu cannot check at compile time that you correctly
typed the property name for that type. Be careful with this feature to prevent unexpected run time
errors. Use typesafe property access instead where possible.

The following simple example shows associative array syntax:
var str = "PostalCode"

var pc = myContact[str]

Associative arrays are similar to using the Java map class java.util.Map, which Gosu supports, in that you can
use a non-numeric key to a value. For more information about maps and other collections, see “Collections” on
page 183.

The associative array syntax for property access works with most classes, including the Map class and any object
type that does not naturally take a numeric array-style index. The java.lang.String class does not work with
the associative array syntax. A String object behaves as an ordered list of characters in Gosu, so it requires a
numeric array-style index.

Accessing property information at run time is part of a programming feature called reflection. There are other
APIs for reflection. For more information, see “Using Reflection” on page 262.

If the property name does not exist at run time, Gosu throws an exception. For example, suppose that you have an
instance of a general type, say Object, as a function argument:

function getDisplayName(obj : Object) {
var name : String
name = obj.DisplayName // Compile error - no DisplayName property on Object
name = obj["DisplayName"] // Ok, so long as there is a DisplayName property at runtime

}

In this example, if the function caller passes an object parameter that does not have a DisplayName property, at
run time Gosu throws an exception.

Examples

You can use associative array syntax to set properties and values as well as get them. For example:
var address : Address
var city = address["City"] // get a property
address["City"] = "San Mateo" // set a property

Legacy Array Type

For compatibility with prior Gosu versions, there is type called Array. Do not use that for new code. Instead use
the TYPE_NAME[] syntax with a specific type name.

Expression Result Description

person["StreetAddress"] "123 Main Street" example of a single associative array access

person["Address"]["City"] "Birmingham" example of a double associative array access. This is
equivalent to the code person.Address.City.
Array Types 69

Gosu Reference Guide

Numeric Literals

Gosu natively supports numeric literals of the most common numeric types, as well as a binary and hex syntax.
Gosu uses the syntax to infer the type of the object.

For example:

• Gosu infers that the following variable has type BigInteger because the right side of the assignment uses a
numeric literal 1bi. That literal means “1, as a big integer”
var aBigInt = 1bi

• Gosu infers that the following variables have type Float because the right side of the assignment uses a
numeric literal with an f after the number.
var aFloat = 1f
var anotherFloat = 1.0f

• For numeric literals that have a suffix, you can omit the suffix if the type is declared explicitly such that no
type inference is necessary.

The following table lists the suffix or prefix for different numeric, binary, and hexadecimal literals.

Scientific Notation, Including Floating Point

Gosu supports the use of scientific notation to represent large or small numbers. Scientific notation represents a
number as a coefficient (a number greater than or equal to 1 and less than 10) and a base (which is always 10).
For example, consider the following number:

1.23 x 1011

The number 1.23 is the coefficient. The number 11 is the exponent, which means the power of ten. The base
number 10 is always written in exponent form. Gosu represents the base number as the letter “e”, which stands
for “exponent”.

You can use the scientific notation anywhere you can use a float literal or double literal.

Like other numeric literals, there is a default suffix. For float use f, for example 3.14f. For double, use d.
However, you can omit the suffix if the type is declared explicitly with that type.

Examples

var PI : float = 3.14
var result1 : float = 9.2 * 3
var result2 : float = 2.057e3 * PI

//Result

Type Syntax

byte suffix: b or B var aByte = 1b

short suffix: s or S var aShort = 1s

int none var anInt = 1

long suffix: l (lowercase L) or L var aLong = 1L

float suffix: f or F var f1 = 1f
var f2 = 1.0f
var f3 = 1.0e3

double suffix: d or D var aDouble = 1d

BigInteger suffix: bi or BI var aBigInt = 1bi

BigDecimal suffix: bd or BD var aBigD = 1bd
var anotherBigD = 1.0bd

int prefix: 0b or 0B var maskVal1 = 0b0001 // 0 and 1 only
var maskVal2 = 0b0010
var maskVal3 = 0b0100

int as hexadecimal prefix: 0x or 0X var aColor = 0xFFFF // 0 through F only
70 Chapter 5: Types

Gosu Reference Guide

result1 = 27.599999999999998
result2 = 6458.9800000000005

Be aware that Gosu does not support floating point hexadecimal literals.

Compatibility with Earlier Gosu Releases

The following subtopics describe supported types that exist mainly for compatibility with earlier Gosu releases.

DateTime

The DateTime type encapsulates calendar dates or time (clock) values, or both.

IMPORTANT The DateTime class exists for compatibility with earlier Gosu releases. For new code,
instead use the Java class java.util.Date.

The following table lists the supported formats for date and time definitions.

Individual characters in the previous table have the following meaning:

Other possible values are:
• null

• 1124474955498 (milliseconds since 12:00:00:00 a.m. 1/1/1970 UTC)

Format Example

MMM d, yyyy Jun 3, 2005

MM/dd/yy 10/30/06

MM/dd/yyyy 10/30/2006

MM/dd/yy hh:mm a 10/30/06 10:20 pm

yyyy-MM-dd HH:mm:ss.SSS 2005-06-09 15:25:56.845

yyyy-MM-dd HH:mm:ss 2005-06-09 15:25:56

yyyy-MM-dd'T'HH:mm:ssz 2005-06-09T15:25:56 -0700

EEE MMM dd HH:mm:ss zzz yyyy Thu Jun 09 15:24:40 GMT 2005

Character Meaning

a AM or PM (determined from 24-hour clock)

d day

E Day in week (abbreviation)

h hour (24 hour clock)

m minute

M month

s second

S fraction of a second

T parse as time (ISO8601)

y year

z Time Zone offset (GMT, PDT, and so on)
Compatibility with Earlier Gosu Releases 71

Gosu Reference Guide

Initializing DateTime Values

If you declare and initialize a DateTime object, Gosu sets the value to the date and time at which it was allocated,
measured to the nearest millisecond.

var rightNow = new DateTime() // Get a timestamp for the current date and time.

Initialize a DateTime Object to a Specific Date

You can declare a DateTime variable and initialize it to a specific date.

There is a constructor to initialize a DateTime value using a String value with the supported formats described
earlier in this topic:

var d = new DateTime("Jun 3, 2005")

There is another constructor takes three arguments:

• Year – The year minus 1900

• Month – The month between 0-11

• Day – The day of the month between 1-31

For example, the following Gosu code declares and initializes a DateTime variable to January 1, 2012, with the
time portion of the value set to 12:00 a.m. midnight (00:00:00.000).

var aDate = new DateTime(112, 0, 1) // Initialize a DateTime to January 1, 2012, 12:00 a.m. midnight.

Initialize a DateTime Object to a Special Date

You can declare a DateTime variable and initialize it to a well-known date: today, tomorrow, or yesterday. Also,
you can use these well-known dates in expressions without declaring them as variables. The time component of
these well-known dates is 12:00 a.m. midnight (00:00:00.000). The DateTime.CurrentDate property provides
a current timestamp. It is equivalent to initializing a DateTime variable with the new DateTime() constructor.

For example, the following Gosu code declares and initializes a DateTime variable to the well-known date Today.
var dateToday = DateTime.Today

Working with DateTime Values

Use the built-in Gosu gw.api.util.DateUtil.* library functions to work with DateTime objects. There are
methods to add a certain number of days, weekdays, weeks, or months to a date. There is a method to remove the
time element from a date (trimToMidnight). Type gw.api.util.DateUtil into the Gosu Tester, and then press
period to see the full list of methods. For example

var diff = gw.api.util.DateUtil.daysBetween("Mar 5, 2006", gw.api.util.DateUtil.currentDate())

Gosu DateTime and Java

The DateTime class exists for compatibility with earlier Gosu releases. For new code, instead use the Java class
java.util.Date. Gosu represents DateTime objects internally using java.util.Date. However, this is internal
only and thus it is not possible to access the java.util.Date type directly from a DateTime object.

Gosu implicitly coerces the Gosu DateTime object from String in most formats. For example:
var date : DateTime = "2007-01-02"

Gosu’s DateTime type exposes some functionality of the Date class using Gosu operators:

• Gosu supports the Date methods before and after methods as relational operators. In Gosu, use the
following to test whether one date is after another date:
date1 > date2

• Gosu supports the Date.getTime() method using the as keyword, which is the cast operator. In Gosu, use the
following to determine the number of milliseconds between a DateTime object and January 1, 1970, 00:00:00
GMT:
date1 as Number
72 Chapter 5: Types

Gosu Reference Guide

Number

The Number data type represents all numbers, including integers and floating-point values.

IMPORTANT The Number class exists for compatibility with earlier Gosu releases. For new code,
instead use the Java class java.lang.Double.

Possible values for the Number data type include:
• 1

• 246

• 3.14159

• NaN (represents not a number)

• Infinity (represents infinity)
• null

Array

The Array type exists for compatibility with earlier Gosu releases. For new code, instead use standard array
syntax with bracket notation with a specific type, such as Integer[]. For more information, see “Array Types”
on page 67.
Compatibility with Earlier Gosu Releases 73

Gosu Reference Guide

74 Chapter 5: Types

chapter 6

Gosu Operators and Expressions

This topic describes the basic Gosu operators and expressions in the language.

This topic includes:

• “Gosu Operators” on page 75

• “Standard Gosu Expressions” on page 77

• “Arithmetic Expressions” on page 77

• “Equality Expressions” on page 80

• “Evaluation Expressions” on page 82

• “Existence Testing Expressions” on page 82

• “Logical Expressions” on page 82

• “New Object Expressions” on page 84

• “Relational Expressions” on page 87

• “Unary Expressions” on page 89

• “Importing Types and Package Namespaces” on page 90

• “Conditional Ternary Expressions” on page 91

• “Special Gosu Expressions” on page 93

• “Handling Null Values In Expressions” on page 94

Gosu Operators

Gosu uses standard programming operators to perform a wide variety of mathematical, logical, and object
manipulation operations. If you are familiar with the C, C++ or Java programming languages, you might find
that Gosu operators function similar to those other languages. Gosu evaluates operators within an expression or
statement in order of precedence.
Gosu Operators and Expressions 75

Gosu Reference Guide

Gosu operators take either a single operand (unary operators), two operands (binary operators), or three operands
(a special case ternary operator). The following list provides examples of each operator type:

See also

“Operator Precedence” on page 76

Operator Precedence

The following list orders the Gosu operators from highest to lowest precedence. Gosu evaluates operators with
the same precedence from left to right. The use of parentheses can modify the evaluation order as determined by
operator precedence. Gosu first evaluates an expression within parentheses, then uses that value in evaluating the
remainder of the expression.

Operator type Arguments Examples of this operator type

unary 1 • -3
• typeof “Test”
• new Array[3]

binary 2 • 5 - 3
• a and b
• 2 * 6

ternary 3 • 3*3 == 9 ? true : false

Operator Description

.
[]
()

?.

?[]

?:

Property access, array indexing, function calls and expression grouping. The
operators with the question marks are the null-safe operators. See “Handling
Null Values In Expressions” on page 94.

new Object creation, object reflection

, Array value list, as in {value1, value2, value3}
Argument list, as in (parameter1, parameter2, parameter3)

as
typeas

As, typeas

+
-

Unary operands (positive, negative values)

~
!
not
typeof
eval

Bit-wise OR, logical NOT, typeof, eval(expression)

typeis Typeis

*
/
%

Multiplication, division, modulo division

<<

>>

>>>

Bitwise shifting

+
-

?+

?-

Addition, subtraction, string concatenation. The versions with the question
marks are the null-safe versions. See “Null-safe Math Operators” on page 95.

<
<=
>
>=

Less than, less than or equal, greater than, greater than or equal
76 Chapter 6: Gosu Operators and Expressions

Gosu Reference Guide

Standard Gosu Expressions

A Gosu expression results in a single value. Expressions can be either very simple (setting a value) or quite
complex. A Gosu expression is categorized by the type of operator used in constructing it. Arithmetic expres-
sions use arithmetic operators (+, -, *, / operators) whereas logical expressions use logical operators (AND, OR,
NOT operators). The following sections contain descriptions and examples of Gosu-supported expressions and
how to use them.

Arithmetic Expressions

Gosu defines arithmetic expressions corresponding to all the common arithmetic operators, which are:

• Addition and Concatenation Operator (+)

• Subtraction Operator (-)

• Multiplication Operator (*)

• Division Operator (/)

• Arithmetic Modulo Operator (%)

Gosu supports Java big decimal arithmetic on the +, -, *, /, and % arithmetic operators. Thus, if the left- or right-
hand side of the operator is a Java BigDecimal or BigInteger, then the result is Big also. This can be especially
important if considering the accuracy, such as usually required for currency figures.

==

===
!=
<>

Equality, inequality. For general discussion and also comparison of == and
===, see “Equality Expressions” on page 80.

& bitwise AND

^ bitwise exclusive OR

| bitwise inclusive OR

&&
and

Logical AND, the two variants are equivalent

||
or

Logical OR, the two variants are equivalent

? : Conditional (ternary, for example, 3*3 == 9 ? true : false)

= += -= *=
/= %= &=
^= |= <<=
>>= >>>=

Assignment operator statements. These are technically Gosu statements, not
expressions. For more information, see “Gosu Variables” on page 98.

• Arithmetic Expressions • Logical Expressions

• Conditional Ternary Expressions • New Object Expressions

• Equality Expressions • Relational Expressions

• Unary Expressions • Type Cast Expressions (see “Basic Type Checking” on page 259)

• Evaluation Expressions • Type Checking Expressions (see “Basic Type Checking” on
page 259)

• Existence Testing Expressions • Conditional Ternary Expressions

Operator Description
Standard Gosu Expressions 77

Gosu Reference Guide

Addition and Concatenation Operator (+)

The “+” operator performs arithmetic addition or string concatenation using either two Number or two String
data types as operands. The result is either a Number or a String, respectively. Note the following:

• If both operands are numeric, the “+” operator performs addition on numeric types.

• If either operand is a String, Gosu converts the non-String operand to a String. The result is the concatena-
tion of the two strings.

For the null-safe version of this operator, see “Null-safe Math Operators” on page 95.

Subtraction Operator (-)

The “-” operator performs arithmetic subtraction, using two Number values as operands. The result is a Number.

For the null-safe version of this operator, see “Null-safe Math Operators” on page 95.

Multiplication Operator (*)

The “*” operator performs arithmetic multiplication, using two Number values as operands. The result is a
Number.

For the null-safe version of this operator, see “Null-safe Math Operators” on page 95.

Division Operator (/)

The “/” operator performs arithmetic division using two Number values as operands. The result is a Number. The
result of floating-point division follows the specification of IEEE arithmetic.

If either value appears to be a String (meaning that it is enclosed in double-quotation marks):

• If a “string” operand contains only numbers, Gosu converts the string to a number and the result is a number.

Expression Result

3 + 5 8

8 + 7.583 15.583

"Auto" + "Policy" "AutoPolicy"

10 + "5" "105"

"Number " + 1 "Number 1"

Expression Result

9 - 2 7

8 - 3.359 4.641

"9" - 3 6

Expression Result

2 * 6 12

12 * 3.26 39.12

"9" * "3" 27
78 Chapter 6: Gosu Operators and Expressions

Gosu Reference Guide

• If the “string” operand is truly a String, then the result is NaN (Not a Number).

For the null-safe version of this operator, see “Null-safe Math Operators” on page 95.

Arithmetic Modulo Operator (%)

The “%” operator performs arithmetic modulo operations, using Number values as operands. The result is a
Number. (The result of a modulo operation is the remainder if the numerator divides by the denominator.)

For the null-safe version of this operator, see “Null-safe Math Operators” on page 95.

Bitwise AND (&)

The “&” operator performs a binary bitwise AND operation with the value on the left side of the operator and the
value on the right side of the operator.

For example, 10 & 15 evaluates to 10. The decimal number 10 is 1010 binary. The decimal number 15 is 1111
binary. In binary, this code does a bitwise AND between value 1010 and 1111. The result is binary 1010, which is
decimal 10.

In contrast, 10 & 13 evaluates to 8. The decimal number 10 is 1010 binary. The decimal number 13 is 1101
binary. In binary, this does a bitwise AND between value 1010 and 1101. The result is binary 1000, which is
decimal 8.

Bitwise Inclusive OR (|)

The “|” (pipe character) operator performs a binary bitwise inclusive OR operation with the value on each side of
the operator.

For example, 10 | 15 evaluates to 15. The decimal number 10 is 1010 binary. The decimal number 15 is 1111
binary. In binary, this code does a binary bitwise inclusive OR with value 1010 and 1111. The result is binary
1111, which is decimal 15.

The expression 10 | 3 evaluates to 11. The decimal number 10 is 1010 binary. The decimal number 13 is 1101
binary. In binary, this does a bitwise AND between value 1010 and 1101. The result is binary 0111, which is
decimal 11.

Bitwise Exclusive OR (^)

The “^” (caret character) operator performs a binary bitwise exclusive OR operation with the values on both
sides of the operator.

Expression Result

10 / 2 5

5 / "2" 2.5

5 / “test” NaN

1 / 0 Infinity

0 / 0 NaN

0/1 0

Expression Result

10 % 3 1

2 % 0.75 0.5
Arithmetic Expressions 79

Gosu Reference Guide

For example, 10 | 15 evaluates to 5. The decimal number 10 is 1010 binary. The decimal number 15 is 1111
binary. In binary, this code does a binary bitwise exclusive OR with value 1010 and 1111. The result is binary
0101, which is decimal 5.

The expression 10 & 13 evaluates to 7. The decimal number 10 is 1010 binary. The decimal number 13 is 1101
binary. In binary, this does a bitwise AND between value 1010 and 1101. The result is binary 0111, which is
decimal 7.

Bitwise Left Shift (<<)

The “<<” operator performs a binary bitwise left shift with the value on the left side of the operator and value on
the right side of the operator.

For example, 10 << 1 evaluates to 20. The decimal number 10 is 01010 binary. In binary, this code does a binary
bitwise left shift of 01010 one bit to the left. The result is binary 10100, which is decimal 20.

The expression 10 << 2 evaluates to 40. The decimal number 10 is 001010 binary. In binary, this code does a
binary bitwise left shift of 001010 one bit to the left. The result is binary 101000, which is decimal 40.

Bitwise Right Shift and Preserve Sign (>>)

The “>>” operator performs a binary bitwise right shift with the value on the left side of the operator and value on
the right side of the operator. For signed values, the >> operator automatically sets the high-order bit with its
previous value for each shift. This preserves the sign (positive or negative) of the result. For signed integer
values, this is the usually the appropriate behavior. Contrast this with the >>> operator.

For example, 10 >> 1 evaluates to 5. The decimal number 10 is 1010 binary. In binary, this code does a binary
bitwise right shift of 1010 one bit to the right. The result is binary 0101, which is decimal 5.

The expression -10 >> 2 evaluates to -3. The decimal number -10 is 11111111 11111111 11111111 11110110
binary. This code does a binary bitwise right shift two bits to the right, filling in the top sign bit with the 1
because the original number was negative. The result is binary 11111111 11111111 11111111 11111101, which is
decimal -3.

Bitwise Right Shift Right Shift and Clear Sign (>>>)

The “>>>” operator performs a binary bitwise right shift with the values on both sides of the operator. The >>>
operator sets the high-order bit with its previous value for each shift to zero. For unsigned integer values, this is
the usually the appropriate behavior. Contrast this with the >> operator.

Equality Expressions

Equality expressions return a Boolean value (true or false) indicating the result of the comparison between the
two expressions. Equality expressions consist of the following types:

• == Operator

• != or <> Operator

== Operator

The == operator tests for relational equality. The operands can be of any compatible types. The result is always
Boolean. For reference types, Gosu language, the == operator automatically calls object.equals() to compare
values. To compare whether the two operands are the same in-memory object, use the === operator instead.

Syntax

a == b
80 Chapter 6: Gosu Operators and Expressions

Gosu Reference Guide

Examples

=== Operator Compares Object Equality

In the Java language, the == operator evaluates to true if and only if both operands have the same exact
reference value. In other words, it evaluates to true if they refer to the same object in memory. This works well
for primitive types like integers. For reference types, this usually is not what you want to compare. Instead, to
compare value equality, Java code typically uses object.equals(), not the == operator.

In the Gosu language, the == operator automatically calls object.equals() for comparison if you use it with
reference types. In most cases, this is what you want for reference types.

However, there are some cases in which you want to use identity reference, not simply comparing the values
using the underlying object.equals() comparison. In other words, some times you want to know if two objects
literally reference the same in-memory object.

You can use the Gosu operator === (three equals signs) to compare object equality. This always compares
whether both references point to the same in-memory object.

The following examples demonstrate the difference between == and === operators:

Examples Comparing == and ===

!= or <> Operator

The “!=” or “<>” operator tests for relational inequality. The operands can be of any compatible types. The result
is always Boolean.

Syntax

a != b
a <> b

Expression Result

7 == 7 true

"3" == 3 true

3 == 5 false

Expression Prints this Result Description

print("3" == "3") true The two String objects contain the same value.

print("3" == "4") false The two String objects contain different values.

print("3" === "4") false Gosu represents the two String literals as separate objects in mem-
ory (as well as separate values).

var x = 1 + 2

var s = x as String

print(s == "3")

true These two variables reference the same value but different objects.
If you use the double-equals operator, it returns true.

var x = 1 + 2

var s = x as String

print(s === "3")

false These two variables reference the same value but different objects.
If you use the triple-equals operator, it returns false.

print("3" === "3") true This example is harder to understand. By just looking at the code, it
seems like these two String objects would be different objects.
However, in this case, the Gosu compiler detects they are the same
String at compile time. Gosu optimizes the code for both usages of
a String literal to point to the same object in memory for both
usages of the "3".
Equality Expressions 81

Gosu Reference Guide

Examples

See also

For another use of the != operator, see the examples in “Logical NOT” on page 84.

Evaluation Expressions

The eval() expression evaluates Gosu source at run time, which enables dynamic execution of Gosu source
code. Gosu executes the source code within the same scope as the call to eval().

Syntax

eval(Expression)

Examples

Existence Testing Expressions

An exists expression iterates through a series of elements and tests for the existence of an element that matches
a specific criteria.

The main way of using an exists expression is to iterate across an array or a list but does not generate. Consider
expressions like this as an alternative to simple looping with the Gosu statements for(), while(), and
do...while(). The rest of this section focuses on this type of use.

Syntax

exists ([var] identifier in expression1 [index identifier] where expression2)

The index variable identifier iterates through all possible array index values. The result is the type Boolean.
The expression returns true to indicate success (such an element exists), or returns false if no such desired
expression exists.

Logical Expressions

Gosu logical expressions use standard logical operators to evaluate the expression in terms of the Boolean values
of true and false. Most often, logical expressions include items that are explicitly set to either true or false or
evaluate to true or false. However, they can also include the following:

• Number values (both positive and negative numbers, regardless of their actual value) and the String value
"true", coerce to true if used with Boolean operators.

• String values other than the value "true", which all coerce to false if used with Boolean operators

• The Number 0, which coerces to false if used with Boolean operators

• The value null, which coerces to false if used with Boolean operators.

Expression Result

7 != 7 false

"3" <> 3 false

3 <> 5 true

Expression Result

eval("2 + 2") 4

eval(3 > 4 ? true : false) false
82 Chapter 6: Gosu Operators and Expressions

Gosu Reference Guide

See also

For important differences between the types Boolean and boolean, as well as differences in coercion rules, see
“Boolean Values” on page 64.

Supported Logical Operators

Gosu supports the following logical expressions:

• Logical AND

• Logical OR

• Logical NOT

As logical expressions are evaluated from left to right, they are tested for possible short-circuit evaluation using
the following rules:

• true OR any-expression always evaluates to true – Gosu only runs and evaluates any-expression if the
expression before the AND is true. So, if Gosu determines the expression before the AND evaluates to true,
the following expression is not evaluated.

• false AND any-expression always evaluates to false – Gosu only runs and evaluates any-expression if the
expression before the AND is true. So, if Gosu determines the expression before the AND evaluates to false,
the following expression is not evaluated.

Logical AND

Gosu uses either and or && to indicate a logical AND expression. The operands must be of the Boolean data type
(or any type convertible to Boolean). The result is always Boolean.

Syntax

a and b
a && b

Examples

Logical OR

Gosu uses either or or || to indicate a logical OR expression. The operands must be of the Boolean data type (or
any type convertible to Boolean). The result is always Boolean.

Syntax

a or b
a || b

Examples
.

Expression Result

(4 > 3) and (3 > 2) (true/true) = true

(4 > 3) && (2 > 3) (true/false) = false

(3 > 4) and (3 > 2) (false/true) = false

(3 > 4) && (2 > 3) (false/false) = false

Expression Result

(4 > 3) or (3 > 2) (true/true) = true

(4 > 3) || (2 > 3) (true/false) = true

(3 > 4) or (3 > 2) (false/true) = true

(3 > 4) || (2 > 3) (false/false) = false
Logical Expressions 83

Gosu Reference Guide

Logical NOT

To indicate a logical negation (a logical NOT expression), use either the keyword not or the exclamation point
character (!), also called a bang. The operand must be of the Boolean data type or any type convertible to
Boolean. The result is always Boolean.

Syntax

not a
!a

Examples

The following examples illustrate how to use (or not use) the NOT operator.

• Bad example – The following is a bad example of how to use the logical NOT operator.
if (not PolicyLine.BOPLiabilityCov.Limit ==

PolicyLine.PolicyPeriod.MostRecentPriorBoundRevision.BOPLine.BOPLiabilityCov.Limit) {
return true
}

This example causes an error if it runs because Gosu associates the NOT operator with the variable to its right
before it evaluates the expression. In essence, the expression becomes:
if (false == PolicyLine.PolicyPeriod.MostRecentPriorBoundRevision.BOPLine.BOPLiabilityCov.Limit)

which causes a class cast exception during the comparison, as follows:
'boolean (false)' is not compatible with Limit

• Better example – The following is a better example of how to use the NOT operator.
if (not (PolicyLine.BOPLiabilityCov.Limit ==

PolicyLine.PolicyPeriod.MostRecentPriorBoundRevision.BOPLine.BOPLiabilityCov.Limit)) {
return true
}

In this example, the extra parentheses force the desired comparison, then associate the NOT operator with it.

• Preferred example – Use the following approach for writing code of this type.
if (PolicyLine.BOPLiabilityCov.Limit !=

PolicyLine.PolicyPeriod.MostRecentPriorBoundRevision.BOPLine.BOPLiabilityCov.Limit) {
return true
}

As can be seen, there was no actual need to use the NOT operator in this expression. The final code expression
is somewhat simpler and does exactly what is asked of it.

Typeis Expressions

Gosu uses the operator typeis to test type information of an object. For more information, see “Basic Type
Checking” on page 259.

New Object Expressions

Gosu uses the new operator to create an instance of a type. The type can be a Gosu class, a Java class, an array.

You can use the new operator with any valid Gosu type, Java type, or an array. At least one constructor (creation
function) must be exposed on a type to construct an instance of the type with the new operator.

Expression Result

!true false

not false true

!null true

not 1000 false
84 Chapter 6: Gosu Operators and Expressions

Gosu Reference Guide

Syntax In General Case

new javaType ([arguments]) // Square brackets indicate optional constructor arguments.
new arrayType [sizeExpression] // Square brackets are required characters.
new arrayType [] {[arrayValueList]} // Square brackekts indicate an optional value list.

If you pass arguments to the new operator, Gosu passes those arguments to the constructor. There might be
multiple constructors defined, in which case Gosu uses the types and numbers of objects to choose which
constructor to call.

Examples

Expression Result

new java.util.HashMap(8) Creates an instance of the HashMap Java class.

new String[12] Creates a String array with 12 members with no initial values.

new String[] {"a", "b", "c"} Creates a String array with three members, initialized to "a", "b", and "c".
New Object Expressions 85

Gosu Reference Guide

Optionally Omit Type Name with the new Keyword When Type is Determined From Context

If the type of the object is determined from the programming context, you can omit the type name entirely in the
object creation expression with the new keyword.

For example, first declare a variable to a specific type. Next, assign that variable a new object of that type in a
simple assignment statement that omits the type name:

// Declare a variable explicitly with a type.
var s : String

// Create a new empty string.
s = new()

You can also omit the type name if the context is a method argument type:

class SimpleObj {
}

class Test {
 function doAction (arg1 : SimpleObj) {
 }
}

var t = new Test()

// The type of the argument in the doAction method is predetermined,
// therefore you can omit the type name if you create a new instance as a method argument.
t.doAction(new())

The following is a more complex example using both local variables and class variables:
class Person {
 private var _name : String as Name
 private var _age : int as Age
}

class Tutoring {
 private var _teacher : Person as Teacher
 private var _student : Person as Student
}

// Declare a variable as a specific type to omit the type name in the "new" expression
// during assignment to that variable.
var p : Person
var t : Tutoring
p = new() // type name omitted
t = new() // type name omitted

// If a class var or other data property has a declared type, optionally omit the type name.
t.Teacher = new()
t.Student = new()

// Optionally omit 'new' keyword and still use the Gosu initialization syntax.
t.Student = { :Name = "Bob Smith", :Age = 30 }

Omitting the new keyword can improve readability of creating XML objects when using XSD-based types. Types
imported from XSDs sometimes have complex and hard to read type names.

For more information about object initializer syntax, see “Object Initializer Syntax” on page 86

Object Initializer Syntax

Object initializers allow you to set properties on an object immediately after a new expression. In other words,
you can assign properties as part of creating a new object. Use object initializers for compact and clear object
declarations. They are especially useful if combined with data structure syntax and nested objects.

A simple version looks like the following:
var sampleClaim = new Claim(){ :ClaimId = "TestID" }
86 Chapter 6: Gosu Operators and Expressions

Gosu Reference Guide

The syntax is simple: after a constructor, open a curly brace and then add pairs of property name equals values,
followed by a close brace. After a constructor, open a curly and then add pairs of property name equals values.
Each name/value pair has the following syntax:

:propertyName = value

Notice that the property name has a colon before it. For multiple properties, separate multiple name/value pairs
by commas.

For example, suppose you have the following code:
var myFileContainer = new my.company.FileContainer()
myFileContainer.DestFile = jarFile
myFileContainer.BaseDir = dir
myFileContainer.Update = true
myFileContainer.WhenManifestOnly = ScriptEnvironment.WHEN_EMPTY_SKIP

Instead, you can use object initializers to simplify this code to the following:
var myFileContainer = new my.company.FileContainer() { :DestFile = jarFile, :BaseDir = dir,

:Update = true, :WhenManifestOnly = ScriptEnvironment.WHEN_EMPTY_SKIP }

Another case where this syntax is useful is naturally expressing a nested object tree, such as XML data.

For example, suppose you have the following code:
using xsd.test.*

var simpleTest = new SimpleTest()
simpleTest.id = "Root"

var test2 = new Test2()
test2.id = "test"

simpleTest.test2s.add(test2)
simpleTest.test2s.add(new Test2())
simpleTest.test2s.get(1).final = true
simpleTest.test2s.get(1).Test1 = new TestType()

var test1 = new xsd.test.TestType()
test1.color = Red; // Note that Gosu can infer what enum class is appropriate!
test1.number = 5

simpleTest.test4s.add(test1)
simpleTest.test3 = Blue // Since this is a simple child element, you access its value directly

return simpleTest.toXML()

You can instead naturally express it as:
using xsd.test.*

var simpleTest = new SimpleTest(){ :id = "Root", :test3 = Blue,

:test2s = { new Test2(){ :id = "test" },
new Test2(){ :final = true, :Test1 = new TestType() } },

:test4s = { new TestType(){ :color = Red, :number = 5 } }
}

return simpleTest.toXML()

The object initializer syntax more clearly expresses the nested nature of the XML nodes, clarifying what the
generated XML looks like.

Special Syntax for Initializing Lists, Collections, and Maps

There are specialized initializer syntax and rules for creating new lists, collections, and maps. For more informa-
tion, “Basic Lists” on page 183 and “Basic Hash Maps” on page 185.

Relational Expressions

Gosu relational operators support all types of objects that implements the java.lang.Comparable interface, not
just numbers. Relational expressions return a Boolean value (true or false) indicating the result of a compar-
ison between two expressions. Relational expressions consist of the following types:
Relational Expressions 87

Gosu Reference Guide

• > Operator

• >= Operator

• < Operator

• <= Operator

It is possible to string together multiple relatational operators to compare multiple values. Add parenthesis
around each individual expression. For example, the following expression ultimately evaluates to true:

((1 <= 2) <= (3 > 4)) >= (5 > 6)

The first compound expression evaluates to false ((1 <= 2) <= (3 > 4)) as does the second expression
(5 > 6). However, the larger expression tests for greater than or equal. Therefore, as false is equal to false, the
entire expression evaluates to true.

> Operator

The “>” operator tests two expressions for a “greater than” relationship. The operands can be either Number,
String, or DateTime data types. The result is always Boolean.

Syntax

expression1 > expression2

Examples

>= Operator

The “>=” operator tests two expressions for a “greater than or equal” relationship. The operands can be either
Number, String, or DateTime data types. The result is always Boolean.

Syntax

expression1 >= expression2

Examples

< Operator

The “<” operator tests two expressions for a “less than” relationship. The operands can be either Number, String,
or DateTime data types. The result is always Boolean.

Syntax

expression1 < expression2

Expression Result

8 > 8 false

"zoo" > "apple" true

5 > "6" false

currentDate > policyEffectiveDate true

Expression Result

8 >= 8 true

"zoo" >= "zoo" true

5 >= "6" false

currentDate >= policyEffectiveDate true
88 Chapter 6: Gosu Operators and Expressions

Gosu Reference Guide

Examples

<= Operator

The “<=” operator tests two expressions for a “less than or equal to” relationship. The operands can be either
Number, String, or DateTime data types. The result is always Boolean.

Syntax

expression1 <= expression2

Examples

Unary Expressions

Gosu supports the following unary (single operand) expressions:

• Numeric Negation

• Typeof Expressions

• Importing Types and Package Namespaces

• Bit-wise NOT

The following sections describe these expressions. The value of a typeof expression cannot be fully determined
at compile time. For example, an expression at compile time might resolve as a supertype. At run time, the
expression may evaluate to a more specific subtype.

Numeric Negation

Gosu uses the “-” operator to indicate numeric negation. The operand must be of the Number data type. The result
is always a Number.

Syntax

-value

Examples

Expression Result

8 < 5 false

"zoo" < "zoo" false

5 < "6" true

currentDate < policyEffectiveDate false

Expression Result

8 <= 5 false

"zoo" <= "zoo" true

5 <= "6" true

currentDate <= policyEffectiveDate false

Expression Result

-42 -42

-(3.14 - 2) -1.14
Unary Expressions 89

Gosu Reference Guide

Typeof Expressions

Gosu uses the operator typeof to determine meta information about the type to which an expression evaluates.
The operand can be any valid data type. The result is the type of the expression. For more information, see “Basic
Type Checking” on page 259.

Bit-wise NOT

The bit-wise NOT operator treats a numeric value as a series of bits and inverts them. This is different from the
logical NOT operator (!), which treats the entire numeral as a single Boolean value. In the following example, the
logical NOT operator assigns a Boolean value of true to x if y is false, or false if y is true:

x = !y

However, in the following example, the bit-wise NOT operator (~) treats a numerical value as a set of bits and
inverts each bit, including the sign operator. For example, the decimal number 7 is the binary value 0111 with a
positive sign bit. If you use the bit-wise NOT, the expression ~7 evaluates to the decimal value -8. The binary
value 0111 reverses to 1000 (binary value for 8), and the sign bit changes as well to -8.

Use the bit-wise NOT operation to manipulate a bit mask. A bit mask is a technique in which number or byte field
maintains the state of many items where flags map to each binary digit (bit) in the field.

Importing Types and Package Namespaces

To use types and namespaces in Gosu scripts without fully qualifying the full class name including the package,
use the Gosu uses operator. The uses operator behaves in a similar fashion to the Java language’s import
command, although note a minor difference mentioned later in the section. By convention, put uses imports at
the beginning of the file or script.

While the uses operator is technically an unary operator in that it takes a single operand, the functionality it
provides is only useful with a second statement. In other words, the only purpose of using a uses expression is to
simplify other lines of code in which you can omit the fully-qualified type name.

Syntax

After the uses operator, specify a package namespace or a specific type such as a fully-qualified class name:
uses type
uses namespace

Namespaces can be specified with an asterisk (*) character to indicate a hierarchy, such as:
uses toplevelpackage.subpackage.*

Example 1

The following code uses a fully-qualified type name:
var map = new java.util.HashMap()

Instead, you can use the following code that declares an explicit type with the uses operator:
// This "uses" expression...
uses java.util.HashMap

// Use this simpler expression without specifying the full package name:
var map = new HashMap()

Example 2

The following code uses a fully-qualified type name:
var map = new java.util.HashMap()

Instead, you can use the following code that declares a package hierarchy with the uses operator:
// This "uses" expression...
uses java.util.*
90 Chapter 6: Gosu Operators and Expressions

Gosu Reference Guide

// Use this simpler expression without specifying the full package name:
var map = new HashMap()

Note: Explicit types always have precedence over wildcard namespace references. This is different
compared to the behavior of the Java import operator.

Packages Always in Scope

Some built-in packages are always in scope, which means you do not need to use fully-qualified type names or
the uses operator for these types. These include the following packages:

• soap.* – only if SOAP type loader is available

• xsd.* – only if XML/XSD type loader is available

No packages always in scope refer to Java language types. It may appear that some Java packages are always in
scope because Boolean, String, Number, List, and Object do not require qualification. However, those do not
need full package qualification because these are built-in types.

The type List is special in the Gosu type system. Gosu resolves it to java.util.List in general use but it
resolves to java.util.ArrayList in the special case where it is used in a new expression. For example, the
following code creates an ArrayList but issues a warning suggesting instead using ArrayList:

var x = new List()

Conditional Ternary Expressions

A conditional ternary expression uses the Boolean value of one expression to decide which of two other expres-
sions to evaluate. A question mark (?) separates the conditional expression from the alternatives, and a colon (:)
separates the alternatives from each other. In other programming languages, ternary expressions are sometimes
known as using the conditional operator or ternary operator, one which has three operands instead of two.

Syntax

conditionalExpression ? trueExpression : falsExpression

The second and third operands that follow the question mark (?) must be of compatible types.

At run time, Gosu evaluates the first operand, the conditional expression. If the conditional expression evaluates
to true, Gosu evaluates the second operand, the expression that follows the question mark. It ignores the third
operand, the expression that follows the colon. Conversely, if the conditional expression evaluates to false,
Gosu ignores the second operand, the true expression, and the evaluates the third operand, the false expression.

For example, consider the following ternary expression:
myNumberVar > 10 ? print("Bigger than 10") : print("10 or less")

At run time, if the value of myNumberVar is greater than 10, Gosu prints “Bigger than 10”. Conversely, if the
value of myNumberVar is 10 or less, Gosu prints “10 or less”.

Examples

Ternary Expression Types at Run Time and Compile Time

At run time, the type of a ternary expression is the type of the true expression or the false expression, depending
on how the conditional expression evaluates. Often with ternary expressions, the true and false expressions eval-
uate to the same type, but not always.

Ternary expression Evaluation result

3 > 4 ? true : false false

3*3 == 9 ? true : false true
Conditional Ternary Expressions 91

Gosu Reference Guide

For example, consider the following ternary expression.
var ternaryResult = aContact.Status == "new" ? "hello" : false

In the example, the true expression is of type String and the false expression is of type Boolean. If at run time
the contact is new, ternaryResult is of type String, and its value is hello. Conversely, if the contact is not new,
ternaryResult is of type Boolean, and its value is false. Although the true expression and the false expression
are of different types, their types are compatible because String and Boolean descend from Object.

At compile time, if the true and false expressions are of different types, Gosu reconciles the type of the ternary
expression to the type of their nearest common ancestor. Gosu requires that the types of the true and false expres-
sions in a ternary expression be compatible so Gosu can reconcile their types. If they have no common ancestor,
the type at compile time of the ternary expression is Object.

For example, reconsider the earlier example.
var ternaryResult = aContact.Status == "new" ? "hello" : false

At compile time, Gosu sets the type of ternaryResult to Object. Because Gosu implicitly declares its type as
Object, the ternaryResult variable can hold instances of type String and of type Boolean. The following
example makes the type as set by the compiler explicit.

// The type of a ternary expression is the common acestor type of its true and false expressions.
var ternaryResult : Object = aContact.Status == "new" ? "hello" : false

At run time, the type evaluation of the ternary expression and the ternaryResult variable varies depending on
the current state of the system. Several different type checking keywords produce varying results. For example, if
the contact in the following example is new, ternaryResult is of type String, although its static type remains
Object.

var ternaryResult = aContact.Status == "new" ? "hello" : false // Contact is new.

print(ternaryResult typeis Object)
print(ternaryResult typeis String)
print(ternaryResult typeis Boolean)
print(typeof ternaryResult)
print(staticTypeOf ternaryResult)

The preceding example produces the following output.
true
true
false
String
Object

Conversely, if the contact in the following example is not new, ternaryResult is of type Boolean, although its
static type remains Object.

var ternaryResult = aContact.Status == "new" ? "hello" : false // Contact is not new.

print(ternaryResult typeis Object)
print(ternaryResult typeis String)
print(ternaryResult typeis Boolean)
print(typeof ternaryResult)
print(staticTypeOf ternaryResult)

The preceding example produces the following output.
true
false
true
Boolean
Object

Primitive Type Coercion and Ternary Expressions

If the true or false expression in a ternary expression is of a primitive type, such as int or boolean, Gosu first
coerces the primitive type to its boxed version. Then, Gosu searches the type hierarchy for a common ancestor
type. For example, Gosu coerces the primitive type boolean to its boxed type Boolean.
92 Chapter 6: Gosu Operators and Expressions

Gosu Reference Guide

Recursive Use of Ternary Expressions

Gosu supports recursive use of ternary expressions. The second and third operands, the true and false expres-
sions, can themselves be ternary expressions. The ternary operator is syntactically right-associative

For example, the recursive ternary expression a ? b : c ? d : e ? f : g evaluates with the explicit order of
precedence a ? b : (c ? d : (e ? f : g)). At run time, the ternary expression reduces itself to one of the
expressions b, d, f, or g.

See also

• For details of Boolean logic evaluation, see “Logical Expressions” on page 82.

• For more about type coercion and type checking, see “Type System” on page 257.

• For more about primitive and boxed types, see “Working with Primitive Types” on page 265.

Special Gosu Expressions

The following sections describe various ways of working with Gosu expressions:

• Static Method Calls

• Function Calls

• Static Property Paths

• Handling Null Values In Expressions

Function Calls

This expression calls a function with an optional list of arguments and returns the result.

Syntax

functionName(argumentList)

Examples

Static Method Calls

Gosu uses the following syntax to call a static method on a type.

Syntax

typeExpression.staticMethodName(argumentList)

Examples

For more information about static methods and the static operator, see “Modifiers” on page 135

Expression Result

now() Current Date

concat("limited-", "coverage") "limited-coverage"

Expression Result

Person.isAssignableFrom(type) true/false

java.lang.System.currentTimeMillis() Current time

java.util.Calendar.getInstance() Java Calendar
Special Gosu Expressions 93

Gosu Reference Guide

Static Property Paths

Gosu uses the dot-separated path rooted at a Type expression to retrieve the value of a static property.

Syntax

TypeExpression.StaticProperty

Examples

For more information about static properties in classes, see “Modifiers” on page 135.

Handling Null Values In Expressions

Null-safe Property Access

A property path expression in Gosu is a series of property accesses in series, for example x.P1.P2.P3. There are
two different operators you can use in Gosu to get property values:

• The standard period operator “.”, which can access properties or invoke methods.The null-safe period oper-
ator “?.”, which can access properties or invoke methods in a null-safe way. For properties, this is the same as
the standard period operator.

How the Standard Period Operator Handles Null

The standard “.” operator is not null-safe.

For example, suppose that you have an expression similar to the following:
var groupType = claim.AssignedGroup.GroupType

At run time, if claim or claim.AssignedGroup is null, Gosu throws a NullPointerException exception.

If the expression contains a method call, the rules are similar. For example:
var groupType = claim.myAction()

At run time, if claim is null, Gosu throws a NullPointerException exception.

How the Null-Safe Period Operator Handles Null

In contrast to the standard period character operator, the null-safe period operator ?. always returns null if the
left side of the operator is null. This works both for accessing properties and for invoking methods. If the left
side of the operator is null, Gosu does not evaluate the right side of the expression.

The following example uses the null-safe period operator:
var s : String = null;

var result = s?.length

Although the variable called result has the value null, the code does not throw any exception. If you use the
regular period operator instead, Gosu throws a null pointer exception.

Expression Result

Claim.TypeInfo Claim typeInfo

java.util.Calendar.FRIDAY Friday value
94 Chapter 6: Gosu Operators and Expressions

Gosu Reference Guide

Null-safe Default Operator

Sometimes you might need to return a different value based on whether some expression evaluates to null. The
Gosu operator ?: results in the value of the left-hand-side if it is non-null, avoiding evaluation of the right-hand-
side. If the left-hand side expression is null, Gosu evaluates the right-hand-side and returns that result.

For example, suppose there is a variable str of type String. At run time the value contains either a String or
null. Perhaps you want to pass the input to a display routine. However, if the value of str is null, you want to
use a default value rather than null. Use the ?: operator as follows:

var result = str ?: "(empty)" // return str, but if the value is null return a default string

Null-safe Indexing for Arrays, Lists, and Maps

For objects such as arrays and lists, you can access items by index number, such as myArray[2]. Similarly, with
maps (java.util.Map objects), you can pass the key value to obtain the value. For example with a Map<String,
Integer>, you could use the expression myMap["myvalue"]. The challenge with indexes is that if the object at
run time has the value null, code like this throws a null pointer exception.

Gosu provides an alternative version of the indexing operator that is null-safe. Instead of simply typing the
indexing subexpression, such as [2] after an object, prefix the expression with a question mark character. For
example:

var v = myArray?[2]

If the value to the left of the question mark is null, the entire expression for the operator returns null. If the left-
hand-operand is not null, Gosu looks inside the index subexpression and evaluates it and indexes the array, list
or map. Finally, Gosu returns the result, just like the regular use of the angled brackets for indexing lists, arrays,
and maps.

Null-safe Math Operators

Gosu provides null-safe versions of common math operators.

For example, the standard operators for addition, subtraction, multiplication, division, and modulo are as
follows: +, -, *, /, and %. If you use these standard operators and either side of the operator is null, Gosu throws
a NullPointerException exception.

In contrast, the null-safe operators are the same symbols but with a question mark (?) character preceding it. In
other words, the null-safe operators are: ?+, ?-, ?*, ?/, and ?%.
Handling Null Values In Expressions 95

Gosu Reference Guide

96 Chapter 6: Gosu Operators and Expressions

chapter 7

Statements

This topic describe important concepts in writing more complex Gosu code to perform operations required by
your business logic.

This topic includes:

• “Gosu Statements” on page 97

• “Gosu Variables” on page 98

• “Gosu Conditional Execution and Looping” on page 102

• “Gosu Functions” on page 106

Gosu Statements

A Gosu expression has a value, while Gosu statements do not. Between those two choices, if it is possible to pass
the result as an argument to a function, then it is an expression. If it is not possible, then it is a statement.

For example, the following are all Gosu expressions as each results in a value:
5 * 6
typeof 42
exists (var e in Claim.Exposures where e == null)

The following are all Gosu statements:
print(x * 3 + 5)
for (i in 10) { ... }
if(a == b) { ... }

Note: Do not confuse statement lists with expressions or Gosu blocks. Blocks are anonymous functions that
Gosu can pass as objects, even as objects passed as function arguments. For more information, see “Gosu
Blocks” on page 165.

Statement Lists

A statement list is a list containing zero or more Gosu statements beginning and ending with curly braces “{” and
“}”, respectively.
Statements 97

Gosu Reference Guide

It is the Gosu standard always to omit semicolon characters in Gosu at the end of lines. Code is more readable
without optional semicolons. In the more rare cases in which you type multiple statement lists on one line, such
as within block definitions, use semicolons to separate statements. For other style guidelines, see “General
Coding Guidelines” on page 285.

Syntax

{ statement-list }

Multi-line Example (No semicolons)

{
var x = 0
var y = myfunction(x)

print(y)
}

Single-line Example (Semicolons)

var adder = \ x : Number, y : Number -> { print("I added!"); return x + y; }

Gosu Variables

To create and assign variables, consider the type of the variable as well as its value.

• Variable Type Declaration

• Variable Assignment

Variable Type Declaration

If a type is specified for a variable, the variable is considered strongly typed, meaning that a type mismatch error
results if an incompatible value is assigned to the variable. Similarly, if a variable is initialized with a value, but
no type is specified, the variable is strongly typed to the type of the value. The only way to declare a variable
without a strong type is to initialize it with a null value without a type specified. Note, however, the variable
takes on the type of the first non-null value assigned to it.

Syntax

var identifier [: type-literal] = expression
var identifier : type-literal [= expression]

Examples

var age = 42
var age2 : Number
var age3 : Number = "42"
var c : Claim
...

Variable Assignment

Gosu uses the standard programming assignment operator = to assign the value on the right-side of the statement
to the item on the left-side of the statement.

Syntax

variable = expression

Examples

count = 0
time = now()
98 Chapter 7: Statements

Gosu Reference Guide

Gosu also supports compound assignment operators that perform an action and assign a value in one action. The
following lists each compound operator and its behavior. The examples assume the variables are previous
declared as int values.

Operator Description Examples

= Simple assignment to the variable on the
left-hand side of the operator with the value
on the right-hand side.

i = 10

Assigns value 10.

+= Increases the value of the variable by the
amount on the right-hand side of the opera-
tor. Next, Gosu assigns this result to the
variable on the left-hand side.

i = 10
i += 3

Assigns value 13.

-= Increases the value of the variable by the
amount on the right-hand side of the opera-
tor. Next, Gosu assigns this result to the
variable on the left-hand side.

i = 10
i -= 3

Assigns value 7.

*= Multiplies the value of the variable by the
amount on the right-hand side of the opera-
tor. Next, Gosu assigns this result to the
variable on the left-hand side.

i = 10
i *= 3

Assigns value 30.

/= Divides the value of the variable by the
amount on the right-hand side of the opera-
tor.

i = 10
i /= 3

Assigns value 3.

For the int type, there is no fraction. If you used a floating-point-
ing type, the value would be 3.333333.

%= Divides the value of the variable by the
amount on the right-hand side of the opera-
tor, and returns the remainder. Next, Gosu
assigns this result to the variable on the
left-hand side.

i = 10
i %= 3

Assigns value 1.

This is 10 - (3.3333 as int)*3

&= Performs a bitwise AND operation with the
original value of the variable and value on
the right-hand side of the operator. Next,
Gosu assigns this result to the variable on
the left-hand side.

i = 10

i &= 15

Assigns value 10.

The decimal number 10 is 1010 binary. The decimal number 15 is
1111 binary. This code does a bitwise AND between value 1010
and 1111. The result is binary 1010, which is decimal 10.

Contrast with this example:

i = 10

i &= 13

Assigns value 8.

The decimal number 10 is 1010 binary. The decimal number 13 is
1101 binary. This does a bitwise AND between value 1010 and
1101. The result is binary 1000, which is decimal 8.
Gosu Variables 99

Gosu Reference Guide

^= Performs a bitwise exclusive OR operation
with the original value of the variable and
value on the right side of the operator. Next,
Gosu assigns this result to the variable on
the left-hand side.

i = 10

i ^= 15

Assigns value 5.

The decimal number 10 is 1010 binary. The decimal number 15 is
1111 binary. This code does a bitwise exclusive OR with value
1010 and 1111. The result is binary 0101, which is decimal 5.

Contrast with this example:

i = 10

i ^= 13

Assigns value 7.

The decimal number 10 is 1010 binary. The decimal number 13 is
1101 binary. This does a bitwise AND between value 1010 and
1101. The result is binary 0111, which is decimal 7.

|= Performs a bitwise inclusive OR operation
with the original value of the variable and
value on the right side of the operator. Next,
Gosu assigns this result to the variable on
the left-hand side.

i = 10

i |= 15

Assigns value 15.

The decimal number 10 is 1010 binary. The decimal number 15 is
1111 binary. This code does a bitwise inclusive OR with value
1010 and 1111. The result is binary 1111, which is decimal 15.

Contrast with this example:

i = 10

i |= 3

Assigns value 11.

The decimal number 10 is 1010 binary. The decimal number 13 is
1101 binary. This does a bitwise AND between value 1010 and
1101. The result is binary 0111, which is decimal 11.

<<= Performs a bitwise left shift with the original
value of the variable and value on the right
side of the operator. Next, Gosu assigns
this result to the variable on the left-hand
side.

i = 10

i <<= 1

Assigns value 20.

The decimal number 10 is 01010 binary. This code does a bitwise
left shift of 01010 one bit to the left. The result is binary 10100,
which is decimal 20.

Contrast with this example:

i = 10

i <<= 2

Assigns value 40.

The decimal number 10 is 001010 binary. This code does a bit-
wise left shift of 001010 one bit to the left. The result is binary
101000, which is decimal 40.

Operator Description Examples
100 Chapter 7: Statements

Gosu Reference Guide

Compound Assignment Compared to Expressions

The table above lists a variety of compound assignment operators, such as ++, --, and +=.

It is important to note that these operators form statements, rather than expressions.

>>= Performs a bitwise right shift with the origi-
nal value of the variable and value on the
right side of the operator. Next, Gosu
assigns this result to the variable on the
left-hand side.

IMPORTANT: for signed values, this opera-
tor automatically sets the high-order bit with
its previous value for each shift. This pre-
serves the sign (positive or negative) of the
result. For signed integer values, this is the
usually the appropriate behavior. Contrast
this with the >>>= operator.

i = 10

i >>= 1

Assigns value 5.

The decimal number 10 is 1010 binary. This code does a bitwise
right shift of 1010 one bit to the right. The result is binary 0101,
which is decimal 5.

Contrast with this example:

i = -10

i >>= 2

Assigns value -3.

The decimal number -10 is 11111111 11111111 11111111 11110110
binary. This code does a bitwise right shift two bits to the right, fill-
ing in the top sign bit with the 1 because the original number was
negative. The result is binary 11111111 11111111 11111111
11111101, which is decimal -3.

>>>= Performs a bitwise right shift with the origi-
nal value of the variable and value on the
right side of the operator. Next, Gosu
assigns this result to the variable on the
left-hand side.

IMPORTANT: this operator sets the high-
order bit with its previous value for each
shift to zero. For unsigned integer values,
this is the usually the appropriate behavior.
Contrast this with the >>= operator.

i = 10

i >>>= 1

Assigns value 5.

The decimal number 10 is 1010 binary. This code does a bitwise
right shift of 1010 one bit to the right. The result is binary 0101,
which is decimal 5.

Contrast with this example:

i = -10

i >>>= 2

Assigns value 1073741821.

The negative decimal number -10 is 11111111 11111111 11111111
11110110 binary. This code does a bitwise right shift two bits to the
right, with no filling of the top bit. The result is binary 00111111
11111111 11111111 11111101, which is decimal 1073741821. The
original was a negative number, but in this operator that bit value
is filled with zeros for each shift.

++ unary
operator

Adds one to the current value of a variable.
Also known as the increment-by-one oper-
ator. The unary ++ and -- operators must
always appear after the variable name

IMPORTANT: See related information in
“Compound Assignment Compared to
Expressions” on page 101.

i = 10

i++

Assigns value 11.

-- unary
operator

Subtracts one from the current value of a
variable. Also known as the decrement-by-
one operator. The unary ++ and -- opera-
tors must always appear after the variable
name

IMPORTANT: See related information in
“Compound Assignment Compared to
Expressions” on page 101.

i = 10

i--

Assigns value 9.

Operator Description Examples
Gosu Variables 101

Gosu Reference Guide

This means that the following Gosu is valid
while(i < 10) {

i++
print(i)

}

However, the following Gosu is invalid because statements are impermissible in an expression, which Gosu
requires in a while statement:

while(i++ < 10) { // Compilation error!
print(i)

}

It is important to understand that Gosu supports the increment and decrement operator only after a variable, not
before a variable. In other words, i++ is valid but ++i is invalid. The ++i form exists in other languages to
support expressions in which the result is an expression that you pass to another statement or expression. As
mentioned earlier, in Gosu these operators do not form an expression. Thus you cannot use increment or decre-
ment in while declarations, if declarations, and for declarations. Because the ++i style exists in other languages
to support forms that are unsupported in Gosu, Gosu does not support the ++i form of this operator.

IMPORTANT Gosu supports the ++ operator after a variable, such as i++. Using it before the variable,
such as ++i is unsupported and generates compiler errors.

Gosu Conditional Execution and Looping

Gosu uses the following constructions to perform program flow:

• If() … Else() Statements

• For() Statements

• While() Statements

• Do…While() Statements

• Switch() Statements

If() … Else() Statements

The most commonly used statement block within the Gosu language is the if() block. The if() block uses a
multi-part construction. The else() block is optional.

Syntax

if (<expression>) <statement>
[else <statement>]

Example

if(a == b) { print("a equals b") }

if(a == b || b == c) { print("a equals b or b equals c") }
else { print("a does not equal b and b does not equal c") }

if(a == b) { print("a equals b") }
else if(a == c) { print("a equals c") }
else { print("a does not equal b, nor does it equal c") }

To improve the readability of your Gosu code, Gosu automatically downcasts after a typeis expression if the
type is a subtype of the original type. This is particularly valuable for if statements and similar Gosu structures.
Within the Gosu code bounded by the if statement, you do not need to do casting (as TYPE expressions) to that
subtype. Because Gosu confirms that the object has the more specific subtype, Gosu implicitly considers that
variable’s type to be the subtype, at least within that block of code. For details, see “Basic Type Checking” on
page 259
102 Chapter 7: Statements

Gosu Reference Guide

For() Statements

The for(...in...) statement block uses a multi-part construction.

Syntax

for (<identifier> in <expression> [index <identifier>]) { <statement> }

The scope of the <identifier> is limited to the statement block itself. The <expression> in the in clause must
evaluate to one of the following:
• Array

• Java List (or any Java collection)

• Java Iterator

• String (as a list of characters)

See also “List Access Using Array Index Notation” on page 68 for details on using lists as arrays and accessing
list members using array notation.

Note: Gosu provides backwards compatibility for the use of the foreach(...) statement. However, it is
best to use the for(...) statement instead.

Iteration in For() Statements

There are three ways that you can iterate through the members of the list or array contained in the for() state-
ment:

• Automatic Iteration

• Automatic Iteration with Index

• Iterator Method Iteration

Automatic Iteration

Use automatic iteration to iterate automatically through the array or list members. Iteration starts with the initial
member and continues sequentially until terminating at the last member. Specify this type of iteration by using
the following syntax:

for (member in OBJ)

In this case, OBJ must be a list, an array, an interval, or an integer. If it is an integer, Gosu iterates through the list
that many times, and the index variable if defined contains the current zero-based index value.

Examples:
for(property in Claim.TypeInfo.Properties)
for(iteration in 0..|100)
for(iteration in 100)

Automatic Iteration with Index

Use index iteration if you need to determine the exact position of a particular element of an array or list. This
technique adds an explicit index to determine the index value or to access members of the array or list in a non-
sequential fashion using array notation. Specify this type of iteration by using the following syntax:

for (member in OBJ index loopcount)

Example:
//This example prints the index of the highest score in an array of test scores.
//This particular example prints "3".

var testScores = new Number[] {91, 75, 97, 100, 89, 99}
print(getIndexOfHighestScore(testScores))

function getIndexOfHighestScore(scores : Number[]) : Number {

var highIndex = 0

for(score in scores index i) {
Gosu Conditional Execution and Looping 103

Gosu Reference Guide

 if(score > scores[highIndex]) { highIndex = i }
}

return highIndex

}

//Result
3

Iterator Method Iteration

Use this type of iteration if the object over which you are iterating is not a list or array, but it has an iterator.

Specify this type of iteration by using the following syntax:
for(member in object.iterator())

Example
//This example iterates over the color values in a map
var mapColorsByName = new java.util.HashMap()

mapColorsByName.put(new java.awt.Color(1, 0, 0), "red")
mapColorsByName.put(new java.awt.Color(0, 1, 0), "green")
mapColorsByName.put(new java.awt.Color(0, 0, 1), "blue")

for(color in mapColorsByName.values().iterator()) {
 print(color)
}

//Result
red
green
blue

Examples

The following examples illustrate the different methods for iterating through the members of an array or list in a
for() block.

// Example 1: Prints all the letters with the index.
for(var letter in gw.api.util.StringUtil.splitWhitespace("a b c d e") index i) {

print("Letter " + i + ": " + letter)
}

// Example 2: Print a message for the first exposure with 'other coverage'.
for(var exp in Claim.Exposures) {

if(exp.OtherCoverage) { // OtherCoverage is a Boolean property.
print("Found an exposure with other coverage.")

// Transfer control to statement following this for…in statement
break

}
}

// Example 3: Prints numbers 0 - 99 using simple iteration.
for(i in 100) {

print(i + " of 100")
}

// Example 4: Prints all Claim properties using reflection.
for(property in Claim.TypeInfo.Properties) {

print(property)
}

While() Statements

Gosu evaluates the while() expression, and uses the Boolean result (it must evaluate to true or false) to deter-
mine the next course of action:

• If the expression is initially true, Gosu executes the statements in the statement block repeatedly until the
expression becomes false. At this point, Gosu exits the while statement and continues statement execution
at the next statement after the while() statement.
104 Chapter 7: Statements

Gosu Reference Guide

• If the expression is initially false, Gosu never executes any of the statements in the statement block, and
continues statement execution at the next statement after the while() statement.

Syntax

while(<expression>) {
<statements>

}

Example

// Print the digits
var i = 0

while(i < 10) {
print(i)
i = i + 1

}

Do…While() Statements

The do...while() block is similar to the while() block in that it evaluates an expression and uses the Boolean
result to determine the next course of action. The principal difference, however, is the Gosu tests the expression
for validity after executing the statement block, instead of prior to executing the statement block. This means
that the statements in the statement block executes at least once (initially).

• If the expression is initially true, Gosu executes the statements in the statement block repeatedly until the
expression becomes false. At this point, Gosu exits the do...while() block and continues statement execu-
tion at the next statement after the do...while() statement.

• If the expression is initially false, Gosu executes the statements in the statement block once, then evaluates
the condition. If nothing in the statement block has changed so that the expression still evaluates to false,
Gosu continues statement execution at the next statement after the do...while() block. If action in the state-
ment block causes the expression to evaluate to true, Gosu executes the statement block repeatedly until the
expression becomes false, as in the previous case.

Syntax

do {
<statements>

} while(<expression>)

Example

// Print the digits
var i = 0

do {
print(i)
i = i + 1

} while(i < 10)

Switch() Statements

Gosu evaluates the switch() expression, and uses the result to choose one course of action from a set of multiple
choices. Gosu evaluate the expression, then iterates through the case expressions in order until it finds a match.

• If a case value equals the expression, Gosu execute its accompanying statement list. Statement execution
continues until Gosu encounters a break statement, or the switch statement ends. Gosu continues to the next
case (Gosu executes multiple case sections) if you omit the break statement.

• If no case value equals the expression, Gosu skips to the default case, if one exists. The default case is a case
section with the label default: rather than case VALUE:. The default case must be the last case in the list of
sections.

The switch() statement block uses a multi-part construction. The default statement is optional. However, in most
cases, it is best to implement a default case to handle any unexpected conditions.
Gosu Conditional Execution and Looping 105

Gosu Reference Guide

Syntax

switch(<expression>) {
case label1 :

[statementlist1]
[break]

[...
[case labelN :

[statementlistN]
[break]]]

[default :
[statementlistDefault]]

}

Example

switch(strDigitName) {
case "one":

strOrdinalName = "first"
break

case "two":
strOrdinalName = "second"
break

case "three":
strOrdinalName = "third"
break

case "five":
strOrdinalName = "fifth"
break

case "eight":
strOrdinalName = "eighth"
break

case "nine":
strOrdinalName = "ninth"
break

default:
strOrdinalName = strDigitName + "th"

}

To improve the readability of your Gosu code, Gosu automatically downcasts the object after a typeis expres-
sion if the type is a subtype of the original type. This is particularly valuable for if statements and similar Gosu
structures such as switch. Within the Gosu code bounded by the if or switch statement, you do not need to do
casting (as TYPE expressions) to that subtype for that case. Because Gosu confirms that the object has the more
specific subtype, Gosu implicitly considers that variable’s type to be the subtype for that block of code. There
are several special cases that turn off the downcasting. For details, see “Basic Type Checking” on page 259.

Gosu Functions

Functions encapsulate a series of Gosu statements to perform an action and optionally return a value. Generally
speaking, functions exist attached to a type. For example, declaring functions within a class. As in other object-
oriented languages, functions declared on a type are also called methods.

In the context of a Gosu program (a .gsp file), you can declare functions at the top level, without attaching them
explicitly to a class. You can then call this function from other places in that Gosu program.

Note: The built-in print function is special because it is always in scope, and is not attached to a type. It is
the only true global function in Gosu.

Gosu does not support functions defined within other functions. However, you can use the Gosu feature called
blocks to do something similar. See “What Are Blocks?” on page 165 for more information.

Unlike Java, Gosu does not support variable argument functions (so-called vararg functions), meaning that Gosu
does not support arguments with “...” arguments.

Gosu permits you to specify only type literals for a function’s return type. Gosu does not support other expres-
sions that might evaluate (indirectly) to a type.

Gosu requires that you provide the return type in the function definition, unless the return type is void (no return
value). If the return type void, omit the type and the colon before it. Also, any return statement must return a
106 Chapter 7: Statements

Gosu Reference Guide

type that matches the declared function return type. A missing return type or a mismatched return value generates
a compiler error.

Syntax

[modifiers] function IDENTIFIER (argument-declaration-list) [:type-literal] {
function-body

}

Examples

function square(n : Number) : Number {
return n * n

}

// Compile error "Cannot return a value from a void function."
private function myfunction() {

return "test for null value"
}

function fibonacci(n : Number) : Number {
 if (n == 0) { return 0 }
 else if (n == 1) { return 1 }
 else {return fibonacci(n - 1) + fibonacci(n - 2) }
}

function concat (str1:String, str2:String) : String {
return str1 + str2

}

IMPORTANT For more information about modifiers that can appear before the word function in class
definitions, see “Modifiers” on page 135.

If the return type is not void, all possible code paths must return a value in a method that declares a return type.

In other words, if any code path contains a return statement, Gosu requires a return statement for all possible
paths through the function. The set of all paths includes all outcomes of conditional execution, such as if and
switch statements.

For example, the following method is invalid:
//invalid...
class MyClass {

function myfunction(myParameter) : boolean {
if myParameter==1

return true
if myParameter==2

return false
}

}

Gosu generates a “Missing Return Statement” error for this function and you must fix this error. The Gosu
compiler sees two separate if expressions for a total of four total code paths. Even if you believe the function is
always used with myParameter set to value 1 or 2 but no other value, you must fix the error. To fix the error,
rewrite the code so that all code paths contain a return statement.

For example, you can fix the earlier example using an else clause:
class MyClass {

function myfunction(myParameter) : boolean {
if myParameter==1

return true
else

return false
}

}

Similarly, if you use a switch statement, consider using an else section.

This strict requirement for return statements mirrors the analogous requirements in the Java language.
Gosu Functions 107

Gosu Reference Guide

Named Arguments and Argument Defaults

In code that calls functions, you can specify argument names explicitly rather than relying on matching the decla-
ration order of the arguments. This helps make your code more readable. For example, typical method calls
might look like the following:

someMethod(true, false) // what do those values represent? difficult to tell visually

Instead of passing simply a series of one or more comma-separated arguments, pass a colon, then the argument
name, then the equals sign, then the value.

For example:
someMethod(:redisplay=true, :sendUpdate=false) // easy to read code!

Additionally, this feature lets you provide default argument values in function declarations. The function caller
can omit that argument. If the function caller passes the argument, the passed-in value overrides any declared
default value. To declare a default, follow the argument name with an equals sign and then the value.

To demonstrate default arguments, imagine a function that printed strings with a prefix:
class MyClass {
var _names : java.util.ArrayList<String>

construct(strings : java.util.ArrayList<String>) {
_strings = strings

}

function printWithPrefix(prefix : String = " ---> ") {
 for(n in _strings) {
 print(prefix + n) // used a passed-in argument, or use the default " ---> " if omitted
 }
 }
}

Notice that in the printWithPrefix declaration, the prefix value has the default value " ---> ". To use the
default values, call this class with the optional arguments omitted.

The following example shows calling the printWithPrefix method using the default and also a separate time
overriding the default.

var c = new MyClass({"hello", "there"})

// Because the argument has a default, it is optional -- you can omit it
c.printWithPrefix()

// Alternatively, specify the parameter to pass and override any default if one exists
c.printWithPrefix(:prefix= " next string is:")

The Gosu named arguments feature requires that the method name is not already overloaded on the class.

Calling Conventions

When you call a function with a multiple arguments, you can name some of the arguments and not others. Any
non-named arguments that you call must match in left-to-right order any arguments without defaults.

Gosu considers any additional passed-in non-named arguments as representing the arguments with defaults,
passed in the same order (left-to-right) as they are declared in the function.

Public and Private Functions

A function is public by default, meaning that it can be called from any Gosu code. In contrast, a private function
can be called only within the library in which it is defined. For example, suppose you have the following two
functions defined in a library:

public function funcA() {
...

}

private function funcB() {
...

}

108 Chapter 7: Statements

Gosu Reference Guide

Because funcA() is defined as public, it can be called from any other Gosu expression. However, funcB() is
private, and therefore is not valid anywhere except within the library.

For example, a function in another library could call funcA(), but it could not call the private funcB(). Because
funcA() is defined in the same library as funcB(), however, funcA() can call funcB().

Do not make any function public without good reason. Therefore, mark a function as private if it is defined only
for use inside the library.

IMPORTANT See “Modifiers” on page 135 for more information on class and function level access
modifiers.
Gosu Functions 109

Gosu Reference Guide

110 Chapter 7: Statements

chapter 8

Intervals

An interval is a sequence of values of the same type between a given pair of endpoint values. Gosu provides
native support for intervals. For instance, the set of integers beginning with 0 and ending with 5 is an integer
interval containing the values 0, 1, 2, 3, 4, 5. The Gosu syntax for this is 0..5. Intervals are particularly useful for
concise easy-to-understand for loops. Intervals could be a variety of types including numbers, dates, dimen-
sions, and names. You can add custom interval types. In other programming languages, intervals are sometimes
called ranges.

What are Intervals?

An interval is a sequence of values of the same type between a given pair of endpoint values. Gosu provides
native support for intervals. For instance, the set of integers beginning with 0 and ending with 10 is an integer
interval. This interval contains the values 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10. The Gosu syntax for this is 0..10. Inter-
vals are particularly useful for concise easy-to-understand for loops.

For example, consider this easy-to-read code:
for (i in 0..10) {

print("The value of i is " + i)
}

This prints the following:
The value of i is 0
The value of i is 1
The value of i is 2
The value of i is 3
The value of i is 4
The value of i is 5
The value of i is 6
The value of i is 7
The value of i is 8
The value of i is 9
The value of i is 10

This replaces the more verbose and harder-to-read design pattern
var i = 0
while(i <= 10) {

print("The value of i is " + i)
i++
Intervals 111

Gosu Reference Guide

}

Intervals do not need to be numbers. Intervals can be a variety of types including numbers, dates, dimensions,
and names. Gosu includes built-in shorthand syntax with a double period for intervals for dates and common
number types, such as the 0..10 example previously mentioned. The built-in shortcut works with the types
Integer, Long, BigInteger, BigDecimal, and Date. All decimal types map to the BigDecimal interval.

You can also add custom interval types that support any type that supports iterable comparable sequences, and
then you can use your new intervals in for loop declarations. For more information, see “Writing Your Own
Interval Type” on page 113.

If you need to get a reference to the interval’s iterator object (java.lang.Iterator), call the iterate method
and it returns the iterator.

Omitting an Initial or Ending Value

In the simple case, a Gosu interval iterates from the start endpoint to the ending endpoint and includes the values
at both ends. For example, 0..5 represents the values 0, 1, 2, 3, 4, 5.

In some cases, you want to exclude the beginning value but you still want your code to show the beginning value
for code legibility. Similarly, some times you want to exclude the endpoint value from the interval.

To do this in Gosu, type the pipe "|" character:

• To make the starting endpoint open (to omit the value), type the pipe character after the starting endpoint.

• To make the ending endpoint open (to omit the value), type the pipe character before the ending endpoint.

• To do make both endpoints open, type the pipe character before and after the double period symbol.

Compare the following examples:

• 0..5 represents the values 0, 1, 2, 3, 4, 5.

• 0|..5 represents the values 1, 2, 3, 4, 5.

• 0..|5 represents the values 0, 1, 2, 3, 4.

• 0|..|5 represents the values 1, 2, 3, 4.

Reversing Interval Order

Sometimes you want a loop to iterate across elements in an interval in reverse order. To do this, reverse the posi-
tion in relation to the double period symbol.

Compare the following examples:

• 0..5 represents the values 0, 1, 2, 3, 4, 5 (in that order).

• 5..0 represents the values 5, 4, 3, 2, 1, 0 (in that order).

Internally, they are the same objects but 5..0 is marked as being in reverse order.

For example, this iterates from 10 to 1, including the end points:
for(i in 10..1) {

print (i)
}

If you have a reference to a reversed interval, you can force the interval to operate in its natural order. In other
words, you can undo the flag that marks it as reversed. Use the following syntax:

var interv = 5..0
var leftIterator = interv.iterateFromLeft()

The result is that the leftIterator variable contains the interval for 0, 1, 2, 3, 4, 5.

The iterate method, which returns the iterator, always iterates across the items in the declared order (either
regular order or reverse, depending on how you defined it).
112 Chapter 8: Intervals

Gosu Reference Guide

Granularity (Step and Unit)

You can customize the granularity with the step and unit builder-style methods on an interval. The step method
lets you set the number of items to step (skip by). The unit method specifies the unit, which may or may not be
necessary for some types of intervals. For example, the granularity of a date interval is expressed in units of time:
days, weeks, months, hours. You could iterate across a date interval in 2 week periods, or 10 year periods, or 1
month periods.

Each method returns the interval so you can chain the result of one method with the next method. For example:
// Simple int interval visits odd elements
var interv = (1..10).step(2)

// Date interval visits two week periods
var span = (date1..date2).step(2).unit(WEEKS)

Notice the WEEKS value. It is an enumeration constant and you do not need to qualify it with the enumeration type.
Gosu can infer the enumeration type so the code is always type-safe.

Writing Your Own Interval Type

You can add custom interval types.

There are two basic types of intervals:

• Intervals you can iterate across, such as in for loop declarations. These are called iterable intervals.

• Non-iterable intervals

For typical code, intervals are the most useful if they are iterable because they can simplify common coding
patterns with loops.

However, there are circumstances where you might want to create a non-iterable interval. For example, suppose
you want to encapsulate an inclusive range of real numbers between two endpoints. Such a set includes a theoret-
ically infinite set of numbers between the values 1 and 1.001. Iterating across the set is meaningless. For more
information about creating non-iterable intervals, see “Custom Non-iterable Interval Types” on page 118.

The basic properties of an interval are as follows:

• The type of items in the interval must implement the Java interface java.lang.Comparable.

• The interval has left and right endpoints (the starting and ending values of the interval)

• Each endpoint can be closed (included) or open (excluded)

The main difference for iterable intervals is that they also implement the java.lang.Iterable interface.

Custom Iterable Intervals Using Sequenceable Items

The following example demonstrates creating a custom iterable interval using sequenceable items. A sequence-
able item is a type that implements the ISequenceable interface. That interface defines how to get the next and
previous items in a sequence. If the item you want to iterate across implements that interface, you can use the
SequenceableInterval class (you do not need to create your own interval class). Suppose you want to create a
new iterable interval that can iterate across a list of predefined (and ordered) color names with a starting and
ending color value. Define an enumeration containing the possible color values in their interval:

package example.pl.gosu.interval

enum Color {
 Red, Orange, Yellow, Green, Blue, Indigo, Violet
 }

Note: For more information about creating enumerations, see “Enumerations” on page 145.

All Gosu enumerations automatically implement the java.lang.Comparable interface, which is a requirement
for intervals. However, Gosu enumerations do not automatically implement the ISequenceable interface.
Writing Your Own Interval Type 113

Gosu Reference Guide

To determine an iterable interval dynamically, Gosu requires that a comparable endpoint also be sequenceable.
To be sequenceable means that the class knows how to find the next and previous items in the sequence.
Sequenceable and interval types have a lot in common. They both have the concept of granularity in terms of step
amount and optionally a unit (such as weeks, months, and so on).

The interface for ISequenceable is as follows. Implement these methods and declare your class to implement this
interface.

public interface ISequenceable<E extends ISequenceable<E, S, U>, S, U> {
 E nextInSequence(S step, U unit);
 E nextNthInSequence(S step, U unit, int iIndex);
 E previousInSequence(S step, U unit);
 E previousNthInSequence(S step, U unit, int iIndex);
}

The syntax for the interface might look unusual because of the use of Gosu generics. What it really means is that
it is parameterized across three dimensions:

• The type of each (sequenceable) element in the interval.

• The type of the step amount. For example, to skip every other item, the step is 2, which is an Integer. For
typical use cases, pass Integer as the type of the step amount.

• The type of units for the interval. For example, for an integer (1, 2, 3), choose Integer. For a date interval,
the type is DateUnit. That type contains values representing days, weeks, or months. For instance,
DateUnit.DAYS. If you do not use units with the interval, type java.lang.Void for this dimension of the
parameterization. Carefully note the capitalization of this type, because it is particularly important to
access Java types, especially when using Gosu generics. In Gosu, as in Java, java.lang.Void is the spe-
cial type of the value null.

The example later in this topic has a class that extends the type:
IterableInterval<Color, Integer, void, ColorInterval>

For more information about Gosu generics, see “Gosu Generics” on page 173.

Notice that the interface can fetch both next and previous elements. It is bidirectional. Gosu needs this capability
to handle navigation from either endpoint in an interval (the reverse mode). Gosu also requires the class know
how to jump to an element by its index in the series. While this can be achieved with the single step methods,
some sequenceable objects can optimize this method without having to visit all elements in between. For
example, if the step value is 100, Gosu does not need to call the nextInSequence method 100 times to get the
next value.

The following example defines an enumeration class with additional methods that implement the required
methods of ISequenceable.

package example.pl.gs.int
uses java.lang.Integer

enum ColorSequencable
 implements gw.lang.reflect.interval.ISequenceable<ColorSequencable, Integer, java.lang.Void> {

 // enumeration values....
 Red, Orange, Yellow, Green, Blue, Indigo, Violet

 // required methods in ISequenceable interface...

 override function nextInSequence(stp : Integer, unit : java.lang.Void): ColorSequencable {
 return ColorSequencable.AllValues[this.Ordinal + stp]
}

 override function nextNthInSequence(stp : Integer, unit : java.lang.Void,
iIndex : int) : ColorSequencable {

 return ColorSequencable.AllValues[this.Ordinal + stp * iIndex]
 }

 override function previousInSequence(stp : Integer, unit : java.lang.Void) :

ColorSequencable {
 return ColorSequencable.AllValues[this.Ordinal - stp]
 }
 override function previousNthInSequence(stp : Integer, unit : java.lang.Void,

iIndex : int) : ColorSequencable {
 return ColorSequencable.AllValues[this.Ordinal - stp * iIndex]
114 Chapter 8: Intervals

Gosu Reference Guide

 }
}

To actually use this class, run the following code in Gosu Tester:
print("Red to Blue as a closed interval...")
var colorRange = new gw.lang.reflect.interval.SequenceableInterval(
 ColorSequencable.Red, ColorSequencable.Blue, 1, null, true, true, false)

for (i in colorRange) {
 print(i)
}

print("Red to Blue as an open interval...")
var colorRangeOpen = new gw.lang.reflect.interval.SequenceableInterval(
 ColorSequencable.Red, ColorSequencable.Blue, 1, null, false, false, false)

for (i in colorRangeOpen) {
 print(i)
}

This prints:
Red to Blue as a closed interval...
Red
Orange
Yellow
Green
Blue
Red to Blue as an open interval...
Orange
Yellow
Green

If you wanted your code to look even more readable, you could create your own subclass of
SequenceableInterval named for the sequenceable type you plan to use. For example,
ColorSequenceInterval.

Custom Iterable Intervals Using Manually-written Iterators

If your items are not sequenceable, you can still make an iterable interval class but it takes more code to imple-
ment all necessary methods.

To create a custom iterable interval using manually-written iterator classes

1. Confirm that the type of items in your interval implement the Java interface java.lang.Comparable.

2. Create a new class that extends (is a subclass of) the IterableInterval class parameterized using Gosu
generics across four separate dimensions:

• The type of each element in the interval

• The type of the step amount. For example, to skip every other item, the step is 2.

• The type of units for the interval. For example, for an integer (1, 2, 3), choose Integer. For a date interval,
the type is DateUnit. That type contains values representing days, weeks, or months. For instance,
DateUnit.DAYS. If you do not use units with the interval, type java.lang.Void for this dimension of the
parameterization. Carefully note the capitalization of this type, because it is particularly important to
access Java types, especially when using Gosu generics. In Gosu, as in Java, java.lang.Void is the spe-
cial type of the value null.

• The type of your custom interval. This is self-referential because some of the methods return an instance
of the interval type itself.

The example later in this topic has a class that extends the type:
IterableInterval<Color, Integer, void, ColorInterval>

For more information about Gosu generics, see “Gosu Generics” on page 173.

3. Implement the interface methods for the Interval interface.

4. Implement the interface methods for the Iterable interface.
Writing Your Own Interval Type 115

Gosu Reference Guide

The most complex methods to implement correctly are methods that return iterators. The easiest way to
implement these methods is to define iterator classes as inner classes to your main class. For more informa-
tion about inner classes, see “Inner Classes” on page 141.

Your class must be able to return two different types of iterators, one iterating forward (normally), and one
iterating in reverse (backward). One way to do this is to implement a main iterator. Next, implement a class
that extends your main iterator class, and which operates in reverse. On the class for the reverse iterator, to
reverse the behavior you may need to override only the hasNext and next methods.

Example: Color Interval Written With Manual Iterators

In some cases, the item you want to iterate across does not implement the ISequenceable interface. You cannot
modify it to directly implement this interface because it is a Java class from a third-party library. Although you
cannot use the Gosu shortcuts discussed in “Custom Iterable Intervals Using Sequenceable Items” on page 113,
you can still implement an iterable interval.

The following example demonstrates creating a custom iterable interval. Suppose you want to create a new iter-
able interval that can iterate across a list of predefined (and ordered) color names with a starting and ending color
value. Define an enumeration containing the possible color values in their interval:

package example.pl.gosu.interval

enum Color {
 Red, Orange, Yellow, Green, Blue, Indigo, Violet
 }

Note: For more information about creating enumerations, see “Enumerations” on page 145.

All Gosu enumerations automatically implement the java.lang.Comparable interface, which is a requirement
for intervals.

Next, create a new class that extends the following type
IterableInterval<Color, Integer, void, ColorInterval>

Next, implement the methods from the IIterableInterval interface. It is important to note that in this example
the iterator classes are inner classes of the main ColorInterval class.

package example.pl.gs.int
uses example.pl.gs.int.Color
uses gw.lang.reflect.interval.IterableInterval
uses java.lang.Integer
uses java.util.Iterator

class ColorInterval extends IterableInterval<Color, Integer, java.lang.Void, ColorInterval> {
 construct(left : Color, right : Color, stp : Integer) {
 super(left, right, stp)
 //print("new ColorInterval, with 2 constructor args")
 }

 construct(left : Color, right : Color, stp : Integer, leftOpen : boolean,

rightOpen : boolean, rev: boolean) {
 super(left, right, stp, null, leftOpen, rightOpen, rev)
 //print("new ColorInterval, with 6 constructor args")
 }

 // get the Nth item from the beginning (left) endpoint
 override function getFromLeft(i: int) : Color {
 return Color.AllValues[LeftEndpoint.Ordinal + i]
 }

 // get the Nth item from the right endpoint
 override function getFromRight(i : int) : Color {
 return Color.AllValues[RightEndpoint.Ordinal - i]
 }

 // return standard iterator
 override function iterateFromLeft() : Iterator<Color> {
 var startAt = LeftEndpoint.Ordinal
 if (!LeftClosed)
 startAt++
 return new ColorIterator(startAt)
 }
116 Chapter 8: Intervals

Gosu Reference Guide

 // return reverse order iterator
 override function iterateFromRight() : Iterator<Color> {
 var startAt = RightEndpoint.Ordinal
 if (!LeftClosed)
 startAt--
 return new ReverseColorIterator(startAt)
 }

 // DEFINE AN INNER CLASS TO ITERATE ACROSS COLORS -- NORMAL ORDER
 class ColorIterator implements Iterator<Color>{
 protected var _currentIndex : int;

 construct() {
 throw "required start at # -- use other constructor"
 }

 construct(startAt : int) {
 _currentIndex = startAt
 }

 override function hasNext() : boolean {
 return ((_currentIndex) <= (RightEndpoint.Ordinal - (RightClosed ? 0 : 1)))
 }

 override function next() : Color {
 var i = _currentIndex
 _currentIndex++
 return Color.AllValues[i]
 }

 override function remove() {
 throw "does not support removing values"
 }
 }

 // DEFINE AN INNER CLASS TO ITERATE ACROSS COLORS -- REVERSE ORDER
 class ReverseColorIterator extends ColorIterator {

 construct(startAt : int) {
 super(startAt)
 }

 override function hasNext() : boolean {
 return ((_currentIndex) >= (RightEndpoint.Ordinal + (LeftClosed ? 0 : 1)))
 }

 override function next() : Color {
 var i = _currentIndex
 _currentIndex--
 return Color.AllValues[i]
 }
 }
}

Note the parameterized element type using Gosu generics syntax. It enforces the property that elements in the
interval are mutually comparable.

Finally, you can use your new intervals in for loop declarations:
uses example.pl.gs.int.Color
uses example.pl.gs.int.ColorInterval

print("Red to Blue as a closed interval...")
var colorRange = new ColorInterval(
 Color.Red, Color.Blue, 1, true, true, false)

for (i in colorRange) {
 print(i)
}

print("Red to Blue as an open interval...")
var colorRangeOpen = new ColorInterval(
 Color.Red, Color.Blue, 1, false, false, false)

for (i in colorRangeOpen) {
 print(i)
}

Writing Your Own Interval Type 117

Gosu Reference Guide

This prints:
Red to Blue as a closed interval...
Red
Orange
Yellow
Green
Blue
Red to Blue as an open interval...
Orange
Yellow
Green

Custom Non-iterable Interval Types

There are circumstances where a range of numbers is non-iterable. For example, suppose you want to encapsu-
late an inclusive range of real numbers between two endpoints. Such a set would be inclusive to a theoretically
infinite set of numbers even between the values 1 and 1.001. Iterating across the set is meaningless.

To create a non-iterable interval type, create a new class that descends from the class AbstractInterval, param-
eterized using Gosu generics on the class of the object across which it iterates. For example, to iterate across
MyClass objects, mark your class to extend AbstractInterval<MyClass>.

The class to iterate across must implement the Comparable interface.

A non-iterable interval cannot be used in for loop declarations or other types of iteration.
118 Chapter 8: Intervals

chapter 9

Exception Handling

Gosu supports the following standard exception handling constructions from other languages such as throw
statements, try/catch/finally blocks, and special Gosu statements such using keyword.

This topic includes:

• “Try-Catch-Finally Constructions” on page 119

• “Throw Statements” on page 120

• “Catching Exceptions in Gosu” on page 121

• “Object Lifecycle Management (‘using’ Clauses)” on page 122

Try-Catch-Finally Constructions

The try...catch...finally blocks provides a way to handle some or all of the possible errors that may occur
in a given block of code during runtime. If errors occur that the script does not handle, Gosu simply provides its
normal error message, as if there was no error handling.

The try block contains code where an error can occur, while the catch block contains the code to handle any
error that does occur.

• If an error occurs in the try block, Gosu passes program control to the catch block for processing. The initial
value of the error-identifier is the value of the error that occurred in the try block.

• If an error is thrown from Java code, the value is the exception or error that was thrown. Otherwise, the value
is an exception thrown elsewhere in Gosu code.

• If no error occurs, Gosu does not execute the catch block.

• If the error cannot be handled in the catch block associated with the try block where the error occurred, use
the throw statement. The throw statement rethrows the exception to a higher-level error handler.

After all statements in the try block have been executed and any error handling has occurred in the catch block,
the finally block is unconditionally executed.
Exception Handling 119

Gosu Reference Guide

Gosu executes the code inside the finally block, even if a return statement occurs inside the try or catch
blocks, or if an error is thrown from a catch block. Thus, Gosu guarantees that the finally block executes.

Note: Gosu does not permit you to use a return, break, or continue statement in a finally block.

Syntax

try
<try statements>

[catch(exception)
<catch statements>]

[finally
<finally statements>]

Example

try {
print("Outer TRY running...")
try {

print("Nested TRY running...")
throw "an error"

}
catch(e : Exception) {

print("Nested CATCH caught "+e)
throw e + " rethrown"

}
finally { print("Nested FINALLY running...") }

}
catch(e : Exception) { print("Outer CATCH caught " + e) }
finally { print("Outer FINALLY running") }

Output

Outer TRY running...
Nested TRY running...
Nested CATCH caught an error
Nested FINALLY running...
Outer CATCH caught an error rethrown
Outer FINALLY running

Throw Statements

The throw statement generates an error condition which you can handle through the use of try…catch…finally
blocks.

WARNING Do not use throw statements as part of regular (non-error) program flow. Use them only
for handling actual error conditions.

Syntax

throw <expression>

In the following examples, notice how the error message changes if the value of x changes from 0 to 1.

Example 1
uses java.lang.Exception

doOuterCode() // call outer code

function doOuterCode() {
 try {
 doInnerCode(0)
 doInnerCode(1)
} catch(e : Exception) {
 print(e.Message + " -- caught in OUTER code")
}
}

 function doInnerCode(x : int) {
 print("For value ${x}...")
120 Chapter 9: Exception Handling

Gosu Reference Guide

 try {
 if(x == 0) {
 throw "x equals zero"
 }
 else {
 throw "x does not equal zero"
 }
 }
 catch(e : Exception) {
 if(e.Message == "x equals zero") {
 print (e.message + " -- caught in INNER code.")
 }
 else { throw e }
 }
 }

This example prints:
For value 0...

x equals zero -- caught in INNER code.

For value 1...

x does not equal zero -- caught in OUTER code

Catching Exceptions in Gosu

Gosu allows you to catch and test for catch all general exceptions, or catch specific types of exceptions.

The standard syntax for catch is simply:
catch(e : Exception)

You can catch only specific exceptions by specifying a subclass such as IOException instead of Exception.

The following examples shows how this might look in practice:
try {
 doSomething()
}
catch(e : IOException) {
 // Handle the IOException
}

IMPORTANT The recommended Gosu coding style is not to use checked exceptions. However, if you
definitely need to handle a specific exception, use this concise syntax to make Gosu code more read-
able.

Add a finally block at the end to perform cleanup code that runs for errors and for success code paths:
try {
doSomething()
}
catch(e : IOException) {
}
finally {

// PERFORM CLEANUP HERE
}

Throwable

The class Throwable is the superclass of all errors and exceptions in the Java language. However, it is best in
general to use catch(e : Exception) not catch(e : Throwable).

If you catch Throwable, it catches serious infrastructure problems like OutOfMemoryException or
AssertionFailedException. In typical code, it is appropriate not to catch those exceptions. Let those throwable
infrastructure exceptions propagate upward.
Catching Exceptions in Gosu 121

Gosu Reference Guide

Object Lifecycle Management (‘using’ Clauses)

If you have an object with a lifecycle of a finite extent of code, you can simplify your code with the new using
statement. The using statement is a more compact and less error-prone way of working with resources than using
try/catch/finally clauses. The cleanup always occurs without requiring a separate finally clause, nor do you
need to explicitly check whether resources have null values. The using statement also simplifies synchroniza-
tion and locking, discussed more later in this section.

For example, to use an output stream typically code would open the stream, then use it, then close it to dispose of
related resources. If something goes wrong while using the output stream, your code must close the output
stream and perhaps check whether it successfully opened before closing it. In Gosu (or Java) you can use a try/
finally block like the following to clean up the stream:

OutputStream os = SetupMyOutputStream() // insert your code that creates your output stream
try {

//do something with the output stream
}

finally {
os.close();

}

You can simplify your code using the Gosu using statement as follows:
using(var os = SetupMyOutputStream()) {

 //do something with the output stream

} // Gosu disposes of the stream after it completes or if there is an exception

The basic form of a using clause is as follows:
using(ASSIGNMENT_OR_LIST_OF_STATEMENTS)
{
 // do something here
}

The parentheses after the using keyword can contain either a Gosu expression or a comma-delimited list of one
or more Gosu statements. Gosu runs any statements (including variable assignment) at run time and uses the
result as an object to manage in the using clause.

Note: You do not need an additional return statement to pass the value to the using clause. Also note that
the statements must be delimited with commas, not semicolons.

There are several categories of objects that work with the using keyword: disposable objects, closeable objects,
and reentrant objects. If you try to use an object that does not satisfy the requirements of one of these categories,
Gosu displays a compile error. The following subtopics discuss these three types of objects.

Note: If Gosu detects that an object is more than one category, at run time Gosu considers the object only
one category, defined by the following precedence: disposable, closeable, reentrant. For example, if an
object has a dispose and close method, Gosu only calls the dispose method.

You can return values from uses clauses using the standard return statement, discussed further in “Returning
Values from ‘using’ Clauses” on page 126.

Disposable Objects

Disposable objects are objects that Gosu can dispose to release all system resources. For Gosu to recognize a
valid disposable object, the object must have one of the following attributes:

• The object implements the Gosu interface IDisposable. This interface contains only a single method called
dispose. This method takes no arguments. Always use a type that implements IDisposable if possible due to
faster run time performance.

• The object has a dispose method even if it does not implement the IDisposable interface. This approach
works but is slower at run time because Gosu must use reflection (examining the type at run time) to find the
method.
122 Chapter 9: Exception Handling

Gosu Reference Guide

A type’s dispose method must release all the resources that it owns. The dispose method must release all
resources owned by its base types by calling its parent type’s dispose method.

To help ensure that resources clean up appropriately even under error conditions, you must design your dispose
method such that Gosu can call it multiple times without throwing an exception. In other words, if the stream is
already closed, then invoking this method has no effect nor throw an exception.

Closeable Objects and ‘using’ Clauses

Closeable objects include objects such as data streams, reader or writer objects, and data channels. Many of the
objects in the package java.io are closeable objects. For Gosu to recognize a valid closeable object, the object
must have one of the following attributes:

• Implements the Java interface java.io.ICloseable, which contains only a single method called close. This
method takes no arguments. Use a type that implements ICloseable if possible due to faster run time perfor-
mance.

• Has a close method even if it does not implement the ICloseable interface. This approach works but is
slower at run time because Gosu must use reflection (examining the type at run time) to find the method.

A type’s close method must release all the resources that it owns. The close method must release all resources
owned by its base types by calling its parent type’s close method.

To help ensure that resources clean up appropriately even under error conditions, you must design your close
method such that Gosu can call it multiple times without throwing an exception. In other words, if the object is
already closed, then invoking this method must have no effect nor throw an exception.

The following example creates a new Java file writer instance (java.io.FileWriter) and uses the more verbose
try and finally clauses:

var writer = new FileWriter("c:\\temp\\test1.txt")
try
{
 writer.write("I am text within a file.")
}
finally
{
 if(writer != null)
 {
 writer.close()
 }
}

In contrast, you can write more readable Gosu code using the using keyword:
using(var writer = new FileWriter("c:\\temp\\test1.txt"))
{
 writer.write("I am text within a file.")
}

You can list multiple
using(var reader = new FileReader("c:\\temp\\usingfun.txt"),
 var writer = new FileWriter("c:\\temp\\usingfun2.txt"))
{
 writer.write(StreamUtil.getContent(reader))
}

JDBC Resources and Using Clauses

The following example shows how to use a using clause with a JDBC (Java Database Connection) object.
uses java.sql.*

...

function sampleJdbc(con : Connection)
 {
 using(var stmt = con.createStatement(),
 var rs = stmt.executeQuery("SELECT a, b FROM TABLE2"))
 {
Object Lifecycle Management (‘using’ Clauses) 123

Gosu Reference Guide

 rs.moveToInsertRow()
 rs.updateString(1, "AINSWORTH")
 rs.insertRow()
 }
 }

Reentrant Objects and ‘using’ Clauses

Re-entrant objects are objects that help manage safe access to data that is shared by re-entrant or concurrent code
execution. For example, if you must store data that is shared by multiple threads, ensure that you protect against
concurrent access from multiple threads to prevent data corruption. The most prominent type of shared data is
class static variables, which are variables that are stored on the Gosu class itself.

For Gosu to recognize a valid reentrant object, the object must have one of the following attributes:

• Implements the java.util.concurrent.locks.Lock interface. This includes the Java classes in that
pacakge: ReentrantLock, ReadWriteLock, Condition.

• Casted to the Gosu interface IMonitorLock. You can cast any arbitrary object to IMonitorLock. This is
useful to cast Java monitor locks to this Gosu interface. For more information about monitor locks, refer to:
http://en.wikipedia.org/wiki/Monitor_(synchronization)

• Implements the Gosu class gw.lang.IReentrant. This interface contains two methods with no arguments:
enter and exit. Your code must properly lock or synchronize data access as appropriate during the enter
method and release any locks in the exit method.

For blocks of code using locks (code that implements java.util.concurrent.locks.Lock), a using clause
simplifies your code.

The following code uses the java.util.concurrent.locks.ReentrantLock class using a longer (non-recom-
mended) form:

// in your class variable definitions...
var _lock : ReentrantLock = new ReentrantLock()

function useReentrantLockOld() {
_lock.lock()
try {

 // do your main work here
 }

finally {
_lock.unlock()

}
}

In contrast, you can write more readable Gosu code using the using keyword:
// in your class variable definitions...
var _lock : ReentrantLock = new ReentrantLock()

function useReentrantLockNew() {
using(_lock) {

// do your main work here
}

}

Similarly, you can cast any object to a monitor lock by adding “as IMonitorLock” after the object. For example,
the following method call code uses itself (using the special keyword this) as the monitor lock:

function monitorLock() {
using(this as IMonitorLock) {

 // do stuff
 }
 }

This approach effectively is equivalent to a synchronized block in the Java language.

Assigning Variables Inside ‘using’ Expression Declaration

The using clause supports assigning a variable inside the declaration of the using clause.
124 Chapter 9: Exception Handling

Gosu Reference Guide

This is useful if the expression that you pass to the using expression is both:

• something other than a single variable

• you want to reference it from inside the statement list inside the using clause declaration

For example, suppose you call a method that returns a file handle and you pass that to the using clause as the
lock. From within the using clause contents, you probably want to access the file so you can iterate across its
contents.

To simplify this kind of code, assign the variable before the expression using the var keyword:
using (var VARIABLE_NAME = EXPRESSION) {

// code that references the VARIABLE_NAME variable
}

For example:
using(var out = new FileOutputStream(this, false)) {

out.write(content)
}

Passing Multiple Items to the ‘using’ Statement

You can pass multiple items in the using clause expression. Separate each item by a comma character.

For example,
function useReentrantLockNew() {

using(_lock1, _lock2, _lock3) {
// do your main work here

}
}

You can combine the multiple item feature with the ability to assign variables. For more about assigning vari-
ables, see “Assigning Variables Inside ‘using’ Expression Declaration” on page 124 .

For example:
using(var lfc = new FileInputStream(this).Channel,

var rfc = new FileInputStream(that).Channel) {

 var lbuff = ByteBuffer.allocate(bufferSize)
 var rbuff = ByteBuffer.allocate(bufferSize)

 while (lfc.position() < lfc.size()) {
 lfc.read(lbuff)
 rfc.read(rbuff)

 if (not Arrays.equals(lbuff.array(), rbuff.array()))
 {
 return true
 }

 lbuff.clear()
 rbuff.clear()
 }
 return false
 }
 }

Gosu ensures that all objects are properly cleaned up. In other words, for each object to create or resource to
acquire, if it creates or acquires successfully, Gosu releases, closes, or disposes the object. Also note that if one of
the resources fails to create, Gosu does not attempt to acquire other resources in later-appearing items in the
command-seperated list. Instead, Gosu simply releases the ones that did succeed.

IMPORTANT There is much more information about concurrency in the section “Concurrency” on
page 275, including other concurrency APIs.
Object Lifecycle Management (‘using’ Clauses) 125

Gosu Reference Guide

Returning Values from ‘using’ Clauses

You can return values from within uses clauses using the standard return statement. If you return a value from
within a using clause, Gosu considers the clause complete so it calls your object’s final lifecycle management
method to clean up your resources. (Gosu calls the dispose, close, or exit method, depending on the type of
object.)

The following Gosu example opens a file using the Java BufferedReader class and reads lines from the file until
the line matches a regular expression. If code in the while loop finds a match, it immediately returns the value
and skips the rest of the code within the using clause.

uses java.io.File
uses java.io.BufferedReader
uses java.io.FileReader

function containsText(file : File, regExp : String) : boolean {
 using(var reader = new BufferedReader(new FileReader(file))) {
 var line = reader.readLine()
 while(line != null) {
 if(line.matches(regExp)) {
 return true
 }

line = reader.readLine() // read the next line
}

 }
 return false
 }
}

126 Chapter 9: Exception Handling

chapter 10

Classes

Gosu classes encapsulate data and code for a specific purpose. You can subclass and extend existing classes. You
can store and access data and functions (also called methods if part of a class) on an instance of the class or on
the class itself.

Gosu classes are the foundation for syntax of syntax for interfaces, enumerations, and enhancements. Some of
the information in this topic applies to those features as well. For example, the syntax of variables, methods, and
modifiers are the same in interfaces, enumerations, and enhancements.

Related topics:

• “Interfaces” on page 147

• “Enumerations” on page 145

• “Enhancements” on page 161

This topic includes:

• “What Are Classes?” on page 127

• “Creating and Instantiating Classes” on page 128

• “Properties” on page 130

• “Modifiers” on page 135

• “Inner Classes” on page 141

What Are Classes?

Gosu classes encapsulate data and code to perform a specific task. Typical use of a Gosu class is to write a Gosu
class to encapsulate a set of Gosu functions and a set of properties to store within each class instance. A class
instance is a new in-memory copy of the object of that class. If some Gosu code creates a new instance of the
class, Gosu creates the instance in memory with the type matching the class you instantiated. You can manipulate
each object instance by getting or setting properties. You can also trigger the class’s Gosu functions. If functions
are defined in a class, the functions are also called methods.
Classes 127

Gosu Reference Guide

You can also extend an existing class, which means to make a subclass of the class with new methods or proper-
ties or different behaviors than existing implementations in the superclass.

Gosu classes are analogous to Java classes in that they have a package structure that defines the namespace of
that class within a larger set of names. For example, if your company is called Smith Company and you were
writing utility classes to manipulate addresses, you might create a new class called NotifyUtils in the name-
space smithco.utilities. The fully-qualified name of the class would be smithco.utilities.NotifyUtils.

You can write your own custom classes and call these classes from within Gosu, or call built-in classes. You
create and reference Gosu classes by name just as you would in Java. For example, suppose you define a class
called Notification in package smithco.utilities with a method (function) called getName().

You can create an instance of the class and then call a method like this:
// create an instance of the class
var myInstance = new smithco.utilities.Notification()

// call methods on the instance
var name = myInstance.getName()

If desired, you can also define data and methods that belong to the class itself, rather than an instance of the class.
This is useful for instance to define a library of functions of similar purpose. The class encapsulates the functions
but you never need to create an instance of the class. You can create static methods on a class independent of
whether any code ever creates an instance of the class. You are not forced to choose between the two design
styles. For more information, see “Static Modifier” on page 140.

If desired, you can write Gosu classes that extend from Java classes. Your class can include Gosu generics
features that reference or extend Java classes or subtypes of Java classes. See “Gosu Generics” on page 173 for
more information about generics.

Creating and Instantiating Classes

After creating a new class, add additional class variables, properties, and functions to the class. Within a class,
functions are also called methods. This is standard object-oriented terminology. This documentation refers to
functions as methods in contexts in which the functions are part of classes.

If you create a new class, the editor creates a template for a class upon which you can build. The editor creates
the package name, class definition, and class constructor. You can add class variables, properties, and functions
to the class. Within a class, functions are also called methods.

Add variables to a class with the var keyword:
var myStringInstanceVariable : String

You can optionally initialize the variable:
var myStringInstanceVariable = "Butter"

Define methods with the keyword function followed by the method name and the argument list in parentheses,
or an empty argument list if there are no arguments to the method. The parameter list is a list of arguments, sepa-
rated by commas, and of the format:

parameterName : typeName

For example, the following is a simple method:
function doAction(arg1 : String)

A simple Gosu class with one instance variable and one public method looks like the following:
class MyClass
{

var myStringInstanceVariable : String

 public function doAction(arg1 : String)
 {
 print("Someone just called the doAction method with arg " + arg1)
128 Chapter 10: Classes

Gosu Reference Guide

 }
}

Constructors

A Gosu class can have a constructor, which is like a special method within the class that Gosu calls after creating
an instance of that type. For example, if Gosu uses code like “new MyClass()”, Gosu calls the MyClass class’s
constructor for initialization or other actions. To create a constructor, name the method simply construct. For
example:

class Tree
{
 construct()
 {
 print("A Tree object was just created!")
 }
}

If desired, you can delete the class constructor if you do not need it.

Your class might extend another class. If so, it is typically appropriate for your constructor to call its superclass
constructor. To do this, use the super keyword. It must be the first line in the subclass constructor. For example

class Tree extends Plant
{
 construct()
 {

super()
 print("A Tree object was just created!")
 }
}

If you call super(), Gosu calls the superclass no-argument constructor. If you call super(parameter_list), Gosu
calls the superclass constructor that matches the matching parameter list. Note that you can call a superclass
constructor with different number of arguments or different types than the current constructor.

Static Methods and Variables

If you want to call the method directly on the class itself rather than an instance of the class, you can do this. This
feature is called creating a static method. Add the keyword static before functions that you declare to make
them static methods. For example, instead of writing:

public function doAction(arg1 : String)

Instead use this:
static public function doAction(arg1 : String)

For more information, see “Static Modifier” on page 140.

Although Gosu supports public variables for compatibility with other languages, it is best to always use
public properties backed by private variables instead of using public variables.

In other words, in your new Gosu classes use this style of variable declaration:
private var _firstName : String as FirstName

Do not do this:
public var FirstName : String // do not do this. Public variables are not standard Gosu style

For more information about defining properties, see “Properties” on page 130.

IMPORTANT The standard Gosu style is to use public properties backed by private variables instead
of using public variables. Do not use public variables in new Gosu classes. See “Properties” on
page 130 for more information.
Creating and Instantiating Classes 129

Gosu Reference Guide

Creating a New Instance of a Class

Typically you want to create an instance of a class. Each instance (in-memory copy) has its own set of data asso-
ciated with it. The process of constructing a new in-memory instance is called instantiating a class. To instantiate
a class, use the new operator:

var e = new smithco.messaging.QueueUtils()

You can also use object initializers allow you to set properties on an object immediately after a new expression.
Use object initializers for compact and clear object declarations. They are especially useful if combined with data
structure syntax and nested objects. A simple version looks like the following:

var sampleClaim = new Claim(){ :ClaimId = "TestID" }

For more information on new expressions and object initializers, see “New Object Expressions” on page 84.

Note: You can use Gosu classes without creating a new instance of the class using static methods, static
variables, and static properties. For more information, see “Static Modifier” on page 140.

Naming Conventions for Packages and Classes

The package name is the namespace for the class, interface, enhancement, enumeration, or other type. Defining a
package prevents ambiguity about what class is accessed.

Package names must consist completely of lowercase characters. To access classes or other types in another
package namespace, see “Importing Types and Package Namespaces” on page 90. Class names or other type
names must always start with an initial capital letter. However, the names may contain additional capital letters
later in the name for clarity.

Use the following standard package naming conventions:

Properties

Gosu classes can define properties, which appear to other objects like variables on the class in that they can use
simple intuitive syntax with the period symbol (.) to access a property for setting or getting the property.
However, you can implement get and set functionality with Gosu code. Although code that gets or sets properties
might simply get or set an instance variable, you can implement properties in other more dynamic ways.

To get and set properties from an object with Field1 and Field2 properties, just use the period symbol like
getting and setting standard variables:

// create a new class instance
var a = new MyClass()

// set a property
a.Field1 = 5

// get a property
print (a.Field2)

In its most straightforward form, a class defines properties like functions except with the keywords
“property get” or “property set” before it instead of “function”. The get property function must take zero
parameters and the set property function always takes exactly one parameter.

For example, the following code defines a property that supports both set and get functionality:
class MyClass {

property get Field3() : String {
return "myFirstClass" // in this simple example, do not really return a saved value

}
property set Field3(str : String) {

print (str) // print only ---- in this simple example, do not save the value

Type of class Package Example of fully qualified class name

Classes you define customername.subpackage smithco.messaging.QueueUtils
130 Chapter 10: Classes

Gosu Reference Guide

}

}

The set property function does not save the value in that simple example. In a more typical case, you probably
want to create a class instance variable to store the value in a private variable:

class MyClass {
private var _field4 : String

property get Field4() : String {
return _field4

}
property set Field4(str : String) {

_field4 = str
}

}

Although the data is stored in private variable _field4, code that accesses this data does not access the private
instance variable directly. Any code that wants to use it simply uses the period symbol (.) with the property
name:

var f = new MyClass()
f.Field4 = "Yes" // sets to "Yes" by calling the set property function
var g = f.Field4 // calls the get property function

For some classes, your property getter and setter methods may do very complex calculations or store the data in
some other way than as a class variable. However, it is also common to simply get or set a property with data
stored as a common instance variable. Gosu provides a shortcut to implement properties as instance variables
using variable alias syntax using the as keyword followed by the property name to access the property. Use this
approach to make simple automatic getter and setter property methods backed by an class instance variable.

For example, the following code is functionally identical to the previous example but is much more concise:
class MyClass {

private var _field4 : String as Field4
}

The standard Gosu style is to use public properties backed by private variables instead of using public variables.

In other words, write your Gosu classes to look like:
private var _firstName : String as FirstName

This declares a private variable called _firstname, which Gosu exposes as a public property called FirstName.

Do not write your classes to look like:
public var FirstName : String

IMPORTANT The standard Gosu style is to use public properties backed by private variables instead
of using public variables. Do not use public variables in new Gosu classes.

Code defined in that class does not need to access the property name. Classes can access their own private vari-
ables. In the previous example, other methods in that class could reference _field4 or _firstname variables
rather than relying on the property accessors Field4 or FirstName.

Read Only Properties

The default for properties is read-write, but you can make a property read-only by adding the keyword readonly
before the property name:

class MyClass {
private var _firstname : String as readonly FirstName

}

Properties 131

Gosu Reference Guide

Properties Act Like Data But They Are Dynamic and Virtual Functions

In contrast to standard instance variables, get property and set property functions are virtual, which means
you can override them in subclasses and implement them from interfaces. The following illustrates how you
would override a property in a subclass and you can even call the superclass’s get or set property function:

class MyClass
{
 var _easy : String as Easy
}

class MySubClass extends MyClass
{
 override property get Easy() : String
 {

return super.Easy + " from MySubClass"
 }
}

The overridden property get function first calls the implicitly defined get function from the superclass, which
gets class variable called _easy, then appends a string. This get function does not change the value of the class
variable _easy, but code that accesses the Easy property from the subclass gets a different value.

For example, if you write the following code in the Gosu Tester:
var f = new MyClass()
var b = new MySubClass()

f.Easy = "MyPropValue"
b.Easy = "MyPropValue"

print(f.Easy)
print(b.Easy)

This code prints:
MyPropValue
MyPropValue from MySubClass

Property Paths are Null Tolerant

In Gosu, a period character gets a property from an object or calls a method.

By default, the period operator is not null-safe. This means that if the value on the left side of the period evalu-
ates to null at runtime, Gosu throws a null pointer exception (NPE). For example, obj.PropertyA.PropertyB
throws an exception if obj or obj.PropertyA are null at run time.

Gosu provides a variant of the period operator that is always null-safe for both property access and method
access. The null-safe period operator has a question mark before it: ?.

If the value on the left of the ?. operator is null, the expression evaluates to null.

For example, the following expression evaluates left-to-right and contains three null-safe property operators:
obj?.PropertyA?.PropertyB?.PropertyC

If any object to the left of the period character is null, the null-safe period operator does not throw a null pointer
exception (NPE) and the expression returns null. Gosu null-safe property paths tends to simplify real-world
code. Often, a null expression result has the same meaning whether the final property access is null or whether
earlier parts of the path are null. For such cases in Gosu, do not bother to check for null value at every level of
the path. This makes your Gosu code easier to read and understand.

For example, suppose you had a variable called house, which contained a property called Walls, and that object
had a property called Windows. You could get the Windows value with the following syntax:

house.Walls.Windows

In some languages, you must worry that if house is null or house.Walls is null, your code throws a null
pointer exception. This causes programmers to use the following common coding pattern:

// initialize to null
132 Chapter 10: Classes

Gosu Reference Guide

var x : ArrayList<Windows> = null

// check earlier parts of the path for null to avoid a null pointer exceptions (NPEs)
if(house != null and house.Walls != null) {
 x = house.Walls.Windows
}

The following concise Gosu code is equivalent to the previous example and avoids any null pointer exceptions:
 var x = house?.Walls?.Windows

Null Safe Method Calls

By default, method calls are not null safe. This means that if the right side of a period character is a method call,
Gosu throws a null pointer exception if the left side of the period is null.

For example:
house.myaction()

If house is null, Gosu throws an NPE exception. Gosu assumes that method calls might have side effects, so
Gosu cannot quietly skip the method call and return null.

In contrast, a null-safe method call does not throw an exception if the left side of the period character is null.
Gosu just returns null from that expression. In contrast, using the ?. operator calls the method with null safety:

house?.myaction()

If house is null, Gosu does not throw an exception. Gosu simply returns null from the expression.

Null-Safe Versions of Other Operators

Gosu provides other null-safe versions of other common operators:

• The null-safe default operator (?:). This operator lets you specify an alternate value if the value to the left of
the operator is null. For example:
var displayName = Book.Title ?: "(Unknown Title)" // return "(Unknown Title)" if Book.Title is null

• The null-safe index operator (?[]). Use this operator with lists and arrays. It returns null if the list or array
value is null at run time, rather than throwing an exception. For example:
var book = bookshelf?[bookNumber] // return null if bookshelf is null

• The null-safe math operators (?+, ?-, ?*, ?/, and ?%). For example:
var displayName = cost ?* 2 // multiply times 2, or return null if cost is null

See “Handling Null Values In Expressions” on page 94.

Design Code for Null Safety

Use null-safe operators where appropriate. They make code easy to read and easier to handle edge cases.

You can also design your code to take advantage of this special language feature. For example, expose data as
properties in Gosu classes and interfaces rather setter and getter methods. This allows you to use the null-safe
property operator (the ?. operator), which can make your code both powerful and concise.

See Also

• For more examples and discussion, see “Handling Null Values In Expressions” on page 94

IMPORTANT Expose public data as properties rather than as getter functions. This allows you to take
advantage of Gosu null-safe property accessor paths. Additionally, note it is standard Gosu practice to
separate your implementation from your class’s interaction with other code by using properties rather
than public instance variables. Gosu provides a simple shortcut with the as keyword to expose an
instance variable as a property. See “Properties” on page 130
Properties 133

Gosu Reference Guide

Design APIs Around Null Safe Property Paths

You may also want to design your Gosu code logic around this feature. For example, Gosu uses the
java.util.String class as its native text class. This class includes a built-in method to check whether the
String is empty. The method is called isEmpty, and Gosu exposes this as the Empty property. This is difficult to
use with Gosu property accessor paths. For example, consider the following if statement:

if (obj.StringProperty.Empty)

Because null coerces implicitly to Boolean (the type of the Empty property), the expression evaluates to false in
either of the following cases:

• if obj.StringProperty is null

• the String is non-null but its Empty property evaluates to false.

In typical code, it is important to distinguish these two very different conditions cases. For example, if you
wanted to use the value obj.StringProperty only if the value is non-empty, it is insufficient to just check the
value obj.StringProperty.Empty.

To work around this, Gosu adds an enhancement property to java.util.String called HasContent. This effec-
tively is the reverse of the logic of the Empty property. The HasContent property only returns true if it has
content. As a result, you can use property accessor paths such as the following:

if (obj.StringProperty.HasContent)

Because null coerces implicitly to Boolean (the type of the Empty property), the expression evaluates to false in
either of the following cases:

• if obj.StringProperty is null

• the String is non-null but the string has no content (its HasContent property evaluates to false).

These cases are much more similar semantically than for the variant that uses Empty
(obj.StringProperty.Empty). This means you are more likely to rely on path expressions like this.

Be sure to consider null-safety of property paths as you design your code, particularly with Boolean properties.

IMPORTANT Consider null-safety of property paths as you design your code.

Static Properties

You can use properties directly on the class without creating a new instance of the class. For more information,
see “Static Modifier” on page 140.

More Property Examples

The following examples illustrate how to create and use Gosu class properties and get/set methods.

There are two classes, one of which extends the other.

The class myFirstClass:
package mypackage

class MyFirstClass {

// Explicit property getter for Fred
property get Fred() : String {

return "myFirstClass"
}

}

The class mySecondClass:
package mypackage

class MySecondClass extends MyFirstClass {
134 Chapter 10: Classes

Gosu Reference Guide

// Exposes a public F0 property on _f0
private var _f0 : String as F0

// Exposes a public read-only F1 property on _f1
private var _f1 : String as readonly F1

// Simple variable with explicit property get/set methods
private var _f2 : String

// Explicit property getter for _f2
property get F2() : String {

return _f2
}

// Explicit property setter for _f2, visible only to classes in this package
internal property set F2(value : String) {

_f2 = value
}

// A simple calculated property (not a simple accessor)
property get Calculation() : Number {

return 88
}

// Overrides MyFirstClass's Fred property getter
property get Fred() : String {

return super.Fred + " suffix"

}

Try the following lines in Gosu Tester to test these classes

First, create an instance of your class:
var test = new mypackage.MySecondClass()

Assign a property value. This internally calls a hidden method to assign "hello" to variable _f0:
test.F0 = "hello"

The following line is invalid since f1 is read-only:
// This gives a compile error.
test.F1 = "hello"

Get a property value. This indirectly calls the mySecondClass property getter function for F2:
print(test.F2) // prints null because it is not set yet

The following line is invalid because F2 is not visible outside of the package namespace of MySecondClass. F2 is
publicly read-only.

// This gives a compile error.
test.F2 = "hello"

Print the Calculation property:
print(test.Calculation) // prints 88

The following line is invalid since Calculation is read-only (it does not have a setter function):
//This gives a compiler error.
test.Calculation = 123

Demonstrate that properties can be overridden through inheritance because properties are virtual:
print(test.Fred) // prints "myFirstClass suffix"

Modifiers

There are several types of modifiers:

• Access Modifiers

• Override Modifier

• Abstract Modifier

• Final Modifier
Modifiers 135

Gosu Reference Guide

• Static Modifier

Access Modifiers

You can use access modifier keywords to set the level of access to a Gosu class, interface, enumeration, or a type
member (a function, variable, or property). The access level determines whether other classes can use a particular
variable or invoke a particular function.

For example, methods and variables marked public are visible from other classes in the package. Additionally,
because they are public, functions and variables also are visible to all subclasses of the class and to all classes
outside the current package. For example, the following code uses the public access modifier on a class vari-
able:

package com.mycompany.utils

class Test1 {
 public var Name : String
}

In contrast, the internal access modifier lets the variable be accessed only in the same package as the class:
package com.mycompany.utils

class Test2 {
 internal var Name : String
}

For example, another class with fully qualified name com.mycompany.utils.Test2 could access the Name vari-
able because it is in the same package. Another class com.mycompany.integration.Test3 cannot see the
Test.Name variable because it is not in the same package.

Similarly, modifiers can apply to an entire type, such as a Gosu class:
package com.mycompany.utils

internal class Test {
var Name : String

}

Some modifiers only apply to type members (functions, variables, properties, and inner types) and some modi-
fiers apply to type members and top-level types (outer Gosu classes, interfaces, enumerations).

The following table lists the Gosu access modifiers and each one’s applicability and visibility:

If you do not specify a modifier, Gosu assumes the following default access levels:

Modifier Description

Applies to
top-level
types

Applies to
type
members

Visible
in
class

Visible
in
package

Visible
in
subclass

Visible
by
all

public Fully accessible. No restrictions. Yes Yes Yes Yes Yes Yes

protected Accessible only by types with
same package and subtypes.

-- Yes Yes Yes Yes --

internal Accessible only in same package Yes Yes Yes Yes -- --

private Accessible only by the declaring
type, such as the Gosu class or
interface that defines it.

-- Yes Yes -- -- --

Element Default modifier

Types / Classes public

Variables private

Functions public

Properties public
136 Chapter 10: Classes

Gosu Reference Guide

Coding Style Recommendations for Variables

Always prefix private and protected class variables with an underscore character (_).

Also, avoid public variables. If you are tempted to use public variables, convert the public variables to properties.
This separates the way other code accesses the properties from the implementation (the storage and retrieval of
the properties). For more style guidelines, see “Coding Style” on page 285.

Override Modifier

Apply the override modifier to a function or property implementation to declare that the subtype overrides the
implementation of an inherited function or property with the same signature.

For example, the following line might appear in a subtype overriding a myFunction method in its superclass:
override function myFunction(myParameter : String)

If Gosu detects that you are overriding an inherited function or method with the same name but you omit the
override keyword, you get a compiler warning. Additionally, the Gosu editor offers to automatically insert the
modifier if it seems appropriate.

Abstract Modifier

The abstract modifier indicates that a type is intended only to be a base type of other types. Typically an
abstract type does not provide implementations (actual code to perform the function) for some or all of its func-
tions and properties. This modifier applies to classes, interfaces, functions, and properties.

For example, the following is a simple abstract class:
abstract class Vehicle {
}

If a type is specified as abstract, Gosu code cannot construct an instance of it. For example, you cannot use code
such as new MyType() with an abstract type. However, you can instantiate a subtype of the type if the subtype
fully implements all abstract members (functions and properties). A subtype that contains implementations for
all abstract members of its supertype is referred to as a concrete type.

For example, if class A is abstract and defines one method’s parameters and return value but does not provide
code for it, that method would be declared abstract. Another class B could extend A and implement that method
with real code. The class A is the abstract class and the class B is a concrete subclass of A.

An abstract type may contain implementations for none of its members if desired. This means that you cannot
construct an instance of it, although you can define a subtype of it and instantiate that type. For example, suppose
you write an abstract Gosu class called Vehicle which might contain members but no abstract members, it might
look like this:

package com.mycompany

abstract class Vehicle {
var _name : String as Name

}

You could not construct an instance of this class, but you could define another class that extends it:
package com.mycompany

class Truck extends Vehicle {

// the subtype can add its own members...
 var _TruckLength : int as TruckLength

}

You can now use code such as the following to create an instance of Truck:
var t = new Truck()

Things work differently if the supertype (in this case, Vehicle) defines abstract members. If the supertype
defines abstract methods or abstract properties, the subtype must define an concrete implementation of each
Modifiers 137

Gosu Reference Guide

abstract method or property to instantiate of the subclass. A concrete method implementation must implement
actual behavior, not just inherit the method signature. A concrete property implementation must implement
actual behavior of getting and setting the property, not just inherit the property’s name.

The subtype must implement an abstract function or abstract property with the same name as a supertype. Use
the override keyword to tell Gosu that the subtype overrides an inherited function or method with the same
name. If you omit the override keyword, Gosu displays a compiler warning. Additionally, the Gosu editor offers
to automatically insert the override modifier if it seems appropriate.

For example, suppose you expand the Vehicle class with abstract members:
package com.mycompany

abstract class Vehicle {

 // an abstract property -- every concrete subtype must implement this!
 abstract property get Plate() : String
 abstract property set Plate(newPlate : String)

 // an abstract function/method -- every concrete subtype must implement this!
 abstract function RegisterWithDMV(registrationURL : String)
}

A concrete subtype of this Vehicle might look like the following:
package com.mycompany

class Truck extends com.mycompany.Vehicle
{
 var _TruckLength : int as TruckLength

 /* create a class instance variable that uses the "as ..." syntax to define a property
 * By doing this, you make a concrete implementation of the abstract property "Plate"

*/
 var _licenseplate : String as Plate

 /* implement the function RegisterWithDMV, which is abstract in your supertype, which
 * means that it doesn't define how to implement the method at all, although it does
 * specify the method signature that you must implement to be allowed to be instantiated with "new"
 */
 override function RegisterWithDMV(registrationURL : String) {
 // here do whatever needs to be done
 print("Pretending to register " + _licenseplate + " to " + registrationURL)
 }
}

You can now construct an instance of the concrete subtype Truck, even though you cannot directly construct an
instance of the supertype Vehicle because it is abstract.

You can test these classes using the following code in the Gosu Tester:
var t = new com.mycompany.Truck()
t.Plate = "ABCDEFG"
print("License plate = " + t.Plate)
t.RegisterWithDMV("http://dmv.ca.gov/register")

This prints the following:
License plate = ABCDEFG
Pretending to register ABCDEFG to http://dmv.ca.gov/register

Final Modifier

The final modifier applies to types (including classes), type members (variables, properties, methods), local
variables, and function parameters.

The final modifier specifies that the value of a property, local variable, or parameter cannot be modified after
the initial value is assigned. The final modifier cannot be combined with the abstract modifier on anything.
These modifiers are mutually exclusive. The final modifier implies that there is a concrete implementation and
the abstract modifier implies that there is no concrete implementation.
138 Chapter 10: Classes

Gosu Reference Guide

Final Types

If you use the final modifier on a type, the type cannot be inherited. For example, if a Gosu class is final, you
cannot create any subclass of the final class.

The final modifier is implicit with enumerations, which are an encapsulated list of enumerated constants, and
they are implemented like Gosu classes in most ways. For more information, see “Enumerations” on page 145.
This means that no Gosu code can subclass an enumeration.

Final Functions and Properties

If you use the final modifier with a function or a property, the final modifier prevents a subtype from over-
riding that item. For example, a subclass of a Gosu class cannot reimplement a method defined by its superclass
if that function is final.

For example, suppose you define a class with final functions and properties:
package com.mycompany

class Auto {

 // a final property -- no subtype can reimplement / override this!
 final property get Plate() : String
 final property set Plate(newPlate : String)

 // a final function/method -- no concrete subtype can reimplement / override this!
 final function RegisterWithDMV(registrationURL : String)
}

In many ways, properties are implemented like functions in that they are defined with code and they are virtual.
Being virtual means properties can be overridden and can call an inherited get or set property function in their
supertype. For more information about properties and shortcuts to define properties backed by instance variables,
see “Properties” on page 130.

Final Local Variables

You can use the final modifier with a local variable to initialize the value and prevent it from changing.

For example, the following code is valid:
class final1
{
 function PrintGreeting() {

var f = "frozen"
f = "dynamic"
 }
}

However, this code is not valid:
class final1
{
 function PrintGreeting() {
 final var f = "frozen"
 f = "dynamic" // compile error because it attempts to change a final variable
 }
}

If you define a variable as final, you must initialize it with a value immediately as you declare the variable. You
cannot declare the variable as final and initialize it in a later statement.

Final Function Parameters

You can use the final modifier with a function parameter to prevent it from changing within the function.

For example, the following code is valid:
package example

class FinalTest
{
 function SuffixTest(greeting : String) {
 greeting = greeting + "fly"
Modifiers 139

Gosu Reference Guide

 print(greeting)
 }
}

You can test it with the code:
var f = new example.FinalTest()
var s = "Butter"
f.SuffixTest(s)

This prints:
Butterfly

However, if you add the final modifier to the parameter, the code generates a compile error because the function
attempts to modify the value of a final parameter:

class final1
{
 function SuffixTest(final greeting : String) {
 greeting = greeting + "fly"
 print(greeting)
 }
}

Static Modifier

Static Variables

Gosu classes can define a variable stored once per Gosu class, rather than once per instance of the class. This can
be used with variables and properties. If a class variable is static, it is referred to as a static variable.

WARNING If you use static variables in a multi-threaded environment, you must take special precau-
tions to prevent simultaneous access from different threads. Use static variables sparingly if ever. If
you use static variables, be sure you understand synchronized thread access fully. For more informa-
tion, see “Concurrency” on page 275.

To use a Gosu class variable, remember to set its access level such as internal or public so it is accessible to
class that need to use it. For more information access levels, see “Access Modifiers” on page 136.

The static modifier cannot be combined with the abstract modifier. See “Abstract Modifier” on page 137 for
more information.

Static Functions and Properties

The static modifier can also be used with functions and properties to indicate that it belongs to the type itself
rather than instances of the type.

The following example defines a static property and function:
class Greeting {

private static var _name : String

static property get Name() : String {
return _name

}

static property set Name(str : String) {
_name = str

}

static function PrintGreeting() {
print("Hello World")

}
}

The Name property get and set functions and the PrintGreeting method are part of the Greeting class itself
because they are marked as static.
140 Chapter 10: Classes

Gosu Reference Guide

Consequently, this code in the Gosu Tester accesses properties on the class itself, not an instance of the class:
Greeting.Name = "initial value"
print(Greeting.Name)
Greeting.PrintGreeting()

Notice that this example never constructs a new instance of the Greeting class using the new keyword.

Static Inner Types

The static modifier can also be used with inner types to indicate that it belongs to the type itself (the class itself)
rather than a specific instance of the type.

The following example defines a static inner class called FrenchGreeting within the Greeting class:
package example

class Greeting
{
 static class FrenchGreeting {
 static public function sayWhat() : String {
 return "Bonjour"
 }
 }

 static public property get Hello() : String {
 return FrenchGreeting.sayWhat()
 }
}

You can test this in the Gosu Tester using the code:
print(example.Greeting.Hello)

This prints:
Boujour

For more information about this topic, refer to the next section, “Inner Classes” on page 141.

Inner Classes

You can define inner classes in Gosu, similar to inner classes in Java. They are useful for encapsulating code
even further within the same file as related code. Use named inner classes if you want to be able to refer to the
inner class from multiple related methods or multiple related classes. Use anonymous inner classes if you just
need a simple subclass that you can define in-line within a class method.

Inner classes optionally can include generics features (see “Gosu Generics” on page 173).

Named Inner Classes

You can define a named class within another Gosu class. Once defined, it can be used within the class within
which it is defined, or from classes that derive from it. If using it from the current class,

The following example defines a static inner class called FrenchGreeting within the Greeting class:
package example

class Greeting
{
 static class FrenchGreeting {
 static public function sayWhat() : String {
 return "bonjour"
 }
 }

 static public property get Hello() : String {
 return FrenchGreeting.sayWhat()
 }
}

Inner Classes 141

Gosu Reference Guide

You can test this in the Gosu Tester using the code:
print(example.Greeting.Hello)

This prints:
bonjour

Notice that this example never constructs a new instance of the Greeting class or the FrenchGreeting class
using the new keyword. The inner class in this example has the static modifier. For more information the static
modifier, see “Static Modifier” on page 140.

Similarly, classes that derive from the outer class can use the inner class FrenchGreeting. The following
example subclasses the Greeting class:

package example

class OtherGreeting extends Greeting
{
 public function greetme () {
 var f = new Greeting.FrenchGreeting()
 print(f.sayWhat())
 }
}

You can test this code using the following code in the Gosu Tester:
var t = new example.OtherGreeting()
t.greetme()

This prints:
bonjour

Anonymous Inner Classes

You can define anonymous inner classes in Gosu from within a class method, similar to usage in Java. The
syntax for creating an anonymous inner class is very different from a named inner class. Anonymous inner
classes are similar in many ways to creating instances of a class with the new operator. However, you can extend
a base class by following the class name with braces and then add additional variables or methods. If you do not
have another useful base class, use Object.

The following is a class that uses an anonymous inner class:
package example

class InnerTest {

static public function runme() {

// create instance of an anonymous inner class that derives from Object
var counter = new Object() {

// anonymous inner classes can have variables (public, private, and so on)
private var i = 0

// anonymous inner classes can have constructors
construct() {

print("Value is " + i + " at creation!")
}

// anonymous inner classes can have methods
public function incrementMe () {

i = i + 1
print("Value is " + i)

}
}

// "counter" is a variable containing an instance of a
// class that has no name, but derives from Object and
// adds a private variable and a method

counter.incrementMe()
counter.incrementMe()
counter.incrementMe()
counter.incrementMe()
counter.incrementMe()
142 Chapter 10: Classes

Gosu Reference Guide

}
}

You can use the following code in the Gosu Tester to test this class:
example.InnerTest.runme()

This prints:
Value is 0 at creation!
Value is 1
Value is 2
Value is 3
Value is 4
Value is 5

Example: Advanced Anonymous Inner Class

The following example shows how to use an anonymous inner class that derives from a more interesting object
than Object. In this example, the constructor and another method are inherited by the new inner class.

Suppose you define a base class for your inner class and call it Vehicle:
package example

class Vehicle
{
 construct()
 {
 print("A vehicle was just constructed!")
 }

 function actionOne(s : String) {
 print("actionOne was called with arg " + s)
 }
}

You can create a different class that uses Vehicle and defines an anonymous inner class based on Vehicle:
package example

class FancyVehicle
{

 public function testInner() {

 // Create an inner anonymous class that extends Vehicle
 var test = new Vehicle() {
 public function actionTwo(s : String) {
 print("actionTwo was called with arg " + s)
 }
 }
 test.actionOne("USA")
 test.actionTwo("ABCDEFG")
 }
}

Notice that the inner class that defines the actionTwo method uses the new operator and not the class operator.
What it actually does, however, is define a new class with no name and then creates one instance of it.

You can test the FancyVehicle class with the following code in Gosu Tester:
var g = new example.FancyVehicle()
g.testInner()

This prints:
A vehicle was just constructed!
actionOne was called with arg USA
actionTwo was called with arg ABCDEFG

Gosu Block Shortcut for Anonymous Classes Implementing an Interface

In certain cases, you can pass a block as a method argument instead of an instance of an anonymous class. If the
method is part of an interface that contains exactly one method, you can pass a block instead of the anonymous
class instance. This is especially helpful for APIs defined to take the type BlockRunnable or Runnable.

For more information, see “Blocks as Shortcuts for Anonymous Classes” on page 171.
Inner Classes 143

Gosu Reference Guide

144 Chapter 10: Classes

chapter 11

Enumerations

An enumeration is a list of named constants that are encapsulated into a special type of class. Gosu supports
enumerations natively, as well as provides compatibility to use enumerations defined in Java.

This topic includes:

• “Using Enumerations” on page 145

Using Enumerations

An enumeration is a list of named constants that are encapsulated into a special type of class. For example, an
application tracking cars might want to store the car manufacturer in a property, but track them as named
constants that can be checked at compile-time. Gosu supports enumerations natively and also is compatible with
enumerations defined in Java.

To create an enumeration

1. Create a class by that name using the same approach you use to create a class.

package example

class FruitType {
construct() {

 }
}

2. Change the keyword class to enum and remove the constructor. Your enumeration now looks like:
package example

enum FruitType {

}

3. Add your named constants separated by commas:
enum FruitType {
 Apple, Orange, Banana, Kiwi, Passionfruit
}

Enumerations 145

Gosu Reference Guide

Extracting Information from Enumerations

To use the enumerations, simply reference elements of the enumeration class:
uses example.FruitType
var myFruitType = FruitType.Banana

To extract the name of the enumeration value as a String, get its Name property. To extract the index of the
enumeration value as an Integer, get its Ordinal property.

For example:
print(myFruitType.Name) // prints "Banana"

print(myFruitType.Code) // prints "Banana"

print(myFruitType.Ordinal) // prints "2"

Comparing Enumerations

You can compare two enumerations using the == operator. For example,
if (myFruitType == FruitType.Apple)
 print("An apple a day keeps the doctor away.")

if (myFruitType == FruitType.Banana)
 print("Watch out for banana peels.")
146 Chapter 11: Enumerations

chapter 12

Interfaces

Gosu can define and implement interfaces that define a strict contract of interaction and expectation between two
or more software elements. From a syntax perspective, interfaces look like class definitions but merely specify a
set of required functions necessary for any class that implements the interface. An interface is conceptually a list
of method signatures grouped together. Some other piece of code must implement that set of methods to success-
fully implement that interface. Gosu classes can implement interfaces defined in either Gosu or Java.

This topic includes:

• “What is an Interface?” on page 147

• “Defining and Using an Interface” on page 148

What is an Interface?

Interfaces are a set of required functions necessary for a specific task. Interfaces define a strict contract of inter-
action and expectation between two or more software elements, while leaving the implementation details to the
code that implements the interface. In many cases, the person who writes the interface is different from the
person who writes code to implement the interface.

To take a real-world example of an interface, imagine a car stereo system. The buttons, such as for channel up
and channel down, are the interface between you and the complex electrical circuits on the inside of the box. You
press buttons to change the channel. However, you probably do not care about the implementation details of how
the stereo performs those tasks behind the solid walls of the stereo. If you get a new stereo, it has equivalent
buttons and matching behavior. Since you interact only with the buttons and the output audio, if the user interface
is appropriate and outputs appropriate sounds, the internal details do not matter to you. You do not care about the
details of how the stereo internally handles the button presses for channel up, channel down, and volume up.

If a Gosu class implements this interface, Gosu validates at compile time that all required methods are present
and that the implementor class has the required method signatures.

An interface appears like a group of related method signatures with empty bodies grouped together for the
purpose of some other piece of code implementing the methods. if a class implements the interface, the class
agrees to implement all these methods with the appropriate method signatures. The code implementing the inter-
face agrees that each method appropriately performs the desired task if external code calls those methods.
Interfaces 147

Gosu Reference Guide

You can write Gosu classes that implement or extend interfaces defined in Gosu or defined in Java.

Defining and Using an Interface

In some ways, interfaces are similar to Gosu classes.

Then, write the rest of the interface like a Gosu class, except that methods are method signatures only with no
method bodies. For example, define a simple interface with the following code:

interface Restaurant {
function retrieveMeals() : String[]
function retrieveMealDetails(dishname : String) : String

}

To implement an interface, create a different Gosu class and add “implements MyInterfaceName” after the class
name. For example, if your class is called MyRestaurant, go to the line:

class MyRestaurant

Change that line to:
class MyRestaurant implements Restaurant

If a class implements more than one interface, separate the interface names by commas:
class MyRestaurant implements Restaurant, InitializablePlugin

In the example Restaurant interface, you can implement the interface with a class such as:
class MyRestaurant implements Restaurant

override function retrieveMeals() {
return {"chicken", "beef", "fish"}

}
override function retrieveMealDetails(mainitem : String) : String {

return "Steaming hot " + dishname + " on rice, with a side of asparagus."
}

}

The Gosu editor reveals compilation errors if your class does not properly implement the plugin interface. You
must fix these issues.

A common compilation issue is that a method that interface methods that look like properties must be imple-
mented in Gosu explicitly as a Gosu property. In other words, if the interface contains a method whose name
starts with "get" or "is" and takes no parameters, define the method using the Gosu property syntax. In this
case, do not use the function keyword to define it as a standard class method.

For example, if interface IMyInterface declares methods isVisible() and getName(), your plugin implemen-
tation of this interface might look like:

class MyClass implements IMyInterface {

property get Visible() : Boolean {
 ...

}
property get Name() : String {

 ...
}

}

For more information about properties, see “Defining and Using Properties with Interfaces” on page 149.

If desired, you can write Gosu interfaces that extend from Java interfaces. You can also have your interface
include Gosu generics. Your class can extend from Java classes that support generics. Your class can abstract an
interface across a type defined in Java or a subtype of such a type. (For more information about generics, see
“Gosu Generics” on page 173.)
148 Chapter 12: Interfaces

Gosu Reference Guide

Defining and Using Properties with Interfaces

Interfaces created in Gosu can declare properties. This means that you can define explicit property get or
property set accessors in interfaces with the following syntax:

property get Description() : String

Classes can implement an interface property with the explicit property get or property set syntax.

For example, if the interface is defined as:
package example

interface MyInterface
{
 property get VolumeLevel() : int
 property set VolumeLevel(vol : int) : void
}

A class could implement this interface with this code:
class MyStereo implements MyInterface
{
 var _volume : int

 property set VolumeLevel(vol : int) {
 _volume = vol
 }

 property get VolumeLevel() : int {
 return _volume
 }
}

You can test this code in the Gosu tester:
uses example.MyStereo

var v = new MyStereo()
v.VolumeLevel = 11
print("the volume goes to " + v.VolumeLevel)

If you run this code, it prints:
the volume goes to 11

Alternatively, a class implementing a property can implement the property using the variable alias syntax using
the as keyword. This language feature lets you make simple get and set methods that use an class instance vari-
able to store the value, and to get the value if anyone requests it.

For example, the following code is functionally identical to the previous example implementation of MyStereo,
but it is much more concise:

uses example.MyStereo
class MyStereo implements MyInterface
{
 var _volume : int as VolumeLevel
}

If you run the Gosu tester code as before, it prints the same results.

For information about Gosu class properties in general, see “Classes” on page 127.

Interface Methods that Look Like Properties

If an interface’s methods look like properties, a class implementing an interface must implement the interface in
Gosu as a Gosu property using with property get or property set syntax. In other words, if the interface
contains a method whose name starts with "get" or "is" and takes no parameters, define the method using the
Gosu property syntax. See earlier in this section for examples.
Defining and Using an Interface 149

Gosu Reference Guide

Modifiers and Interfaces

In many ways, interfaces are defined like classes. One way in which they are similar is the support for modifier
keywords. For more information on modifiers, see “Modifiers” on page 135.

One notable differences for interfaces is that the abstract modifier is implicit for the interface itself and all
methods defined on the interface. Consequently, you cannot use the final modifier on the interface or its
members.

Superclass Properties

When implementing an interface and referencing a superclasses’ property, use the super.PropertyName syntax,
such as:

property get Bar() : String {
... _mySpecialPrivateVar = super.Foo + super.Bar

}

150 Chapter 12: Interfaces

chapter 13

Composition

Gosu supports the language feature called composition using the delegate keyword in variable definitions.
Composition allows a class to delegate responsibility for implementing an interface to a different object. This
compositional model allows easy implementation of objects that are proxies for other objects, or encapsulating
shared code independent of the type inheritance hierarchy.

This topic makes extensive references to the following topics:

• “Interfaces” on page 147

• “Classes” on page 127

This topic includes:

• “Using Gosu Composition” on page 151

Using Gosu Composition

The language feature composition allows a class to delegate responsibility for implementing an interface to a
different object. This feature helps reuse code easily for some types of projects with complex requirements for
shared code. With composition, you do not rely on class inheritance hierarchies to choose where to implement
reusable shared code.

Class inheritance is useful for some types of programming problems. However, it can make complex code depen-
dencies fragile. Class inheritance tightly couples a base class and all subclasses. This means that changes to a
base class can easily break all subclasses classes. Languages that support multiple inheritance (allowing a type to
extend from multiple supertypes) can increase such fragility. For this reason, Gosu does not support multiple
inheritance.

What if you have shared behavior that applies to multiple unrelated classes? Since they are unrelated, class inher-
itance does not naturally apply. Classes with a shared behavior or capability might not share a common type
inheritance ancestor other than Object. Because of this, there is no natural place to implement code that applies
to both classes.

Let us consider a general example to illustrate this situation. Suppose you have a window class and a clipboard-
support class. Suppose you have a user interface system with different types of objects and capabilities.
Composition 151

Gosu Reference Guide

However, some of the capabilities might not correspond directly to the class inheritance. For example, suppose
you have classes for visual items like windows and buttons and scroll bars. However, only some of these items
might interact with the clipboard copy and paste commands.

If not all user interface items do not support the clipboard, you might not want to implement your clipboard-
supporting code in the root class for your user interface items. However, where do you put the clipboard-related
code if you want to write a window-handling class that is also a clipboard part? One way to do this is to define a
new interface that describes what methods each class must implement to support clipboard behavior. Each class
that uses this interface implements the interface with behavior uniquely appropriate to each class. This is an
example of sharing a behavioral contract defined by the interface. However, each implementation is different
within each class implementation.

What if the actual implementation code for the clipboard part is identical for each class that uses this shared
behavior? Ideally, you write shared code only once so you have maximum encapsulation and minimal duplica-
tion of code. In some cases there does not exist a shared root class other than Object, so it might not be an option
to put the code there. If Gosu supported multiple inheritance, you could encapsulate the shared code in its own
class and classes could inherit from that class in addition to any other supertype.

Fortunately, you can get many of the benefits of multiple inheritance using another design pattern called compo-
sition. Composition encapsulates implementation code for shared behavior such that calling a method on the
main object forwards method invocations to a subobject to handle the methods required by the interface.

Let us use our previous example with clipboard parts and windows. Let us suppose you want to create a subclass
of window but that implements the behaviors associated with a clipboard part. First, create an interface that
describes the required methods that you expect a clipboard-supporting object to support, and call it
IClipboardPart. Next, create an implementation class that implements that interface, and call it
ClipboardPart. Next, create a window subclass that implements the interface and delegates the actual work to a
ClipboardPart instance associated with your window subclass.

The delegation step requires the Gosu keyword delegate within your class variable definitions. Declaring a
delegate is like declaring a special type of class variable.

The delegate keyword has the following syntax:
delegate PRIVATE_VARIABLE_NAME represents INTERFACE_LIST

Or optionally
delegate PRIVATE_VARIABLE_NAME : TYPE represents INTERFACE_LIST

The INTERFACE_LIST is a list of one or more interface names, with commas separating multiple interfaces.

For example:
delegate _clipboardPart represents IClipboardPart

Within the class constructor, create an instance of an object that implements the interface. For example:
construct() {

_clipboardPart = new ClipboardPart(this)
}

After that point in time, Gosu intercepts any method invocations on the object for that interface and forward the
method invocation to the delegated object.

Let us look at complete code for this example.

The interface:
package test

interface IClipboardPart
{
 function canCopy() : boolean
 function copy() : void
 function canPaste() : boolean
 function paste() : void
}

152 Chapter 13: Composition

Gosu Reference Guide

The delegate implementation class:
package test

class ClipboardPart implements IClipboardPart {
 var _myOwner : Object

 construct(owner : Object) {
 _myOwner = owner
 }

 // this is an ACTUAL implementation of these methods...
 override function canCopy() : boolean { return true }
 override function copy() : void { print("Copied!")}
 override function canPaste() : boolean { return true }
 override function paste() : void { print("Pasted!") }

}

Your class that delegates the IClipboardPart implementation to another class
package test

class MyWindow implements IClipboardPart {
 delegate _clipboardPart represents IClipboardPart

 construct() {
 _clipboardPart = new ClipboardPart(this)
 }
}

Finally, enter the following code into the Gosu Tester:
uses test.MyWindow

var a = new MyWindow()

// call a method handled on the delegate
a.paste()

It prints:
Pasted!

Overriding Methods Independent of the Delegate Class

You can override any of the interface methods that you delegated. Using the previous example, if the canCopy
method is in the delegate interface, your MyWindow class can choose to override the canCopy method to specially
handle it. For example, you could trigger different code or choose whether to delegate that method call.

For example, your MyWindow class can override a method implementation using the override keyword, and calling
the private variable for your delegate if desired:

override function canCopy() : boolean
{
 return someCondition && _clipboardPart.canCopy();
}

Declaring Delegate Implementation Type in the Variable Definition

You can declare a delegate with an explicit type for the implementation class. This is particularly valuable if any
of your code accessing the delegate directly in terms of the implementation class. For example, by declaring the
type explicitly, you can avoid casting before calling methods on the implementation class that you know are not
defined in the interface it implements.

To declare the type directly, add the implementation type name followed by the keyword represents before the
interface name. In other words, use the following syntax:

private delegate PRIVATE_VARIABLE_NAME : IMPLEMENTATION_CLASS represents INTERFACE_NAME

For example,
private delegate _clipboardPart : ClipboardPart represents IClipboardPart
Using Gosu Composition 153

Gosu Reference Guide

Using One Delegate for Multiple Interfaces

You can use a delegate to represent (handle methods for) multiple interfaces for the enclosing class. Instead of
providing a single interface name, specify a comma-separated list of interfaces. For example:

private delegate _employee represents ISalariedEmployee, IOfficer

You might notice that in this example the line does not specify an explicit type for _employee and yet it repre-
sents two different types (in this case, two interface types). You might wonder about the compile-time type of the
variable called _employee. Because the variable must satisfy all requirements of both types, Gosu uses a special
type called a compound type. A literal of this type is expressed in Gosu as a list separated by the ampersand
symbol (&). For example:

ISalariedEmployee & IOfficer

Typical code does not need to mention a compound type explicitly. However, remember this syntax in case you
see it during debugging code that uses the delegate keyword with multiple interfaces.

For more details of compound types, see “Compound Types” on page 266.

Using Composition With Built-in Interfaces

You can use composition with any interfaces, including built-in interfaces. For example, you could give a custom
object all the methods of java.util.List and delegate the implementation to an instance of
java.util.ArrayList or another List implementation.

For example:
class MyStringList implements List<String>
{

delegate _internalList represents List<String> = new ArrayList<String>()
}

You could now use this class and call any method defined on the List interface:
var x = new MyStringList()
x.add("TestString")
154 Chapter 13: Composition

chapter 14

Annotations

Gosu annotations are a simple syntax to provide metadata about a Gosu class, constructor, method or property.
This annotation can control the behavior of the class, the documentation for the class.

This topic includes:

• “Annotating a Class, Method, Type, or Constructor” on page 155

• “Annotations at Run Time” on page 157

• “Defining Your Own Annotations” on page 158

Annotating a Class, Method, Type, or Constructor

Annotations are a simple syntax to add metadata to a Gosu class, constructor, method, or property. For example,
annotations could add indicate what a method returns, or indicate what kinds of exceptions the method might
throw. You can add completely custom annotations and this information can be read at run time. If you use an
annotation, use the at sign (@), followed by the annotation name, immediately before declarations of what they
annotate.

For example, the following simple example specifies a class to expose as a web service for external systems:
@WsiWebService
class MyServiceAPI {

public function myRemoteMethod() {}
}

In some cases, you follow the annotation name with an argument list within parentheses. The following example
specifies a function might throw a specific exception using arguments to the annotation:

class MyClass{

@Throws(java.text.ParseException, "If text is invalid format, throws ParseException")
public function myMethod() {}

}

Annotations 155

Gosu Reference Guide

The annotation may not require any arguments, or the arguments may be optional. If so, you can omit the paren-
theses. For example, suppose you add an annotation called MyAnnotation that takes no arguments. You could use
it in the following (verbose) syntax:

@MyAnnotation()

Since there are no arguments, you can optionally omit the parentheses:
@MyAnnotation

You can use annotations defined natively in Gosu or directly use Java annotations.

Argument List Notes

Gosu requires argument lists to be in the same format as regular function or method argument lists:
// standard Gosu argument lists
@KnownBreak("user", "branch", "ABC-xxxxx")

Gosu annotations support the named arguments calling convention:
@KnownBreak(:targetUser = "user", :targetBranch = "branch", :jira = "ABC-xxxxx")

For related information about named arguments, see “Named Arguments and Argument Defaults” on page 108.

Built-in Annotations

The Gosu language includes built-in annotations defined in the gw.lang.* package, which is always in scope, so
their fully-qualified name is not required.

The following table lists the built-in general annotations:

The following code defines a class that uses several built-in annotations:
package com.mycompany
uses java.lang.Exception

@WsiWebService
class Test
{

@Param("Name", "The user's name. Must not be an empty string.")
@Returns("A friendly greeting with the user's name")
@Throws(Exception, "General exception if the string passed to us is empty or null")
public function FriendlyGreeting(Name : String) : String {

if (Name == null or Name.length == 0) throw "Requires a non-empty string!"

return "Hello, " + Name + "!"
}

Annotation Description Usage limits Parameters

@Param Specifies the documentation of a param-
eter.

Methods only (1) The name of the parameter.
(2) Documentation in Javadoc
format for the method’s param-
eter.

@Returns Specifies the documentation for the
return result of the method.

Methods only, but
only once per
method

(1) Documentation in Javadoc
format for the method’s return
value.

@Throws Specifies what exceptions might be
thrown by this method.

Methods only (1) An exception type. (2) A
description in Javadoc format of
what circumstances it would
throw that exception, and how
to interpret that exception.

@Deprecated Specifies not to use a class, method,
constructor, or property. It goes away in a
future release. Begin rewriting code to
avoid using this class, method, construc-
tor, or property.

Can appear any-
where, but only
once for any specific
class, method, con-
structor, or property.

(1) A warning string to display if
this deprecated class, method,
or constructor is used.
156 Chapter 14: Annotations

Gosu Reference Guide

}

The following example specifies that a method is deprecated, which means it was a valid API but not anymore.
A deprecated API is temporarily available but a future release will remove it. Immediately start to refactor code
that uses deprecated APIs. This ensures your code is compatible with future releases, which will simplify your
upgrades.

class MyClass {

@Deprecated("Don't use MyClass.myMethod(). Instead, use betterMethod()")
public function myMethod() {print("Hello")}

public function betterMethod() {print("Hello, World!")}
}

Because annotations are implemented as Gosu classes (see “Defining Your Own Annotations” on page 158), the
annotation class that you are implicitly using must be in the current Gosu scope. You can ensure that it is in scope
by fully qualifying the annotation. For example, if the SomeAnnotation annotation is defined within the package
com.mycompany.some.package, specify the annotation like:

@com.mycompany.some.package.SomeAnnotation
class SomeClass {

...
}

Alternatively, import the package using the Gosu uses statement and then use the annotation more naturally and
concisely by using only its name:

uses com.mycompany.some.package.SomeAnnotation.*

@SomeAnnotation
class SomeClass {

...
}

Annotations at Run Time

You can get annotation information from a class either directly by getting the type from an object at runtime. You
can get an object’s type at runtime using the typeof operator, such as: typeof TYPE

You can get annotation information from a type, a constructor, a method, or a property by accessing their type
information objects attached to the type. You can call the getAnnotation method to get all instances of specific
annotation, as a list of annotation instances. In the examples in the table, the variable i represents the index in the
list. In practice, you would probably search for it by name using List methods like list.firstWhere(\ s ->
s.Name = "MethodName").

Using these methods, the return result is automatically statically typed as a list of the proper type. Using the
examples in the previous table, the result would be of type:

List<Deprecated>

This type is shown using generics syntax, and it means “a list of instances of the Deprecated annotation class”.
For more information about generics, see “Gosu Generics” on page 173.

You can additionally get all annotations (not just one annotation type) using the two properties Annotations and
DeclaredAnnotations. These two properties are slightly different and resemble the Java versions of annotations

Get annotations on a
specific instance of a... Example using the @Deprecated annotation

Type (typeof obj).TypeInfo.getAnnotation(Deprecated)

Constructor (typeof obj).TypeInfo.Constructors[i].getAnnotation(Deprecated)

Method (typeof obj).TypeInfo.Methods[i].getAnnotation(Deprecated)

Property (typeof obj).TypeInfo.Properties[i].getAnnotation(Deprecated)
Annotations at Run Time 157

Gosu Reference Guide

with the same name. On types and interfaces, Annotations returns all annotations on this type/interface and on
all its supertypes/superinterfaces. DeclaredAnnotations returns annotations only on the given types, ignoring
supertypes/superinterfaces. In constructors, properties, and methods, the Annotations and
DeclaredAnnotations properties return the same thing: all annotations including supertypes/superinterfaces. In
the examples in the table, the variable i represents the index in the list. In practice, you would probably search
for it by name using List methods like list.firstWhere(\ s -> s.Name = "MethodName").

For a detailed example of accessing annotations at run time, see “Defining Your Own Annotations” on page 158.

Defining Your Own Annotations

You can define new annotations to add entirely new metadata annotations, apply them to various kinds of
programming declarations, and then retrieve this information at run time. You can also get information at run
time about objects annotated with built-in annotations. For example, you could mark a Gosu class with metadata
and retrieve it at run time.

Annotations are implemented as Gosu classes, and an annotation is simply a call to the annotation class’s
constructor. A class constructor is similar to a class method. However, Gosu automatically calls the constructor if
it creates a new instance of the class, such as if Gosu code uses the new keyword.

You can define new annotation types that can be used throughout Gosu. Annotations are defined just like classes
except they must extend the interface IAnnotation. The IAnnotation interface is a marker interface that desig-
nates a class as an annotation definition.

Suppose you want a new annotation that allows us to annotate which people wrote a Gosu class. You could use
the annotation at run time for debugging information or to file a bug in certain error conditions. To do this, you
can create an annotation called Author.

For example, the following example defines a new annotation Author in the
com.guidewire.pl.docexamples.annotations package

package com.guidewire.pl.docexamples.annotations

class Author implements IAnnotation {
}

In this case the annotation has no constructor, which implies the annotation takes no parameters. You can call it
as:

@Author()

Because there are no arguments, you can optionally omit the parentheses:
@Author

However, as written in this example so far, you used the annotation but not specified any authors. Annotations
can define arguments so you can pass information to the annotation, which might stored in private variables.
Annotations can have properties or arguments of any type. However, if defining properties and arguments, be
careful you never define circular references between annotation classes and regular classes.

Get all annotations on... Example

Type (typeof obj).TypeInfo.Annotations

Constructor (typeof obj).TypeInfo.Constructors[i].Annotations

Method (typeof obj).TypeInfo.Methods[i].Annotations

Property (typeof obj).TypeInfo.Properties[i].Annotations
158 Chapter 14: Annotations

Gosu Reference Guide

This example requires only a single String argument, so define the annotation Author to take one argument to
its constructor. Gosu calls the constructor once for the type after initializing Gosu at run time. In your
constructor, save the constructor arguments value in a private variable:

package com.guidewire.pl.docexamples.annotations

class Author implements IAnnotation
{
 // Define a public property Author, backed by private var named _author
 private var _author : String as AuthorName

 construct(a : String)
 {
 // The constructor takes a String, which means the Author of this item
 _author = a;
 }
}

In this example, the annotation saves the String argument in a class instance variable called _author. Because of
the phrase “as Author” in the definition of the variable, at run time you can extract this information as the anno-
tation’s public property Author.

By default, this annotation can be used on any method, type, property, or constructor, and as many times as
desired. For example, you could specify multiple authors for a class or even multiple authors for methods on a
class, or both. You can customize these settings and restrict the annotation’s usage, as discussed in “Customizing
Annotation Usage” on page 159.

Test this annotation by using it on a newly defined type, such as a new Gosu class. Create the following class in
the com.guidewire.pl.docexamples.annotations package:

package com.guidewire.pl.docexamples.annotations

uses com.guidewire.pl.docexamples.annotations.Author

@Author("A. C. Clarke")
class Spaceship {

}

You can get annotation information from a class either directly by getting the type from an object at runtime.
First can get an object’s type at runtime using the typeof operator or by getting the Type property from an object.
Next, get its TypeInfo property and call the getAnnotation method, passing your annotation class name directly
as a parameter. Call the Instance property to get the annotation and cast it to your desired more specific annota-
tion class using the as operator. The Instance property throws an exception if there is more than one instance of
that annotation on the type in that context.

For example, add the example classes from earlier in this topic into your Gosu environment and then paste the
following code into the Gosu Tester:

uses com.guidewire.pl.docexamples.annotations.Author

var a = Spaceship.Type.TypeInfo.getAnnotation(Author).Instance as Author

print(typeof a)
print ("The author name from the annotation is ${a.AuthorName}")

This example prints the following:
com.mycompany.Author
The author name from the annotation is A. C. Clarke

Customizing Annotation Usage

Usage of each annotation can be customized, such as allowing it under certain conditions. For example, notice
that the built-in annotation @Returns can appear only on methods. To restrict, usage like this, use the
AnnotationUsage meta-annotation within your annotation definition. The AnnotationUsage meta-annotation
takes two parameters, the target and the modifier.

The target defines where the annotation can be used using these enumerations:

• annotation.UsageTarget.Method - This annotation can be used on a method.
Defining Your Own Annotations 159

Gosu Reference Guide

• annotation.UsageTarget.Type - This annotation can be used on a type, including classes

• annotation.UsageTarget.Property - This annotation can be used on a property.

• annotation.UsageTarget.Constructor - This annotation can be used on a constructor.

The modifier defines how many times the annotation can be used (for that target) using these enumerations:

• annotation.UsageModifier.None - This annotation cannot exist on that target

• annotation.UsageModifier.Once - This annotation can only appear once on that target

• annotation.UsageModifier.Many - This annotation can appear many (unlimited) times on that target

For example, the @Returns annotation can only appear on methods, and can only appear once, so it specifies its
requirements with this line right before its annotation definition:

@AnnotationUsage(annotation.UsageTarget.Method, annotation.UsageModifier.One)

The default availability is universal. In other words, if no AnnotationUsage attribute is defined on an annotation,
the usage defaults to allow the annotation unlimited times on all parts of a type or class.

However, once any AnnotationUsage annotation is used in an annotation definition, all targets default to None.
After using AnnotationUsage once, Gosu requires you to explicitly specify supported targets using
AnnotationUsage meta-annotations. You can optionally add multiple lines for each type of permitted use.

IMPORTANT The default annotation availability is universal (all parts, many times). As soon as you
use one AnnotationUsage line in the annotation definition, Gosu assumes all targets revert to None.
Explicitly list all permitted usages with AnnotationUsage lines as appropriate.

The annotation class is always in scope. You do not need to fully-qualify the class name or use a uses statement
in files that use it.
160 Chapter 14: Annotations

chapter 15

Enhancements

Gosu enhancements are a language feature that allows you to augment classes and other types with additional
concrete methods and properties. For example, use enhancements to define additional utility methods on a class
or interface that cannot be directly modified, even code written in Java. You can enhance classes originally
written in Gosu or Java. Enhancing is different from subclassing in important ways. Enhancing a class makes
new methods and properties available to all objects of that enhanced type, not just Gosu code that explicitly
knows about the subclass. Use enhancements to add powerful functionality omitted by the original authors.

This topic includes:

• “Using Enhancements” on page 161

Using Enhancements

Gosu enhancements allow you to augment classes and other types with additional concrete methods and proper-
ties. The most valuable use of this feature is to define additional utility methods on a Java class or interface that
cannot be directly modified. This is most useful if a class’s source code is unavailable, or a given class is final
(cannot be subclassed). Enhancements can be used with interfaces as well as classes, which means you can add
useful methods to interfaces.

Enhancing a class or other type is different from subclassing: enhancing a class makes the new methods and
properties available to all instances of that class, not merely subclass instances. For example, if you add an
enhancement method to the String class, all String instances in Gosu automatically have the additional method.

You can also use enhancements to overcome the language shortcomings of Java or other languages defining a
class or interface. For example, Java-based classes and interfaces can be used from Gosu, but they do not
natively allow use of blocks, which are anonymous functions defined in-line within another function. (See “Gosu
Blocks” on page 165.) Gosu includes many built-in enhancements to commonly-used Java classes in its products
so that any Gosu code can use them.

For example, Gosu extends the Java class java.util.ArrayList so you can use concise Gosu syntax to sort,
find, and map members of a list. These list enhancements add additional methods to Java lists that take Gosu
blocks as parameters. The original Java class does not support blocks because the Java language does not support
blocks. However, these enhancements add utilities without direct modifications to the class. Gosu makes these
Enhancements 161

Gosu Reference Guide

additional methods automatically and universally available for all places where Gosu code uses
java.util.ArrayList.

You can also enhance an interface. This does not mean an enhancement can add new methods to the interface
itself. The enhancement does not add new requirements for classes to implement the interface. Instead,
enhancing an interface means that all objects whose class implements the interface now has new methods and
properties. For example, if you enhance the java.util.Collection interface with a new method, all collection
types suddenly have your newly-added method.

This does not go into detail about the built-in enhancements to collections. For reference documentation, see
“Collections” on page 183. If you have not yet learned about Gosu blocks, you may want to first review “Gosu
Blocks” on page 165.

Syntax for Using Enhancements

There is no special syntax for using an already-defined enhancement. The new methods and properties are auto-
matically available within the Gosu editor for all Gosu contexts.

For example, suppose there is an enhancement on the String type for an additional method called
calculateHash. Use typical method syntax to call the method with any String object accessible from Gosu:

var s1 = "a string"
var r1 = s1.calculateHash()

You could even use the method on a value you provide at compile time:
"a string".calculateHash()

Similarly, if the enhancement adds a property called MyProperty to the String type, you could use code such as:
var p = "a string".MyProperty

The new methods and properties all appear in the list of methods that appears if you type a period (.) character in
the Gosu editor. For example, if typing “s1.calculateHash()”, after you type “s1.” the list that appears
displays the calculateHash method as a choice.

Creating a New Enhancement

To create a new enhancement, put the file in your Gosu class file hierarchy in the package that represents the
enhancement. It does not need to match the package of the enhanced type.

Syntax for Defining Enhancements

Although using enhanced properties and methods is straightforward, a special syntax is necessary for defining
new enhancements. Defining a new Gosu enhancement looks similar to defining a new Gosu class, with some
minor differences in their basic definition.

Differences between classes and enhancements include

• Use the keyword enhancement instead of class

• To define what to enhance, use the syntax: “: TYPETOEXTEND” instead of “extends CLASSTOEXTEND”

• If you must reference methods on the enhanced class/type, use the symbol this to see the enhanced class/
type. For example, to call the enhanced object’s myAction method, use the syntax this.myAction(). In
contrast, never use the keyword super in an enhancement.

Note: Enhancements technically are defined in terms of the external interface of the enhanced type. The
keyword super implies a superclass rather than an interface, so it is inappropriate for enhancements.

• Enhancements cannot save state information by allocating new variables or properties on the enhanced type.

Enhancement methods can use properties already defined on the enhanced object or call other enhanced
methods.
162 Chapter 15: Enhancements

Gosu Reference Guide

You can add new properties as necessary and access the properties on the class/type within Gosu. However, that
does not actually allow you to save state information for the enhancement unless you can do so using variables or
properties that already exist on the enhanced type. See later in this section for more on this topic.

For example, the following enhancement adds one standard method to the basic String class and one property:
package example

enhancement StringTestEnhancement : java.lang.String {

public function myMethod(): String {
return "Secret message!"

}

public property get myProperty() : String {
return "length : " + this.length()

}
}

Note the use of the syntax “property get” for the method defined as a property.

With this example, use code like the following to get values:
// get an enhancement property:
print("This is my string".myProperty)

// get an enhancement method:
print("This is my string".myMethod())

These lines outputs the following:
"length: 17"
"Secret message!"

Enhanced methods can call other methods internally, as demonstrated with the getPrettyLengthString method,
which calls the built-in String method length().

IMPORTANT Enhancements can create new methods but cannot override existing methods.

Setting Properties in Enhancements

Within enhancement methods, your code can set other values as appropriate such as an existing class instance
variable. You can also set properties with the “property set PROPERTYNAME()” syntax. For example, this
enhancement creates a new settable property that appends an item to a list:

package example

enhancement ListTestEnhancement<T> : java.util.ArrayList<T>
{
 public property set LastItem(item : T) {
 this.add(item)
 }
}

Test this code in the Gosu Tester with this code:
uses java.util.ArrayList

var strlist = new ArrayList<String>() {"abc", "def", "ghi", "jkl"}

print(strlist)
strlist.LastItem = "hello"
print(strlist)

This code outputs:
[abc, def, ghi, jkl]
[abc, def, ghi, jkl, hello]

You can add new properties and add property set functions to set those properties. However, in contrast to a class,
enhancements cannot define new variables on the type to store instance data for your enhancement. This limits
most types of state management if you cannot directly change the source code for the enhanced type to add more
variables to the enhanced type. Enhancements cannot add new variables because different types have dramati-
Using Enhancements 163

Gosu Reference Guide

cally different property storage techniques, such as a persistent database storage, Gosu memory storage, or file-
based storage. Enhancements cannot transparently mirror these storage mechanisms.

Also, although enhancements can add properties, enhancements cannot override existing properties.

IMPORTANT Enhancements can add new properties by adding new dynamic property get and set
functions to the type. However, enhancements cannot override property get or set functions. Also,
enhancements cannot create new native variables on the object that would require additional data
storage with the original object. Enhancements cannot override methods either.

Enhancement Naming and Package Conventions

The name of your enhancement must follow the following naming convention of the enhanced type name, then
an optional functional description, followed by word Enhancement. In other words, the format is:

[EnhancedTypeName][OptionalFunctionalDescripton]Enhancement

For example, to enhance the Report class, you could call it simply:
ReportEnhancement

If the enhancement added methods related to claim financials, you might emphasize the enhancement’s func-
tional purpose by naming the enhancement:

ReportFinancialsEnhancement

Enhancement Packages

Use your own company package to hierarchically group your own code and separate it from built-in types, in
almost all cases. For example, you could define your enhancement with the fully-qualified name
com.mycompany.ReportEnhancement. Even if you are enhancing a built-in type, if at all possible use your own
package for the enhancement class itself.

In only extremely rare cases, you might need to enhance a built-in type and you need to use a protected prop-
erty or method. If so, you might need to define your enhancement in a subpackage of the enhanced type. See
“Modifiers” on page 135 for more information about the protected keyword. However, to avoid namespace
conflicts with built-in types, avoid this approach if possible.

Enhancements on Arrays

To specify the enhanced type for an enhancement on an array type:

• For regular types, use standard array syntax, such as String[].

• For generic types, use the syntax T[], which effectively means all arrays.
164 Chapter 15: Enhancements

chapter 16

Gosu Blocks

Gosu blocks are a special type of function that you can define in-line within another function. You can then pass
that block of code to yet other functions to invoke as appropriate. Blocks are very useful for generalizing algo-
rithms and simplifying interfaces to certain APIs. For example, blocks can simplify tasks related to collections,
such as finding items within or iterating across all items in a collection.

This topic includes:

• “What Are Blocks?” on page 165

• “Basic Block Definition and Invocation” on page 166

• “Variable Scope and Capturing Variables In Blocks” on page 168

• “Argument Type Inference Shortcut In Certain Cases” on page 169

• “Block Type Literals” on page 169

• “Blocks and Collections” on page 171

• “Blocks as Shortcuts for Anonymous Classes” on page 171

What Are Blocks?

Gosu blocks are functions without names (sometimes called anonymous functions) that you can define in-line
within another function. You can then pass that block of code to yet other functions to invoke as appropriate.
Blocks can be very useful for generalizing algorithms and simplifying interfaces to APIs. An API author can
design most of an algorithm but let the API consumer contribute short blocks of code to complete the task. The
API can use this block of code and call it once or possibly many times with different arguments.

For example, you might want to find items within a collection that meet some criteria, or to sort a collection of
objects by certain properties. If you can describe your find or sort criteria using small amount of Gosu code,
Gosu takes care of the general algorithm such as sorting the collection.

Some other programming languages have similar features and call them closures or lambda expressions. For
those who use the Java language, notice that Gosu blocks serve some most common uses of single-method anon-
ymous classes in Java. However, Gosu blocks provide a concise and clear syntax that makes this feature more
convenient in typical cases.
Gosu Blocks 165

Gosu Reference Guide

Blocks are particularly valuable for the following:

• Collection manipulation. Using collection functions such as map and each with Gosu blocks allows concise
easy-to-understand code with powerful and useful behaviors for real-world programming.

• Callbacks. For APIs that wish to use callback functions after an action is complete, blocks provide a straight-
forward mechanism for triggering the callback code.

• Resource control. Blocks can be useful for encapsulating code related to connection management or transac-
tion management.

Gosu code using blocks appropriately can simplify and reduce the size of your Gosu code. However, they can
also be confusing if used too aggressively and use them carefully. If your intended use does not fall into one of
the list categories, reconsider whether to use blocks. There may be a better and more conventional way to solve
the problem. Generally speaking, if you write a method that takes more than one block as a function/method
argument, strongly consider redesigning or refactoring the code.

WARNING Gosu blocks are not always the correct design solution. For example, if you design a func-
tion that takes more than one block as arguments, a general rule is to redesign or refactor your code.

Basic Block Definition and Invocation

To define a Gosu block, type use the backslash character (\) followed by a series of arguments. The arguments
must be name/type pairs separated by a colon character (:) just as if defining arguments in a method. Next, add a
hyphen character (-) and a greater-than character (>) to form the arrow-like pair characters ->. Finally, add a
Gosu expression or a statement list surrounded by curly braces.

In other words, the syntax is:
\ argumentList -> blockBody

The argument list (argumentList) is a standard function argument list, for example:
x : Number, y : Number

The argument list defines what parameters must be passed to the block. The parameter list uses identical syntax
as parameters to regular functions. However, in some cases you can omit the types of the parameters, such as
passing a block directly into a class method such that the parameter type can be inferred. For examples, see
“Argument Type Inference Shortcut In Certain Cases” on page 169.

The block body (blockBody) can be either of the following:

• a simple expression. This includes anything legal on the right-hand side of an assignment statement. For
example, the following is a simple expression:
"a concatenated string " + "is a simple expression"

• a statement list with one or more statements surrounded by braces and separated by semi-colon characters,
such as the following simple one-statement statement list:
\ x : Number, y : Number -> { return x + y }

For single-statement statement lists, you must explicitly include the brace characters. In particular, note that
variable assignment operations are always statements not expressions. Thus, the following expression is
invalid:
names.each(\ n -> myValue += n)

Instead, change it to the following:
names.each(\ n -> { myValue += n })

For multiple statements, separate the statements with a semi-colon character. For example:
\ x : Number, y : Number -> { var i = x + y; return i }

The following block multiplies a number with itself, which is known as squaring a number:
var square = \ x : Number-> x * x //no need for braces here
var myResult = square(10) // call the block
166 Chapter 16: Gosu Blocks

Gosu Reference Guide

The value of myResult in this example is 100.

IMPORTANT All parameter names in a block definition’s argument list must not conflict with any
existing in-scope variables, including but not limited to local variables.

The Gosu editor displays a block definition’s backslash character as a Greek lambda character. This improves
code appearance and honors the theoretical framework from which blocks derive, called lambda calculus. The
Gosu editor displays the pair of characters -> as an arrow symbol.

For example, you could type the following Gosu block:
var square = \ x : Number -> x * x

The Gosu editor displays it as:

In general, the standard Gosu style is to omit all semicolon characters in Gosu at the end of lines. Gosu code is
more readable without optional semicolons. However, if you provide statement lists on one line, such as within
block definitions, use semicolons to separate statements. For other style guidelines, see “General Coding Guide-
lines” on page 285.

Return Values and Return Type

Notice that the block definition does not explicitly declare the return type, which is the type of the return value of
the block. This is because the return type is inferred from either the expression (if you defined the block with an
expression) or for statement list by examining the return statements. This frees you of the burden of explicitly
typing the return type. This also allows the block to appear short and elegant. However, it is important to under-
stand that the return type is actually statically typed even though the type is not explicitly visible in the code.

For example, note the following simple block:
var blockWithStatementBody = \ -> { return "hello blocks" }

Because the statement return "hello blocks" returns a String, that means the block’s return type is String.

IMPORTANT Gosu infers a block’s return type by the returned value of the return statements of the
statement list. If an expression is provided instead of a statement list, Gosu uses the type of the expres-
sion. That type is static (fixed) at compile time although it is not explicitly visible in the code.

Using and Invoking Blocks

Blocks are invoked just like normal functions by referencing a variable to which you previously assigned the
block. To use a block, type:

1. the name of the block variable or an expression that resolves to a block

2. an open parenthesis

3. a series of argument expressions

4. a closing parenthesis

For example, suppose you create a Gosu block with no arguments and a simple return statement:
var blockWithStatementBody = \-> { return "hello blocks" }

Because the statement list returns a String, Gosu infers that the block returns a String. The new block is
assigned to a new variable blockWithStatementBody, and the block has a return type of String even though this
fact is not explicit in the code text.

To call this block and assign the result to variable myresult, simply use this code:
var myresult = blockWithStatementBody()
Basic Block Definition and Invocation 167

Gosu Reference Guide

The value of the variable myresult is the String value "hello blocks" after this line executes:

The following example creates a simple block that adds two numbers as parameters and returns the result:
var adder = \ x : Number, y : Number -> { return x + y }

After defining this block, you can call it with code such as:
var mysum = adder(10, 20)

The variable mysum has the type Number and has the value 30 after the line is executed.

You can also implement the same block behavior by using an expression rather than a statement list, which
allows an even more concise syntax:

var adder = \ x : Number, y : Number -> x + y

Variable Scope and Capturing Variables In Blocks

Gosu blocks maintain some context with respect to the enclosing statement in which they were created. If code in
the block refers to variables that are defined outside the scope of the block’s definition but in scope where the
block is defined, the variable is captured. The variable is incorporated by reference into the block. Incorporating
the variable by reference means that blocks do not merely capture the current value of the variable at the time its
enclosing code creates the block. If the variable changes after the enclosing code creates the block, the block gets
or sets the most recent value in the original scope. This is true even if the original scope exited (finished).

The following example adds 10 to a value. However, the value 10 was captured in a local variable, rather than
included in an argument. The captured variable (called captured in this example) is used but not defined within
the block:

var captured = 10
var addTo10 = \ x : Number -> captured + x
var myresult = addTo10(10)

After the third line is executed, myresult contains the value 20.

A block captures the state of the stack at the point of its declaration, including all variables and the special
symbol this, which represents the current object. For example, the current instance of a Gosu class running a
method.

This capturing feature allows the block to access variables in scope at its definition:

• ...even after being passed as an argument to another function

• ...even after the block returns to the function that defines it

• ...even if some code assigns it to a variable and keeps it around indefinitely

• ...even after the original scope exits (after it finishes)

In other words, each time the block runs, it can access all variables declared in that original scope in which it was
defined. The block can get or set those variables. The values of captured variables are evaluated each time the
block is executed, and can be read or set as desired. Captured variable values are not simply a static snapshot of
their value at the time the block was created.

To illustrate this point further, the following example creates a block that captures a variable (x) from the
surrounding scope. Next, the code that created the block changes the value of x. Only after that change does any
code actually call the block:

// define a local variable, which is captured by a block
var x = 10

// create the block
var captureX = \ y : Number -> x + y

// Note: the variable "x" is now SHARED by the block and the surrounding context

// Now change the value of "x"
x = 20
168 Chapter 16: Gosu Blocks

Gosu Reference Guide

// at the time the block runs, it uses the current value of x,
// this is NOT a snapshot of what it was at the time block was created
var z = captureX(10)

print(z) // prints 30 --- not 20!!!

The captured variable is effectively shared by the original scope and the block that was created within that
scope. In other words, the block references the variable itself, not merely its original value.

IMPORTANT If accessing variables not defined within the block definition, blocks effectively share
the variable with the context that created it. This is true even if the original scope exited (finished) or its
value has changed. This is a very powerful feature. If you use this feature at all, use it very carefully
and document your assumptions so people who read your code can understand and debug it.

Argument Type Inference Shortcut In Certain Cases

The Gosu parser provides additional type inference in a common case. If a block is defined within a method call
parameter list, Gosu can infer the type of the block’s arguments from the parameter argument. You do not need to
explicitly specify the argument type in this case.

In other words, if you pass a block to a method, in some cases Gosu can infer the type so you can omit it for more
concise code. This is particularly relevant for using collection-related code that takes blocks as arguments.

For example, suppose you had this code:
var x = new ArrayList<String>(){"a", "b", "c"}

var y = x.map(\ str : String -> str.length)

You could instead omit the argument type (String). The map method signature allows Gosu to infer the argument
type in the block because of how the map method is defined.

You could use the more concise code:
var x = new ArrayList<String>(){"a", "b", "c"}

var y = x.map(\ str -> str.length)

The list method map() is a built-in list enhancement method that takes a block with one argument. That argument
is always the same as the list’s type. Therefore Gosu infers that str must be of type String and the you do not
need to explicitly define the type of arguments nor the return type.

Note: The map method is implemented using a built-in Gosu enhancement of the Java language List class.
For more information, see “Collections” on page 183.

Block Type Literals

Block literals are a form of type literal, which means the way you reference a block type. The block literal specif-
ically what kinds of arguments the block takes and what type of return value it returns.

Block Types In Declarations

If you define a variable to contain a block in a variable declaration, the preferred syntax is:
variableName(list_of_types) : return_type

For example, to declare that x is a variable that can contain a block that takes a single String argument and
returns a String value, use this code:

var x(String) : String

In declarations, you can also optionally use the block keyword, although this is discouraged in declarations:
block(list_of_types) : return_type
Argument Type Inference Shortcut In Certain Cases 169

Gosu Reference Guide

For example, this code declares the same block type as described earlier:
var x : block(String) : String

Block Types Not Part of Declarations

Where a block type literal is not part of a declaration, the block keyword is strictly required:
block(list_of_types) : return_type

For example:
var b = block(String) : Number

This means that the b variable is assigned a value that is a block type. Since the block type literal is not directly
part of the declaration, the block keyword must be specified.

Block Types In Argument Lists

Within function definition, a function argument can be a block. As you define the block argument, provide a
name for that block parameter so you can use it within the function. Do this using the following syntax for block
types in argument lists:

parameter_variable_name(list_of_types) : return_type

For example, suppose you want to declare a function that took one argument, which is a block. Suppose the block
takes a single String argument and returns no value. If you want refer to this block by name as myCallback,
define the argument using the syntax:

myCallBack(String) : void

It might be easier to understand with an actual example. The following Gosu class includes a function that takes
a callback block. The argument is called myCallBack, which is a block that takes a single string argument and
returns no value. The outer function calls that callback function with a String.

package mytest

class test1 {

function myMethod(myCallBack(String) : void) {

// call your callback block and pass it a String argument
myCallBack("Hello World")

}
}

Test this code as follows:
var a = new mytest.test1()
a.myMethod(\ s : String -> print("<contents>" + s + "</contents>"))

For even more concise code, you can omit the argument type “: String” in the in-line block. The block is
defined in-line as an argument to a method whose argument types are already defined. In other words, you can
simply use the following code

var a = new mytest.test1()
a.myMethod(\ s -> print("<contents>" + s + "</contents>"))

Both versions print the following:
<contents>Hello World</contents>

Block Types BNF Notation

For those interested in formal BNF notation, the notation of a block literal is:
blockliteral -> block_literal_1 | block_literal_2
block_literal_1 -> block (type_list) : type
block_literal_2 -> parameter_name (type_list) : return_type
type_list -> type | type_list , | null
170 Chapter 16: Gosu Blocks

Gosu Reference Guide

Blocks and Collections

Gosu blocks are particularly valuable for working with collections of objects. Blocks allow concise and easy-to-
understand code that loops across items, extracts information from every item in a collection, or sorts items.
Common collection enhancement methods that use blocks are map, each, and sortby.

For example, suppose you want to sort the following list of strings:
var myStrings = new ArrayList<String>(){"a", "abcd", "ab", "abc"}

You could easily resort the list based on the length of the strings using blocks. Create a block that takes a String
and returns the sort key, which in this case is the string’s length. The built-in list sortBy(...) method handles
the rest of the sorting algorithm and then returns the new sorted array:

var resortedStrings = myStrings.sortBy(\ str -> str.Length())

These block-based collection methods are implemented using a built-in Gosu enhancement of the Java language
List class. For more information, see “Collections” on page 183.

Blocks as Shortcuts for Anonymous Classes

In certain cases, you can pass a block as a method argument instead of an instance of an anonymous class. If the
method is part of an interface that contains exactly one method, you can pass a block instead of the anonymous
class instance. This technique in Gosu is an easy-to-read coding style that works with interfaces that were origi-
nally implemented in either Gosu or Java. The parameters of the block must be the same number and type as the
parameters to the interface method. The return type of the block must be the same as the return type of that
method.

Use a block for APIs that use the Gosu interface type BlockRunnable or the Java interface type Runnable. Both
interfaces are simple containers for a single method called run.

For example, suppose a method signature looks like the following:
public function doAction(b : BlockRunnable)

You can call this method using a block:
obj.doAction(\ -> print("do your action here"))

As a naming convention, if an API uses a type with a name that contains the word Block, then you can probably
use a block for that type.

This feature works with any interface, including interfaces defined as inner interfaces within a class. For
example, suppose the PluginCallbackHandler class contains an inner interface called
PluginCallbackHandler.Block, which implements a run method, similar to the Runnable interface. This inter-
face has one method. Instead of creating an anonymous class to use the inner interface, use a block that takes no
arguments and has no return value.

For example, suppose you are using this PluginCallbackHandler class definition in Java:
public interface PluginCallbackHandler {

// DEFINE AN INNER INTERFACE WITHIN THIS CLASS
public interface CallbackBlock {
public void run() throws Throwable;

 }

// ...

public void execute(CallbackBlock block) throws Throwable;
}

This Gosu code creates the anonymous class explicitly:
public function messageReceived(final messageId : int) : void {

// CREATE AN ANONYMOUS CLASS THAT IMPLEMENTS THE INTERFACE
 var myBlock : PluginCallbackHandler.Block = new PluginCallbackHandler.Block() {
Blocks and Collections 171

Gosu Reference Guide

// implement the run() method in the interface
 public function run() : void { /* your Gosu statements here */ }
 };

// pass the anonymous inner class with the one method
 _callbackHandler.execute(myBlock);
 }

However, you can code it more concisely with a block:
 public function messageReceived(messageId : int) {

 _callbackHandler.execute(\ -> { /* your Gosu statements here */ })
}
172 Chapter 16: Gosu Blocks

chapter 17

Gosu Generics

Gosu generics is a language feature that lets you define a class or function as working with many types by
abstracting its behavior across multiple types of objects. This abstraction feature is important because collections
defined with generics can specify what kinds of objects they contain. If you use collections, you can be specific
about what objects are in the collection. You do not need to very general about the type of the contents, such as
using a root type such as Object. However, if you are designing APIs that can work with different types of
objects, you can write the code only once, and it works with different types of collections. In essence, you can
generalize classes or methods to work with various types and retain compile-time type safety. Use generics to
write statically typed code that can be abstracted to work with multiple types.

Generics are especially valuable for defining special relationships between arguments to a function and/or its
return values. For example, you can require two arguments to a function to be homogenous collections of the
same type of object, and the function returns the same type of collection. Designing APIs to be abstract like that
allows your code and the Gosu language to infer other relationships. For example, an API that returns the first
item in a collection of String objects is always typed as a String. You need not write coercion code with the
syntax “as TYPE” with APIs that you design to use generics. Because generics increase how often Gosu can use
type inference, your collection-related code can be easy to understand, concise, and type-safe.

Gosu generics are compatible with generics in Java version 1.5, so you can use Java classes designed for Java 1.5
generics or even extend them in Gosu.

For more information about static typing in Gosu, see “More About the Gosu Type System” on page 29.

This topic includes:

• “Gosu Generics Overview” on page 174

• “Using Gosu Generics” on page 175

• “Other Unbounded Generics Wildcards” on page 177

• “Generics and Blocks” on page 178

• “How Generics Help Define Collection APIs” on page 180

• “Multiple Dimensionality Generics” on page 180

• “Generics With Custom ‘Containers’” on page 181
Gosu Generics 173

Gosu Reference Guide

Gosu Generics Overview

You probably use simple arrays sometimes to store multiple objects of the same type. For example, an array of
five numbers, an array of 47 String objects, or an array of some other type of primitive or object. Similarly,
collections (including all lists) provide another way of grouping items together, but with important differences
between arrays and collections.

Standard arrays contain items of the same type of object, and if one type extends another, you can make certain
assumptions about the type of items in the array. For example, because Integer extends Number, it means that an
array of Integer is also an array of Number. In other words, Integer[] is also an array of Number[]. Where a
Number[] is required, you are free to pass or assign an Integer[]. However, collections do not work that way.

Standard collections can contain a variety of types of objects—they are heterogeneous. If you take an object out
of a collection, typically you must cast it to a desired type or check its type before doing something useful with it.

Without generics, in practice, people tend to design collection-related APIs to work with collections of Object
instances. The Object class is the root class of all non-primitive objects in the Gosu language and also in the Java
language.

Unfortunately, if you use APIs that return collections of type Object, your code must cast (coerce) it to a more
specific type to access properties and methods.

Although casting one value to another type is useful, it is unsafe in some cases and prevents the compiler from
knowing at compile-time whether it succeeds. For example, if the item you extract from the collection is a type
that does not support casting, it fails at run time. For example, casting a String to an Array. This approach to
coding is inconsistent with confirming type problems at compile time. Detecting problems at compile time is
important for reliable mission-critical server applications.

An alternative is to define different types of collections or lists supporting only homogenous sets of objects of a
certain type, such as StringList, IntegerList, or MyCustomClassList. Defining homogenous sets of objects in
this way provides compile-time certainty and dramatically reduces the chance of type safety issues. However, the
downside is more complexity to make the API work with different types of lists. A Gosu class method that takes
a StringList would need a separate method signature to take an IntegerList. This type of repetitive method
signature declaration simply to achieve type safety is time consuming. Additionally, the method definitions
might be incomplete. If you provide such an API, it cannot predict a list of types you do not know about that a
consumer of your API wants to use. If there were a way to generalize the function so that it would work with all
lists, you could provide a generalized—or generic—function to perform the task.

Suppose that you could define a collection with an explicit type of each item. By using angle-bracket notation
after the collection class, such as List<Number>, you can specify what types of things the container contains. If
you read aloud, you can translate the bracket notation in English as the word “of”. Thus the syntax List<Number>
means a list of numbers. Even better, suppose there were a way to define function parameters to work with
any type. What if it always returned an object of the same type, or an array of that type, and had such relation-
ships enforced at compile time? This is what Gosu generics do for you.

Generics provide a way to specify the type of objects in a collection with specificity as you use an API, but with
generality as you design an API. At compile time, the Gosu compiler confirms that everything has a valid type
for the API. Additionally, Gosu infers types of arguments and return values in many cases so you do not have to
do much coercing of values from a root class. For instance, you do not generally need to coerce a variable of type
Object to a more useful specific type. Suppose you take values out of a collection of objects of type MyClass. A
variable that contains an extracted first item in the collection always has type MyClass, not Object. With generics
you do not need to coerce the value to type MyClass before calling methods specific to the MyClass class.

Generics provide the best of generalizability as you design APIs and specificity as you use APIs. Using generics,
your collections-related code can be easy to understand, concise, and typesafe.

Gosu generics are compatible with generics implemented in Java version 1.5. You can use Java utility classes
designed for Java 1.5 generics and even extended them in Gosu. There is one exception for Java-Gosu compati-
174 Chapter 17: Gosu Generics

Gosu Reference Guide

bility, which is that Gosu does not support the syntax <? super TYPE>. For more information about other similar
features, see “Bounded Wildcards” on page 178.

For extended discussions of generics as implemented in Java, see the book “Java Generics and Collections” by
Maurice Naftalin and Philip Wadler, or the following on-line tutorial:

http://java.sun.com/j2se/1.5/pdf/generics-tutorial.pdf

Gosu Generics are Reified

One important difference between Gosu and Java is that Gosu generics are reified—unlike Java, at run time,
Gosu retains the actual specific type. For example, at run time you could check whether an object was an
instance of PetGroup<Cat> or PetGroup<Dog> including the information in the angle brackets.

In contrast, Java generics lose this generic parameter information at run time. This is called type erasure. Java
introduced generics in this way to maximize compatibility with older Java code that did not support generics.

Using Gosu Generics

If a function or method has already defined arguments or a return value by using Gosu generics, a “consumer” of
this API finds the API easy to use. The only important thing to know is that you define the type of collection with
the angle bracket notation COLLECTION_CLASS<OF_TYPE>. For example, an array list of Address objects would
use the syntax ArrayList<Address>.

Note: In practice, you sometimes do not need to define the collection type due to type inference or special
object constructors. See “Basic Lists” on page 183 and “Basic Hash Maps” on page 185.

For example, suppose you want a list of String objects. One way to define the list would be:
var theList= new ArrayList<String>() { address1, address2, address3, address4 }

You could create a function that takes a specific type of list, in this case a list of strings:
function printStrings(strs : ArrayList<String>) {

for(s in strs) {
print(s)
}

}

If you want to call a method using Gosu generics to take an array list of any type, simply call the method:
r = printStrings(theList)

If Gosu knows the return result type of a function, it can infer the type of other things, which makes your code
more concise:

var strs = new ArrayList<String>(){"a", "ab", "abc"}
var longerStrings = strs.findAll(\ str -> str.length >= 2)

In the previous example, the resulting value of longerStrings is strongly typed as ArrayList<String>. This is
because Gosu knows the return type of the findAll method called on any array list of String values. If you get
an object from value of longerStrings, it has the correct expected String type, not simply Object.

Using functions defined with generics typically is even simpler because of Gosu generics. The return value can
be strongly typed to match the exact type of collection you passed into it or one of its items. For example, return
a “list of MyClass objects” or “a MyClass object”, rather than a “list of Object” or just an Object. Although
generics are abstract, using APIs other people defined with generics typically is straightforward and intuitive.

Although you can specify a specific type of collection, the greatest power of Gosu generics is defining APIs that
work with multiple types, not just a single type. This requires a special syntax called parameterization.

Without Gosu generics, the way to support multiple types would be define a utility class method that takes a stan-
dard Collection object and returns another Collection object. That would allow you to use the method with a
wide variety of collections: a Collection of MyClass objects, a Collection of Address objects, and so on.
However, any code that extracted items from the collection after an API call would have to add code with a coer-
cion “x as TYPE” if extracting an object from it:
Using Gosu Generics 175

Gosu Reference Guide

var c = myCollection.iterator.next()
(c as MyClass).myClassMethod()

Note the code “f as MyClass”. That approach typically results in hard-to-read code, since you must manually
add casting to a specific type for a variety of APIs due to this issue. Additionally, it is dangerous because the
actual casting happens at run time and you could make a mistake by casting it to the wrong object. Most impor-
tantly, the casting could fail at run time in some cases if you make other types of errors, rather than identified
and flagged at compile time.

Fortunately, with generics this type of casting is not necessary if you use APIs designed with generics and design
any new APIs with generics. For example, suppose that the local variable (in this case, c) already carried with it
the information about the type of the object in the collection. That allows you to remove the "as MyClass"
before calling methods on the object:

var c = new ArrayList<MyClass>() { c1, c2, c3 }
...

// the result of this is strongly typed
var first = c.iterator.next().myClassMethod()

From quickly looking at the code, you might assume from the text that the first variable is not strongly typed
after removing the cast. However, it is strongly typed at compile time.

If you want to make full use of the language’s ability to use generic types, you have two choices:

• parameterize a class, which means to add generic types to the class definition

• parameterize a method, which means to add generic types to a method definition

Parameterized Classes

If you want a class that always operates with a generic type, define the class with the angle bracket notation
CLASSNAME<GENERIC_TYPE_NAME> in the class definition. By convention, for the GENERIC_TYPE_NAME string, use
a one-letter variable, preferably T. For example, you could define a class MyClass as MyClass<T>.

In the following example, the class Genericstest has one method that returns the first item in a list. Gosu
strongly types the return value to match the type of the items in the collection:

package com.example
uses java.util.ArrayList

class Genericstest<T>
{
 // print out (for debugging) and then return the first item in the list, strongly typed
 public function PrintAndReturnFirst(aList : ArrayList<T>) : T {
 print(aList[0])
 return aList[0]
 }
}

Now, some other code could use this class and pass it an array list of any type:
var myStrings = new ArrayList<String>(){"a", "abcd", "ab", "abc"}

var t = new Genericstest<String>()
var first = t.PrintAndReturnFirst(myStrings)

After this code runs, the value of the variable first is strongly typed as String because of how it used the
method that was defined with generics.

This also works with multiple dimensions of types. Suppose you want to write something that stores key-value
maps. Instead of writing:

class Mymapping {
function put(key : Object, value : Object) {...}
function get(key : Object) : Object {...}

}

...you could use generics to define it as:
class Mymapping<K,V> {

function put(key : K, value : V) {...}
176 Chapter 17: Gosu Generics

Gosu Reference Guide

function get(key : K) : V {...}
}

Now you can use this class with strongly typed results:
myMap = new Mymapping<String, Integer>
myMap.put("ABC", 29)

theValue = myMap.get("ABC")

The theValue variable is strongly typed at compile time as Integer, not Object.

Within the method definition, the values in angle brackets have special meanings as type names in a parameter-
ized class definition. In this case, the K and V symbols. Use these symbols in method signatures in that class to
represent types in arguments, return values, and even Gosu code inside the method.

You can think about it as at the time the method runs, the symbols K and V are pinned (assigned) to specific types
already. By the time this method runs, some other code created new instances of the parameterized class with
specific types already. The compiler can tell which method to call and what types K and V really represent. In the
earlier example, the concrete types are String (for K) and Integer (for V).

Gosu generics offer this power to define APIs once and abstract the behavior across multiple types. Define your
APIs with the generics and wildcards to generalize your APIs to work with different types of types or collections.
Your code is strongly-typed code at compile time, which improves reliability of code at run time.

Parameterized Methods

You can add a finer granularity of type usage by adding the generic type modifiers to the method, immediately
after the method name. In Gosu this is called parameterizing the method. In other languages, this is known as
making a polymorphic method with a generic type.

For example, in the following example, the class is not parameterized but one method is:
package com.example
uses java.util.ArrayList

class Test3
{
 // return the last item in the list
 public function ReturnLast<T>(a : ArrayList<T>) : T{

 var lastItemIndex = a.size - 1
 return a[lastItemIndex]
 }
}

Within the method’s Gosu code, the symbol T can be used as a type and this code works automatically, matching
T to the type of the collection passed into it.

Code can use this class:
var myStrings = new ArrayList<String>(){"a", "abcd", "ab", "123"}

var t = new com.example.Test3()

var last = t.ReturnLast(myStrings)

print("last item is: " + last)

The variable last is strongly typed as String, not Object.

Other Unbounded Generics Wildcards

In some cases, there is no prior reference to a type wildcard character (such as T in earlier examples) if you need
to define arguments to a method. This is typical for defining blocks, which are anonymous functions defined in-
line within another function (see “Gosu Blocks” on page 165). In such cases, you can simply use the question
mark character instead of a letter:

var getFirstItem = \ aList : List<?> -> aList[0]
Other Unbounded Generics Wildcards 177

Gosu Reference Guide

For more details about how generics interact with blocks, see “Generics and Blocks” on page 178.

Bounded Wildcards

You can specify advanced types of wildcards if you want to define arguments that work with many types of
collections. However, you can still make some types of assumptions about the object’s type. For example, you
might want to support homogenous collections (all items are of the same type) or perhaps only instances of a
class and its subclasses or subinterfaces.

Suppose you had a custom class Shape. Suppose you want a method to work with collections of circle shapes or
collections of line shapes, where both Circle and Line classes extend the Shape class. For the sake of this
example, assume the collections are always homogenous and never contain a mix of both types.

It might seem like you could define a function like this:
public function DrawMe (circleArray : ArrayList<Shape>)

The function would work if you pass it an object of type ArrayList<Shape>. However, it would not work if you
tried to pass it an ArrayList<Circle>, even though Circle is a subclass of Shape.

Instead, specify support of multiple types of collections while limiting support only to certain types and types
that extend those types. Use the syntax “extends TYPE” after the wildcard character, such as:

<T extends TYPE>

or...
<? extends TYPE>

For example:
public function DrawMe (circleArray : ArrayList<T extends Shape>)

In English, you can read that argument definition as “the parameter circleArray is an ArrayList containing
objects all of the same type, and that type extends the Shape class”.

Although Gosu generics work very similar to generics in the Java language, one other type of bounded wildcard
supported by Java is not supported in Gosu. The supertype bounded wildcard syntax <? super TYPE> is
supported by Java but not by Gosu.

WARNING Gosu does not support the generics syntax for bounded supertypes <? super TYPE>,
which is supported by Java. That syntax is rarely used anyway because the <? extends TYPE> is more
appropriate for typical code.

Generics and Blocks

The Gosu generics feature is often used in conjunction with another Gosu feature called blocks, which are anon-
ymous functions that can be passed around as objects to other functions. You can use generics to describe or use
blocks in two basic ways.

Blocks Can Have Arguments Defined With Generics

You can create a block with arguments and return values that work like the earlier-described function definitions
defined with generics. Your block can support multiple types of collections and return the same type of collection
passed into it. Use a question mark (?) wildcard symbol to represent the type, such as ArrayList<?>.

Note: In block definitions you cannot use a letter as a wildcard symbol, such as ArrayList<T>. Gosu only
supports the letter syntax for parameterized classes and methods.

The following example uses the <?> syntax to define an ArrayList using generics:
uses java.util.ArrayList

// set up some sample data in a string list
178 Chapter 17: Gosu Generics

Gosu Reference Guide

var s = new ArrayList<String>() {"one", "two", "three" }

// define a block that gets the first item from a list
var getFirstItem = \ aList : List<?> -> aList[0]

// call your block. notice that the variable is strongly typed as String, not as Object
var first = getFirstItem(s)

print(first)

This code prints the value:
one

Notice that the return result is strongly typed and Gosu infers the appropriate type from the block.

Functions that Take Blocks as Arguments

Also, there is a more complex type of interaction between blocks and generics. You can pass blocks as objects to
other functions. If a function takes a block as an argument, you can define that function argument using
generics to abstractly describe the appropriate set of acceptable blocks.

To answer questions like “what kind of block does this function support?”, determine the number of arguments,
the argument types, and the return type. For example, consider a block that takes a String and returns another
String. The type definition of the block itself indicates one argument, the parameter type String, and the return
type String.

If you want to support a wide variety of types or collections of various types, define the block using generics. If
you define your APIs this way, you permit consumers of your APIs to it with a wide variety of types and use
strong typing and type inference.

If a class method on a parameterized class (a class using generics) takes a block as an argument, Gosu uses the
types of the arguments. You can omit the type of the arguments as you define the block.

A typical example of this is the list method sortBy, which takes a block. That block takes exactly one argument,
which must be the same type as the items in the list. For example, if the list is ArrayList<String>, the block
must be a String. The method is defined as an enhancement with the following signature:

enhancement GWBaseListEnhancement<T> : java.util.List<T>

...

public function sortBy(value(T):Comparable) : java.util.List<T>

Note the use of the letter T in the enhancement definition and in the method signature:
value(T):Comparable

That syntax means that the argument is a block that takes one argument of type T and returns a Comparable value
(such as an Integer or String).

Suppose you had an array list of strings:
var myStrings = new ArrayList<String>(){"a", "abcd", "ab", "abc"}

You could easily resort the list based on the length of the strings using blocks. Create a block that takes a String
and returns the sort key, in this case the text length. Let the List.sortBy(...) method handle the rest of the
sorting algorithm details and return the new sorted array.

var resortedStrings = myStrings.sortBy(\ str -> str.Length() as Integer)

It is important to understand that this example omitted the type of the block argument str. You do not have to
type:

var resortedStrings = myStrings.sortBy(\ str : String -> str.Length() as Integer)

Type inference in cases like this valuable for easy-to-understand and concise Gosu code that uses generics.

IMPORTANT If you define a block as an argument to a method, you can omit the argument types in
the block in some cases. Omit the type if Gosu can infer the type from the arguments required of that
method. Omitting the type in cases in which you can do so leads to concise easy-to-read code.
Generics and Blocks 179

Gosu Reference Guide

Practical examples of this approach, including the method definitions of the built-in sortBy method are shown in
the following section, “How Generics Help Define Collection APIs” on page 180.

For extensive information about similar APIs with blocks, see “Gosu Blocks” on page 165. For specific exam-
ples of built-in APIs that use generics with blocks, see “Collections” on page 183.

How Generics Help Define Collection APIs

By using Gosu generics to define function parameters, you can enforce type safety yet make logical assumptions
about interaction between different APIs. This is most notable the Gosu feature called blocks, which allows in-
line creation of anonymous functions that you can pass to other APIs.

For example, you could easily resort a list of String objects based on the length of the strings using these two
features combined:

var myStrings = new ArrayList<String>(){"a", "abcd", "ab", "abc"}

var resortedStrings = myStrings.sortBy(\ str -> str.length as Integer)

If you want to print the contents, you could print them with:
resortedStrings.each(\ str -> print(str))

...which would produce the output:
a
ab
abc
abcd

This concise syntax is possible because the sortBy method is defined a single time with Gosu generics.

It uses the wildcard features of Gosu generics to work with all lists of type T, where T could be any type of object,
not just built-in types. The method is defined as a Gosu enhancement to all List objects. This means that the
method automatically works with all Java objects of that class from Gosu code, although the method is not
defined in Java. Enhancement definitions look similar to classes. The enhancement for the sortBy method looks
like:

enhancement GWBaseListEnhancement<T> : java.util.List<T>
...
...
public function sortBy(value(T):Comparable) : java.util.List<T> {

...
}

}

That means that it works with all lists of type T, and the symbol T is treated as the type of the collection. Conse-
quently, the sortBy method uses the type of collection (in the earlier example, an array list of String objects). If
the collection is a list of String objects, method must takes a comparison function (a block) that takes a String
object as an argument and returns a Comparable object. The symbol T is used again in the return result, which is
a list that has the same type passed into it.

IMPORTANT For a reference of extremely powerful collection-related APIs that use blocks and Gosu
generics, see “Collections” on page 183

Multiple Dimensionality Generics

Typical use of generics is with one-dimensional objects, such as lists of a certain type of object, such as a list of
String objects, or a collection of Address objects. However, generics are flexible in Gosu as well as Java to
include multiple dimensionality.

For example, a Map stores a set of key/value pairs. Depending on what kind of information you are storing in the
Map, it may be useful to define APIs that work with certain types of maps. For example, maps that have keys that
180 Chapter 17: Gosu Generics

Gosu Reference Guide

have type Long, and values that have type String. In some sense, a Map is a two-dimensional collection, and you
can define a map to have a specific type:

Map<Long, String> contacts = new HashMap<Long, String>()

Suppose you want to define an API that worked with multiple types of maps. However, the API would return a
value from the map and it would be ideal if the return value was strongly typed based on the type of the map. You
could use a 2-dimensional generics with wildcards, to define the method signature:

public function GetHighestValue(themap : Map<K,V>) : V

The argument themap has type Map and specifies two type wildcards (single capital letter) separated by commas.
In this case, assume the first one represents the type of the key (K) and the second one represents the type of the
value (V). Because it uses the V again in the return value type, the Gosu compiler makes assumptions about rela-
tionships between the type of map passed in and the return value.

For example, suppose you pass the earlier example map of type <Long, String> to this API. The compiler
knows that the method returns a String value. It knows this because of the two uses of V in the method signature,
both as parameter and as return value.

Generics With Custom ‘Containers’

Although Gosu generics are most useful with collections and lists, there is no requirement to use these features
with built-in Collection and List classes. Anything that metaphorically represents a “container” for other
objects might be appropriate for using Gosu generics to define the type of items in the container.

Abstract Example

Suppose you want to write something that stores key-value maps. Instead of writing:
class Mymapping {

function put(key : Object, value : Object) {...}
function get(key : Object) : Object {...}

}

...you could use generics to define it as:
class Mymapping<K,V> {

function put(key : K, value : V) {...}
function get(key : K) : V {...}

}

Now you can use this class with strongly typed results:
myMap = new Mymapping<String, Integer>
myMap.put("ABC", 29)

theValue = myMap.get("ABC")

The theValue variable is strongly typed at compile time as Integer.

Real-world Example

Suppose you were writing a program for an automotive manufacturing company and want to track vehicles
within different factories during production. Suppose you want to represent cars with a Car object, trucks with a
Truck object, vans with a Van object, and these all derive from a root class Vehicle.

You could create some sort of custom container object called Factory that does not derive from the built-in
collection classes. For the purpose of this example, assume that each factory only contains one type of vehicle. A
FactoryGroup could contain multiple Car objects, or multiple Truck objects, or multiple Van objects.

Suppose you need APIs to work with all of the following types:

• a FactoryGroup containing one or more Car objects

• a FactoryGroup containing one or more Truck objects

• a FactoryGroup containing one or more Van objects
Generics With Custom ‘Containers’ 181

Gosu Reference Guide

You could represent these types of collections using the syntax:

• FactoryGroup<Car>

• FactoryGroup<Truck>

• FactoryGroup<Van>

Perhaps you want an API that returns all vehicles in the last step in a multi-step manufacturing process. You
could define the API could be defined as:

public function GetLastStepVehicles(groupofvehicles FactoryGroup<T>) : FactoryGroup<T>

Because the method uses generics, it works with all types of FactoryGroup objects. Because both the same letter
T appears more than once in the method signature, this defines parallelism that tells Gosu about relationships
between arguments and/or return values.

The definition of this method could be understood in English as:

“The method GetLastStepVehicles takes one argument that is a factory group containing any one vehicle
type. It returns another factory group that is guaranteed to contain the identical type of vehicles as passed into
the method.”

Alternatively, you could define your API with bounded wildcards for the type:
public function GetLastStepVehicles(groupofvehicles FactoryGroup<? extends Vehicle>) : FactoryGroup<T>

Using this approach might allow your code to make more assumptions about the type of objects in the collection.
It also prevents some coding errors, such as accidentally passing FactoryGroup<String> or
FactoryGroup<Integer>, which fail at compile time. You can find out about your coding errors quickly.

If you want to make code like this, you also need to tell the Gosu compiler that your class is a container class that
supports generics. Simply add the bracket notation in the definition of the class, and use a capital letter to repre-
sent the type of the class. For example, instead of typing:

public class MyFactory

...you would instead define your class as a container class supporting generics using the syntax:
public class MyFactory<T>

Generics with Non-Containers

There is no technical requirement that you use generics with collections or other containers. However, collec-
tions and other containers are the typical uses of generics. You can define any class to use Gosu generics to
generalize what it supports or how to work with various types. There is no limit on how you can use generics
features for new classes.

For example, suppose you want to generalize a class MyClass to work differently with different types.

Do not simply define the class MyClass as:
public class MyClass

Instead, define it as:
public class MyClass<T>

You also could let your class support multiple dimensions similar to how the Map class works with two dimen-
sions. See “Multiple Dimensionality Generics” on page 180. You could define your class abstracted across
multiple types, separated by commas:

public class MyClass<K, V>
182 Chapter 17: Gosu Generics

chapter 18

Collections

Gosu collection and list classes rely on collection classes from the Java language. However, Gosu collections and
lists have significant built-in enhancements compared to Java. For example, Gosu blocks are anonymous in-line
defined functions that the Java language does not support. By using the enhanced Gosu collection and list
classes, with a single line of code you can loop through collection items to perform actions, extract item informa-
tion, or sort items.

This topic includes:

• “Basic Lists” on page 183

• “Basic Hash Maps” on page 185

• “List and Array Expansion (*.)” on page 187

• “Enhancement Reference for Collections and Related Types” on page 188

See also

• “Gosu Blocks” on page 165

• “Gosu Generics” on page 173

• “Enhancements” on page 161

Basic Lists

Lists in Gosu inherit from the Java interface java.util.List and its common subclasses such
java.util.ArrayList.

Creating a List

To create a list with nothing it, specify the type of object it contains in brackets using generics notation, such as
in this example using an ArrayList of String objects:

var myemptylist = new ArrayList<String>()

For more information about generics, see “Gosu Generics” on page 173.
Collections 183

Gosu Reference Guide

In many cases you might want to initialize (load) it with data. Gosu has special features that allow a natural
syntax for initializing lists similar to initializing arrays.

For example, the following is an example simple array initializer:
var s2 = new String[] {"This", "is", "a", "test."}

In comparison, the following is an example new ArrayList:
var strs = new ArrayList<String>(){"a", "ab", "abc"}

The previous line is effectively shorthand for the following code:
var strs = new ArrayList<String>()
strs.add("a")
strs.add("ab")
strs.add("abc")

Type Inference and List Initialization

Because of Gosu’s intelligent type inference, you can use an even more concise initializer syntax for lists:
var s3 = {"a", "ab", "abc"}

The type of s3 is java.util.ArrayList<String> (a list of String objects) because all list members have the type
String.

Gosu infers the type of the List to be the least upper bound of the components of the list. In the simple case
above, the type of the variable x at compile time is List<String>. If you pass different types of objects, Gosu
finds the most specific type that includes all of the items in the list.

If the types implement interfaces, Gosu attempts to preserve commonality of interface support in the list type.
This ensures your list acts as expected with APIs that rely on support for the interface. In some cases, the
resulting type is a compound type, which combines a class and one or more interfaces into a single type. For
example, the following code initializes an int and a double:

var s = {0, 3.4}

The resulting type of s is ArrayList<java.lang.Comparable & java.lang.Number>. This means that it is an
array list of the compound type of the class Number and the interface Comparable.

Note: The Number class does not implement the interface Comparable. If it did, then the type of s would
simply be ArrayList<java.lang.Number>. However, since it does not implement that interface, but both
int and double implement that interface, Gosu assigns the compound type that includes the interfaces that
they have in common.

See also

“Compound Types” on page 266

Getting and Setting List Values

The following verbose code sets and gets String values from a list using the native Java ArrayList class:
var strs = new ArrayList<String>(){"a", "ab", "abc"}
strs.set(0, "b")
var firstStr = strs.get(0)

You can write this in Gosu instead in the more natural index syntax using Gosu shortcuts:
var strs = {"a", "ab", "abc"}
strs[0] = "b"
var firstStr = strs[0]

Gosu does not automatically resize lists using this syntax. If a list has only three items, the following code does
not work:

strs[3] = "b" // index number 2 is the higest supported number

Gosu provides additional initializer syntax for both lists and maps similar to Gosu’s compact initializer syntax
for arrays.
184 Chapter 18: Collections

Gosu Reference Guide

Special Behavior of List in Gosu

In new expressions, you can use the interface type List rather than the class type ArrayList. Gosu treats this
special case as an attempt to initialize an instance of the class type ArrayList.

For example:
var strs = new List<String>(){"a", "ab", "abc"}

Basic Hash Maps

Maps in Gosu inherit from the Java class java.util.HashMap.

Creating a Hash Map

To create an empty map, specify the type of objects it contains in brackets using generics notation. For example,
define a HashMap that maps a String object to another String object:

var emptyMap = new HashMap<String, String>()

In many cases you might want to initialize (load) it with data. Gosu has special features that allow a natural
syntax for initializing maps similar to initializing arrays and lists.

For example, the following code creates a new HashMap where "a" and "c" are keys, whose values are "b" and
"d" respectively

var strMap = new HashMap<String, String>(){"a" -> "b", "c" -> "d"}

That is effectively shorthand for the following code:
var strs = new HashMap<String, String>()
strs.put("a", "b")
strs.put("c", "d")

This syntax makes it easy to declare static final data structures of this type within Gosu, and with easier-to-read
code than the equivalent code would be in Java.

See also

“Gosu Generics” on page 173

Getting and Setting Values in a Hash Map

The following code sets and gets String values from a HashMap:
var strs = new HashMap<String, String>(){"a" -> "b", "c" -> "d"}
strs.put("e", "f")
var valueForE = strs.get("e")

You can write this instead in the more natural index syntax using Gosu shortcuts:
var strs = new HashMap<String, String>(){"a" -> "b", "c" -> "d"}
strs["e"] = "f"
var valueForE = strs["e"]

Creating a Hash Map with Type Inference

Because of Gosu’s intelligent type inference features, you can optionally use a more concise initializer syntax if
Gosu can infer the type of the map.

For example, suppose you create a custom function printMap defined as:
function printMap(strMap : Map<String, String>) {
 for(key in strMap.keys) {
 print("key : " + key + ", value : " + strMap[key])
 {
 }
Basic Hash Maps 185

Gosu Reference Guide

Because the type of the map is explicit in the function, callers of this function can use an initializer expression
without specifying the type name or even the keyword new. This does not mean that the list is untyped. The list is
statically typed but it is optional to declare explicitly because it is redundant.

For example, you could initialize a java.util.Map and call this function with verbose code like:
printMap(new Map<String, String>() {"a" -> "b", "c" -> "d"})

Instead, simply type the following code and use type inference for concise code:
printMap({"a" -> "b", "c" -> "d"})

Gosu permits this last example as valid and typesafe. Gosu infers the type of the List to be the least upper bound
of the components of the list. In the simple case above, the type of the variable x at compile time is
List<String>. If you pass different types of objects, Gosu finds the most specific type that includes all of the
items in the list.

If the types implement interfaces, Gosu attempts to preserve commonality of interface support in the list type.
This ensures your list acts as expected with APIs that rely on support for the interface. In some cases, the
resulting type is a compound type, which combines a class and one or more interfaces into a single type. For
example, the following code initializes an int and a double:

var s = {"hello" -> 0, "there" -> 3.4}

The resulting type of s is HashMap<String, java.lang.Comparable & java.lang.Number>. This means that it
is a map with two generic parameters:

• String

• The compound type of the class Number and the interface Comparable.

Note: The Number class does not implement the interface Comparable. If it did, then the type of s would
simply be Map<String, java.lang.Number>. However, since it does not implement that interface, but both
int and double implement that interface, Gosu assigns the compound type that includes the interfaces that
they have in common.

Special Enhancements on Maps

Just as most methods for lists are defined as part of Java’s class java.util.ArrayList, most of the behavior of
maps in Gosu inherit behavior from java.util.Map. However, Gosu provides additional enhancements to
extend maps with additional features, some of which use Gosu blocks.

Map Properties for Keys and Values

Enhancements to the Map class add two new read-only properties:

• keys – Calculates and returns the set of keys in the Map. This is simply a wrapper for the keySet() method.

• values – Returns the values of the Map.

Each Key and Value

Enhancements to the Map class add the eachKeyAndValue method, which takes a block that has two arguments: of
the key type and one of the value type. This method calls this block with each key/value pair in the Map, allowing
for a more natural iteration over the Map.

For example:
var strMap = new HashMap<String, String>(){"a" -> "b", "c" -> "d"}
strMap.eachKeyAndValue(\ key, value -> print("key : " + key + ", value : " + value))
186 Chapter 18: Collections

Gosu Reference Guide

List and Array Expansion (*.)

Gosu includes a special operator for array expansion and list expansion. This array and list expansion can be
useful and powerful. The expansion operator is an asterisk followed by a period, for example:

names*.Length

The return value is as follows:

• If you use it on an array, the expansion operator gets a property from every item in the array and returns all
instances of that property in a new array.

• If you use it on a list, the expansion operator gets a property from every item in the list and returns all
instances of that property in a new list.

For example, suppose you have an array of Book objects, each of which has a String property Name. You could
use array expansion to extract the Name property from each item in the array. Array expansion creates a new array
containing just the Name properties of all books in the array.

If a variable named myArrayOfBooks holds your array, use the following code to extract the Name properties:
var nameArray = myArrayOfBooks*.Name

The nameArray variable contains an array whose length is exactly the same as the length of myArrayofBooks.
The first item is the value myArrayofBooks[0].Name, the second item is the value of myArrayofBooks[1].Name,
and so on.

For another example, suppose you wanted to get a list of the groups a user belongs to so you can display the
display names of each group. Suppose a User object contains a MemberGroups property that returns a read-only
array of groups that the user belongs to. In other words, the Gosu syntax user.MemberGroups returns an array of
Group objects, each one of which has a DisplayName property. If you want to get the display names from each
group, use the following Gosu code

user.MemberGroups*.DisplayName

Because MemberGroups is an array, Gosu expands the array by the DisplayName property on the Group compo-
nent type. The result is an array of the names of all the Groups to which the user belongs. The type is String[].

The result might look like the following:
["GroupName1", "GroupName2", "GroupName14", "GroupName22"]

The expansion operator works with methods also. Gosu uses the type that the method returns to determine how to
expand it:

• If the original object is an array, Gosu creates an expanded array.

• If the original method is a list, Gosu creates an expanded list.

The following example calls a method on the String component of the List of String objects. It generates the
list of initials, in other words the first character in each word.

var s = {"Fred", "Garvin"}

// get the character array [F, G]
var charArray = s*.charAt(0)

Array expansion is valuable if you need a single one-dimensional array or list through which you can iterate.

Important notes about the expansion operator:

• The generated array or list itself is always read-only from Gosu. You can never assign values to elements
within the array, such as setting nameArray[0].

• The expansion operator *. works only for array expansion, never standard property accessing.

• When using the *. expansion operator, only component type properties are accessible.

• When using the *. expansion operator, array properties are never accessible.
List and Array Expansion (*.) 187

Gosu Reference Guide

• The expansion operator applies not only to arrays, but to any Iterable type and all Iterator types and it
preserves the type of array/list. For instance, if you apply the *. operator to a List, the result is a List. Other-
wise, the expansion behavior is the same as with arrays.

See also

“Enhancement Reference for Collections and Related Types” on page 188

Array Flattening to Single Dimensional Array

If the property value on the original item returns an array of items, expansion behavior is slightly different.
Instead of returning an array of arrays (an array where every item is an array), Gosu returns an array containing
all individual elements of all the values in each array.

Some people refer to this approach as flattening the array.

To demonstrate this, create the following test Gosu class:
package test

class Family {
 var _members : String[] as Members
}

Next, paste the following in to the Gosu Tester window
uses java.util.Map
uses test.Family

// create objects that each contain a Members property that is an array
var obj1 = new Family() { :Members = {"Peter", "Dave", "Scott"} }
var obj2 = new Family() { :Members = {"Carson", "Gus", "Maureen"} }

// Create a list of objects, each of which has an array property
var familyList : List<Family> = {obj1, obj2}

// List expansion, with FLATTENING of the arrays into a single-dimensional array
var allMembers = familyList*.Members

print(allMembers)

This program prints the following single-dimensional array:
["Peter", "Dave", "Scott", "Carson", "Gus", "Maureen"]

Enhancement Reference for Collections and Related Types

Gosu collection and list classes rely on collection classes from the Java language. However, Gosu collections
and lists have significant built-in enhancements compared to Java. Gosu enhancements are Gosu methods and/or
properties added to classes or other types without requiring subclassing to make use of the new methods and
properties. For example, Gosu adds the methods map, each, sortby, and other methods to classes.

The following table lists some of the collection enhancements. The letter T refers to the type of the collection.
The syntax <T> relates to the feature,

discussed in “Gosu Generics” on page 173. For example, suppose the argument is listed as:
conditionBlock(T):Boolean

This means the argument is a block. That block must take exactly one argument of the list’s type (T) and returns
a Boolean. Similarly, where the letter Q occurs, this represents another type. The text at the beginning (in that
example, conditionBlock is a parameter that is a block and its name describes the block’s purpose.

Note: If a type letter wildcard like T or Q appears more than once in arguments or return result, it must repre-
sent the same type each time that letter is used.
188 Chapter 18: Collections

Gosu Reference Guide

Collections Enhancement Methods

Gosu contains enhancement methods for Java collection-related types.

Enhancement Methods on Iterable<T>

Iterable objects (objects that implement Iterable<T>) have additional methods described in the following table.

Enhancement Methods on Collection<T>

Most collection methods are now implemented directly on Collection (not List or other similar objects as in
previous releases). The following table lists the available methods.

Method/Property Description

Count Returns the number of elements in the Iterable

single() If there is only one element in the Iterable, that value is returned. Otherwise an
IllegalStateException is thrown.

toCollection() If this Iterable is already of type Collection, return it. Otherwise, copy all values out of this Iter-
able into a new Collection.

Method/Property Name Description

allMatch(cond) Returns true if all elements in the Collection satisfy the condition

hasMatch(cond) Returns true if this Collection has any elements in it that match the given block

asIterable() Returns this Collection<T> as a pure Iterable<T> (in other words, not as a List<T>).

average(selector) Returns the average of the numeric values selected from the Collection<T>

countWhere(cond) Returns the number of elements in the Collection that match the given condition

HasElements Returns true if this Collection has any elements in it. This is a better method to use than
the default collection method empty() because HasElements interacts better with null
values. For example, the expression col.HasElements() returns a non-true value even if
the expression col is null.

first() Returns first element in the Collection, or return null if the collection is empty.

firstWhere(cond) Returns first element in the Collection that satisfies the condition, or returns null if none
do.

flatMap(proj) Maps each element of the Collection to a Collection of values and then flattens them
into a single List.

fold() Accumulates the values of an Collection<T> into a single T.

intersect(iter) Returns a Set<T> that is the intersection of the two Collection objects.

last() Returns last element in the Collection or return null if the list is empty.

lastWhere(cond) Returns last element in the Collection that matches the given condition, or null if no
elements match it.

map(proj) Returns a List of each element of the Collection<T> mapped to a new value.

max(proj) Returns maximum of the selected values from Collection<T>

min(proj) Returns minimum of the selected values from Collection<T>

orderBy(proj) Returns a new List<T> ordered by a block that you provide. Note that this is different than
sortBy(), which is retained on List<T> and which sorts in place.

Note: The collection enhancement methods for sorting and ordering rely on comparison
methods built into the Java interface java.lang.Comparable. Because of this, these
methods do not sort String values in a locale-sensitive way.
Enhancement Reference for Collections and Related Types 189

Gosu Reference Guide

Methods on List<T>

The following table lists the available methods on List<T>.

orderByDescending(proj) Returns a new List<T> reverse ordered by the given value. Note that this is different than
sortByDescending(), which is retained on List<T> and which sorts in place.

Note: The collection enhancement methods for sorting and ordering rely on comparison
methods built into the Java interface java.lang.Comparable. Because of this, these
methods do not sort String values in a locale-sensitive way.

partition(proj) Partitions this Collection into a Map of keys to a list of elements in this Collection.

partitionUniquely(proj) Partitions this Collection into a Map of keys to elements in this Collection. Throws an
IllegalStateException if more than one element maps to the same key.

reduce(init, reducer) Accumulates the values of a Collection<T> into a single V given an initial seed value.

reverse() Reverses the collection as a List.

singleWhere(cond) If there is only one element in the Collection that matches the given condition, it is
returned. Otherwise an IllegalStateException is thrown

sum(proj) Returns the sum of the numeric values selected from the Collection<T>

thenBy(proj) Additionally orders a List that has already been ordered by orderBy.

Note: The collection enhancement methods for sorting and ordering rely on comparison
methods built into the Java interface java.lang.Comparable. Because of this, these
methods do not sort String values in a locale-sensitive way.

thenByDescending(proj) Additionally reverse orders a List that has already been ordered by orderBy.

Note: The collection enhancement methods for sorting and ordering rely on comparison
methods built into the Java interface java.lang.Comparable. Because of this, these
methods do not sort String values in a locale-sensitive way.

toList() If this Collection is already a list, simply return it. Otherwise create a new List and copy
this Collection to it.

toTypedArray() Converts this Collection<T> into an array T[].

union(col) Returns a new Set<T> that is the union of the two Collections

where(cond) Returns all elements in this Iterable that satisfy the given condition

whereTypeIs(Type) Returns a new List<T> of all elements that are of the given type

disjunction() Returns a new Set<T> that is the set disjunction of this collection and the other collection

each() iterates each element of the Collection

eachWithIndex() Iterates each element of the Collection with an index

join joins all elements together as a string with a delimiter

minBy() Returns the minimum T of the Collection based on the projection to a Comparable object

maxBy() Returns the maximum T of the Collection based on the projection to a Comparable
object

removeWhere() Removes all elements that satisfy the given criteria

retainWhere() Removes all elements that do not satisfy the given criteria. This method returns no value,
so it cannot be chained in series. This is to make clear that the mutation is happening in
place, rather than a new collection created with offending elements removed.

subtract() Returns a new Set<T> that is the set subtraction of the other collection from this collection

toSet() Converts the Collection to a Set

Method/Property Name Description

reverse() Reverses the Iterable.

copy() Creates a copy of the list

freeze() Returns a new unmodifiable version of the list

Method/Property Name Description
190 Chapter 18: Collections

Gosu Reference Guide

Methods on Set<T>

The following table lists the available methods on Set<T>.

The following subsections describe the most common uses of these collection enhancement methods.

Finding Data in Collections

You probably frequently need to find an items in a list based on certain criteria. Use the firstWhere or where
methods in such cases. These functions can be very processor intensive, so be careful how you use them.
Consider whether other approaches may be better, testing your code as appropriate.

The where method takes a block that returns true or false and return all elements for which the block returns
true. The following demonstrates this method:

var strs = new ArrayList<String>(){"a", "ab", "abc"}
var longerStrings = strs.where(\ str -> str.length >= 2)

The value of longerStrings is {"ab", "abc"}. The expression str.length >= 2 is true for both of them.

The firstWhere method takes a block that returns true or false and return the first elements for which the
block returns true. The following example demonstrates how to find the first item that matches the criteria:

var strs = new ArrayList<String>(){"a", "ab", "abc"}
var firstLongerStr = strs.firstWhere(\ str -> str.length >= 2)

The value of firstLongerStr is "ab", since "ab" is the first element in the list for which str.length >= 2 eval-
uates as true.

If firstWhere finds no matching items, it returns null.

Similarly, there is a lastWhere method that finds the last item that matched the condition, and returns null if
none are found.

shuffle() Shuffles the list in place

sort() Sorts the list in place

sortBy() Sorts the list in place in ascending order

Note: The collection enhancement methods
for sorting and ordering rely on comparison
methods built into the Java interface
java.lang.Comparable. Because of this,
these methods do not sort String values in a
locale-sensitive way.

sortByDescending() Sorts the list in place in descending order.

Note: The collection enhancement methods
for sorting and ordering rely on comparison
methods built into the Java interface
java.lang.Comparable. Because of this,
these methods do not sort String values in a
locale-sensitive way.

Method/Property Name Description

copy() Creates a copy of the set

powerSet() Returns the power set of the set

freeze() Returns a new unmodifiable version of the set

Method/Property Name Description
Enhancement Reference for Collections and Related Types 191

Gosu Reference Guide

Sorting Collections

Suppose you had an array list of strings:
var myStrings = new ArrayList<String>(){"a", "abcd", "ab", "abc"}

You can easily resort the list by the length of the String values using blocks. Create a block that takes a String
and returns the sort key, which in this case is the number of characters of the parameter. Let the
List.sortBy(...) method handle the rest of the details of the sorting and return the new sorted array as the
result.

var resortedStrings = myStrings.sortBy(\ str -> str.Length)

If you want to print the contents, you could print them with:
resortedStrings.each(\ str -> print(str))

...which would produce the output:
a
ab
abc
abcd

Similarly, you can use the sortByDescending function, which is the same except that it sorts in the opposite
order.

For both of these methods, the block must return a comparable value. Comparable values include Integer, a
String, or any other values that can be compared with the “>” or “<” (greater than or less than) operators.

In some cases, comparison among your list objects might be less straightforward. You might require more
complex Gosu code to compare two items in the list. In such cases, use the more general sort method simply
called sort. The sort method takes a block that takes two elements and returns true if the first element comes
before the second, or otherwise returns false. The earlier sorting example could be written as:

var strs = new ArrayList<String>(){"a", "abc", "ab"}
var sortedStrs = strs.sort(\ str1, str2 -> str1.length < str2.length)

Although this method is powerful, in most cases code is more concise and easier to understand if you use the
sortBy or sortByDescending methods instead of the sort method.

Note: The collection enhancement methods for sorting and ordering rely on comparison methods built into
the Java interface java.lang.Comparable. Because of this, these methods do not sort String values in a
locale-sensitive way.

Mapping Data in Collections

Suppose you want Gosu code to take an array list of strings and find the number of characters in each string. Use
the list method map to create a new list where the expression transforms each value and makes the result an
element in a new list.

For example:
var myStrings = new ArrayList<String>(){"a", "b", "bb", "ab", "abc", "abcd"}
var lengthsOnly = myStrings.map(\ str -> str.length)

The value of lengthsOnly at the end of this code is an array with elements: 1, 1, 2, 2, 3, 4.

In this example, the map method takes a block that is a simple function taking one String and returning its
length. However, notice that it did not explicitly set the type of the block’s argument called myStrings. However,
this is not an untyped argument, at compile time it is statically typed as a String argument. This is implicit
because the array list is specified as a list of String using the generics syntax ArrayList<String>.

Some Gosu collection-related code has concise syntax because collection methods use Gosu generics. Generics
allow methods such as map to naturally define the relationship of types in arguments, return values, and the type
of objects in the collection. In this case, the array list is an array list of strings. The map method takes a block that
must have exactly one argument and it must be a String. Gosu knows the block must take a String argument so
192 Chapter 18: Collections

Gosu Reference Guide

the type can be omitted. Gosu can simply infer the argument type to allow flexible concise code with all the
safety of statically-typed code.

The type of the lengthsOnly variable also uses type inference and is statically typed. Because the block returns
an int, the result type of the function must be an int. Because of this, lengthsOnly is statically typed at compile
time to an array of integers even though the type name is not explicit in the code. Specifying the type is optional,
and it is good Gosu coding style to use type inference for simple cases like this.

Iterating Across Collections

Now suppose you also want to print each number in the list. You could take advantage of the list method each,
which can be used in place of a traditional Gosu loop using the for keyword:

var myStrings = new ArrayList<String>(){"a", "b", "bb", "ab", "abc", "abcd"}
myStrings.map(\ str -> str.length).each(\ len -> print(len))

As you can see, this is a simple and powerful way to do some types of repeated actions with collections. This
conciseness can be good or bad, depending on the context of the code. In some cases, it might be better to assign
the return value of map to a variable and call the each method on it. This is especially true if you still need the
array of lengths even after printing them. For example:

var myStrings = new ArrayList<String>(){"a", "b", "bb", "ab", "abc", "abcd"}
var strLengths = myStrings.map(\ str -> str.length)
strLengths.each(\ len -> print(len))

// maybe use strLengths again in some way here...

This is equivalent and some people may find it easier to read.

Partitioning Collections

Blocks are also useful with the partition method. This method takes a list and creates a new java.util.Map of
key/value pairs. The block takes an item from the original list as an argument and returns a value. To perform this
task for all input list items, the map keys are results from the block with the input list. Each key points to the
input list items that produced that value.

For example, suppose you want take a String list and partition it into a Map containing the lengths of each
String value. Suppose the set of input values were the following:

var myStrings = new ArrayList<String>(){"a", "b", "bb", "ab", "abc", "abcd"}

Each key points to a list of all input String values with that length. You could use this one line of Gosu code:
var lengthsToStringsMap = myStrings.partition(\ str:String -> str.length)

The variable lengthsToStringsMap contains a Map with four keys:
Map { 1 → ["a", "b"], 2 → ["bb", "ab"], 3 → ["abc"], 4 → ["abcd"] }

In other words:

• Key 1 points to a list of two values, "a" and "b".

• Key 2 points to a list of two values "bb" and "ab".

• Key 3 points to a list with a single value, "abc".

• Key 4 points to a list with a single value, "abcd".

As you can tell from this example, you can make concise and easy-to-read Gosu code with powerful results.
Also, note the resulting Map is statically typed using type inference.

You can improve your performance if you are sure the output of your block for each list element is always
unique. The indirection of having each value wrapped within a list using the partition method is unnecessary
because there is always a single item in every list. For faster performance in the case in which you know block
return results are unique, use the partitionUniquely method.

For example:
var myStrings = new ArrayList<String>(){"bb", "a", "abcd", "abc"}
Enhancement Reference for Collections and Related Types 193

Gosu Reference Guide

var lengthsToStringsMap = myStrings.partitionUniquely(\ str:String -> str.length)

The result Map has values that are single items not lists:
Map { 1 → "a", 2 → "bb", 3 → "abc", 4 → "abcd" }

In a real-world situation, you might use code like:
//Use a finder to find get a list of claims
var claims = find claim in Claim where ...

//partition the list
var claimsById = claims.partitionUniquely(\ claim -> claim.publicID)

The value of claimsById is a Map of claim publicID values to the claims they represent.

If more than one element of the list has the same calculated value for the attribute, the method throws a runtime
exception.

Converting Lists, Arrays, and Sets

Use the collection enhancements to convert lists, arrays, and sets as necessary to other types:

• You can convert a List or an Array to a set by calling list.toSet() or array.toSet().

• You can convert a Set or an Array to a list by calling set.toList() or array.toList().

• You can join all of the elements in an Array or List together with a delimiter by the join method, such as:
// join all the items in the array together separated by commas
joinedString = array.join(",")

Flat Mapping a Series of Collections or Arrays

Use the flatMap method to create a single List of elements from a collection or array that is a property on
elements on an outer collection. Suppose you have a collection where each object has a property that is an array
or collection. You provide a block that takes the elements of the inner collection and returns them an array or
collection. The flatMap method concatenates all the elements in the returned collections or arrays into a single
List.

For example, suppose your data has the following structure:

• A claim object has an Exposures property that contains an array of exposure objects.

• An exposure has a Notes property that contains a list of Note objects.

The Claim.Exposures property is the outer collection of exposures. The Exposure.Notes properties are the
inner collections.

First, write a simple block that extracts the note objects from an exposure object:
\ e -> e.Notes

Next, pass this block to the flatMap method to generate a single list of all notes on the claim:
var allNotes = myClaim.Exposures.flatMap(\ e -> e.Notes)

This generates a single list that contains all the notes on all the exposures on the claim. In generics notation, the
flatMap method returns an instance of List<Note>.

The flatMap method is similar to the array expansion feature of Gosu. However, the flatMap method is avail-
able on all collections and arrays. In addition, the flatMap method generates different extracted arrays dynami-
cally using a Gosu block that you provide. Your Gosu block can perform any arbitrary and potentially-complex
calculation during the flat mapping process.

See also

“Array Expansion” on page 69
194 Chapter 18: Collections

Gosu Reference Guide

Sizes and Length of Collections and Strings are Equivalent

Gosu adds enhancements for the Collection and String classes to support both the length and size properties,
so you can use the terms interchangeably with no errors. For collections and strings, length and size mean the
same thing in Gosu.
Enhancement Reference for Collections and Related Types 195

Gosu Reference Guide

196 Chapter 18: Collections

chapter 19

Gosu and XML

XML files describe complex structured data in a text-based format with strict syntax for easy data interchange.
Gosu can read or write any XML document. If you have an associated XSD to define the document structure,
Gosu parses the XML using the schema to produce a statically-typed tree of XML elements with structured data.
Also during parsing, Gosu can validate the XML against the schema. You can manipulate XML or generate
XML without an XSD file, but use XSDs if possible. Without an XSD, your XML elements do not get program-
ming shortcuts, such as Gosu properties on each element, nor intelligent static typing.

IMPORTANT The XML and SOAP APIs are not built-in to the core release of Gosu Community
Release. However, these APIs are available as separate downloads. See “Using XML and SOAP
Libraries with Gosu Community Release” on page 48

This topic includes:

• “Manipulating XML Overview” on page 198

• “Introduction to the XML Element in Gosu” on page 198

• “Exporting XML Data” on page 202

• “Parsing XML Data into an XML Element” on page 204

• “Creating Many QNames in the Same Namespace” on page 206

• “XSD-based Properties and Types” on page 207

• “Getting Data From an XML Element” on page 214

• “Simple Values” on page 217

• “Access the Nillness of an Element” on page 220

• “Automatic Creation of Intermediary Elements” on page 221

• “Default and Fixed Attribute Values” on page 221

• “Substitution Group Hierarchies” on page 222

• “Element Sorting for XSD-based Elements” on page 223

• “Built-in Schemas” on page 226

• “Schema Access Type” on page 227
Gosu and XML 197

Gosu Reference Guide

See also

For more information on the Extensible Markup Language (XML), see the World Wide Web Consortium web
page http://www.w3.org/XML.

Manipulating XML Overview

To manipulate XML in Gosu, Gosu creates an in-memory representation of a graph of XML elements. The main
Gosu class to handle an XML element is the class called XmlElement. Instead of manipulating XML by modi-
fying text data in an XML file, your Gosu code can simply manipulate XmlElement objects. You can read in
XML data from a file or other sources and parse it into a graph of XML elements. You can export a graph of
XML elements as standard XML, for example as an array of bytes containing XML data.

Gosu can manipulate structured XML documents in two ways:

• Untyped nodes – Any XML can be easily created, manipulated, or searched as a tree of untyped nodes. For
those familiar with Document Object Model (DOM), this approach is similar to manipulating DOM untyped
nodes. From Gosu, attribute and node values are treated as strings.

• Strongly typed nodes using an XSD – If the XML has an XML Schema Definition (XSD) file, you can create,
manipulate, or search data with statically-typed nodes that correspond to legal attributes and child elements.
If you can provide an XSD file, the XSD approach is much safer. It dramatically reduces errors due to incor-
rect types or incorrect structure.

IMPORTANT The XML and SOAP APIs are not built-in to the core release of Gosu Community
Release. However, these APIs are available as separate downloads. See “Using XML and SOAP
Libraries with Gosu Community Release” on page 48

Introduction to the XML Element in Gosu

The main class that represents an XML element is the class XmlElement.

An XmlElement object consists of the following items (and only the following items):

• The element name (as a QName) – The element’s name is not simply a String value. It is a fully-qualified
name called a QName. A QName represents a more advanced definition of a name than a simple String
value. Gosu uses the standard Java way to specify a QName: the class javax.xml.namespace.QName. A
QName object contains the following components:

• A String value that represents the local part (also called the localPart)

• A String value that represents the namespace URI that the local part of the name is defined within. For
example, a namespace might have the value: http://www.w3.org/2001/XMLSchema-instance

• A suggested prefix name if Gosu later serializes this element. (This prefix is not guaranteed upon serial-
ization, since there may be conflicts.)

For example, you might see in an XML file an element name with the syntax of two parts separated by a
colon, such as veh:root. The root part of the name is the local part. The prefix veh in this example indicates
that the XML document (earlier in the file) a declared namespace and a shortcut name (the prefix veh) to rep-
resent the full URI.

For example, consider the following XML document:
<?xml version="1.0"?>
<veh:root xmlns:veh="http://mycompany.com/schema/vehiclexsd">

<veh:childelement/>
</veh:root>

The following things are true about this XML document:
198 Chapter 19: Gosu and XML

http://www.w3.org/XML

Gosu Reference Guide

• The root element of the document has the name root within the namespace http://mycompany.com/
schema/vehiclexsd.

• The text xmlns:veh text followed by the URI means that later in the XML document, elements can use the
namespace shortcut veh: to represent the longer URI: http://mycompany.com/schema/vehiclexsd.

• The root element has one child element, whose name is childelement within the namespace http://
mycompany.com/schema/vehiclexsd. However, this XML document specifies the namespace not with
the full URI but with the shortcut prefix veh followed by the colon (and then followed by the local part).

There are three constructors for QName:

• QName constructor specifying the namespace URI, local part, and suggested prefix.
QName(String namespaceURI, String localPart, String prefix)

• QName constructor specifying the namespace URI and local part (suggested prefix is implicitly empty).
QName(String namespaceURI, String localPart)

• QName constructor specifying the local part only (the namespace and URL are implicitly empty)
QName(String localPart)

You can set the namespace in the QName to the empty namespace, which technically is the constant
javax.xml.XMLConstants.NULL_NS_URI. The recommended approach for creating QName objects in the
empty namespace is to use the QName constructor that does not take a namespace argument.

To create multiple QName objects easily in the same namespace, you can use the optional utility class called
XmlNamespace. For details, see “Creating Many QNames in the Same Namespace” on page 206.

Whenever you construct an XmlElement, the name is strictly required and must be non-empty.

Note: QNames are used for other purposes in Gosu XML APIs. For example, attributes on an element are
names defined within a namespace, even if it is the default namespace for the XML document or the empty
namespace. Gosu natively represents both attribute names and element names as QNames.

• A backing type instance – Each element contains a reference to a Gosu type that represents this specific
element. To get the backing type instance, get the TypeInstance property from the element. For XML
elements that Gosu created based on an XSD, Gosu sets this backing type information automatically so it can
be used in a typesafe manner.

Whenever you construct an XmlElement, an explicit backing type is optional. If you are constructing the ele-
ment from an XSD, Gosu sets the backing type automatically based on the subclass of XmlElement.

You can use XmlElement essentially as untyped nodes, in other words with no explicit XSD for your data for-
mat. If you are not using an XSD and do not provide a backing type, Gosu uses the default backing type
gw.xml.xsd.w3c.xmlschema.types.complex.AnyType. All valid backing types are subclass of that AnyType
type. See “Getting Data From an XML Element” on page 214 for related information

The type instance of an XML element is responsible for most of the element’s behavior but does not contain
the element’s name. You can sometimes ignore the division of labor between an XmlElement and its backing
type instance. If you are using an XSD, this distinction is useful and sometimes critical. For more informa-
tion, see “Getting Data From an XML Element” on page 214.

• The nillness of the element – XML has a concept of whether an element is nil. This is not exactly the same as
being null. An element can be nil (and must have no child elements) but still have attributes. Additionally,
an XSD can define whether an element is nillable, which means that element is allowed to be nil. For more
information, see “Access the Nillness of an Element” on page 220.
Introduction to the XML Element in Gosu 199

Gosu Reference Guide

To summarize, the XmlElement instance contains the properties shown in the following table.

IMPORTANT If you are accessing these properties on an XSD-based element, you must use a dollar
sign prefix for the property name. See “Dollar Sign Prefix for Properties that Are XSD Types” on
page 201

To create a basic XmlElement, simply pass the element name to the constructor as either a QName or a String. The
constructor on XmlElement that takes a String is a convenience method. The String constructor is equivalent
passing a new QName with that String as the one-argument constructor to QName. In other words, the name-
space and prefix in the QName are null if you use the String constructor on XmlElement.

The following code creates an in-memory Gosu object that represents an XML element <Root> in the empty
namespace:

var el = new XmlElement("Root")

In this case, the el.TypeInstance property returns an instance of the default type
gw.xsd.w3c.xmlschema.types.complex.AnyType. If you instantiate a type instance, typically you would use
more specific subclass of AnyType, either an XSD-based type or a simple type.

For a more complex example, the following Gosu code creates a new XmlElement without an XSD, and adds a
child element:

uses gw.xml.XmlElement
uses javax.xml.namespace.QName

var e = new XmlElement(new QName("http://mycompany.com/schema/vehiclexsd", "root", "veh"))
var e2 = new XmlElement(new QName("http://mycompany.com/schema/vehiclexsd", "childelement", "veh"))

e.addChild(e2)
e.print()

This prints the following:
<?xml version="1.0"?>
<veh:root xmlns:veh="http://mycompany.com/schema/vehiclexsd">
 <veh:childelement/>
</veh:root>

This output is the QName example from earlier in this section.

For more information about adding child elements, see “Getting Data From an XML Element” on page 214.

What Does an Element Contain Inside It?

Gosu exposes properties and methods on the XML type instances to let you access or manipulate child elements
or text contents. XML elements can contain two basic types of content:

• Child elements

• A simple value, which can represent simple types such as numbers or dates

XmlElement property Type Description

QName QName A read-only property that returns the ele-
ment’s QName.

Namespace XmlNamespace Returns an XmlNamespace object that
represents the element’s namespace

TypeInstance gw.xsd.w3c.xmlschema.types.complex.AnyType
or any subclass of that class

Returns the element's backing type
instance

Nillness boolean Specifies whether this element is nil,
which is an XML concept that is not the
same as being null. See “Access the Nill-
ness of an Element” on page 220.
200 Chapter 19: Gosu and XML

Gosu Reference Guide

Technically, the Gosu object that represents the element does not directly contain the child elements or the text
content. It is the backing type instance for each element that contains the text content. However, in practice this
distinction is not typically necessary to remember.

An element can contain either child elements or simple values, but never both at the same time. This distinction
is important particularly for XSD-based types. Gosu handles properties on an element differently depending on
whether the element contains a simple value or is a type that can contain child elements.

Dollar Sign Prefix for Properties that Are XSD Types

For the some properties that the documentation mentions, Gosu provides access directly from the XML element
even though the actual implementation internally is on the backing type instance. If an element is not an
XSD-based element, simply access the properties directly, such as element.Children.

However, if you use an XSD type, you must prefix the property name with a dollar sign ($). This convention
prevents ambiguity with properties defined on the XSD type or on the type instance that backs that type. For
example, suppose the XSD defines an element’s child element as one named Children. There would unfortu-
nately be two similar properties with the same name. Gosu prevents ambiguity by requiring the special properties
to have a dollar sign prefix if and only if the element is XSD-based:

• To access the children of an XSD-based element, use the syntax element.$Children.

• To access the a custom child element named Children as defined by the XSD, use the syntax
element.Children. This is a non-recommended name due to the ambiguity, but Gosu has no problem with it.
You may not have control over the XSD format that you are using, so Gosu must disambiguate them.

Notes about this convention:

• This convention only applies to properties defined on XSD-based types.

• It does not apply to methods.

• It does not apply to non-XSD-based XML elements.

For example, suppose you use the root class XmlElement directly with no XSD to manipulate an untyped graph
of XML nodes. In that case, you can omit the dollar sign because the property names are not ambiguous. There
are no XSD types, so there is no overlap in namespace.

This affects the following type instance property names that appear on an XML element, listed with their dollar
sign prefix:
• $Attributes

• $Class

• $Children

• $Namespace

• $NamespaceContext

• $Comment

• $QName

• $Text

• $TypeInstance

• $SimpleValue

• $Value – Only for elements with an XSD-defined simple content

• $Nil - only for XSD-defined nillable elements.

Note: If you create an XmlElement element directly, not a subclass, the object is not an XSD type. It is an
untyped node that uses the default type instance, an instance of the type AnyType. In such cases, there is no
dollar sign prefix because there is no ambiguity between properties that are really part of the type instance,
rather than on the XSD type.
Introduction to the XML Element in Gosu 201

Gosu Reference Guide

See also

“Access the Nillness of an Element” on page 220

Exporting XML Data

The XmlElement class includes the following methods and properties that export XML data. All of these methods
have alternate method signatures that takes a serialization options object (XmlSerializationOptions). See later
in this topic for details of this object.

Export-related Methods on an XML Element

Each XML element provides the following methods that serialize the XML element:

• bytes method – Returns an array of bytes (the type byte[]) that contains the UTF-8-encoded bytes in the
XML. Generally speaking, the bytes method is the best approach for serializing the XML.For example:
var ba = element.bytes()

If your code sends XML with a transport that understands only character data and not byte data, always
base-64 encode the bytes to compactly and safely encode binary data. For example:
var base64String = gw.util.Base64Util.encode(element.bytes())

To reverse the process in Gosu, use the code:
var bytes = gw.util.Base64Util.decode(base64String)

• print method – Serializes the element to the standard output stream (System.out). For example:
element.print()

• writeTo method – Writes to an output stream (java.io.OutputStream) but does not close the stream after-
ward.

• asUTFString method – Serializes the element to a String object in UTF-8. For example:
var s = element.asUTFString()

The asUTFString method outputs the node as a String value that contains XML, with a header suitable for
later export to UTF-8 or UTF-16 encoding. The generated XML header does not specify the encoding. In the
absence of a specified encoding, all XML parsers must detect the encoding (UTF-8 or UTF-16). The exis-
tence of a byte order mark at the beginning of the document tells the parser what encoding to use.

Although the asUTFString method is helpful for debugging use, the asUTFString method is not the best way
to export XML safely to external systems. In general, use the bytes method to get an array of bytes. If your
code sends or stores XML with a transport that only understands character data (not byte data), always
Base64 encode the array of bytes. See the example earlier in this section for the bytes method.

For more details of the XML byte order mark, see http://www.w3.org/TR/REC-xml/#sec-guessing.

For more information about UTF-8, see http://tools.ietf.org/html/rfc3629.

For all serializations, test your code with non-English characters to assure your tests cover characters with high
Unicode code points.

IMPORTANT Always test your XML serialization and integration code with non-English characters.

For all of these methods, you can customize serialization by optionally passing an XmlSerializationOptions
instance as another parameter at the end of the parameter list.
202 Chapter 19: Gosu and XML

http://tools.ietf.org/html/rfc3629
http://www.w3.org/TR/REC-xml/#sec-guessing

Gosu Reference Guide

XML Serialization Options Reference and Examples

The following table lists properties on a serialization options object of type gw.xml.XmlSerializationOptions.

In addition, XmlSerializationOptions exposes special methods for each one of these properties. Each method
has the prefix with followed by the property name. For example, withSort. The method takes one argument of
the type of that property as listed in the table.

These methods are chainable, which means that they return the XmlSerializationOptions object again. This
means you can use code such as:

var opts = new gw.xml.XmlSerializationOptions().withSort(false).withValidate(false)

In addition, the withEncoding property has a secondary method signature that takes the Java short name for the
encoding. This means there are two ways to set the encoding:

• Use the withEncoding method and pass a standard Java encoding name as a String, such as "Big5".

• Set the Encoding property to a raw character set object for the encoding. You can use the static method
Charset.forName(ENCODING_NAME) to get the desired static instance of the character set object. For example,
pass "Big5".

Serialization
options Type Description Default

General properties

Comments Boolean If true, exports each element’s comments. true

Sort Boolean If true, ensures that the order of children elements of each
element match the XSD. This is particularly important for
sequences. This feature only has an effect on an element if it
is based on an XSD type. If the entire graph of XmlElement
objects contains no XSD-based elements, this property has no
effect. If a graph of XML objects contains a mix of XSD and
non-XSD-based elements, this feature only applies to the
XSD-based elements. This is true independent of whether the
root node is an XSD-based element.

true

XmlDeclaration Boolean If true, writes the XML declaration at the top of the XML docu-
ment.

true

Validate Boolean If true, validates the XML document against the associated
XSD. This feature only has an effect on an element if it is
based on an XSD type. If the entire graph of XmlElement
objects contains no XSD-based elements, this property has no
effect.

true

Encoding Charset The character encoding of the resulting XML data as a
java.nio.charset.Charset object. See discussion after this
table for tips for setting this property.

UTF-8 encoding

Pretty Boolean If true, Gosu attempts to improve visual layout of the XML
with indenting and line separators. If you set this to false, then
Gosu ignores the values of the properties: Indent,
LineSeparator, AttributeNewLine, AttributeIndent.

true

Properties used only if Pretty property is true

Indent String The String to export for each indent level to make the hierar-
chy clearer.

Two spaces

LineSeparator String The line separator as a String. The new line char-
acter (ASCII 10).

AttributeNewLine Boolean If true, puts each attribute on a new line. false

AttributeIndent int The number of additional indents beyond its original indent for
an attribute.

2

Exporting XML Data 203

Gosu Reference Guide

XML Serialization Examples

For example, the following example creates an element, then adds an element comment. Next, it demonstrates
printing the element with the default settings (with comments) and how to customize the output to omit
comments.

uses gw.xml.XmlSerializationOptions

// Create an element.
var a = new com.guidewire.pl.docexamples.gosu.xml.simpleelement.MyElement()
.
// Add a comment
a.$Comment = "Hello I am a comment"

print("print element with default settings...")
a.print()

print("print element with no comments...")
a.print(new XmlSerializationOptions() { :Comments = false})

All serialization APIs generate XML data for the entire XML hierarchy with that element at the root.

Parsing XML Data into an XML Element

The XmlElement class contains static methods for parsing XML data into a graph of XmlElement objects. Parsing
means to convert serialized XML data into a more complex in-memory representation of the document. All these
methods begin with the prefix parse. There are multiple methods because Gosu supports parsing from several
different sources of XML data.

IMPORTANT For each source of data, there is an optional method variant that modifies the way Gosu
parses the XML. Gosu encapsulates these options in an instance of the type XmlParseOptions. The
XmlParseOptions specifies additional schemas that resolve schema components for the input instance
XML document. Typical code does not need this. Use this if your XML data contains references to
schema components that are neither directly nor indirectly imported by the schema of the context type.
For more information, see later in this topic.

For example, the following simple example parses XML contained in a String into an XmlElement object, and
then prints the parsed XML data:

var a = XmlElement.parse("<Test123/>")
a.print()

If you are using an XSD, call the parse method directly on your XSD-based node, which is a subclass of
XmlElement. For example:

var a = com.guidewire.pl.docexamples.gosu.xml.demoattributes.Element1.parse(xmlDataString)

The following table lists the parsing methods.

Method name arguments Description

parse byte[]
byte[], XmlParseOptions

Parse XML from a byte array with optional pars-
ing options.

parse java.io.File
java.io.File, XmlParseOptions

Parse XML from a file, with optional parsing
options.

parse java.io.InputStream
java.io.InputStream, XmlParseOptions

Parse XML from an InputStream with optional
parsing options.
204 Chapter 19: Gosu and XML

Gosu Reference Guide

See also

For details of XmlParseOptions, see “Referencing Additional Schemas During Parsing” on page 205.

Checking XML Well-Formedness and Validation During Parsing

For XSD-based XML elements, Gosu has the following behavior:

• Gosu checks for well-formedness (for example, no unclosed tags or other structural errors).

• Always validates the XML against the XSD.

For non-XSD-based XML elements:

• Gosu checks for well-formedness.

• If the XML parse options object includes references to other schemas, Gosu validates against those sche-
mas.

If the XML document fails any of these tests, Gosu throws an exception.

See also

“Referencing Additional Schemas During Parsing” on page 205.

Referencing Additional Schemas During Parsing

In some advanced parsing situations, you might need to reference additional schemas other than your main
schema during parsing.

To specify additional schemas, set the XmlParseOptions.AdditionalSchemas to a specific SchemaAccess
object. This SchemaAccess object represents the XSD. To access it from an XSD, use the syntax:

package_for_the_schema.util.SchemaAccess

To see how and why you would use this, suppose you have the following two schemas:

parse java.io.Reader
java.io.Reader, XmlParseOptions

Parse XML from a reader, which is an object for
reading character streams. Optionally, add
parsing options.

WARNING: Because this uses character data,
not bytes, the character encoding is irrelevant.
Any encoding header at the top of the file has
no effect. It is strongly recommended to treat
XML as binary data, not as String data. If your
code needs to send XML with a transport that
only understands character (not byte) data,
always Base64 encode the bytes. (From Gosu,
use the syntax:
Base64Util.encode(element.bytes())

parse String
String, XmlParseOptions

Parse XML from a String, with optional parsing
options.

IMPORTANT: Because this uses character
data, not bytes, the character encoding is irrele-
vant. Any encoding header at the top of the file
has no effect. It is strongly recommended to
treat XML as binary data, not as String data. If
your code needs to send XML with a transport
that only understands character (not byte) data,
always Base64 encode the bytes. From Gosu,
create the syntax:
Base64Util.encode(element.bytes())

Method name arguments Description
Parsing XML Data into an XML Element 205

Gosu Reference Guide

The XSD ImportXSD1.xsd:
<xsd:schema xmlns:xsd="http://www.w3.org/2001/XMLSchema" targetNamespace="urn:ImportXSD1"

xmlns:ImportXSD1="urn:ImportXSD1">
<xsd:element name="ElementFromSchema1" type="ImportXSD1:TypeFromSchema1"/>
<xsd:complexType name="TypeFromSchema1"/>

</xsd:schema>

The XSD ImportXSD2.xsd:
<xsd:schema xmlns:xsd="http://www.w3.org/2001/XMLSchema" targetNamespace="urn:ImportXSD2"

xmlns:ImportXSD1="urn:ImportXSD1" xmlns:ImportXSD2="urn:ImportXSD2"
elementFormDefault="qualified">

<xsd:import schemaLocation="ImportXSD1.xsd" namespace="urn:ImportXSD1"/>
<xsd:complexType name="TypeFromSchema2">

<xsd:complexContent> <!-- the TypeFromSchema2 type extends the TypeFromSchema1 type! -->
<xsd:extension base="ImportXSD1:TypeFromSchema1"/>

</xsd:complexContent>
</xsd:complexType>

</xsd:schema>

Notice that the ImportXSD2 XSD extends a type that the ImportXSD1 defines. This is analogous to saying the
ImportXSD2 type called TypeFromSchema2 is like a subclass of the ImportXSD1 type called TypeFromSchema1.

The following code fails (throws exceptions) because the ImportXSD1 references the schema type
ImportXSD2:TypeFromSchema2 and Gosu cannot find it anywhere in the current schema.

var schema2 = com.guidewire.pl.docexamples.gosu.xml.importxsd2.util.SchemaAccess

var xsdtext = "<ElementFromSchema1 xmlns=\"urn:ImportXSD1\" xmlns:ImportXSD2=\"urn:ImportXSD2\"" +
" xmlns:xsi=\"http://www.w3.org/2001/XMLSchema-instance\" xsi:type=\"ImportXSD2:TypeFromSchema2\"/>"

// Parse an element defined in the the first schema, but pass an extension to that
// that type that the second schema defines. THIS FAILS without using the AdditionalSchemas feature.
var element = ElementFromSchema1.parse(xsdtext)

The main problem is that the ImportXSD1 XSD type does not directly know about the existence of the schema
called ImportXSD2 even though it extends one of its types.

To make it work, set the AdditionalSchemas property of the XmlParseOptions object to a list containing one or
more SchemaAccess objects. In other words, the following XML parsing code succeeds:

var schema2 = com.guidewire.pl.docexamples.gosu.xml.importxsd2.util.SchemaAccess
var options = new gw.xml.XmlParseOptions() { :AdditionalSchemas = { schema2 } }

var xsdtext = "<ElementFromSchema1 xmlns=\"urn:ImportXSD1\" xmlns:ImportXSD2=\"urn:ImportXSD2\"" +
" xmlns:xsi=\"http://www.w3.org/2001/XMLSchema-instance\" xsi:type=\"ImportXSD2:TypeFromSchema2\"/>"

// Parse an element defined in the the first schema, but pass an extension to that
// type that the second schema defines by using the XmlParseOptions.
var element = ElementFromSchema1.parse(xsdtext, options)

Creating Many QNames in the Same Namespace

The name of each element has the type QName, which is an object of type javax.xml.namespace.QName.

A QName object contains the following parts:

• A namespace URI

• A local part

• A suggested prefix for this namespace.

On serialization of an XmlElement, Gosu tries to use the prefix to generate the name, such as
"wsdl:definitions". In some cases however, it might not be possible to use this name. For example, if an
XML element defines two attributes with different namespaces but the same prefix. On serialization, Gosu
auto-creates a prefix for one of them to prevent conflicts.

Typical code repetitively creates many QName objects in the same namespace. One way to create many QNames
is to store the namespace URI in a String variable, then create QName instances with new local parts.
206 Chapter 19: Gosu and XML

Gosu Reference Guide

To simplify this process, Gosu includes a utility class called gw.xml.XmlNamespace. It represents a namespace
URI and a suggested prefix. In other words, it is like a QName but without the local part.

There are two ways to use this:

• Create an XmlNamespace directly and call its qualify method and pass the local part String. For example:
uses gw.xml.XmlNamespace
var ns = new XmlNamespace("namespaceURI","prefix")
var e = new XmlElement(ns.qualify("localPartName"))

• Reuse the namespace of an already-created XML element. To get the namespace from an XML element
instance, get its NameSpace property. Then, simply call the qualify method and pass the local part String:
// Create a new XML element.
var xml = new XmlElement(new QName("namespaceURI", "localPart", "prefix"))

// Reuse the namespaceURI and prefix from the previously-created element.
var xml2 = new XmlElement(xml.Namespace.qualify("localPart2"))

For more information, see “Introduction to the XML Element in Gosu” on page 198.

XSD-based Properties and Types

IMPORTANT The XML and SOAP APIs are not built-in to the core release of Gosu Community
Release. However, these APIs are available as separate downloads. See “Using XML and SOAP
Libraries with Gosu Community Release” on page 48

The most powerful way to use XML in Gosu is to use an XSD that describes in a strict way what is valid in your
XML. If you can use or generate an XSD for your data, it is strongly recommended to use an XSD.

To tell Gosu to load your XSD, put your XSD files in the same file hierarchyas Gosu classes, organized in subdi-
rectories by package.

Gosu creates new types in the type system for element declarations in the XSD. Where appropriate, Gosu creates
properties on these types based on the names and structure within the XSD. By using an XSD and the generated
types and properties, your XML-related code is significantly easier to read and understand. For example, you can
use natural Gosu syntax to access child elements by their name such as element.ChildName for a child named
ChildName.

If you cannot use an XSD, you can use the basic properties and methods of XmlElement like element.Children
and element.getChild("ChildName"). However, writing XML-related code without XSD types tends to be
harder to understand getting and setting values and elements, and much less typesafe.

Important Concepts in XSD Properties and Types

There are some important distinctions to make in terminology when understanding how Gosu creates types from
XSDs. In the following table, note how every definition in the XSD has a corresponding instance in an XML
document (although in some cases might be optional).

For every element definition in the XSD:

Definitions (in the XSD) Instances (in an XML document)

a schema (an XSD) XML document

element definition element instance

complex type definition complex type instance

simple type definition simple type instance

attribute definition attribute instance
XSD-based Properties and Types 207

Gosu Reference Guide

• There is an associated type definition.

• The type definition is either a complex type definition or simple type definition.

• The element definition has one of the following qualities:

• It references a top-level type definition (for example, a top-level complex type)

• It embeds a type definition inside the element definition (for example, an embedded simple type)

• It includes no type, which implicitly refers to the built-in complex type <xsd:anyType>

In an XSD, various definitions cause Gosu to create new types:

• An element definition causes Gosu to create a type that describes the element

• A type definition causes Gosu to create a type that describes the type (for example, a new complex type)

• An attribute definition causes Gosu to create a type that describes the attribute

For example, suppose an XSD declares a new top-level simple type that represents a phone number. Suppose
there are three element definitions that reference this new simple type in different contexts for phone numbers,
such as work number, home numbers, and cell number. In this example, Gosu creates:

• One type that represents the phone number simple type

• Three types that represent the individual element definitions that reference the phone number

From Gosu, whenever you create objects or set properties on elements, it is important to know which type you
want to use. In some cases, you might be able to do what you want in more than one way, although one way
might be easier to read. See “XSD Generated Type Examples” on page 211 for examples that illustrate this point
further.

Also remember that if you have a reference to the element, you can always reference the backing type. For
example, for an element, you can reference the backing type instance using the $TypeInstance property. See
“XSD Generated Type Examples” on page 211 for examples of this.

Reference of XSD Properties and Types

The following table lists the types and properties that Gosu creates from an XSD. For this topic, schema repre-
sents the fully-qualified path to the schema, elementName represents an element name, and parentName and
childName represent names of parent and child elements.

The rightmost column indicates (for properties only) whether the property becomes a list property if it can appear
more than once. If it says “Yes”, the property has type java.util.List parameterized on what type it is when it
is singular. For example, suppose a child element is declared in the XSD with the type xsd:int:

• If its maxOccurs is 1, the property’s type is Integer.

• If its maxOccurs is greater than 1, the property’s type is List<Integer>, which means a list of integers.

There are other circumstances in which a property becomes a list. For example, suppose there is a XSD choice
(<xsd:choice>) in an XSD that has maxOccurs attribute value greater than 1. Any child elements become list
properties. For example, if the choice defines child elements with names "elementA" and "elementB", Gosu
creates properties called ElementA and ElementB, both declared as lists. Be aware that Gosu exposes shortcuts
for inserting items, see “Automatic Insertion into Lists” on page 212.

Notes about generated types containing the text anonymous in the fully qualified type name:

• Although the package includes the word anonymous, this does not imply that these elements have no defined
names. The important quality that distinguishes these types is that the object is defined at a lower level than
the top level of the schema. By analogy, this is similar to how Gosu and Java define inner classes within the
namespace of another class.

• There are several rows that contain a reference to the path from root as the placeholder text PathFromRoot.
The path from root is a generated name that embeds the path from the root of the XSD, with names separated
208 Chapter 19: Gosu and XML

Gosu Reference Guide

by underscore characters. The intermediate layers may be element names or group names. See each row for
examples.

For each
occurrence
of...

Declared in
the schema at
this location...

There is a
new... With syntax...

element
definition

top level type schema.ElementName

IMPORTANT: However, Gosu behaves slightly differently if the
top-level element is declared in a web service definition language
(WSDL) document. Instead, Gosu creates the type name as
schema.elements.ElementName.

lower than
top level

type schema.anonymous.elements.PathFromRoot_ElementName

For example, suppose the top level group A that contains an element
called B, which contains an element called C. The PathFromRoot is
A_B and the fully-qualified type is
schema.anonymous.elements.A_B_C.

complex type
definition

top level type schema.types.complex.TypeName

lower than
top level

type schema.anonymous.types.complex.PathFromRoot

For example, suppose a top level element A contains an embedded
complex type. The PathFromRoot is A. Note that complex types
defined at a level lower than the top level never have names.

simple type
definition

top level type schema.types.simple.TypeName

lower than
top level

type schema.anonymous.types.simple.PathFromRoot

For example, suppose a top level element A contains element B,
which contains an embedded simple type. The path from root is A_B.
Note that simple types defined at a level lower than the top level
never have names.

attribute
definition

top level type schema.attributes.AttributeName

lower than
top level

type schema.anonymous.attributes.PathFromRoot

For example, suppose a top level element A contains element B,
which has the attribute C. The pathPathFromRoot is A_B and the
fully-qualified type is schema.anonymous.attributes.A_B_C.

within an ele-
ment

property element.AttributeName

Unlike most other generated properties on XSD types, an attribute
property never transform into a list property.

For every child element with either (1) simple type or (2) complex type and a simple content

It is a common pattern to convert a simpleType at a later time to simpleContent simply to add attributes to an element with a
simple type. To support this common pattern, Gosu creates two properties ChildName and ChildName_elem for every child
element with either a simply type or both a complex type and simple content. The one with the _elem suffix contains the ele-
ment object instance. The property without the _elem suffix contains the element value. Because of this design, if you later
decide to add attributes to a simpleType element, your XML code requires no changes simply because of this change.

child element
with either:
• simple type
• complex

type and a
simple con-
tent

anywhere property element.ChildName_elem

The property type is as follows:
• If element is defined at top-level, schema.ElementName
• If element is defined at lower levels,
schema.anonymous.elements.PathFromRoot_ElementName.

IMPORTANT: This property transforms into a list type if it can appear
more than once. See discussion of list properties immediately before
this table.
XSD-based Properties and Types 209

Gosu Reference Guide

Normalization of Gosu Generated XSD-based Names

In cases where Gosu creates type names and element names, Gosu performs slight normalization of the names:

• One prominent aspect of normalization is capitalization to conform to Gosu naming standards for packages,
properties, and types. For example, Gosu packages become all lowercase. Types must start with initial capi-
tals. Properties must start with initial capitals.

• If the type or property names contains invalid characters for Gosu for that context, Gosu changes them. For
example, hyphens are disallowed and removed.

• If Gosu finds an invalid character and the following character is lowercase, Gosu removes the invalid
character and uppercases the following letter.

• If Gosu finds an invalid character and the following character is uppercase, Gosu converts the invalid
character to an underscore and does not change the following character.

• If the first character is invalid as a first character but otherwise valid (for example, a numeric digit), Gosu
simply prepends an underscore. If it is entirely invalid within a name in that context (such as hyphen),
Gosu removes the character. In the unusual case in which after removing all start characters, no characters
remain, Gosu simply renames that item a simple underscore.

• If there are duplicates, Gosu appends numbers to some of them. For example, MyProp, MyProp2, MyProp3, and
so on.

the value of a
child element
with either:
• simple type
• complex

type and a
simple con-
tent

anywhere property element.ChildName

The property type is as follows:
• If element is defined at top-level, schema.ElementName
• If element is defined at lower levels,
schema.anonymous.elements.PathFromRoot_ElementName.

IMPORTANT: This property transforms into a list type if it can appear
more than once. See discussion of list properties immediately before
this table.

For every child element with complex type and no simple content

child element
with complex
type and no
simple con-
tent

anywhere property element.ChildName

The property type is as follows:
• If element is defined at top-level, schema.ElementName
• If element is defined at lower levels,
schema.anonymous.elements.PathFromRoot_ElementName.

IMPORTANT: This property transforms into a list type if it can appear
more than once. See discussion of list properties immediately before
this table.

For each schema

schema
definition

n/a schema
access object

schema.util.SchemaAccess

It is a special utility object for providing access to the original schema
that produced this type hierarchy. Think of this as a way of represent-
ing this schema. This is important if you need one schema to include
another schema (see “Referencing Additional Schemas During Pars-
ing” on page 205).

For each
occurrence
of...

Declared in
the schema at
this location...

There is a
new... With syntax...
210 Chapter 19: Gosu and XML

Gosu Reference Guide

XSD Generated Type Examples

XSD Generated Type Examples 1

Let us try these with actual examples. Suppose you have the following XSD in the package
examples.pl.gosu.xml:

<xsd:schema xmlns:xsd="http://www.w3.org/2001/XMLSchema">
<xsd:element name="Element1">

<xsd:complexType>
<xsd:sequence>

<xsd:element name="Child1"/> <!-- The default type is xsd:anyType. -->
<xsd:element name="Child2" type="xsd:int"/>

</xsd:sequence>
</xsd:complexType>

</xsd:element>
</xsd:schema>

Review the following Gosu code:
var xml = new packagename.myschema.Element1()
var child1 = xml.Child1 // Child1 has type schema.anonymous.elements.Element1_Child1.
var child2 = xml.Child2 // Child2 has type java.lang.Integer.
xml.Child2 = 5 // Set the XML property with a simple type.
var child2Elem = xml.Child2_elem // Get the XML property as a

// schema.anonymous.elements.Element1_Child2.

Note the following:

• The Child1 property is of type schema.anonymous.elements.Element1_Child1, which is a subclass of
XmlElement.

• The Child2 property is of type java.lang.Integer. When a child element has a simple type, its natural prop-
erty name gets the object’s value, rather than the child element object. If you wish to access the element
object (the XmlElement instance) for that child, instead use the property with the _elem suffix. In this case, for
the child named Child2, you use the element.Child2_elem property, which is of type
schema.anonymous.elements.Element1_Child2.

XSD Generated Types: Element Type Instances Compared to Backing Type Instances

Suppose you have a XSD that defines one phone number simple type and multiple elements that use that
simple type.

The XSD might look like the following:
<xsd:schema xmlns:xsd="http://www.w3.org/2001/XMLSchema">

<xsd:element name="person">
<xsd:complexType>

<xsd:sequence>
<xsd:element name="cell" type="phone"/>
<xsd:element name="work" type="phone"/>
<xsd:element name="home" type="phone"/>

</xsd:sequence>
</xsd:complexType>

</xsd:element>

<xsd:complexType name="phone">
<xsd:sequence>

<xsd:element name="areaCode" type="xsd:string"/>
<xsd:element name="mainNumber" type="xsd:string"/>

</xsd:sequence>
</xsd:complexType>

</xsd:schema>

Suppose you want to create and assign the phone numbers. There are multiple ways to do this.

If you want to create three different phone numbers, use code like this:
var e = new schema.Person()

e.Cell.AreaCode = "415"
e.Cell.MainNumber = "555-1213"

e.Work.AreaCode = "416"
e.Work.MainNumber = "555-1214"
XSD-based Properties and Types 211

Gosu Reference Guide

e.Home.AreaCode = "417"
e.Home.MainNumber = "555-1215"

In contrast, you want to create one phone number to use in multiple elements, you might use code like this:
var e = new schema.Person()

var p = new schema.types.complex.Phone()
p.AreaCode = "415"
p.MainNumber = "555-1212"

e.Cell.$TypeInstance = p
e.Work.$TypeInstance = p
e.Home.$TypeInstance = p

An element’s $TypeInstance property accesses the element’s backing type instance.

It is important to note that it is necessary to use the $TypeInstance property syntax because the Gosu declared
types of each phone number element are incompatible.

For example, you cannot create the complex type and directly assign it to the element type:
var e = new schema.Person()

var p = new schema.types.complex.Phone()
p.AreaCode = "415"
p.MainNumber = "555-1212"

e.Cell = p // SYNTAX ERROR: cannot assign complex type instance to element type instance
e.Work = p // SYNTAX ERROR: cannot assign complex type instance to element type instance
e.Home = p // SYNTAX ERROR: cannot assign complex type instance to element type instance

Additionally, different element-based types can be mutually incompatible for assignment even if they are associ-
ated with the XSD type definition. For example:

var e = new schema.Person()

e.Cell = e.Work // SYNTAX ERROR: cannot assign one element type to a different element type

Automatic Insertion into Lists

If you are using XSDs, for properties that represent child elements that can appear more than once, Gosu exposes
that property as a list. For properties that Gosu exposes as list properties (see “XSD-based Properties and Types”
on page 207), Gosu has a special shorthand syntax for inserting items into the list. If you assign to the list index
equal to the size of the list, then the index assignment becomes an insertion.

This is also true if the size of the list is zero: use the [0] array/list index notation and set the property. This inserts
the value into the list, which is equivalent to adding an element to the list. However, you do not have to worry
about whether the list exists yet if you use this syntax. (If you are creating XML objects in Gosu, by default the
lists do not yet exist. From Gosu they are null.)

In other words, you can add an element with the syntax:
element.PropertyName[0] = childElement

If the list does not exist yet for a list property at all, Gosu creates the list upon the first insertion.

In other words, suppose an element contains child elements that represent an address and the child element has
the name Address. If the XSD declares the element could exist more than once, the element.Address property is
a list of addresses. The following code creates a new Address:

element.Address[0] = new my.package.xsdname.elements.Address()

Note: If you use XSDs, Gosu automatically creates intermediate XML elements as needed. Use this feature
to significantly improve the readability of your XML-related Gosu code.

Example XSD

<xsd:schema xmlns:xsd="http://www.w3.org/2001/XMLSchema">
<xsd:element name="Element1">

<xsd:complexType>
<xsd:sequence>

<xsd:element name="Child1" type="xsd:int" maxOccurs="unbounded"/>
212 Chapter 19: Gosu and XML

Gosu Reference Guide

</xsd:sequence>
</xsd:complexType>

</xsd:element>
</xsd:schema>

Code

var xml = new schema.Element1()
print("Before insertion: ${xml.Child1.Count}")
xml.Child1[0] = 0
xml.Child1[1] = 1
xml.Child1[2] = 2
print("After insertion: ${xml.Child1.Count}")
xml.print()

Output

Before insertion: 0
After insertion: 3
<?xml version="1.0"?>
<Element1>

<Child1>0</Child1>
<Child1>1</Child1>
<Child1>2</Child1>

</Element1>

Example XSD

This also works with simple types derived by list (xsd:list):
<xsd:schema xmlns:xsd="http://www.w3.org/2001/XMLSchema">

<xsd:element name="Element1">
<xsd:complexType>

<xsd:sequence>
<xsd:element name="Child1">

<xsd:simpleType>
<xsd:list itemType="xsd:int"/>

</xsd:simpleType>
</xsd:element>

</xsd:sequence>
</xsd:complexType>

</xsd:element>
</xsd:schema>

Output

Before insertion: 0
After insertion: 3
<?xml version="1.0"?>
<Element1>

<Child1>0 1 2</Child1>
</Element1>

XSD List Property Example

If the possibility exists for a child element name to appear multiple times, then the property becomes a list-based
property.

Example XSD

<xsd:schema xmlns:xsd="http://www.w3.org/2001/XMLSchema">
<xsd:element name="Element1">

<xsd:complexType>
<xsd:choice>

<xsd:element name="Child1" type="xsd:int"/>
<xsd:sequence maxOccurs="unbounded">

<xsd:element name="Child2" type="xsd:int"/>
</xsd:sequence>

</xsd:choice>
</xsd:complexType>

</xsd:element>
</xsd:schema>

Code

var xml = new schema.Element1()
xml.Child1 = 1
XSD-based Properties and Types 213

Gosu Reference Guide

xml.print()

print("----------")

xml.Child1 = null
xml.Child2 = {1, 2, 3, 4}
xml.print()

Output

<?xml version="1.0"?>
<Element1>

<Child1>1</Child1>
</Element1>

<?xml version="1.0"?>
<Element1>

<Child2>1</Child2>
<Child2>2</Child2>
<Child2>3</Child2>
<Child2>4</Child2>

</Element1>

Getting Data From an XML Element

The main work of an XML element happens in the type instance associated with each XML element. The type
instance of an XML element is responsible for nearly all of the element behavior but does not contain the
element’s name. You can usually ignore the division of labor between an XmlElement and its backing type
instance. If you are using an XSD, this distinction is useful.

If you instantiate a type instance, typically you use more specific subclass of
gw.xsd.w3c.xmlschema.types.complex.AnyType.

Gosu exposes properties and methods on the XML type instances for you to get child elements or simple value.

It is important to note that XML elements contain two basic types of content:

• Child elements

• Simple values

An element can contain either child elements or a simple value, but not both at the same time.

See also

“Introduction to the XML Element in Gosu” on page 198

Manipulating Elements and Values (Works With or Without XSD)

To get the child elements of an element, get its Children property. The Children property contains a list
(java.util.List<XmlElement>) of elements. If this XML element is an XSD-based type, you must add the
property name prefix $, so instead get the property called $Children.

If the element has no child elements, there are two different cases:

• If an element has no child elements and no text content, the Children property contains an empty list.

• If an element has no child elements but has text content, the Children property contains null.

To add a child element, call the parent element’s addChild method and pass the child element as a parameter.

For example, suppose you had the following XSD:
<xsd:schema xmlns:xsd="http://www.w3.org/2001/XMLSchema">

<xsd:element name="Element1">
<xsd:complexType>

<xsd:sequence>
<xsd:element name="Child1"/> <!-- default type is xsd:anyType -->
<xsd:element name="Child2" type="xsd:int"/>

</xsd:sequence>
214 Chapter 19: Gosu and XML

Gosu Reference Guide

</xsd:complexType>
</xsd:element>

</xsd:schema>

Things to notice in this XSD:

• The element named Child1 has no explicit type. This means the default type applies, which is xsd:anyType.

• The element named Child2 has the type xsd:int. This means that by definition, this element must contain an
integer value. Integer is a simple type. Without the integer value (if it were empty or null), any XML for this
document would be invalid according to the XSD.

If you have a reference to an XML element of a simple type, you can set its value by setting its SimpleValue
property. (If you are using an XSD, add the dollar sign prefix: $SimpleValue)

To set a simple value, like an integer value for an element, there are several approaches:

• Set the value in the SimpleValue property, to a subclass of XmlSimpleValue. This allows you to directly
create the simple value that Gosu stores in the pre-serialized graph of XML elements. If it is on an XSD type,
specify the property name with the dollar sign prefix: $SimpleValue. To create an instance of the
XmlSimpleValue of the appropriate type, call static methods on the XmlSimpleValue type with method names
that start with make.... For example, call the makeIntInstance method and pass it an Integer. It returns an
XmlSimpleValue instance that represents an integer, and internally contains an integer. In memory, Gosu
stores this information as a non-serialized value. Only during serialization of the XML, such as exporting into
a byte array or using the debugging print method, does Gosu serialize the XmlSimpleValue into bytes or
encoded text. For a full reference of all the simple value methods and all their variants, see “Simple Values”
on page 217.

• To create simple text content (text simple value), set the element’s Text property to a String value. If it is on
an XSD type, specify the property name with the dollar sign prefix: $Text.

• If you are using an XSD, you can set the natural value in the Value property. If it is on an XSD type, specify
the property name with the dollar sign prefix: $Value. For example, use natural-looking code like
e.$Value = 5. If you are using an XSD and have non-text content, this approach tends to result in more
natural-looking Gosu code than creating instances of XmlSimpleValue.

• If you are using an XSD, Gosu provides a simple syntax to get and set child values with simple types. For
example, set numbers and dates from an element’s parent element using natural syntax using the child
element name as a property accessor. This lets you easily access the child element’s simple value with very
readable code. For example, e.AutoCost = 5. See “XSD-based Properties and Types” on page 207.

The following Gosu code adds two child elements, sets the value of an element using the Value property and the
SimpleValue property, and then prints the results. In this example, we use XSD types, so we must specify the
special property names with the dollar sign prefix: $Value and $SimpleValue.

uses gw.xml.XmlSimpleValue

// Create a new element, whose type is in the namespace of the XSD.
var e = new com.guidewire.pl.docexamples.gosu.xml.demochildprops.Element1()
var c = e.$Children // returns an empty list of type List<XmlElement>
print("Children " + c.Count + c)
print("")

// Create a new CHILD element that is legal in the XSD, and add it as child.
var c1 = new com.guidewire.pl.docexamples.gosu.xml.demochildprops.anonymous.elements.Element1_Child1()
e.addChild(c1)

// Create a new CHILD element that is legal in the XSD, and add it as child.
var c2 = new com.guidewire.pl.docexamples.gosu.xml.demochildprops.anonymous.elements.Element1_Child2()
print("before set: " + c2.$Value) // prints "null" -- it is uninitialized

c2.$SimpleValue = XmlSimpleValue.makeIntInstance(5)
print("after set with $SimpleValue: " + c2.$Value)

c2.$Value = 7
print("after set with $Value: " + c2.$Value)
print("")

// Add the child element.
e.addChild(c2)
Getting Data From an XML Element 215

Gosu Reference Guide

c = e.$Children // Return a list of two child elements
print("Children " + c.Count + c)

print("")
e.print()

This code prints the following:
Children 0[]

before set: null
after set with $SimpleValue: 5
after set with $Value: 7

Children 2[com.guidewire.pl.docexamples.gosu.xml.demochildprops.anonymous.elements.Element1_Child1
instance, com.guidewire.pl.docexamples.gosu.xml.demochildprops.anonymous.elements.Element1_Child2
instance]

<?xml version="1.0"?>
<Element1>
 <Child1/>
 <Child2>7</Child2>
</Element1>

Note that the Child2 element contains the integer as text data in the serialized XML export. Gosu does not seri-
alize the simple types to bytes (or a String) until serialization. In this example, the final print statement is what
serializes the element and all its subelements.

Getting Child Elements By Name

If you want to iterate across the List of child elements to find your desired data, you can do so using the
Children property mentioned earlier in this topic. Depending on what you are doing, you might want to use the
Gosu enhancements on lists to find the items you want. See “Collections” on page 183 for more details.

However, it is common to want to get a child element by its name. To support this common case, Gosu provides
methods on the XML element object. There are two main variants of this method. Use getChild if you expect
only one match. Use getChildren if you expect multiple matches. Each one of these has an alternate signature
that takes a String.

• getChild(QName) – Searches the content list for a single child with the specified QName name. There is an
alternate method signature that takes a String value for the local part name. For that method signature, Gosu
and internally creates a QName with an empty namespace and the specified local part name. This method
requires there to be exactly one child with this name. If there are multiple matches, the method throws an
exception. If there might be multiple matches, use the getChildren method instead.

• getChildren(QName) : List – Searches the content list for all children with the specified QName name.
There is an alternate method signature that takes a String value for the local part name. For that method
signature, Gosu internally creates a QName with an empty namespace and the specified local part name.

Reusing the code from the previous example, you could add the following lines to get the second child element
by its name:

// Get a child using the empty namespce by passing a String.
var getChild1 = e.getChild("Child1")

// Get a child using a QName, and "reuse" the namespace of a previous node.
var getChild2FromQName = e.getChild(getChild1.Namespace.qualify("Child2"))

print(getChild2FromQName.asUTFString())

Output

<?xml version="1.0"?>
<Child2>5</Child2>

Removing Child Elements By Name

To remove child elements, Gosu provides methods on the XML element to remove a child and specifying the
child to remove by its name. Use removeChild if you expect only one match. Use removeChildren if you expect
multiple matches.:
216 Chapter 19: Gosu and XML

Gosu Reference Guide

• removeChild(QName) : XmlElement – Removes the child with the specified QName name. There is an alter-
nate method signature that takes a String value for the local part name. For that method, Gosu internally
creates a QName with an empty namespace and the specified local part name.

• removeChildren(QName) : List<XmlElement> – Removes the child with the specified QName name. There is
an alternate method signature that takes a String value for the local part name. For that method, Gosu inter-
nally creates a QName with an empty namespace and the specified local part name.

Attributes

Attributes are additional metadata on an element. For example, in the following example an element has the
color and size attributes:

<myelement color="blue" size="huge">

Every type instance contains its attributes, which are XmlSimpleValue instances specified by a name (a QName).

Each XmlElement object contains the following methods and properties related to attributes of the element:

• AttributeNames property – Gets a set of QName objects. The property type is java.util.Set<QName>.

• getAttributeSimpleValue(QName) – Get attribute simple value by its name, specified as a QName. Returns
a XmlSimpleValue object. There is an alternate method signature that takes a String instead of a QName, and
it assumes an empty namespace.

• getAttributeValue(QName) : String – Get attribute value by its name, specified as a QName. Returns a
String object. There is an alternate method signature that takes a String instead of a QName, and it assumes
an empty namespace.

• setAttributeSimpleValue(QName , XmlSimpleValue) – Set attribute simple value by its name (as a
QName) and its value (as a XmlSimpleValue object). There is an alternate method signature that takes a
String instead of a QName, and it assumes an empty namespace.

• setAttributeValue(QName , String) – Set attribute value by its name (as a QName) and its value (as a
XmlSimpleValue object). There is an alternate method signature that takes a String instead of a QName, and
it assumes an empty namespace.

Using the previous example, the following code gets and sets the attributes:
myelement.setAttributeValue("color", XmlSimpleValue.makeStringInstance("blue"))

var s = myelement.getAttributeValue("size")

Generally speaking, if you use XSDs for your elements, for typical use do not use these APIs. Instead, use the
shortcuts that Gosu adds. They provide a natural and concise syntax for getting and setting attributes.

See also

• “Simple Values” on page 217

• “XSD-based Properties and Types” on page 207

Simple Values

Gosu represents the XML format simple values with the gw.xml.XmlSimpleValue type. An XmlSimpleValue is a
Gosu object that encapsulates a value and the logic to serialize that value to XML. However, until serialization
occurs, Gosu may internally store it in a format other than java.lang.String.

For example, XML represents hexadecimal-encoded binary data using the XSD type xsd:hexBinary. Gosu
represents an xsd:hexBinary value with an XmlSimpleValue whose backing storage is an array of bytes
(byte[]), one byte for each byte of binary data. Only at the time any Gosu code serializes the XML element does
Gosu convert the byte array to hexadecimal digits.

The following properties are provided by XmlSimpleValue:

• GosuValueType – The IType of the Gosu value
Simple Values 217

Gosu Reference Guide

• GosuValue – The type-specific Gosu value, for example, a javax.xml.namespace.QName for an xsd:QName

• StringValue – A string representation of the simple value, which may not be the string that is actually serial-
ized, such as with a QName

See also

For more information about the role of simple values in Gosu XML APIs, see “Getting Data From an XML
Element” on page 214.

Methods to Create XML Simple Values

The following table lists static methods on the XmlSimpleValue type that create XmlSimpleValue instances of
various types.

Method signature Description

makeStringInstance(java.lang.String) Make String instance

makeAnyURIInstance(java.net.URI) Make URI instance

makeBooleanInstance(java.lang.Boolean) Make boolean instance

makeByteInstance(java.lang.Byte) Make byte instance

makeUnsignedByteInstance(java.lang.Short) Make unsigned byte instance

makeDateInstance(gw.xml.date.XmlDate) Make date-time instance from an XmlDate

makeDateTimeInstance(gw.xml.date.XmlDateTime) Make date instance from an XmlDateTime

makeDecimalInstance(java.math.BigDecimal) make decimal instance from a BigDecimal

makeDoubleInstance(java.lang.Double) make decimal instance from a Double

makeDurationInstance(gw.xml.date.XmlDuration) Make duration instance

makeFloatInstance(java.lang.Float) Make float instance

makeGDayInstance(gw.xml.date.XmlDay) Make GDay instance

makeGMonthDayInstance(gw.xml.date.XmlMonthDay) Make GMonthDay duration instance

makeGMonthInstance(gw.xml.date.XmlMonth) Make GMonth instance

makeGYearInstance(gw.xml.date.XmlYear) Make GYear instance

makeGYearMonthInstance(gw.xml.date.XmlYearMonth) Make GYearMonth instance

makeHexBinaryInstance(byte[]) Make hex binary instance from byte array

makeIDInstance(java.lang.String) Make IDInstance instance from a String

makeIDREFInstance(gw.xml.XmlElement) Make IDREF instance

makeIntegerInstance(java.math.BigInteger) Make big integer instance

makeIntInstance(java.lang.Integer) Make integer instance

makeLongInstance(java.lang.Long) Make long integer instance

makeUnsignedIntInstance(java.lang.Long) Make unsigned integer instance

makeUnsignedLongInstance(java.math.BigInteger) Make unsigned long integer instance

makeQNameInstance(javax.xml.namespace.QName) Make QName instance

makeQNameInstance(java.lang.String,
javax.xml.namespace.NamespaceContext)

Make QName instance from a standard Java name-
space context. A namespace context object encapsu-
lates a mapping of XML namespace prefixes and their
definitions (namespace URIs). You can get an
instance of NamespaceContext from an XmlElement
its NamespaceContext property. The String argument
is the qualified local name (including the prefix) for the
new QName.

makeShortInstance(java.lang.Short) Make duration instance

makeUnsignedShortInstance(java.lang.Integer) Make unsigned short integer instance
218 Chapter 19: Gosu and XML

Gosu Reference Guide

XSD to Gosu Simple Type Mappings

For all elements with simple types and all attributes in an XSD, Gosu creates properties based on which simple
schema type it is. The following table describes how Gosu maps XSD schema types to Gosu types. For schema
types that are not listed in the table, Gosu uses the schema type’s supertype. For example, the schema type
String is not listed, so Gosu uses its supertype anySimpleType.

makeTimeInstance(gw.xml.date.XmlTime) Make duration instance

makeBase64BinaryInstance(byte[]) Make base 64 binary instance from byte array

makeBase64BinaryInstance(gw.xml.BinaryDataProvider) Make base 64 binary instance from binary data pro-
vider

Schema Type Gosu Type

boolean java.lang.Boolean

byte java.lang.Byte

decimal java.math.BigDecimal

double java.lang.Double

float java.lang.Float

int java.lang.Integer

integer java.math.BigInteger

long java.lang.Long

short java.lang.Short

unsignedLong java.math.BigInteger

unsignedInt java.lang.Long

unsignedShort java.lang.Integer

unsignedByte java.lang.Short

date gw.xml.date.XmlDate

dateTime gw.xml.date.XmlDateTime

time gw.xml.date.XmlTime

gYearMonth gw.xml.date.XmlYearMonth

gYear gw.xml.date.XmlYear

gMonthDay gw.xml.date.XmlMonthDay

gDay gw.xml.date.XmlDay

gMonth gw.xml.date.XmlMonth

duration gw.xml.date.XmlDuration

base64Binary gw.xml.BinaryDataProvider

hexBinary byte[]

anyURI java.net.URI

QName javax.xml.namespace.QName

IDREF gw.xml.XmlElement

anySimpleType java.lang.String

any type with enumeration facets schema-specific enumeration type

any type derived by list of T java.util.List<T>

any type derived by union of (T1, T2,... Tn) greatest common supertype of (T1, T2,... Tn)

Method signature Description
Simple Values 219

Gosu Reference Guide

Facet Validation

A facet is a characteristic of a data type that restricts possible values. For example, setting a minimum value or
matching a specific regular expression.

Gosu represents each facet as an element. Each facet element has a fixed attribute that is a Boolean value. All the
facets for a simple type collectively define the set of legal values for that simple type.

Most schema facets are validated at property setter time. A few facets are not validated until serialization time to
allow incremental construction of lists at runtime. This mostly affects facets relating to lengths of lists, and those
that validate QNames. Gosu cannot validate QName objects at property setting time because there is not enough
information available. Also, the XML Schema specification recommends against applying facets to QNames at
all.

Example XSD

<xsd:schema xmlns:xsd="http://www.w3.org/2001/XMLSchema">
<xsd:element name="Element1">

<xsd:complexType>
<xsd:attribute name="Attr1" type="AttrType"/>

</xsd:complexType>
</xsd:element>

<xsd:simpleType name="AttrType">
<xsd:restriction base="xsd:int">

<xsd:minInclusive value="0"/>
<xsd:maxInclusive value="5"/>

</xsd:restriction>
</xsd:simpleType>

</xsd:schema>

Code

var xml = new schema.Element1()
xml.Attr1 = 3 // Works!
xml.Attr1 = 6 // Fails with an exception exception.

Output

gw.xml.XmlSimpleValueException: Value '6' violated one or more facet constraints
of simple type definition: value must be no greater than 5

Access the Nillness of an Element

XML has a concept of whether an element is nil. This is not exactly same as being null. An element can be nil
(and must have no child elements) but still have attributes. Additionally, an XSD can define whether an element
is nillable, which means that element is allowed to be nil.

If an XSD-based element is nillable, the XmlElement object exposes a property with the name $Nil. All
non-XSD elements also have this property, but it is called Nil (with no dollar sign prefix). Nillability is an XSD
concept, so for non-XSD elements the element always potentially can be nil.

Note: For XSD-based elements not marked as nillable, this property is unsupported. In the Gosu editor, if
you attempt to use the $Nil property, Gosu generates a deprecation warning.

Setting this property on an element to true affects whether upon serialization Gosu adds an xsi:nil attribute on
the element. Getting this property returns the state of that flag (true or false).

Nillability is an aspect of XSD-based elements, not an aspect of the XSD type itself.

Example XSD

<xsd:schema xmlns:xsd="http://www.w3.org/2001/XMLSchema">
<xsd:element name="Element1" type="xsd:int" nillable="true"/>

</xsd:schema>
220 Chapter 19: Gosu and XML

Gosu Reference Guide

Code

var xml = new schema.Element1()
xml.$Nil = true
xml.print()

Output

<?xml version="1.0"?>
<Element1 xsi:nil="true" xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"/>

See also

For more on the distinction between XmlElement and its backing type, see “Introduction to the XML Element in
Gosu” on page 198 in the Gosu Reference Guide.

Automatic Creation of Intermediary Elements

If you use XSDs, whenever a property path appears in the left hand side of an assignment statement, Gosu
creates any intermediary elements to assure the assignment from Gosu works. This is a very useful shortcut. Use
this feature to make your Gosu code significantly more understandable.

Example XSD

<xsd:schema xmlns:xsd="http://www.w3.org/2001/XMLSchema">
<xsd:element name="Element1">

<xsd:complexType>
<xsd:sequence>

<xsd:element name="Child1">
<xsd:complexType>

<xsd:sequence>
<xsd:element name="Child2" type="xsd:int"/>

</xsd:sequence>
</xsd:complexType>

</xsd:element>
</xsd:sequence>

</xsd:complexType>
</xsd:element>

</xsd:schema>

Code

var xml = new schema.Element1()
print("Before assignment: ${xml.Child1}")
xml.Child1.Child2 = 5 // Assignment of a value to Child2 automatically creates Child1.
print("After assignment: ${xml.Child1}")

Output

Before assignment: null
After assignment: schema.anonymous.elements.Element1_Child1 instance

Default and Fixed Attribute Values

The default values for default and fixed attributes and elements come from the statically typed property getter
for those attributes and elements. These default values are not stored in the attribute map or content list for a an
XML type. Gosu adds default or fixed values to attributes and elements in the XML output stream at the time that
Gosu serializes the Gosu representation of an XML document.

Example XSD

The following example XSD defines an XML element named person. The element definition includes an attri-
bute definition named os with a default value of “Windows” and an attribute definition named location with a
fixed value of “San Mateo”.

<xsd:schema xmlns:xsd="http://www.w3.org/2001/XMLSchema">
<xsd:element name="root">
Automatic Creation of Intermediary Elements 221

Gosu Reference Guide

<xsd:complexType>
<xsd:sequence>

<xsd:element name="person" minOccurs="0" maxOccurs="unbounded">
<xsd:complexType>

<xsd:sequence>
<xsd:element name="name" type="xsd:string"/>

</xsd:sequence>
<xsd:attribute name="os" type="ostype" default="Windows"/>
<xsd:attribute name="location" type="xsd:string" fixed="San Mateo"/>

</xsd:complexType>
</xsd:element>

</xsd:sequence>
</xsd:complexType>

</xsd:element>

<xsd:simpleType name="ostype">
<xsd:restriction base="xsd:string">

<xsd:enumeration value="Windows"/>
<xsd:enumeration value="MacOSX"/>
<xsd:enumeration value="Linux"/>

</xsd:restriction>
</xsd:simpleType>

</xsd:schema>

Code

The following sample Gosu code creates a new Gosu representation of an XML document based on the
preceding XSD. The code adds two person elements, one for jsmith and one for aanderson. For jsmith, the
code adds an os attribute set to the value Linux. The code does not add an os attribute to aanderson, nor does the
code add the location attribute to either person. Instead, the code relies on the default and fixed values defined in
the XSD.

var xml = new schema.Root()
xml.Person[0].Name = "jsmith"
xml.Person[0].Os = Linux
xml.Person[1].Name = "aanderson"

// Gosu adds default and fixed values to the XML document at the time Gosu serializes XML for print.
for (person in xml.Person) {

print("${person.Name} (${person.Location}) -> ${person.Os}")
}

xml.print()

Output

At the time the preceding Gosu code serializes its representation of an XML document, Gosu adds the fixed and
default values to the XML output stream. The printed output shows that the Gosu representation of the XML
document does not contain the value San Mateo or Windows.

jsmith (San Mateo) -> Linux
aanderson (San Mateo) -> Windows
<?xml version="1.0"?>
<root>

<person os="Linux">
<name>jsmith</name>

</person>
<person>

<name>aanderson</name>
</person>

</root>

Substitution Group Hierarchies

Just as Gosu reproduces XSD-defined type hierarchies in the Gosu type system, Gosu also exposes XSD-defined
substitution group hierarchies.

The name substitution group is the standard name for this XSD feature, although the name can be somewhat
confusing. An XSD substitutionGroup attribute can be defined on any top-level element to indicate the
QName of another top-level element that it can be substituted for. The name substitution group comes from its
222 Chapter 19: Gosu and XML

Gosu Reference Guide

normal use, which is to create a substitution group head (the group’s main element) with some abstract name,
such as "Address".

Next, create substitution group members. To create a substitution group member, set the XML attribute
substitutionGroup on an element to the element name (QName) of the substitution group head.

There is no need to indicate at runtime that the substitution happened place. This is in contrast to subtypes, in
which xsi:type must be present. If an XML element uses a substitution group member QName in place of the
head’s QName, the Gosu XML processor knows that the substitution happened.

Example XSD

<xsd:schema xmlns:xsd="http://www.w3.org/2001/XMLSchema" elementFormDefault="qualified">
<xsd:element name="Customer">

<xsd:complexType>
<xsd:sequence>

<xsd:element ref="Address"/>
</xsd:sequence>

</xsd:complexType>
</xsd:element>
<xsd:element name="Address"/>
<xsd:element name="USAddress" substitutionGroup="Address"/>
<xsd:element name="UKAddress" substitutionGroup="Address"/>

</xsd:schema>

Code

var xml = new schema.Customer()
xml.Address = new schema.UKAddress()
xml.print()

Output

<?xml version="1.0"?>
<Customer>

<UKAddress/>
</Customer>

The XML Schema specification requires that the XSD type of a substitution group member must be a subtype of
the XSD type of its substitution group head. The reason the example above works is because UKAddress,
USAddress and Address are all of the type xsd:anyType (the default when there is no explicit type).

Element Sorting for XSD-based Elements

An XSD can define the strict order of children of an element. For non-XSD elements, element order is undefined.

Each XmlElement exposes a Children property. (For XSD-based elements the property name is $Children.)

If the list of child elements is out of order according to the XSD, Gosu sorts the element list during serialization
to match the schema. This sorting does not affect the original order of the elements in the content list.

If you use APIs to directly add child elements, such as adding to the child element list or using an addChild
method, you can add child elements out of order. Similarly, some APIs indirectly add child elements, such as
such as autocreation of intermediary elements (see “Automatic Creation of Intermediary Elements” on
page 221.). In all of these cases, Gosu permits the children to be out of order in the XmlElement object graph.

During serialization and only during serialization, Gosu sorts the elements to ensure that the elements conform to
the XSD.

Note that if you parse XML into an XmlElement using an XSD, the elements must be in the correct order
according to the XSD. If the child order violates the XSD, Gosu throws an exception during parsing.

Example XSD

<xsd:schema xmlns:xsd="http://www.w3.org/2001/XMLSchema">
<xsd:element name="Element1">

<xsd:complexType>
<xsd:sequence>
Element Sorting for XSD-based Elements 223

Gosu Reference Guide

<xsd:element name="Child1" type="xsd:int"/>
<xsd:element name="Child2" type="xsd:int"/>
<xsd:element name="Child3" type="xsd:int"/>

</xsd:sequence>
</xsd:complexType>

</xsd:element>
</xsd:schema>

Code

var xml = new schema.Element1()
xml.Child2 = 2
xml.Child1 = 1
xml.Child3 = 3
xml.print()

Output

<?xml version="1.0"?>
<Element1>

<Child1>1</Child1>
<Child2>2</Child2>
<Child3>3</Child3>

</Element1>

Example XSD

<xsd:schema xmlns:xsd="http://www.w3.org/2001/XMLSchema">
<xsd:element name="Element1">

<xsd:complexType>
<xsd:choice>

<xsd:sequence>
<xsd:element name="A" type="xsd:int"/>
<xsd:element name="B" type="xsd:int"/>
<xsd:element name="C" type="xsd:int"/>

</xsd:sequence>
<xsd:sequence>

<xsd:element name="B" type="xsd:int"/>
<xsd:element name="C" type="xsd:int"/>
<xsd:element name="A" type="xsd:int"/>
<xsd:element name="Q" type="xsd:int"/>

</xsd:sequence>
</xsd:choice>

</xsd:complexType>
</xsd:element>

</xsd:schema>

Code

var xml = new schema.Element1()
xml.A = 5
xml.B = 5
xml.C = 5
xml.print()
print("----------")
xml.Q = 5
xml.print()

Output

<?xml version="1.0"?>
<Element1>

<A>5
5
<C>5</C>

</Element1>

<?xml version="1.0"?>
<Element1>

5
<C>5</C>
<A>5
<Q>5</Q>

</Element1>
224 Chapter 19: Gosu and XML

Gosu Reference Guide

If Element Order Is Already Correct

If the children of an element are in an order that matches the XSD, Gosu does not sort the element list. This is
important if there is more than one sorted order that conforms to the XSD and you desire a particular order.

Example XSD

The following XSD defines two distinct strict orderings of the same elements:
<xsd:schema xmlns:xsd="http://www.w3.org/2001/XMLSchema">

<xsd:element name="Element1">
<xsd:complexType>

<xsd:choice>
<xsd:sequence>

<xsd:element name="A" type="xsd:int"/>
<xsd:element name="B" type="xsd:int"/>
<xsd:element name="C" type="xsd:int"/>

</xsd:sequence>
<xsd:sequence>

<xsd:element name="C" type="xsd:int"/>
<xsd:element name="B" type="xsd:int"/>
<xsd:element name="A" type="xsd:int"/>

</xsd:sequence>
</xsd:choice>

</xsd:complexType>
</xsd:element>

</xsd:schema>

Code

var xml = new schema.Element1()
xml.A = 5
xml.B = 5
xml.C = 5
xml.print()

print("----------")

xml = new schema.Element1()
xml.C = 5
xml.B = 5
xml.A = 5
xml.print()

Output

<?xml version="1.0"?>
<Element1>

<A>5
5
<C>5</C>

</Element1>

<?xml version="1.0"?>
<Element1>

<C>5</C>
5
<A>5

</Element1>

Multiple Correct Sort Order Matches

If the children of an element are out of order, but multiple correct orderings exist, the first correct ordering
defined in the schema will be used.

Example XSD

<xsd:schema xmlns:xsd="http://www.w3.org/2001/XMLSchema">
<xsd:element name="Element1">

<xsd:complexType>
<xsd:choice>

<xsd:sequence>
<xsd:element name="A" type="xsd:int"/>
<xsd:element name="B" type="xsd:int"/>
<xsd:element name="C" type="xsd:int"/>

</xsd:sequence>
Element Sorting for XSD-based Elements 225

Gosu Reference Guide

<xsd:sequence>
<xsd:element name="C" type="xsd:int"/>
<xsd:element name="B" type="xsd:int"/>
<xsd:element name="A" type="xsd:int"/>

</xsd:sequence>
</xsd:choice>

</xsd:complexType>
</xsd:element>

</xsd:schema>

Code

var xml = new schema.Element1()
xml.C = 5
xml.A = 5
xml.B = 5
xml.print()

Output

<?xml version="1.0"?>
<Element1>

<A>5
5
<C>5</C>

</Element1>

Built-in Schemas

Gosu includes several XSDs in the gw.xsd.* package. The following table lists the built-in XSDs.

The XSD that Defines an XSD (The Metaschema)

The definition of an XSD is itself an XML file. The XML Schema XSD is the XSD that defines the XSD format.
It is also known as the metaschema. It is in the Gosu package gw.xsd.w3c.xmlschema. This schema is useful
sometimes for building or parsing schemas.

Example Code

var schema = new gw.xsd.w3c.xmlschema.Schema()
schema.Element[0].Name = "Element1"
schema.Element[0].ComplexType.Sequence.Element[0].Name = "Child"
schema.Element[0].ComplexType.Sequence.Element[0].Type = new javax.xml.namespace.QName("Type1")
schema.ComplexType[0].Name = "Type1"
schema.print()

Output

<?xml version="1.0"?>
<xsd:schema xmlns:xsd="http://www.w3.org/2001/XMLSchema">

<xsd:element name="Element1">
<xsd:complexType>

<xsd:sequence>
<xsd:element name="Child" type="Type1"/>

</xsd:sequence>
</xsd:complexType>

Description of the XSD Fully-qualified XSD package name

The SOAP XSD gw.xsd.w3c.soap

SOAP envelope XSD gw.xsd.w3c.soap_envelope

WSDL XSD gw.xsd.w3c.wsdl

XLink XSD (for linking constructs) gw.xsd.w3c.xlink

The XML XSD, which defines the attributes that begin with the xml: prefix, such
as xml:lang.

gw.xsd.w3c.xml

XML Schema XSD, which is the XSD that defines the format of an XSD. See “The
XSD that Defines an XSD (The Metaschema)” on page 226.

gw.xsd.w3c.xmlschema.Schema
226 Chapter 19: Gosu and XML

Gosu Reference Guide

</xsd:element>
<xsd:complexType name="Type1"/>

</xsd:schema>

There is no way to inject a schema into the type system at run time.

Schema Access Type

For each XSD that Gosu loads, it creates a SchemaAccess object that represents the loaded XSD. The most
important reason to load XSDs is to provide Gosu with additional schemas during XML parsing. Additionally,
SchemaAccess objects have a Schema property, which is the Gosu XML representation of the XSD. In technical
terms, the Schema property contains the gw.xsd.w3c.xmlschema.Schema object that represents the XSD.

See also

• “Parsing XML Data into an XML Element” on page 204

• “The XSD that Defines an XSD (The Metaschema)” on page 226

Example XSD

Suppose you have this XSD loaded as schema.util.SchemaAccess.Schema:
<xsd:schema xmlns:xsd="http://www.w3.org/2001/XMLSchema">

<xsd:element name="Element1"/>
<xsd:element name="Element2"/>
<xsd:element name="Element3"/>

</xsd:schema>

Code

var schema = schema.util.SchemaAccess.Schema
schema.Element.each(\ el ->print(el.Name))

Output

Element1
Element2
Element3

Code

The following example uses the XSD of XSDs to print a list of primitive schema types:
var schema = gw.xsd.w3c.xmlschema.util.SchemaAccess.Schema
print(schema.SimpleType.where(\ s ->s.Restriction.Base.LocalPart == "anySimpleType").map(

\ s ->s.Name))

Output

[string, boolean, float, double, decimal, duration, dateTime, time, date, gYearMonth,
gYear, gMonthDay, gDay, gMonth, hexBinary, base64Binary, anyURI, QName, NOTATION]

See also

The APIs described in this topic generate the entire XML graph.
Schema Access Type 227

Gosu Reference Guide

228 Chapter 19: Gosu and XML

Calling WS-I Web Services from Gosu

Gosu code can import web services (SOAP APIs) from external systems and call these services as a SOAP client
(an API consumer). The Gosu language handles all aspects of object serialization, object deserialization, basic
authentication, and SOAP fault handling.

IMPORTANT The XML and SOAP APIs are not built-in to the core release of Gosu Community
Release. However, these APIs are available as separate downloads. See “Using XML and SOAP
Libraries with Gosu Community Release” on page 48

This topic includes:

• “Consuming WS-I Web Service Overview” on page 229

• “Adding WS-I Configuration Options” on page 234

• “One-Way Methods” on page 237

• “Asynchronous Methods” on page 238

• “MTOM Attachments” on page 239

Consuming WS-I Web Service Overview

IMPORTANT The XML and SOAP APIs are not built-in to the core release of Gosu Community
Release. However, these APIs are available as separate downloads. See “Using XML and SOAP
Libraries with Gosu Community Release” on page 48

Gosu supports calling WS-I compliant web services. WS-I is an open industry organization that promotes
industry-wide best practices for web services interoperability among diverse systems. The organizations
provides several different profiles and standards. The WS-I Basic Profile is the baseline for interoperable web
services and more consistent, reliable, and testable APIs.

Gosu offers native WS-I web service client code with the following features:

• Call web service methods with natural Gosu syntax for method calls

• Call web services optionally asynchronously. See “Asynchronous Methods” on page 238.

• Support one-way web service methods. See “One-Way Methods” on page 237.

• Separately encrypt requests and responses. See “Adding WS-I Configuration Options” on page 234.

• Process attachments that use the multi-step MTOM protocol. See “MTOM Attachments” on page 239.
Calling WS-I Web Services from Gosu 229

Gosu Reference Guide

• Sign incoming responses with digital signatures. See “Implementing Advanced Web Service Security with
WSS4J” on page 236.

One of the big differences between WS-I and older styles of web services is how the client and server encodes
API parameters and return results.

An older style of web services is called Remote Procedure Call encoded (RPCE) web services. The bulk of the
incoming and outgoing data are encoded in a special way that does not conform to XSD files. Many older
systems use RPCE web services, but there are major downsides with this approach. Most notably, the encoding is
specific to remote procedure calls, so it is difficult to validate XML data in RPC encoded responses. It would be
more convenient to use standard XML validators which rely on XSDs to define the structure of the main content.

When you use the WS-I standards, you can use the alternative encoding called Document Literal encoding
(document/literal). The document-literal-encoded SOAP message contains a complete XML document for
each method argument and return value. The schema for each of these documents is an industry-standard XSD
file. The WSDL that describes how to talk to the published WS-I service includes a complete XSD describing the
format of the embedded XML document. The outer message is very simple, and the inner XML document
contains all of the complexity. Anything that an XSD can define becomes a valid payload or return value.

The WS-I standard supports a mode called RPC Literal (RPC/literal) instead of Document Literal. Despite the
similarity in name, WS-I RPC Literal mode is not closely related to RPC encoding. Gosu supports this WS-I
RPC Literal mode for Gosu web service client code. However, it does so by automatically and transparently
converting any WSDL for RPC Literal mode into WSDL for Document Literal mode. The focus of the Gosu
documentation for WS-I web services is the support for Document Literal encoding.

Loading WS-I WSDL Directly into the File System

To consume an external web service, you must load the WSDL and XML schema files (XSDs) for the web
service. You must fetch copies of WSDL files, as well as related WSDL and XSD files, from the web services
server. Fetch the copies into an appropriate place in the Gosu class hierarchy on your local system. Place them in
the directory that corresponds to the package in which you want new types to appear. For example, place the
WSDL and XSD files next to the Gosu class files that call the web service, organized in package hierarchies just
like class files.

The following sample Gosu code shows how to manually fetch web service WSDLs for test purposes or for
command-line use from a web service server.

uses gw.xml.ws.*
uses java.net.URL
uses java.io.File

// -- set the web service endpoint URL for the web service WSDL --
var urlStr = "http://www.aGreatWebService.com/GreatWebService?wsdl"

// -- set the location in your file system for the web service WSDL --
var loc = "/wsi/remote/GreatWebService"

// -- load the web service WSDL into Gosu --
Wsdl2Gosu.fetch(new URL(urlStr), new File(loc))

The first long string (urlStr) is the URL to the web service WSDL. The second long string (loc) is the path on
your file system where the fetched WSDL is stored. You can run your version of the preceding sample Gosu code
in the Gosu Tester.

Security and Authentication

The WS-I basic profile requires support for some types of security standards for web services, such as encryption
and digital signatures (cryptographically signed messages). See “Adding WS-I Configuration Options” on
page 234.
230 Chapter : Calling WS-I Web Services from Gosu

Gosu Reference Guide

Types of WS-I Client Connections

From Gosu, there are three types of WS-I web service client connections:

• Standard round trip methods (synchronous request and response)

• Asynchronous round trip methods (send the request and immediately return to the caller, and check later to
see if the request finished). See “Asynchronous Methods” on page 238.

• One-way methods, which indicate a method defined to have no SOAP response at all. See “One-Way
Methods” on page 237.

How Does Gosu Process WSDL?

Suppose you add a WSDL file directly to your class hierarchy called MyService.wsdl in the package
example.pl.gs.wsic. Gosu creates all the types for your web service in the namespace:

example.pl.gs.wsic.myservice.*

The name of MyService becomes lowercase myservice in the package hierarchy for the XML objects because
the Gosu convention for package names is lowercase. There are other name transformations as Gosu imports
types from XSDs. For details, see “Normalization of Gosu Generated XSD-based Names” on page 210.

The structure of a WSDL comprises the following:

• One or more services

• For each service, one or more ports

A port represents a protocol or other context that might change how the WSDL defines that service. For
example, methods might be defined differently for different versions of SOAP, or an additional method might
be added for some ports. WSDL might define one port for SOAP 1.1 clients, one port for SOAP 1.2 clients,
one port for HTTP non-SOAP access, and so on. See discussion later in this topic for what happens if multi-
ple ports exist in the WSDL.

• For each port, one or more methods

A method, also called an operation or action, performs a task and optionally returns a result. The WSDL
includes XML schemas (XSDs), or it imports other WSDL or XSD files. Their purposes are to describe the
data for each method argument type and each method return type.

Suppose the WSDL looks like the following:
<wsdl>
 <types>
 <schema>
 <import schemaLocation="yourschema.xsd"/>

<!-- now define various operations (API methods) in the WSDL ... -->

The details of the web service APIs are omitted in this example WSDL. Assume the web service contains exactly
one service called SayHello, and that service contains one method called helloWorld. Let us assume for this first
example that the method takes no arguments, returns no value, and is published with no authentication or security
requirements.

In Gosu, you can call the remote service represented by the WSDL using code such as:
// get a reference to the service in the namespace of the
var service = new example.pl.gs.wsic.myservice.SayHello()

// call a method on the service
service.helloWorld()

Of course, real APIs need to transfer data also. In our example WSDL, notice that the WSDL refers a secondary
schema called yourschema.xsd.

Add any additional XSD into the web_service_name.wsdl.resources subdirectory.

Let us suppose the contents of your yourschema.xsd file looks like the following:
<schema>
 <element name="Root" type="xsd:int"/>
</schema>
Calling WS-I Web Services from Gosu 231

Gosu Reference Guide

Note that the element name is "root" and it contains a simple type (int). This XSD represents the format of an
element for this web service. The web service could declare a <root> element as a method argument or return
type.

Now let us suppose there is another method in the SayHello service called doAction and this method takes one
argument that is a <root> element.

In Gosu, you can call the remote service represented by the WSDL using code similar to the following:
// get a reference to the service
var service = new ws.myservice.SayHello()

// create an XML document from the WSDL using the Gosu XML API
var x = new ws.myservice.Root()

// call a method that the web service defines
var ret = service.doAction(x)

The package names are different if you place your WSDL file in a different part of the package hierarchy.

For each web service API call, Gosu first evaluates the method parameters. Internally, Gosu serializes the root
XmlElement instance and its child elements into XML raw data using the associated XSD data from the WSDL.
Next, Gosu sends the resulting XML document to the web service. In the SOAP response, the main data is an
XML document, whose schema is contained in (or referenced by) the WSDL.

Learning Gosu XML APIs

All WS-I method argument types and return types are defined from schemas (the XSD embedded in the WSDL).
From Gosu, all these objects are instances of subclasses of XmlElement, with the specific subclass defined by the
schemas in the WSDL. From Gosu, working with WS-I web service data requires that you understand Gosu
XML APIs.

In many cases, Gosu hides much of the complexity of XML so you do not need to worry about it. For example,
for XSD-types, in Gosu you do not have to directly manipulate XML as bytes or text. Gosu handles common
types like number, date, or Base64 binary data. You can directly get or set values (such as a Date object rather
than a serialized xsd:date object). The XmlElement class, which represents an XML element hide much of the
complexity.

Other notable tips to working with XML in Gosu:

• When using a schema (an XSD, or a WSDL that references an XSD), Gosu exposes shortcuts for referring to
child elements using the name of the element. For more information, see “XSD-based Properties and Types”
on page 207.

• When setting properties in an XML document, Gosu creates intermediate XML element nodes in the graph
automatically. Use this feature to significantly improve the readability of your XML-related Gosu code. For
details, see “Automatic Creation of Intermediary Elements” on page 221.

• For properties that represent child elements that can appear more than once, Gosu exposes that property as a
list. For list-based types like this, there is a special shortcut to be aware of. If you assign to the list index equal
to the size of the list, then Gosu treats the index assignment as an insertion. This is also true if the size of the
list is zero: use the [0] array/list index notation and set the property. This inserts the value into the list, which
is equivalent to adding an element to the list. However, you do not have to worry about whether the list exists
yet. If you are creating XML objects in Gosu, by default the lists do not yet exist.

In other words, use the syntax:
element.PropertyName[0] = childElement

If the list does not exist yet for a list property at all, Gosu creates the list upon the first insertion. In other
words, suppose an element contains child elements that represent an address and the child element has the
name Address. If the XSD declares the element could exist more than once, the element.Address property is
a list of addresses. The following code creates a new Address:
element.Address[0] = new my.package.xsdname.elements.Address()
232 Chapter : Calling WS-I Web Services from Gosu

Gosu Reference Guide

See also

• “Automatic Insertion into Lists” on page 212

• “XSD-based Properties and Types” on page 207

• “Gosu and XML” on page 197 in the Gosu Reference Guide

What Gosu Creates from Your WSDL

Within the namespace of the package of the WSDL, Gosu creates some new types.

For each service in the web service, Gosu creates a service by name. For example, if the external service has a
service called GeocodeService and the WSDL is in the package examples.gosu.wsi, then the service has the
fully-qualified type examples.gosu.wsi.GeocodeService. Create a new instance of this type, and you then you
can call methods on it for each method.

For each operation in the web service, generally speaking Gosu creates two local methods:

• One method with the method name in its natural form, for example suppose a method is called doAction

• One method with the method name with the async_ prefix, for example async_doAction. This version of the
method handles asynchronous API calls. For details, see “Asynchronous Methods” on page 238.

Special Behavior For Multiple Ports

Gosu automatically processes ports from the WSDL identified as either SOAP 1.1 or SOAP 1.2. If both are avail-
able for any service, Gosu ignores the SOAP 1.1 ports. In some cases, the WSDL might define more than one
available port (such as two SOAP 1.2 ports with different names).

For example, suppose you add a WSDL file to your class hierarchy called MyService.wsdl in the package
example.pl.gs.wsic. Gosu chooses a default port to use and creates types for the web service at the following
path:

ROOT_PACKAGE.WSDL_NAME_NORMALIZED.NORMALIZED_SERVICE_NAME

The NORMALIZED_SERVICE_NAME name of the package is the name of the service as defined by the WSDL, with capi-
talization and conflict resolution as necessary. For example, if there are two services in the WSDL named Report
and Echo, then the API types are in the location

example.pl.gs.wsic.myservice.Report

example.pl.gs.wsic.myservice.Echo

Gosu chooses a default port for each service. If there is a SOAP 1.2 version, Gosu prefers that version.

Additionally, Gosu provides the ability to explicitly choose a port. For example, if there is a SOAP 1.1 port and a
SOAP 1.2 port, you could explicitly reference one of those choices. Gosu creates all the types for your web
service ports within the ports subpackage, with types based on the name of each port in the WSDL:

ROOT_PACKAGE.WSDL_NAME_NORMALIZED.ports.SERVICE_AND_PORT_NAME

The SERVICE_AND_PORT_NAME is the service name, followed by an underscore, followed by the port name.

For example, suppose the ports are called p1 and p2 and the service is called Report. Gosu creates types within
the following packages:

example.pl.gs.wsic.myservice.ports.Report_p1

example.pl.gs.wsic.myservice.ports.Report_p2

Additionally, if the port name happens to begin with the service name, Gosu removes the duplicate service name
before constructing the Gosu type. For example, if the ports are called ReportP1, and helloP2, Gosu creates
types within the following packages:

example.pl.gs.wsic.myservice.ports.Report_P1 // NOTE: it is not Report_ReportP1

example.pl.gs.wsic.myservice.ports.Report_helloP2 // not a duplicate, so Gosu does not remove "Hello"

Each one of those hierarchies would include method names for that port for that service.
Calling WS-I Web Services from Gosu 233

Gosu Reference Guide

A Real Example: Weather

There is a public free web service that provides the weather. You can get the WSDL for this web service at the
URL http://wsf.cdyne.com/WeatherWS/Weather.asmx?wsdl. This web service does not require authentica-
tion or encryption.

The following Gosu code gets the weather in San Francisco:
var ws = new ws.weather.Weather()
var r = ws.GetCityWeatherByZIP(94114)
print(r.Description)

Depending on the weather, your result might be something like:
Mostly Sunny

Request XML Complexity Affects Appearance of Method Arguments

A WS-I operation defines a request element. If the request element is simply a sequence of elements, Gosu
converts these elements into multiple method arguments for the operation. For example, if the request XML has
a sequence of five elements, Gosu exposes this operation as a method with five arguments.

If the request XML definition uses complex XML features into the operation definition itself, Gosu does not
extract individual arguments. Instead Gosu treats the entire request XML as a single XML element based on an
XSD-based type.

For example, if the WSDL defines the operation request XML with restrictions or extensions, Gosu exposes that
operation in Gosu as a method with a single argument. That argument contains one XML element with a type
defined from the XSD.

Use the regular Gosu XML APIs to navigate that XML document from the XSD types in the WSDL. See “Intro-
duction to the XML Element in Gosu” on page 198 in the Gosu Reference Guide.

Adding WS-I Configuration Options

If a web service does not need encryption, authentication, or digital signatures, you can just instantiate the
service object and call methods on it:

// get a reference to the service in the package namespace of the WSDL
var api = new example.gosu.wsi.myservice.SayHello()

// call a method on the service
api.helloWorld()

Directly Modifying the WSDL Configuration Object for a Service

To add authentication or security settings to a web service you can do so by modifying the options on the service
object. To access the options from the API object (in the previous example, the object in the variable called api),
use the syntax api.Config. That property contains the API options object, which has the type
gw.xml.ws.WsdlConfig.

The WSDL configuration object has properties that add or change authentication and security settings. The
WsdlConfig object itself is not an XML object (it is not based on XmlElement), but some of its subobjects are
defined as XML objects. Fortunately, in typical code you do not need to really think about that difference.
Instead, simply use a straightforward syntax to set authentication and security parameters. The following
subtopics describe WsdlConfig object properties that you can set on the WSDL configuration object.

Note: For XSD-generated types, if you set a property several levels down in the hierarchy, Gosu adds any
intermediate XML elements if they did not already exist. This makes your XML-related code look concise.
See also “Automatic Creation of Intermediary Elements” on page 221 in the Gosu Reference Guide.
234 Chapter : Calling WS-I Web Services from Gosu

Gosu Reference Guide

HTTP Authentication

To add simple HTTP authentication to API request, use the basic HTTP authentication object at the path as
follows. Suppose api is a reference to a SOAP API that you have already instantiated with the new operator. The
properties on which to set the name and password are on the object:

api.Config.Http.Authentication.Basic

That object has a Username property for the user name and a Password property for the password. Set those two
values with the desired user name and password.

For example:

// Get a reference to the service in the package namespace of the WSDL.
var service = new example.gosu.wsi.myservice.SayHello()

service.Config.Http.Authentication.Basic.Username = "jms"
service.Config.Http.Authentication.Basic.Password = "b5"

// Call a method on the service.
service.helloWorld()

Setting a Timeout

To set the timeout value (in milliseconds), set the CallTimeout property on the WsdlConfig object for that API
reference.

For example:
// get a reference to the service in the package namespace of the WSDL
var service = new example.gosu.wsi.myservice.SayHello()

service.Config.CallTimeout = 30000 // 30 seconds

// call a method on the service
service.helloWorld()

Custom SOAP Headers

SOAP HTTP headers are essentially XML elements attached to the SOAP envelope for the web service request
or its response. Your code might need to send additional SOAP headers to the external system, such as custom
headers for authentication or digital signatures. You also might want to read additional SOAP headers on the
response from the external system.

To add SOAP HTTP headers to a request that you initiate, first construct an XML element using the Gosu XML
APIs (XmlElement). Next, add that XmlElement object to the list in the location
api.Config.RequestSoapHeaders. That property contains a list of XmlElement objects, which in generics nota-
tion is the type java.util.ArrayList<XmlElement>.

To read (get) SOAP HTTP headers from a response, it only works if you use the asynchronous SOAP request
APIs described in “Asynchronous Methods” on page 238. There is no equivalent API to get just the SOAP
headers on the response, but you can get the response envelope, and access the headers through that. You can
access the response envelope from the result of the asynchronous API call. This is an gw.xml.ws.AsyncResponse
object. On this object, get the ResponseEnvelope property. For SOAP 1.2 envelopes, the type of that response is
type gw.xsd.w3c.soap12_envelope.Envelope. For SOAP 1.1, the type is the same except with "soap11"
instead of "soap12" in the name.

From that object, get the headers in the Header property. That property contains a list of XML objects that repre-
sent all the headers.

Server Override URL

To override the server URL, for example for a test-only configuration, set the ServerOverrideUrl property on
the WsdlConfig object for your API reference. It takes a java.net.URI object for the URL.
Adding WS-I Configuration Options 235

Gosu Reference Guide

For example:
// get a reference to the service in the package namespace of the WSDL
var service = new example.gosu.wsi.myservice.SayHello()

service.Config.ServerOverrideUrl = new URI("http://testingserver/xx")

// call a method on the service
service.helloWorld()

Setting XML Serialization Options

To send a SOAP request to the SOAP server, Gosu takes an internal representation of XML and serializes the
data to actual XML data as bytes. For typical use, the default XML serialization settings are sufficient. If you
need to customize these settings, you can do so.

The most common serialization option to set is changing the character encoding to something other than the
default, which is UTF-8.

You can change serialization settings by getting the XmlSerializationOptions property on the WsdlConfig
object, which has type gw.xml.XmlSerializationOptions. Modify properties on that object to set various seri-
alization settings.

For full information about XML serialization options, such as encoding, indent levels, pretty printing, line sepa-
rators, and element sorting, see “Exporting XML Data” on page 202 in the Gosu Reference Guide.

The easiest way to get the appropriate character set object for the encoding is to use the
Charset.forName(ENCODING_NAME) static method. That method returns the desired static instance of the char-
acter set object.

For example, to change the encoding to the Chinese encoding Big5:
uses java.nio.charset.Charset

// get a reference to the service in the package namespace of the WSDL
var service = new example.gosu.wsi.myservice.SayHello()

service.Config.XmlSerializationOptions.Encoding = Charset.forName("Big5")

// call a method on the service
service.helloWorld()

This API sets the encoding on the outgoing request only. The SOAP server is not obligated to return the response
XML in the same character encoding.

Implementing Advanced Web Service Security with WSS4J

For security options beyond HTTP Basic authentication and optional SOAP header authentication, you can use
an additional set of APIs to implement whatever additional security layers.

For example, you might want to add additional layers of encryption, digital signatures, or other types of authenti-
cation or security.

From the SOAP client side, the way to add advanced security layers to outgoing requests is to apply transforma-
tions of the stream of data for the request. You can transform the data stream incrementally as you process bytes
in the stream. For example, you might implement encryption this way. Alternatively, some transformations might
require getting all the bytes in the stream before you can begin to output any transformed bytes. Digital signa-
tures would be an example of this approach. You may you use multiple types of transformations. Remember that
the order of them is important. For example, an encryption layer followed by a digital signature is a different
output stream of bytes than applying the digital signature and then the encryption.

Similarly, getting a response from a SOAP client request might require transformations to understand the
response. If the external system added a digital signature and then encrypted the XML response, you need to first
decrypt the response, and then validate the digital signature with your keystore.
236 Chapter : Calling WS-I Web Services from Gosu

Gosu Reference Guide

The standard approach for implementing these additional security layers is the Java utility WSS4J, but you can
use other utilities as needed. The WSS4J utility includes support for the WSS security standard.

Outbound Security

To add a transformation to your outgoing request, set the RequestTransform property on the WsdlConfig object
for your API reference. The value of this property is a Gosu block that takes an input stream (InputStream) as an
argument and returns another input stream. Your block can do anything it needs to do to transform the data.

Similarly, to transform the response, set the ResponseTransform property on the WsdlConfig object for your API
reference.

The following simple example shows you could implement a transform of the byte stream. In this example, the
transform is an XOR (exclusive OR) transformation on each byte. In this simple example, simply running the
transformation again decodes the request.

The following code implements a service that applies the transform to any input stream. The code that actually
implements the transform is as follows. This is a web service that you can use to test this request.

The class defines a static variable that contains a field called _xorTransform that does the transformation.
package gw.xml.ws

uses java.io.ByteArrayInputStream
uses gw.util.StreamUtil
uses java.io.InputStream

class WsiTransformService {

// THE FOLLOWING DECLARES A GOSU BLOCK THAT IMPLEMENTS THE TRANSFORM
public static var _xorTransform(is : InputStream) : InputStream = \ is ->{

 var bytes = StreamUtil.getContent(is)
 for (b in bytes index idx) {
 bytes[idx] = (b ^ 17) as byte // xor encryption
 }
 return new ByteArrayInputStream(bytes)
 }
}

The following code connects to the web service and applies this transform on outgoing requests and the reply.
package gw.xml.ws

uses gw.testharness.TestBase
uses gw.testharness.RunLevel
uses org.xml.sax.SAXParseException

@RunLevel(NONE)
class WsiTransform {

 function testTransform() {
 var ws = new wsi.MyService.WsiTransformTestService()
 ws.Config.RequestTransform = WsiTransformTestService._xorTransform
 ws.Config.ResponseTransform = WsiTransformTestService._xorTransform

 ws.add(3, 5) // call some method, and the transform is automatic
 }
}

One-Way Methods

A typical WS-I method invocation has two parts: the SOAP request, and the SOAP response. Additionally, WS-I
supports a concept called one-way methods. A one-way method is a method defined in the WSDL to provide no
SOAP response at all. The transport layer (HTTP) may send a response back to the client, however, but it
contains no SOAP response.
One-Way Methods 237

Gosu Reference Guide

Gosu fully supports calling one-way methods. Your web service client code does not have to do anything special
to handle one-way methods. Gosu handles them automatically if the WSDL specifies a method this way.

IMPORTANT Be careful not to confuse one-way methods with asynchronous methods. For more
information about asynchronous methods, see “Asynchronous Methods” on page 238.

Asynchronous Methods

Gosu supports optional asynchronous calls to web services. Gosu exposes alternate web service methods signa-
tures on the service with the async_ prefix. Gosu does not generate the additional method signature if the method
is a one-way method. The asynchronous method variants return an AsyncResponse object. Use that object with a
polling design pattern (check regularly whether it is done) the choose to get results later (synchronously in rela-
tion to the calling code).

See the introductory comments in “Consuming WS-I Web Service Overview” on page 229 for related informa-
tion about the basic types of connections for a method.

IMPORTANT Be careful not to confuse one-way methods with asynchronous methods. For more
information about one-way methods, see “One-Way Methods” on page 237.

The AsyncResponse object contains the following properties and methods:

• start method - initiates the web service request but does not wait for the response

• get method - gets the results of the web service, waiting (blocking) until complete if necessary

• RequestEnvelope - a read-only property that contains the request XML

• ResponseEnvelope - a read-only property that contains the response XML, if the web service responded

• RequestTransform - a block (an in-line function) that Gosu calls to transform the request into another form.
For example, this block might add encryption and then add a digital signature.

• ResponseTransform - a block (an in-line function) that Gosu calls to transform the request into another form.
For example, this block might validate a digital signature and then decrypt the data.

The following is an example of calling the a synchronous version of a method contrasted to using the asynchro-
nous variant of it.

var ws = new ws.weather.Weather()

// Call the REGULAR version of the method.
var r = ws.GetCityWeatherByZIP("94114")
print("The weather is " + r.Description)

// Call the **asynchronous** version of the same method
// -- Note the "async_" prefix to the method
var a = ws.async_GetCityWeatherByZIP("94114")

// By default, the async request does NOT start automatically.
// You must start it with the start() method.
a.start()

print("the XML of the request for debugging... " + a.RequestEnvelope)
print("")

print ("in a real program, you would check the result possibly MUCH later...")

// Get the result data of this asynchronous call, waiting if necessary.
var laterResult = a.get()
print("asynchronous reply to our earlier request = " + laterResult.Description)

print("response XML = " + a.ResponseEnvelope.asUTFString())
238 Chapter : Calling WS-I Web Services from Gosu

Gosu Reference Guide

MTOM Attachments

The W3C Message Transmission Optimization Mechanism (MTOM) is a method of efficiently sending binary
data to and from web services as attachments outside the normal response body. The main response contains
placeholder references for the attachments. The entire SOAP message envelope for MTOM contains multiple
parts. The raw binary data is in other parts of the request than the normal SOAP request or response. Other parts
can have different MIME encoding. For example, it could use the MIME encoding for the separate binary data.
This allows more efficient transfer of large binary data.

If a web service uses MTOM in its response, Gosu automatically receives the attachment data.

There is no additional step that you need to perform to support MTOM attachments.
MTOM Attachments 239

Gosu Reference Guide

240 Chapter : Calling WS-I Web Services from Gosu

chapter 21

Java and Gosu

You can write Gosu code that uses Java types. Gosu code can instantiate Java types, access properties of Java
types and call methods of Java types.

If you are considering writing Java code for your Gosu to call, consider instead writing that code directly in
Gosu. Remember that from Gosu, you can do everything Java can do, including directly call existing Java classes
and Java libraries. You can even write Gosu code enhancements that add properties and methods to Java types,
and the new members are accessible from all Gosu code.

This topic describes how to write and deploy Java code to work with Gosu, and how to call it from Gosu.

IMPORTANT This topic does not focus on differences between the syntax of Gosu and Java. For that
information, refer to the topic “Gosu Introduction” on page 13 and “Notable Differences Between
Gosu and Java” on page 36.

This topic includes:

• “Overview of Calling Java from Gosu” on page 241

• “Deploying Your Java Classes” on page 246

• “Java Class Loading, Delegation, and Package Naming” on page 247

Overview of Calling Java from Gosu

Gosu can directly use Java types as if they were native Gosu types.

Gosu can do all of the following:

• instantiate Java types

• manipulate Java objects (and primitives) as native Gosu objects.

• get variables from Java types
Java and Gosu 241

Gosu Reference Guide

• call methods on Java types.

Note: For methods that look like getters and setters, Gosu exposes methods instead as properties. For more
information, see “Java Get and Set Methods Convert to Gosu Properties” on page 243.

• add new methods to Java types using Gosu enhancements.

• add new properties to Java types using Gosu enhancements. (readable, writable, or read/write)

• create Gosu classes that extend Java classes

• create Gosu interfaces that extend Java interfaces

• use Java enumerations

• use Java annotations

All of these features work with built-in Java types as well as your own Java classes and libraries. You can write
Java classes that any Gosu code can call.

IMPORTANT This topic does not focus on differences between the syntax of Gosu and Java. For that
information, refer to the topic “Gosu Introduction” on page 13 and “Notable Differences Between
Gosu and Java” on page 36.

Java Classes are First-Class Types

The most important thing to do know about Gosu’s Java compatibility is that Java classes are first-class types in
Gosu. For example, standard Java classes and custom Java classes can be instantiated with the new keyword:

var b = new java.lang.Boolean(false)

Many Java Classes are Core Classes for Gosu

Many core Gosu classes actually reference Java types. For example:

• the class java.util.String is the basic text object class for Gosu code.

• the basic collection types in Gosu simply reference the Java versions, such as java.util.ArrayList.
print(list.get(0))

Java Packages in Scope

Many Java packages are in scope and thus do not need fully-qualified class names or explicit “uses” statements.
All types in the package java.lang.* are automatically in scope.

So, although you could use the code:
var f = new java.lang.Float(7.5)

The code is easier to understand with the simpler code:
var f = new Float(7.5)

Static Members in Gosu

Gosu supports static members (variables, functions, and property declarations) on a type. A static member means
that the member exists only on the type (which exists only once), not on instances of the type. You can access
static members on Java types just as you would native Gosu types.

For Gosu code that accesses static members, you must qualify the class that declares the static member. For
example, to use the Math class’s cosine function and its static reference to value PI:

Math.cos(Math.PI * 0.5)

Gosu does not have an equivalent of the static import feature of Java 1.5, which allows you to omit the characters
“Math.”.
242 Chapter 21: Java and Gosu

Gosu Reference Guide

This is only a syntax difference for using static members from Gosu (independent of whether the type is imple-
mented in Gosu or Java). If you are writing Gosu code that calls static members of Java types, this does not affect
how you write your Java code.

Simple Java Example

The following is a simple example of calling a Java class.

In your Java IDE, create and compile the following Java class called Echo:
package gw.doc.examples;

public class Echo {

 public String EchoStrings (String a, String b) {
 String modifiedA = "First Arg was " + a + "\n";
 String modifiedB = "Second Arg was " + b + "\n";
 return modifiedA + modifiedB;
 }

 public void PrintStrings (String a, String b) {
 String modifiedA = "First Arg was " + a + "\n";
 String modifiedB = "Second Arg was " + b + "\n";
 System.out.print(modifiedA + modifiedB);

 }

}

Next, choose a directory for your .gsp program and copy the Echo.class file to a subdirectory that mirrors the
package of the class. For example, create an empty Gosu program file at this path:

MyDocuments/Gosu/Echo/Echo.gsp

Because the package is gw.doc.examples, add your Java class file to this location:
MyDocuments/Gosu/Echo/gsrc/gw/doc/examples/Echo.class

Next, open the Echo.gsp file in the Gosu Editor.

In the Echo.gsp file, paste the following simple program:
classpath "gsrc"

var e = new gw.doc.examples.Echo()

e.PrintStrings("hello", "world")

If you run this Gosu code, it prints:
First Arg was hello

Second Arg was world

Similarly, you can pass data between Java and Gosu:
classpath "gsrc"

var e = new gw.doc.examples.Echo();

var fromJava = e.EchoStrings("hello", "world")

print (fromJava)

Java Get and Set Methods Convert to Gosu Properties

Gosu can call methods on Java types. For methods on Java types that look like getters and setters, Gosu exposes
methods instead as properties. Gosu uses the following rules for methods on Java types:

• If the method name starts with set and takes exactly one argument, Gosu exposes this as a property. The
property name matches the original method but without the prefix set. For example, suppose the Java method
signature is setName(String thename). Gosu exposes this a property set function for the property called
Name.
Overview of Calling Java from Gosu 243

Gosu Reference Guide

• If the method name starts with get and takes no arguments and returns a value, Gosu exposes this as a getter
for the property. The property name matches the original method but without the prefix get. For example,
suppose the Java method signature is getName(). Gosu exposes this a property get function for the property
named Name of type String.

• Similar to the rules for get, the method name starts with is and takes no arguments and returns a Boolean
value, Gosu exposes this as a property accessor (a getter). The property name matches the original method
but without the prefix is. For example, suppose the Java method signature is isVisible(). Gosu exposes this
a property get function for the property named Visible.

• Gosu does this transformation on static methods too, not just on regular instance methods.

• Even though from Gosu there is a new property you can access for reading and writing this information, Gosu
does not remove the methods. In other words, if a Java object has an obj.getName() method, you can use the
expression obj.Name or obj.getName().

If there is a setter and a getter, Gosu makes the property readable and writable. If the setter is absent, Gosu makes
the property read-only. If the getter is absent, Gosu makes the property write-only.

For example, create and compile this Java class:
package gw.doc.examples;

public class Circle {
 public static final double PI = Math.PI;
 private double _radius;

 //Constructor #1 - no arguments
 public Circle() {
 }

 //Constructor #2
 public Circle(int dRadius) {
 _radius = dRadius;
 }

 // from Java these are METHODS that begin with get, set, is
 // from Gosu these are PROPERTY accessors

 public double getRadius() {
 System.out.print("running Java METHOD getRadius() \n");
 return _radius;
 }
 public void setRadius(double dRadius) {
 System.out.print("running Java METHOD setRadius() \n");
 _radius = dRadius;
 }
 public double getArea() {
 System.out.print("running Java METHOD getArea() \n");
 return PI * getRadius() * getRadius();
 }
 public double getCircumference() {
 System.out.print("running Java METHOD getCircumference() \n");
 return 2 * PI * getRadius();
 }
 public boolean isRound() {
 System.out.print("running Java METHOD isRound() \n");
 return(true);
 }

 // ** the following methods stay as methods, not properties! **

 // For GET/IS, the method must take 0 args and return a value
 public void isMethod1 () {
 System.out.print("running Java METHOD isMethod1() \n");
 }
 public double getMethod2 (double a, double b) {
 System.out.print("running Java METHOD isMethod2() \n");
 return 1;
 }

 // For SET, the method must take 1 args and return void
 public void setMethod3 () {
 System.out.print("running Java METHOD setMethod3() \n");
 }
244 Chapter 21: Java and Gosu

Gosu Reference Guide

 public double setMethod4 (double a, double b) {
 System.out.print("running Java METHOD setMethod4() \n");
 return 1;
 }

}

The following Gosu code uses this Java class. Note which Java methods become property accessors and which
ones do not.

// instatiate the class with the constructor that takes an argument
var c = new gw.doc.examples.Circle(10)

// Use natural property syntax to SET GOSU PROPERTIES. In Java, this was a method.
c.Radius = 10

// Use natural property syntax to GET GOSU PROPERTIES
print("Radius " + c.Radius)
print("Area " + c.Area)
print("Round " + c.Round) // boolean true coerces to String "true"
print("Circumference " + c.Circumference)

// the following would be syntax errors if you uncomment. They are not writable (no setter method)
// c.Area = 3
// c.Circumference = 4
// c.Round = false

// These Java methods do not convert to properties (wrong number of arguments or wrong type)
c.isMethod1()
var temp2 = c.getMethod2(1,2)
c.setMethod3()
var temp4 = c.setMethod4(8,9)

This Gosu code outputs the following:
running Java METHOD setRadius()
running Java METHOD getRadius()
Radius 10
running Java METHOD getArea()
running Java METHOD getRadius()
running Java METHOD getRadius()
Area 314.1592653589793
running Java METHOD isRound()
Round true
running Java METHOD getCircumference()
running Java METHOD getRadius()
Circumference 62.83185307179586
running Java METHOD isMethod1()
running Java METHOD isMethod2()
running Java METHOD setMethod3()
running Java METHOD setMethod4()

Interfaces

Gosu classes can directly implement Java interfaces.

Gosu interfaces can directly extend Java interfaces.

Enumerations

Gosu can directly use Java enumerations.

Annotations

Gosu can directly use Java annotations.

Java Primitives

Gosu supports the following primitive types: int, char, byte, short, long, float, double, boolean, and the
special value that means an empty object value: null. This is the full set that Java supports, and the Gosu
versions are fully compatible with the Java primitives, in both directions.
Overview of Calling Java from Gosu 245

Gosu Reference Guide

Additionally, every Gosu primitive type (other than the special value null) has an equivalent object type defined
in Java. This is the same as in Java. For example, for int there is the java.lang.Integer type that descends
from the Object class. This category of object types that represent the equivalent of primitive types are called
boxed primitive types. In contrast, primitive types are also called unboxed primitives. In most cases, Gosu
converts between boxed and unboxed primitive as needed for typical use. However, they are slightly different
types, just as in Java, and on rare occasion these differences are important.

In both Gosu and Java, the language primitive types like int and boolean work differently from objects (descen-
dents of the root Object class). For example:

• you can add objects to a collection, but not primitives

• variables typed to an object type can have the value null, but this is not true for primitives

The Java classes java.lang.Boolean and java.lang.Integer are Object types and can freely be used within
Gosu code because of Gosu’s special relationship to the Java language. These wrapper objects are referred to as
boxed types as opposed to the primitive values as unboxed types.

Gosu can automatically convert values from unboxed to Java-based boxed types as required by the specific API
or return value, a feature that is called autoboxing. Similarly, Gosu can automatically convert values from boxed
to boxed types, a feature that is called unboxing.

In most cases, you do not need to worry about differences between boxed and unboxed types because Gosu auto-
matically converts values as required. For example, Gosu implicitly converts between the native language primi-
tive type called boolean and the Java-based object class Boolean (java.util.Boolean). In cases you want
explicit coercion, simply use the “as ...NEWTYPE” syntax, such as “myIntValue as Integer”.

If your code implicitly converts a variable’s value from a boxed type to a unboxed type, if the value is null,
Gosu standard value type conversion rules apply. For example:

var bBoxed : Boolean
var bUnboxed : boolean

bBoxed = null // bBoxed can genuinely be NULL
bUnboxed = bBoxed // bUnboxed can't be null, so is converted to FALSE!

For more information, see “Type Object Properties” on page 264.

Deploying Your Java Classes

Detailed Java Class Deployment Checklist Using Command Line Tool

If you are using Gosu as a self-contained command-line tool, you can deploy Java classes that your Gosu can
call. You can put your class files and JAR files wherever you want. Your Gosu program can contain a directive
that identifies one or more class path directories to look for class files and JAR files. Your Gosu program can
declare a classpath as a relative path or an absolute path. For details, see “The Structure of a Gosu Program” on
page 57.

Java Class Deployment For IntelliJ IDEA IDE

Refer to the IntelliJ documentation for details of Java file management in IntelliJ IDEA. Also see “Getting
Started With IntelliJ IDEA Gosu Plugin” on page 44.
246 Chapter 21: Java and Gosu

Gosu Reference Guide

Java Class Loading, Delegation, and Package Naming

Java Class Loading Rules

If loading custom Java code into Gosu or if accessing Java classes from Java code, the Java virtual machine must
locate the class file with a class loader. Class loaders use the fully-qualified package name of the Java class to
determine how to access the class.

Gosu follows the rules in the following list to load Java classes, choosing the first rule that matches and then
skipping the rules listed after it:

1. General delegation classes.

The following classes delegate load:

• javax.* - Java extension classes

• org.xml.sax.* - SAX 1 & 2 classes

• org.w3c.dom.* - DOM 1 & 2 classes

• org.apache.xerces.* - Xerces 1 & 2 classes

• org.apache.xalan.* - Xalan classes

• org.apache.commons.logging.* - Logging classes used by WebSphere

2. All your classes.

If the package does not begin with com.guidewire.*, then load locally.

WARNING Java classes you deploy must never have a fully-qualified package name that starts with
"com.guidewire." because that interferes with class loading behavior.

3. Internal classes.

If the class is an internal class, then the class delegate loads.

WARNING Java code you deploy must never access any internal classes other than supported classes
and documented APIs. Using internal classes is dangerous and unsupported.
Java Class Loading, Delegation, and Package Naming 247

Gosu Reference Guide

248 Chapter 21: Java and Gosu

chapter 22

Gosu Templates

Gosu includes a native template system. Templates are text with embedded Gosu code within a larger block of
text. The embedded Gosu code optionally can calculate a value and export the result as text in the location the
code appears in the template text.

This topic includes:

• “Template Overview” on page 249

• “Using Template Files” on page 251

• “Template Export Formats” on page 255

Template Overview

Templates are text with embedded Gosu code within a larger block of text. The embedded Gosu code optionally
can calculate a value and export the result as text in the location the code appears in the template text. There are
two mechanisms to use Gosu templates:

• Template syntax inside text literals. Inside your Gosu code, use template syntax for an inline String literal
values with embedded Gosu expressions. Gosu template syntax combines static text that you provide with
dynamic Gosu code that executes at run time and returns a result. Gosu uses the result of the Gosu expression
to output the dynamic output at run time as a String value.

• Separate template files. Define Gosu templates as separate files that you can execute from other code to
perform actions and generate output. If you use separate template files, there are additional features you can
use such as passing custom parameters to your template. For more details, see “Using Template Files” on
page 251.

The simplest way to use to templates is to embed Gosu expressions that evaluate at run time and generate text in
the place of the embedded Gosu expressions.

Template Expressions

Use the following syntax to embed a Gosu expression in String text:
${ EXPRESSION }
Gosu Templates 249

Gosu Reference Guide

For example, suppose you want to display text with some calculation in the middle of the text:
var mycalc = 1 + 1
var s = "One plus one equals " + mycalc + "."

Instead of this multiple-line code, embed the calculation directly in the String as a template:
var s = "One plus one equals ${ 1 + 1 }."

If you print this variable, Gosu outputs:
One plus one equals 2.

Gosu runs your template expression at run time. The expression can include variables or dynamic calculations
that return a value:

var s1 = "One plus one equals ${ myVariable }."

var s2 = "The total is ${ myVariable.calculateMyTotal() }."

At compile time, Gosu uses the built-in type checking system to ensure the embedded expression is valid and
type safe.

If the expression does not return a value of type String, Gosu attempts to coerce the result to the type String.

Alternate Template Expression Syntax <%= ... %>

The syntax ${ EXPRESSION } is the preferred style for template expressions.

Additionally, Gosu provides an alternate template style. Use the three-character text <%= to begin the expression.
Use the two-character text %> to end the expression. For example, you can rewrite the previous example as the
following concise code:

var s = "One plus one equals <%= 1 + 1 %>."

Any surrounding text exports to the output directly.

When to Escape Special Characters for Templates

Gosu templates use standard characters in the template to indicate the beginning of a special block of Gosu code
or other template structures. In some cases, to avoid ambiguity for the Gosu parser you must specially escape
special characters.

For Non-Template-Tag Use, Escape ${ or <%

Gosu templates use the following two-character sequences to begin a template expression
• ${

• <%

With a String literal in your code, if you want to use these to indicate template tags, do not need to escape these
special characters.

If you want either of those two special two-character sequences actually in your String (not as a template tag),
escape the first character of that sequence. To escape a character, add a backslash character immediately before
it. For example:

• To define a variable containing the non-template text "Hello${There":
var s = "Hello\${There"

• To define a variable containing the non-template text "Hello<%There":
var s = "Hello\<%There"

If you use the initial character on its own (the next character would not indicate a special tag), you do not need to
escape it. For example:

• To define a variable containing the non-template text "Hello$There", simply use:
var s = "Hello$There"

• To define a variable containing the non-template text "Hello<There", simply use:
var s = "Hello<There"
250 Chapter 22: Gosu Templates

Gosu Reference Guide

Within Template Tag Blocks, Use Standard Gosu Escaping Rules

In typical use, if you defined a String, you must escape it with the syntax \" to avoid ambiguity about whether
you were ending the String. For example:

var quotedString = "\"This has double quotes around it\", is that correct?"

This creates a String with the following value, including quote signs:
"This has double quotes around it", is that correct?

However, if you use a template, this rule does not apply between your template-specific open and closing tags
that contain Gosu code. Instead, use standard Gosu syntax for the code between those open and closing tags.

In other words, the following two lines are valid Gosu code:
var s = "${ "1" }"

var s = "${ "1" } \"and\" ${ "1" }"

Note that the first character within the template’s Gosu block is an unescaped quote sign.

However, the following is invalid due to improper escaping of internal double quotes:
var s = "${ \"1\" }"

In this invalid case, the first character within the template’s Gosu block is an escaped quote sign.

In the rare case that your Gosu code requires creating a String literal containing a quote character, remember
that the standard Gosu syntax rules apply. This means that you will need to escape any double quote signs that
are within the String literal. For example, the following is valid Gosu:

var quotedString = "${ "\"This has double quotes around it\", is that correct?" }"

Note that the first character within the template’s Gosu block is an unescaped quote sign. This template generates
a String with the value:

"This has double quotes around it", is that correct?

IMPORTANT Be careful with how you escape double quote characters within your embedded Gosu
code or other special template blocks.

Using Template Files

Instead of defining your templates in inline text, you can store a Gosu template as a separate file. Template files
support all the features that inline templates support, as described in “Template Overview” on page 249. In addi-
tion, with template files you get additional advantages and features:

• Separate your template definition from code that uses the template. For example, define a template that
generates a report or a notification email. You can then call this template from many places but define the
template only once.

• Encapsulate your template definition for better change control. By defining the template in a separate file,
your teams can edit and track template changes over time separate from code that uses the template.

• Run Gosu statements (and return no value) using scriptlet syntax. You can define one or more Gosu state-
ments as a statement list embedded in the template. Contrast this with the template expression syntax
described in “Template Overview” on page 249, which require Gosu expressions rather than Gosu statements.
The result of scriptlet tags generate no output. For more information, see “Template Scriptlet Tags” on
page 252.

• Define template parameters. Template files can define parameters that you pass to the template at run time.
For more information, see “Template Parameters” on page 253.

• Extend a template from a class to simplify static method calls. If you call static methods on one main class in
your template, you can simplify your template code using the extends feature. For more information, see
“Extending a Template From a Class” on page 254.
Using Template Files 251

Gosu Reference Guide

Creating and Running a Template File

Gosu template files have the extension .gst. Create template files within the package hierarchy in the file system
just as you create Gosu classes. Choose the package hierarchy carefully because you use this package name to
access and run your template.

In your template file, include the template body with no surrounding quote marks. The following is a simple
template:

One plus one equals ${ 1 + 1 }.

To create a new template, add a template file (ending with .gst) in the class hierarchy. Add it within the direc-
tory whose path matches the package in which you want this template to appear. For example, your Gosu
program can have a

The template is a first-class object in the Gosu type system within its package namespace. To run a template, get
a reference to your template and call the renderToString method of the template.

For example, suppose you create a template file NotifyAdminTemplate.gst within the package
mycompany.templates. Your fully-qualified name of the template is
mycompany.templates.NotifyAdminTemplate.

Use the following code to render (run) your template:
var x = mycompany.templates.NotifyAdminTemplate.renderToString()

The variable x contains the String output of your template.

If you want to pass template parameters to your template, add additional parameters as arguments to the
renderToString method. See “Template Parameters” on page 253 for details.

Output to a Writer

The renderToString method outputs the template results to a String value. Optionally, you can render the
template directly to a Java writer object. Your writer must be an instance of java.io.Writer. To output to the
writer, get a reference to the template and call its render method, passing the writer as an argument to the
method.

For example, suppose you create a template file NotifyAdminTemplate.gst within the package
mycompany.templates. If your variable myWriter contains an instance of java.io.Writer, the following Gosu
statement renders the template to the writer:

mycompany.templates.NotifyAdminTemplate.render(myWriter)

If you use template parameters in your template, add your additional parameters after the writer argument. See
“Template Parameters” on page 253 for details.

Template Scriptlet Tags

Text enclosed with the text <% and %> evaluate at run time in the order the parser encounters the text but generates
nothing as output based on the result. These are called scriptlet tags. It is important to note that this type of tag
has no equals sign in the opening tag. All plain text between scriptlet tags generate to the output within the scope
and the logic of the scriptlet code.

The following simple template uses a scriptlet tag to run code to assign a variable and uses the result later:
<% var MyCalc = 1 + 2 %>One plus two is ${ MyCalc }

This prints the following:
One plus two is 3

It is important to note that the result of the scriptlet tag at the beginning of the template does not generate
anything to the output. The value 3 exports to the result because later expression surrounded with the expression
delimiters ${ and } instead of the scriptlet delimiters <% and %>.
252 Chapter 22: Gosu Templates

Gosu Reference Guide

The scope of the Gosu continues across scriptlet tags. Use this feature to write advanced logic that uses Gosu
code that you spread across multiple scriptlet tags. For example, the following template code outputs “x is 5” if
the variable x has the value 5, otherwise outputs "x is not 5":

<% if (x == 5) { %>
x is 5
<% } else { %>
x is not 5
<% } %>

Notice that the if statement actually controls the flow of execution of later elements in the template. This feature
allows you to control the export of static text in the template as well as template expressions.

Scriptlet tags are particularly useful when used with template parameters because you can define conditional
logic as shown in the previous example. See “Template Parameters” on page 253 for details.

Use this syntax to iterate across lists, arrays, and other iterable objects. You can combine this syntax with the
expression syntax to generate output from the inner part of your loop. Remember that the scriptlet syntax does
not itself support generating output text.

For example, suppose you set a variable called MyList that contains a List of objects with a Name property. The
following template iterates across the list:

<% for (var obj in MyList) {
var theName = obj.Name %>
Name: ${ theName }

<% } %>

This might generate output such as:
Name: John Smith
Name: Wendy Wheathers
Name: Alice Applegate

This example also shows a common design pattern for templates that need to combine complex logic in scriptlet
syntax with generated text into the template within a loop:

1. Begin a template scriptlet (starting it with <%) to begin your loop.

2. Before ending the scriptlet, set up a variable with your data to export

3. End the scriptlet (closing it with %>).

4. Optionally, generate some static text

5. Insert a template expression to export your variable, surrounding a Gosu expression with ${ and } tags.

6. Add another template scriptlet (with <% and %>) to contain code that closes your loop. Remember that script-
lets share scope across all scriptlets in that file, so you can reference other variables or close loops or other
Gosu structural elements.

IMPORTANT There is no supported API to generate template output from within a template scriptlet.
Instead, design your template to combine template scriptlets and template expressions using the code
pattern in this topic.

The scriptlet tags are available in template files, but not within String literals using template syntax.

Template Parameters

You can pass parameters of any type to your self-contained Gosu template files.

To support parameters in a template

1. Create a template file as described earlier in this topic.

2. At the top of the template, create a parameter definition with the following syntax:
<%@ params(ARGLIST) %>
Using Template Files 253

Gosu Reference Guide

In this case, ARGLIST is an argument list just as with a standard Gosu function. For example, the following
argument list includes a String argument and a boolean argument:
<%@ params(x : String, y : boolean) %>

3. Later in the template, use template tags that use the values of those parameters. You can use both the template
expression syntax (${ and }) and template scriptlet syntax (<% and %>). Remember that the expression syntax
always returns a result and generates additional text. In contrast, the scriptlet syntax only executes Gosu state-
ments.

4. To run the template, add your additional parameters to the call to the renderToString method or after the
writer parameter to the render methods.

For example, suppose you create a template file NotifyAdminTemplate.gst within the package
mycompany.templates. Edit the file to contain the following contents:

<%@ params(personName : String, contactHR: boolean) %>

The person ${ personName } must update their contact information in the company directory.

<% if (contactHR) { %>
Call the human resources department immediately.
<% } %>

In this example, the if statement (including its trailing curly brace) is within scriptlet tags. The if statement uses
the parameter value at run time to conditionally run elements that appear later in the template. This template
exports the warning to call the human resources department only if the contactHR parameter is true. Use if
statements and other control statements to control the export of static text in the template as well as template
expressions.

Run your template with the following code:
var x : String = mycompany.templates.NotifyAdminTemplate.renderToString("hello", true)

If you want to export to a character writer, use code like the following:
var x : String = mycompany.templates.NotifyAdminTemplate.render(myWriter, "hello", true)

You can use template parameters in template files, but not within String literals that use template syntax.

Extending a Template From a Class

Gosu provides a special syntax to simplify calling static methods on a class of your choosing. The metaphor for
this template shortcut is that your template can extend from a type that you define. Technically, templates are not
instantiated as objects. However, your template can call static methods on the specified class without fully-qual-
ifying the class. Static methods are methods defined directly on a class, rather than on instances of the class. For
more information, see “Modifiers” on page 135.

To use this feature, at the top of the template file, add a line with the following syntax:
<%@ extends CLASSNAME %>

CLASSNAME must be a fully-qualified class name. You cannot use a package name or hierarchy.

For example, suppose your template wants to clean up the email address with the sanitizeEmailAddress static
method on the class gw.api.email.EmailTemplate. The following template takes one argument that is an email
address:

<%@ params(address : String) %>

<%@ extends gw.api.email.EmailTemplate %>

Hello! The email address is ${sanitizeEmailAddress(address)}

Notice that the class name does not appear immediately before the call to the static method.

You can use the extends syntax in template files, but not within String literals that use template syntax.

Template Comments

You can add comments within your template. Template comments do not affect template output.
254 Chapter 22: Gosu Templates

Gosu Reference Guide

The syntax of a template comments is the following:
<%-- your comment here --%>

For example:
My name is <%-- this is a comment --%>John.

If you render this template file, it outputs:
My name is John.

You can use template comments in template files, but not within String literals that use template syntax.

Template Export Formats

Because HTML and XML are text-based formats, there is no fundamental difference between designing a
template for HTML or XML export compared to a plain text file. The only difference is that the text file must
conform to HTML and XML specifications.

HTML results must be a well-formed HTML, ensuring that all properties contain no characters that might inval-
idate the HTML specification, such as unescaped “<” or “&” characters. This is particularly relevant for espe-
cially user-entered text such as descriptions and notes.

Systems that process XML typically are very strict about syntax and well-formedness. Be careful not to generate
text that might invalidate the XML or confuse the recipient. For instance, beware of unescaped “<” or “&” charac-
ters in a notes field. If possible, you could export data within an XML <CDATA> tag, which allows more types of
characters and character strings without problems of unescaped characters.
Using Template Files 255

Gosu Reference Guide

256 Chapter 22: Gosu Templates

chapter 23

Type System

Gosu provides several ways to gather information about an object or other type. This ability for a programming
language to query an object from the outside for this information is referred to as reflection. Use this information
for debugging or to change program behavior based on information gathered at run time.

This topic includes:

• “The Type of All Types” on page 257

• “Basic Type Coercion” on page 258

• “Basic Type Checking” on page 259

• “Using Reflection” on page 262

• “Compound Types” on page 266

• “Type Loaders” on page 267

The Type of All Types

The Type data type is a meta-type. It is the type of Gosu types. If you get the type of something using the typeof
keyword, the type of the result is Type. In some cases in APIs, you will see the interface type IType, which also
refers to a type.

Examples of types

Array
DateTime
Number
String
Type
int
java.util.List[]

For more information about using Type objects to get information about a type, see “Type System” on page 257.

Note the following aspects of types:

• Everything has a type. All Gosu values have a type.
Type System 257

Gosu Reference Guide

• Language primitives have types. For example the code “typeof 29” is valid Gosu, and it returns
java.lang.Integer, which is a Type. In other words, Integer is a subtype of Type.

• Object instances have types. The type of an instance of a class is the class itself.

• Even types have types. Because everything has a type, you can use typeof with Type objects also.

IMPORTANT For more information about the Type class and the typeof keyword how to use it, see
“Basic Type Checking” on page 259.

Basic Type Coercion

Gosu uses the “expression as TYPE” construction to cast an expression to a specific type. This process is also
called coercion.

Syntax

expression as TYPE

The expression must be compatible with the type. The following table lists the results of casting a simple
numeric expression into one of the Gosu-supported data types. If you try to cast an expression to an inappropriate
type, Gosu throws an exception.

Why Use Coercion?

Gosu requires all variables to have types at compile type. All method calls and properties on objects must be
correct with the compile time type.

If an object has a compile-time type that is higher in the type hierarchy (it is a supertype) than you need, coerce it
to the appropriate specific type. This is required before accessing properties or methods on the object that are
defined on a more specific type.

For example, when getting items from a list or array, the compile time type might be a supertype of the type you
know that it is. For example, the compile time type is an Object but you know that it is always a more specific
type due to your application logic. You must cast the item to the desired type before accessing properties and
methods associated with the subtype you expect.

The following example coerces an Object to the type MyClass so the code can call MyMethod method. This
example assumes MyMethod is a method on the class MyClass:

var objarray : Object[] = MyUtilities.GetMyObjectArray()

var o = objarray[0] // type of this variable is Object

var myresult = (o as MyClass).MyMethod()

Gosu provides automatic downcasting to simplify your code in if statements and similar structures. For more
information, see “Automatic Downcasting for ‘typeis’ and ‘typeof’” on page 260.

For related information, see “Basic Type Checking” on page 259 and “Using Reflection” on page 262.

Expression Data type Result or error

(5 * 4) as Array n/a Type mismatch or possible invalid operator.
java.lang.Object[] is not compatible with java.lang.Double

(5 * 4) as Boolean Boolean true

(5 * 4) as DateTime DateTime 1969-12-31 (default value)

(5 * 4) as String String 20

(5 * 4) as Type n/a Type mismatch or possible invalid operator.
MetaType:java.lang.Object is not compatible with java.lang.Double
258 Chapter 23: Type System

Gosu Reference Guide

Basic Type Checking

Gosu uses the typeis operator to compare an expression’s type with a specified type. The result is always
Boolean. A typeis expression cannot be fully determined at compile time. For example, at run time the expres-
sion may evaluate to a more specific subtype than the variable is declared as.

Typeis Syntax

OBJECT typeis TYPE

Typeis Examples

Similarly, you can use the typeof object operator to test against a specific type.

Typeof Syntax

typeof expression

Typeof Examples

In real-world code, typically you need to check an object against a type or its subtypes, not just a single type. In
such cases, it is better to use typeis instead of typeof. The typeof keyword returns the exact type. If you test
this value with simple equality with another type, it returns false if the object is a subtype.

For example, the following expression returns true:
"hello" typeis Object

In contrast, the following expression returns false because String is a subtype of Object but is a different type:
typeof "hello" == Object

If you want information from the type itself, you can access a type by name (typing its type literal) or use the
typeof operator to get an object’s type. For example:

var s = "hello"
var t = typeof s

In this example, the type of s is String, so the value of the t variable is now String.

Static Type (‘statictypeof’)

To get the compile-time type of an object and use it programmatically, use the statictypeof keyword. The
result of an statictypeof expression does not vary at run time. Contrast this with the typeof keyword, which
performs a run-time check of the object.

The following example illustrates this difference:
var i : Object = "hello"
print(typeof i)
print(statictypeof i)

Expression Result

42 typeis Number true

"auto" typeis String true

person typeis Person true

person typeis Company false

Expression Result

typeof 42 Number

typeof "auto" String

typeof (4 + 5) Number
Basic Type Checking 259

Gosu Reference Guide

This example prints the output:
java.lang.String
java.lang.Object

The variable is declared as Object. However, at run time it contains an object whose type is String, which is a
subtype of String.

The following example also illustrates how this difference can affect null values and unexpected conditions:
var i : Boolean;
i = null;
print(typeof i)
print(statictypeof i)

This prints the output:
void
java.lang.Boolean

At run time, the value of i is null, so its type is void. However, the compile-time type of this variable is
Boolean.

Is Assignable From

For advanced manipulation of type objects, including the method called isAssignableFrom that exists on types,
see “Using Reflection” on page 262.

Even Types Have Types

All objects have types. This even applies to types (such as the type called String). The expression
typeof String evaluates to a parameterized version of the type Type. Specifically:

Type<java.lang.String>

For advanced manipulation of the Type object, see “Using Reflection” on page 262.

Automatic Downcasting for ‘typeis’ and ‘typeof’

To improve the readability of your Gosu code, Gosu automatically downcasts after a typeis expression if the
type is a subtype of the original type. This is particularly valuable for if statements and similar Gosu structures.
Within the Gosu code bounded by the if statement, you do not need to do casting (as TYPE expressions) to that
subtype. Because Gosu confirms that the object has the more specific subtype, Gosu implicitly considers that
variable’s type to be the subtype, at least within that block of code.

For example, a common pattern for this feature looks like the following:
var VARIABLE_NAME : TYPE_NAME

if (VARIABLE_NAME typeis SUBTYPE_NAME) {

// use the VARIABLE_NAME as SUBTYPE_NAME without casting
// This assumes SUBTYPE_NAME is a subtype of TYPE_NAME

}

For example, the following example shows a variable declared as an Object, but downcasted to String within
the if statement.

Because of downcasting, the following code is valid:
var x : Object = "nice"
var strlen = 0

if(x typeis String) {
strlen = x.length

}

It is important to note that length is a property on String, not Object. The downcasting from Object to String
means that you do not need an additional casting around the variable x. In other words, the following code is
equivalent but has an unnecessary cast:

var x : Object = "nice"
260 Chapter 23: Type System

Gosu Reference Guide

var strlen = 0

if(x typeis String) {
strlen = (x as String).length // "length" is a property on String, not Object

}

Do not write Gosu code with unnecessary casts. Use automatic downcasting to write easy-to-read and concise
Gosu code.

The automatic downcasting happens for the following types of statements;

• if statements. For more information, see “If() … Else() Statements” on page 102.

• switch statements. For more information, see “Switch() Statements” on page 105. For example:
uses java.util.Date

var x : Object = "neat"
switch(typeof(x)){

case String :
print(x.charAt(0)) // without automatic downcasting, this method call fails without casting
break

case Date :
print(x.Time) // without automatic downcasting, this property access fails without casting
break

}

• ternary conditional expression, such as “x typeis String ? x.length : 0”. Downcasting only happens in
the part of the expression that corresponds to it being true (the first part). For more information, see “Condi-
tional Ternary Expressions” on page 91.

This automatic downcasting works when the item to the left of the typeis keyword is a symbol, but not on other
expressions.

There are a several situations that cancel the typeis inference:

• Reaching the end of the extent of the scope for which inference is appropriate. In other words:

• The end of an if statement

• The end of a switch statement

• The end of a ternary conditional expression in its true clause

• Assigning any value to the symbol (the variable) you checked with typeis or typeof. This applies to if and
switch statements.

• An or keyword in a logical expression

• The end of an expression negated with the not keyword

• In a switch statement, a case section does not use automatic downcasting if the previous case section is
unterminated by a break statement. For example, the following Gosu code us valid and both case sections
using automatic downcasting:
uses java.util.Date

var x : Object = "neat"
switch(typeof(x)){

case String :
print(x.charAt(0)) // without automatic downcasting, this method call fails without casting
break

case Date :
print(x.Time) // without automatic downcasting, this property access fails without casting
break

}

However, Gosu allows you to remove the first break statement. Removing a break statement allows the exe-
cution to fall through to the next case section. In other words, if the type is String, Gosu runs the print
statement in the String case section. Next, Gosu run statements in the next case section also. This does not
change the type system behavior of the section whose break statement is now gone (the first section). How-
ever, there is no downcasting for the following case section since two different cases share that series of Gosu
statements. The compile time type of the switched object reverts to the compile-time type of that variable at
the beginning of the switch statement.

For example, the following code has a compile error because it relies on downcasting.
Basic Type Checking 261

Gosu Reference Guide

uses java.util.Date

var x : Object = "neat"
switch(typeof(x)){

case String :
print(x.charAt(0)) // without automatic downcasting, this method call fails without casting

case Date :
print(x.Time) // COMPILE ERROR. The compile time type reverts to Object (no Time property!)
break

}

To work around this problem, remember that the compile time type of the switched object reverts to whatever
the compile-time type is before the switch statement. Simply cast the variable with the as keyword before
accessing type-specific methods or properties. For example:
uses java.util.Date

var x : Object = "neat"
switch(typeof(x)){

case String :
print(x.charAt(0)) // without automatic downcasting, this method call fails without casting

case Date :
print((x as Date).Time) // this is now valid Gosu code
break

}

Using Reflection

Once you know what type something is, you can use reflection to learn about the type. Although each Type
object itself has properties and methods on it, the most interesting properties and methods are on the
type.TypeInfo object. For example, you can get a type’s complete set of properties and methods at run time by
getting the TypeInfo object.

WARNING In general, avoid using reflection to get properties or call methods. In almost all cases,
you can write Gosu code to avoid reflection. Using reflection dramatically limits how Gosu can alert
you to serious problems at compile time. In general, it is better to detect errors at compile time rather
than unexpected behavior at run time. Only use reflection if there is no other way to do what you need.

The following example shows two different approaches for getting the Name property from a type:
print(Integer.Name) // directly from a Type
print((typeof 29).Name) // getting the Type of something

This prints:
java.lang.Integer
int

Get Properties Using Reflection

The type.TypeInfo object includes a property called properties, that contains a list of type properties.

Each item in that list include metadata properties such as for the name (Name) and a short description
(ShortDescription).

For example, paste the following code into the Gosu Tester:
var object = "this is a string"
var s = ""
var props = (typeof object).TypeInfo.Properties

for (m in props) {
 s = s + m.Name + " "
}

print(s)

This code prints something similar to the following:
Class itype Bytes Empty CASE_INSENSITIVE_ORDER length size HasContent
NotBlank Alpha AlphaSpace Alphanumeric AlphanumericSpace Numeric NumericSpace Whitespace
262 Chapter 23: Type System

Gosu Reference Guide

You can also call properties using reflection using the square bracket syntax, similar to using arrays. For
example, paste the following code into the Gosu Tester:

// get the CURRENT time
var s = new DateTime()

// createa String containing a property name
var propName = "hour"

// get a property name using reflection
print(s[propName])

If the time is currently 5 PM, this code prints:
5

Get Methods Using Reflection

Paste the following code into the Gosu Tester:
var object = "this is a string"
var s = ""
var methods = (typeof object).TypeInfo.Methods

for (m in methods) {
 s = s + m.Name + " "
}

print(s)

This code prints code that looks like this (truncated for clarity):
wait() wait(long, int) wait(long) hashCode() getClass() equals(java.lang.Object)
toString() notify() notifyAll() @itype() compareTo(java.lang.String) charAt(int)
length() subSequence(int, int) indexOf(java.lang.String, int) indexOf(java.lang.String)
indexOf(int) indexOf(int, int) codePointAt(int) codePointBefore(int)

You can also get information about individual methods. You can even call methods by name (given a String for
the method name) and pass a list of parameters as object values. You can call a method using the method’s
CallHandler property, which contains a handleCall method.

The following example gets a method by name and then calls it. This example uses the String class and its
compareTo method, which returns 0, 1, or -1. Paste the following code into the Gosu Tester

var mm = String.TypeInfo.Methods
var myMethodName = "compareTo"

// find a specific method by name using "collections" and "blocks" features...
var m = mm.findFirst(\ i -> i.Name == myMethodName)

print("Name is " + m.Name)
print("Number of parameters is " + m.Parameters.length)
print("Name of first parameter is " + m.Parameters[0].DisplayName)
print("Type of first parameter is " + m.Parameters[0].IntrinsicType)

// set up an object whose method to call. in this case, use a String
var obj = "a"
var comparisonString = "b"

// call the method using reflection! ** note: this returns -1 because "a" comes before "b"
print(m.CallHandler.handleCall(obj, { comparisonString }))

// in this example, this was equivalent to the code:
print(obj.compareTo(comparisonString))

This code prints:
Name is compareTo
Number of parameters is 1
Name of first parameter is String
Type of first parameter is java.lang.String
-1
-1

Compare Types Using Reflection

You can compare the type of two objects in several ways.
Using Reflection 263

Gosu Reference Guide

You can use the equality (==) operator to test types. However, the equality operator is almost always inappro-
priate because it returns true only for exact type matches. It returns false if one type is a subtype of the other or
if the types are in different packages.

Instead, use the type.isAssignableFrom(otherType) method to determine whether the types are compatible for
assignment. This method considers the possibility of subtypes (such as subclasses) in a way that the equality
operator does not. The method determines if the type argument is either the same as, or a superclass of (or super-
interface of) the type.

The sourceType.isAssignableFrom(destinationType) method looks only at the supertypes of the source
type. Although Gosu statements can assign a value of one unrelated type to another using coercion, the
isAssignableFrom method always returns false if coercion of the data would be necessary. For example, Gosu
can convert boolean to String or from String to boolean using coercion, but isAssignableFrom method
returns false for those cases.

Gosu provides a variant of this functionality with the Gosu typeis operator. Whereas
type.isAssignableFrom(...) operates between a type and another type, the typeis operates between an object
and a type.

Paste the following code into the Gosu Tester:

For example, paste the following code into the Gosu Tester:
var s : String = "hello"
var b : Boolean = true

print("Typeof s: " + (typeof s).Name)
print("Boolean assignable from String : " + (typeof s).isAssignableFrom((typeof b)))
print("true typeis String: " + (b typeis String))
print("Object assignable from String: " + (Object).isAssignableFrom(String))
print("Compare a string to object using typeis: " + (s typeis Object))

// Using == to compare types is a bad approach if you want to check for valid subtypes...
print("Compare a string to object using == : " + ((typeof s) == Object))

This code prints:
Typeof s: java.lang.String
Boolean assignable from String : false
true typeis String: false
Object assignable from String: true
Compare a string to object using typeis: true
Compare a string to object using == : false

Type Object Properties

The Type type is a metatype, which means that it is the type of all types. There are various methods and proper-
ties that appear directly on the type Type and all are supported.

The Type type includes the following important properties:

Property Description

Name The human-readable name of this type.

TypeInfo Properties and methods of this type. See “Basic Type Checking” on page 259 for more information
and examples that use this TypeInfo object.

SuperType The supertype of this type, or null if there is no supertype.

IsAbstract If the type is abstract, returns true. See “Modifiers” on page 135.

IsArray If the type is an array, returns true.

IsFinal If the type is final, returns true. See “Modifiers” on page 135.

IsGeneric If the type is generic, returns true. See “Gosu Generics” on page 173.

IsInterface If the type is an interface, returns true. See “Interfaces” on page 147.
264 Chapter 23: Type System

Gosu Reference Guide

For more information about the isAssignableFrom method on the Type object, refer to the previous section.

Working with Primitive Types

In Gosu, primitive types such as int and boolean exist primarily for compatibility with the Java language. Gosu
uses these Java primitive types to support extending Java classes and implementing Java interfaces. From a Gosu
language perspective, primitives are different only in subtle ways from object-based types such as Integer and
Boolean. Primitive types can be automatically coerced (converted) to non-primitive versions or back again by
the Gosu language in almost all cases. For example, from int to Integer or from Boolean to boolean.

You typically do not need to know the differences, and internally they are stored in the same type of memory
location so there is no performance benefit to using primitives. Internally, primitives are stored as objects, and
there is no speed improvement for using Gosu language primitives instead of their boxed versions, such as int
compared to Integer.

The boolean type is a primitive, sometimes called an unboxed type. In contrast, Boolean is a class so Boolean is
called a boxed type version of the boolean primitive. A boxed type is basically a primitive type wrapped in a
shell of a class. These are useful so that code can make assumptions about all values having a common ancestor
type Object, which is the root class of all class instances. For example, collection APIs require all objects to be
of type Object. Thus, collections can contain Integer and Boolean, but not the primitives int or boolean.

However, there are differences while handling uninitialized values, because variables declared of a primitive type
cannot hold the null value, but regular Object variable values can contain null.

For example, paste the following code into the Gosu Tester:
var unboxed : boolean = null // boolean is a primitive type
var boxed : Boolean = null // Boolean is an Object type, a non-primitive

print(unboxed)
print(boxed)

This code prints:
false
null

These differences are also notable if you pass primitives to isAssignableFrom. This method only looks at the
type hierarchy and returns false if comparing primitives.

For example, paste the following code into the Gosu Tester:
var unboxed : boolean = true // boolean is a primitive type
var boxed : Boolean = true // Boolean is an Object type, a non-primitive

print((typeof boxed).IsPrimitive)
print((typeof unboxed).IsPrimitive)
print((typeof unboxed).isAssignableFrom((typeof boxed)))

This code prints:
false
true
false

In Gosu, the boxed versions of primitives use the Java versions. Because of this, in Gosu you find them defined
in the java.lang package. For example, java.lang.Integer.

For more information about Boolean and boolean, see “Boolean Values” on page 64.

IsParameterized If the type is parameterized, returns true. See “Gosu Generics” on page 173.

IsPrimitive If the type is primitive, returns true.

Property Description
Using Reflection 265

Gosu Reference Guide

Java Type Reflection

Gosu implements a dynamic type system that is designed to be extended beyond its native objects. Do not
confuse this with being dynamically typed because Gosu is statically typed. Gosu’s dynamic type system enables
Gosu to work with a variety of different types.

These types include Gosu classes, Java classes, XML types, SOAP types, and other types. These different types
plug into Gosu’s type system.

In almost all ways, Gosu does not care about the difference between a Java class or a native Gosu object. They
are all exposed to the language through the same abstract type system so you can use Java types directly in your
code. You can even extend Java classes, meaning that you can write Gosu types that are subtypes of Java types.
Similarly, you can implement or even extend Java interfaces from Gosu.

The Gosu language transparently exposes and uses Java classes as Gosu objects through the use of Java
BeanInfo objects. Java BeanInfo objects are analogous to Gosu’s TypeInfo information. They both encapsulate
type metadata, including properties and methods on that type. All Java classes have BeanInfo information either
explicitly provided with the Java class or can be dynamically constructed at runtime. Gosu examines a Java
class’s BeanInfo and determines how to expose this type to Gosu. Because of this, your Gosu code can use the
Gosu reflection APIs discussed earlier in this section with Java types.

Note: For a related topic, see “Java and Gosu” on page 241.

Type System Class

You can use the class gw.lang.reflect.TypeSystem for additional supported APIs for advanced type system
introspection. For example, its getByFullName method can return a Type object from a String containing its
fully-qualified name.

For example, the following code gets a type by a String version of its fully-qualified name and instantiates it
using the type information for the type:

var myFullClassName = "com.mycompany.MyType"
var type = TypeSystem.getByFullName(myFullClassName)
var instance = type.TypeInfo.getConstructor(null).Constructor.newInstance(null)

Compound Types

To implement some other features, Gosu supports a special kind of type called a compound type. A compound
type combines one base class and additional interfaces that the type supports. You can declare a variable to have
a compound type. However, typical usage is only when Gosu automatically creates a variable with a compound
type.

For example, suppose you use the following code to initialize list values:
var x : List<String> = {"a", "b", "c"}

Note: The angle bracket notation indicates support for parameterized types, using Gosu generics features.
For more information, refer to “Gosu Generics” on page 173.

You could also use this syntax using the new operator:
var x = new List<String>(){"a", "b", "c"}

Gosu also supports an extremely compact notation that does not explicitly include the type of the variable:
var x = {"a", "b", "c"}

It might surprise you that this last example is valid Gosu and is typesafe. Gosu infers the type of the List to be
the least upper bound of the components of the list. In the simple case above, the type of the variable x at compile
time is List<String>. If you pass different types of objects, Gosu finds the most specific type that includes all of
the items in the list.
266 Chapter 23: Type System

Gosu Reference Guide

If the types implement interfaces, Gosu attempts to preserve the commonality of interface support in the list type.
This means your list acts as expected with APIs that rely on support for the interface. In some cases, the resulting
type is a compound type, which combines the following into a single type:

• at most one class

• one or more interfaces

For example, the following code initializes an int and a double:
var s = {0, 3.4}

The resulting type of s is ArrayList<java.lang.Comparable & java.lang.Number>. This means that it is an
array list of the compound type of the class Number and the interface Comparable.

Note: The Number class does not implement the interface Comparable. If it did, then the type of s would
simply be ArrayList<java.lang.Number>. However, since it does not implement that interface, but both
int and double implement that interface, Gosu assigns the compound type that includes the interfaces that
they have in common.

This new compound type with type inference works with maps, as shown in the following examples:
var numbers = {0 -> 1, 3 -> 3.4}

var strings = {"a" -> "value"}

This also works with sets, as shown in the following example:
var s : Set = {1,2,3}

Compound Types using Composition (Delegates)

Gosu also creates compound types in the special case of using the delegate keyword with multiple interfaces. For
more information, see “Using Gosu Composition” on page 151.

Type Loaders

The Gosu type system has an open type system. An important part of this is that Gosu supports custom type
loaders. A type loader dynamically injects types into the language and attaches potentially complex dynamic
behaviors to working with the type. A custom type loader adds types to the type system and optionally runs
custom code every time any code accesses properties or call methods on them.

There are several built-in type loaders:

• Gosu XML/XSD type loader. This type loader supports the native Gosu APIs for XML. For more information,
see “Gosu and XML” on page 197.

• Gosu SOAP/WSDL type loader. This type loader supports the native Gosu APIs for the web services SOAP
protocol. This works through a Gosu type loaders that reads web service WSDL files and lets you interact
with the external service through a natural syntax and type-safe coding. For more information, see “Calling
WS-I Web Services from Gosu” on page 229.

• Property file type loader. This type loader finds property files in the hierarchy of files on the disk along with
your Gosu class files. Gosu creates types in the appropriate package (by the property file location) for each
property. You can access the properties directly in Gosu in a type-safe manner. For more information, see
“Properties Files” on page 283.

IMPORTANT Although the Property file type loader is built-in, the XML and SOAP type loaders are
not built-in to the core release of Gosu Community Release. The XML and SOAP APIs are available as
separate library downloads. See “Using XML and SOAP Libraries with Gosu Community Release” on
page 48
Type Loaders 267

Gosu Reference Guide

268 Chapter 23: Type System

chapter 24

Running Local Shell Commands

You can run local command line programs from Gosu.

Running Command Line Tools from Gosu

You can run local command line programs from Gosu. These APIs execute the given command as if it had been
executed from the command line of the host operating system.

The Gosu class gw.util.Shell provides methods to run local command-line programs. For example, it can run
cmd.exe scripts on Windows or /bin/sh on Unix. Gosu returns all content that is sent to standard out as a Gosu
String. If the command finishes with a non zero return value, Gosu throws a CommandFailedException excep-
tion.

Content sent to standard error is forwarded to standard error for this Java Virtual Machine (JVM). If you wish to
capture StdErr as well, use the buildProcess(String) method to create a ProcessStarter and call the
ProcessStarter.withStdErrHandler(gw.util.ProcessStarter.OutputHandler) method.

IMPORTANT This method blocks on the execution of the command.

Pass the command as a String to the exec method.

For example:
var currentDir = Shell.exec("dir") // windows
var currentDir = Shell.exec("ls") // *nix
Shell.exec("rm -rf " + directoryToDelete) // directory remove on Unix

On windows, Gosu uses CMD.EXE to interpret commands. Beware of problems due to limitations of CMD.EXE,
such as a command string may be too long for it. In these cases consider the buildProcess(String) method
instead.

For related tools, see “Helpful APIs for Command Line Gosu Programs” on page 56 in the Gosu Reference
Guide.
Running Local Shell Commands 269

Gosu Reference Guide

270 Chapter 24: Running Local Shell Commands

chapter 25

Checksums

This topic describes APIs for generating checksums. Longer checksums such as 64-bit checks sums are also
known as fingerprints. Send these fingerprints along with data to improve detection from accidental modification
of data in transit. For example, detecting corrupted stored data or errors in a communication channel.

This topic includes:

• “Overview of Checksums” on page 271

• “Creating Fingerprints” on page 272

• “Extending Fingerprints” on page 273

Overview of Checksums

To improve detection of accidental modification of data in transit, you can use checksums. A checksum is a
computed value generated from an arbitrary block of digital source data. To check the integrity of the data at a
later time, recompute the checksum and compare it with the stored checksum. If the checksums do not match, the
data was almost certainly altered (either intentionally or unintentionally). For example, this technique can help
detection of physical data corruption or errors in a communication channel.

Be aware that checksums cannot perfectly protect against intentional corruption by a malicious agent. A mali-
cious attacker could modify the data so as to preserve its checksum value, or depending on the transport could
substitute a new checksum for the modified data. To guard against malicious changes, use encryption at the data
level (a cryptographic hash) or the transport level (such as SSL/HTTPS).

WARNING Checksums improve detection from accidental modification of data but cannot detect
intentional corruption by a malicious agent. If you need that level of protection, use encryption instead
of checksums, or in addition to checksums.

You can also use fingerprints to design caching and syncing algorithms that check whether data changed since
the last cached copy. You can save the fingerprint of the cached copy and an external system can generate a
fingerprint of its most current data. If you have both fingerprints, compare them to determine if you must resync
the data. To work effectively, the fingerprint algorithm must provide near-certainty that a real-world change
Checksums 271

Gosu Reference Guide

would change the fingerprint. In essence, a fingerprint uniquely identifies the data for most practical purposes,
although in fact collisions (changed data with matching fingerprints) is theoretically possible.

Gosu provides support for 64-bit checksums in the class FP64 in the package gw.util.fingerprint.

The FP64 class provides methods for computing 64-bit fingerprints of the following kinds of data:

• String objects

• character arrays

• byte arrays

• input streams

This implementation is based on an original idea of Michael O. Rabin, with refinements by Andrei Broder.
Fingerprints provide a probabilistic guarantee that defines a mathematical upper bound on the probability of a
collision (a collision occurs if two different strings have the same fingerprint). Using 64-bit fingerprints, the odds
of a collision are extremely small. The odds of a collision between two randomly chosen texts a million charac-
ters long are less than 1 in a trillion.

Suppose you have a set S of n distinct strings each of which is at most m characters long. The odds of any two
different strings in S having the same fingerprint is described by the following equation (k is the number of bits in
the fingerprint):

(nm^2) / 2^k

For practical purposes, you can treat fingerprints as uniquely identifying the bytes that produced them. In mathe-
matical notation given two String variables s1 and s2,using the → symbol to mean “implies”:

new FP64(s1).equals(new FP64(s2)) → s1.equals(s2)

Do not fingerprint the value of (the raw bytes of) a fingerprint. In other words, do not fingerprint the output of the
FP64 methods toBytes and toHexString. If you do so, due to the shorter length of the fingerprint itself, the prob-
abilistic guarantee is invalid and may lead to unexpected collisions.

Creating Fingerprints

To create a fingerprint object, use the constructor to the FP64 object and pass it one of the supported objects:

An example of passing a String object:
var s = "hello"
var f = new FP64(s)

An example of passing a character array:
var s = "hello"
var ca : char[] = {s[0], s[1], s[2], s[3], s[4]}
var f = new FP64(ca)

Note: There is an alternate method signature that takes extra parameters for start position and length of the
desired series of characters in the array.

An example of passing a byte array:
var ba = "hello".Bytes // or use "hello".getBytes(
var f = new FP64(ba)

Note: There is an alternate method signature that takes extra parameters for start position and length of the
desired series of byes in the array.

An example of passing a stream:
var s = "testInputStreamConstructor"
new FP64(new ByteArrayInputStream(gw.util.StreamUtil.toBytes(s))));

An example of passing an input stream:
var s = "testInputStreamConstructor"
new FP64(new StringBuffer(g));
272 Chapter 25: Checksums

Gosu Reference Guide

An example of passing another FP64 fingerprint object to the constructor to duplicate the fingerprint:
var s = "hello"
var f = new FP64(s)
var f2 = new FP64(f)

How to Output Data Inside a Fingerprint

To generate output data from a finger print, use the FP64 method toBytes(), which returns the value of this
fingerprint as a newly-allocated array of 8 bytes.

Instead of the no-argument method, you can also use the alternate method signature that takes a byte array buffer
and the method writes the bytes there. The buffer must have length at least 8 bytes.

Alternatively, you can use a method toHexString(). This method returns the fingerprint as an unsigned integer
encoded in base 16 (hexadecimal) and padded with leading zeros to a total length of 16 characters.

Extending Fingerprints

This class also provides methods for extending an existing fingerprint by more bytes or characters. This is useful
if you are sure the only change to the source data was appending a known series of bytes to the end of the orig-
inal String data.

Extending the fingerprint of one String by another String produces a fingerprint equivalent to the fingerprint of
the concatenation of the two String objects. Given the two String variables s1 and s2, this means the following
is true:

new FP64(s1 + s2).equals(new FP64(s1).extend(s2))

All operations for extending a fingerprint are destructive. In other words, they modify the fingerprint object
directly (in-place). All operations return the resulting FP64 object, so you can chain method calls together, such
as the following:

new FP64("x").extend(foo).extend(92))

If you want to make a copy of a fingerprint, use the FP64 constructor and pass the FP64 object to copy:
var original = new FP64("Hello world")
var copy = new FP64(original) // a duplicate of the original fingerprint
Overview of Checksums 273

Gosu Reference Guide

274 Chapter 25: Checksums

chapter 26

Concurrency

This topic describes Gosu APIs that protect shared data from access from multiple threads.

This topic includes:

• “Overview of Thread Safety and Concurrency” on page 275

• “Gosu Scoping Classes (Pre-scoped Maps)” on page 276

• “Concurrent Lazy Variables” on page 277

• “Concurrent Cache” on page 278

• “Concurrency with Monitor Locks and Reentrant Objects” on page 279

Overview of Thread Safety and Concurrency

If more than one Gosu thread interacts with data structures that another thread needs, you must ensure that you
protect data access to avoid data corruption. Because this topic involves concurrent access from multiple threads,
this issue is generally called concurrency. If you design your code to safely get or set concurrently-accessed data,
your code is called thread safe.

The most common situation that requires proper concurrency handling is data in class static variables. Static vari-
ables are variables that are stored once per class rather than once per instance of the class. If multiple threads on
the same Java virtual machine access this class, you must ensure that any simultaneous access to this data safely
gets or sets this data.

If you are experienced with multi-threaded programming and you are certain that static variables or other shared
data is necessary, you must ensure that you synchronize access to static variables. Synchronization refers to
locking access between threads to shared resources such as static variables.
Concurrency 275

Gosu Reference Guide

There are other special cases in which you must be particularly careful. For example, if you want to manage a
single local memory cache that applies to multiple threads, you must carefully synchronize all reads and writes to
shared data.

WARNING Static variables can be extremely dangerous in a multi-threaded environment. Using static
variables in a multi-threaded environment can cause problems in a production deployment if you do
not properly synchronize access. If such problems occur, they are extremely difficult to diagnose and
debug. Timing in an multi-user multi-threaded environment is difficult, if not impossible, to control in
a testing environment.

Gosu provides the following types of concurrency APIs to make it easy for you to write thread-safe code:

• Scoping classes (pre-scoped maps). Scope-related utilities in the class gw.api.web.Scopes help synchronize
and protect access to shared data. These APIs return Map objects into which you can get and put data using
different scope semantics. Gosu automatically synchronizes the Map objects to provide proper concurrent
access semantics. For more information, see “Gosu Scoping Classes (Pre-scoped Maps)” on page 276

• Lazy concurrent variables. The LazyVar class (in gw.util.concurrent) implements what some people call a
lazy variable. This means Gosu constructs it only the first time some code uses it. Because the LazyVar class
uses the Java concurrency libraries, access to the lazy variable is thread-safe. The LazyVar class wraps the
double-checked locking pattern in a typesafe holder. For more information, see “Concurrent Lazy Variables”
on page 277

• Concurrent cache. The Cache class (in gw.util.concurrent) declares a cache of values you can look up
quickly and in a thread-safe way. It declares a concurrent cache similar to a Least Recently Used (LRU)
cache. Because the Cache class uses the Java concurrency libraries, access to the concurrent cache is thread-
safe. For more information, see “Concurrent Cache” on page 278.

WARNING Caches are difficult to implement and use. Caches can cause subtle problems. Use caches
only as a last result for performance. If you use a cache, it is best to request multiple people on your
team carefully review cache-related code.

• Support for Java monitor locks, reentrant locks, and custom reentrant objects. Gosu provides access to Java-
based classes for monitor locks and reentrant locks in the Java package java.util.concurrent. Gosu makes
it easier to access these classes with easy-to-read using clauses that also properly handle cleanup if excep-
tions occur. Additionally, Gosu makes it easy to create custom Gosu objects that support an easy-to-read
syntax for reentrant object handling. For more information, see “Concurrency with Monitor Locks and Reen-
trant Objects” on page 279.

Gosu Scoping Classes (Pre-scoped Maps)

Gosu provides scope-related utility methods in the class gw.api.web.Scopes. These static methods help
synchronize and protect access to shared data using synchronized Map objects that follow standard web-applica-
tion scoping semantics.

IMPORTANT These methods are available only in execution contexts that are associated with a web
request. If you attempt to accessed these methods in other contexts, Gosu throws an
IllegalStateException exception. Be aware that how this data is stored is dependent on the applica-
tion server container in which your application runs. Your data must satisfy any constraints that
container imposes. For example, some application containers might require that your objects are serial-
izable (implement the Serializable interface).
276 Chapter 26: Concurrency

Gosu Reference Guide

Call methods that correspond to different scopes:

For example, the following Gosu class creates an application-scoped variable.
class MyClass {

// lazy variable using a block that calls a resource-intensive operation that retuns a String
static var _data : java.util.Map

construct() {

// create an instance of a thread-safe shared Map with application scope
_data = gw.api.web.Scopes.getApplication()

// set variable in our scoped object. The object ensures any access is thread-safe.
_data["Name"] = "John Smith"

}
}

Concurrent Lazy Variables

In addition to using the Java native concurrency classes, Gosu includes utility classes that add additional concur-
rency functionality. The LazyVar class implements what some people call a lazy variable. This means Gosu
constructs it only the first time some code uses it. Because the LazyVar class uses the Java concurrency libraries,
access to the lazy variable is thread-safe. The LazyVar class wraps the double-checked locking pattern in a type-
safe holder.

In Gosu, you will see the make method signature LazyVar.make(gw.util.concurrent.LazyVar.LazyVarInit)
method signature, which returns the lazy variable object. This method requires a Gosu block that creates an
object. Gosu runs this block on the first access of the LazyVar value. An example is easier to understand than the
method signature. The following example passes a block as an argument to LazyVar.make(...). That block
creates a new ArrayList parameterized to the String class:

var _lazy = LazyVar.make(\-> new ArrayList<String>())

As you can see, the parameter is a block that creates a new object. In this case, it returns a new ArrayList. You
can create any object. In real world cases this block might be very resource-intensive to create (or load) this
object.

It is best to let Gosu infer the proper type of the block type or the result of the make method, as shown in this
example. This simplifies your code so that you do not need to use explicit Gosu generics syntax to define the type
of the block itself, such as the following verbose version:

var _lazy : LazyVar<List<String>> = LazyVar.make(\-> new ArrayList<String>())

To use the lazy variable, just call its get method:

Scope Meaning Method Description

Request
scope

A single thread-local request. getRequest Returns a Map to store and retrieve values whose lifes-
pan is the lifespan of the request. This map is not syn-
chronized since multiple threads typically cannot get to
the same request object. You could create unexpected
situations by passing this object to other threads, so
you must avoid such actions.

Session One web session getSession Returns a Map to store and retrieve values whose lifes-
pan is the lifespan of the users session. This map is
automatically synchronized since multiple threads can
access the session simultaneously. For example, web
AJAX requests.

Applica-
tion

The entire Gosu application,
including all requests and sub-
threads.

getApplication Returns a Map to store and retrieve values whose lifes-
pan is the lifespan of the web application. This is almost
identical to static variables, but Gosu clears the map if a
servlet shuts down and is later restarted.
Concurrent Lazy Variables 277

Gosu Reference Guide

var i = _lazy.get()

If the Gosu has not yet run the block, it does when you access it. If Gosu has run the block, it simply returns the
cached value and does not rerun the block.

A good approach to using lazy variables is to define it as a static variable and then define a property accessor
function to abstract away the implementation of the variable. The following is an example inside a Gosu class
definition:

class MyClass {

// lazy variable using a block that calls a resource-intensive operation that retuns a String
var _lazy = LazyVar.make(\-> veryExpensiveMethodThatRetunsAString())

// define a property get function that gets this value
property get MyLazyString() : String {

 return _lazy.get()
 }
}

If any code accesses the property MyLazyString, Gosu calls its property accessor function. The property accessor
always calls the get method on the object. However, Gosu only runs the very expensive method once, the first
time someone accesses the lazy variable value. If any code accesses this property again, the cached value is used.
Gosu does not execute the block again. This is useful in cases where you want some system to come up quickly
and only pay incremental costs for resource-intensive value calculations.

Concurrent Cache

A similar class to the LazyVar class is the Cache class. It declares a cache of values you can look up quickly and
in a thread-safe way. It declares a concurrent cache similar to a Least Recently Used (LRU) cache. Because the
Cache class uses the Java concurrency libraries, access to the cache is thread-safe.

To create a thread-safe cache

1. Decide the key and value types for your cache based on input data. For example, perhaps you want to pass a
String and get an Integer back from the cache.

2. Use the key and value types to parameterize the Cache type using Gosu generics syntax. For example, if you
want to pass a String and get an Integer back from the cache, create a new Cache<String, Integer>.

3. In the constructor, pass the following arguments:

• a name for your cache as a String - the implementation uses this name to generate logging for cache
misses

• the size of your cache, as a number of slots

• a block that defines a function that calculates a value from an input value. Presumably this is a resource-
intensive calculation.

For example,
// A cache of string values to their upper case values

var myCache = new Cache<String, String>("My Uppercase Cache", 100, \ s -> s.toUpperCase())

4. To use the cache, just call the get method and pass the input value (the key). If the value is in the cache, it
simply returns it from the cache. If it is not cached, Gosu calls the block and calculates it from the input value
(the key) and then caches the result. For example:
print(myCache.get("Hello world")

print(myCache.get("Hello world")

This prints:
"HELLO WORLD"

"HELLO WORLD"

In this example, the first time you call the get method, it calls the block to generate the upper case value. The
second time you call the get method, the value is the same but Gosu uses the cached value. Any times you
278 Chapter 26: Concurrency

Gosu Reference Guide

call the get method later, the value is the same but Gosu uses the cached value, assuming it still in the cache.
If too many items were added to the cache and your desired item is unavailable, Gosu reruns the block to
regenerate the value. Gosu then caches the result.

Alternatively, if you want to use a cache within some other class, you can define a static instance of the cache.
The static variable definition itself defines your block. Again, because the Cache class uses the Java concurrency
libraries, it is thread-safe. For example, in your class definition, define a static variable like this:

static var _upperCaseCache = new Cache<Foo, Bar>(1000, \ foo -> getBar(foo))

To use your cache, your class can get a value from the cache using code like the following. In this example,
inputString is a String variable that may or may not contain a String that you used before with this cache:

var fastValue = _upperCaseCache.get(inputString)

The first time you call the get method, it calls the block to generate the upper case value.

Any later times you call the get method, the value is the same but Gosu uses the cached value, assuming it still in
the cache. If too many items were added to the cache and your desired item is unavailable, Gosu reruns the block
to regenerate the value. Gosu then caches the result in the concurrent cache object.

An even better way to use the cache is to abstract the cache implementation into a property accessor function. Let
the private static object Cache object (as shown in the previous example) handle the actual cache. For example,
define a property accessor function such as:

static property get function UpperCaseQuickly(str : String) {
 return _upperCaseCache.get(str)
 }

These are demonstrations only with a simple and non-resource-intensive operation in the block. Generally
speaking, it is only worth the overhead of maintaining the cache if your calculation is resource-intensive
combined with potentially repeated access with the same input values.

WARNING Caching can be difficult and error prone in complex applications. It can lead to run time
errors and data corruption if you do not do it carefully. Only use caches as a last resort for performance
issues. Because of the complexity of cache code, always have multiple experienced programmers
review any cache-related code.

Concurrency with Monitor Locks and Reentrant Objects

From Gosu, you can use the Java 1.5 concurrency classes in the package java.util.concurrent to synchronize
the variable’s data to prevent simultaneous access to the data.

The simplest form is to define a static variable for a lock in your class definition. Next, define a property get
accessor function that uses the lock and calls another method that performs the task you must synchronize. This
approach uses a Gosu using clause with reentrant objects to simplify concurrent access to shared data.

For example:
...

// in your class definition, define a static variable lock
static var _lock = new ReentrantLock()

// a property get function uses the lock and calls another method for the main work
property get SomeProp() : Object

using(_lock) {
return _someVar.someMethod() // do your main work here and Gosu synchronizes it

}

...

The using statement automatically cleans up the lock, even if there code throws exceptions.

In contrast, this is a traditionally-structured verbose use of a lock using try and finally statements:
Concurrency with Monitor Locks and Reentrant Objects 279

Gosu Reference Guide

uses java.util.concurrent

...

static var _lock = new ReentrantLock()
 static var _someVar = ...

 property get SomeProp() : Object {
 _lock.lock()
 try {
 return _someVar.someMethod()
 } finally {
 _lock.unlock()
 }
 }

Alternatively, you can do your changes within Gosu blocks:
uses java.util.concurrent

...

property get SomeProp() : Object {
var retValue : Object
_lock.with(\-> {

retValue = _someVar.someMethod()
})
return retValue

}

Note: Although this approach is possible, returning the value from a block imposes some more restrictions
on how you implement your return statements. Instead, it is usually better to use the using statement struc-
ture at the beginning of this topic.

The using statement version works with these lock objects because Gosu considers this objects reentrant.

Re-entrant objects are objects that help manage safe access to data that is shared by re-entrant or concurrent code
execution. For example, if you must store data that is shared by multiple threads, ensure that you protect against
concurrent access from multiple threads to prevent data corruption. The most prominent type of shared data is
class static variables, which are variables that are stored on the Gosu class itself.

For Gosu to recognize a valid reentrant object, the object must have one of the following attributes:

• Implements the java.util.concurrent.locks.Lock interface. This includes the Java classes in that
pacakge: ReentrantLock, ReadWriteLock, Condition.

• Casted to the Gosu interface IMonitorLock. You can cast any arbitrary object to IMonitorLock. This is
useful to cast Java monitor locks to this Gosu interface. For more information about monitor locks, refer to:
http://en.wikipedia.org/wiki/Monitor_(synchronization)

• Implements the Gosu class gw.lang.IReentrant. This interface contains two methods with no arguments:
enter and exit. Your code must properly lock or synchronize data access as appropriate during the enter
method and release any locks in the exit method.

For blocks of code using locks (code that implements java.util.concurrent.locks.Lock), a using clause
simplifies your code.

The following code uses the java.util.concurrent.locks.ReentrantLock class using a longer (non-recom-
mended) form:

// in your class variable definitions...
var _lock : ReentrantLock = new ReentrantLock()

function useReentrantLockOld() {
_lock.lock()
try {

 // do your main work here
 }

finally {
_lock.unlock()

}
}

In contrast, you can write more readable Gosu code using the using keyword:
280 Chapter 26: Concurrency

Gosu Reference Guide

// in your class variable definitions...
var _lock : ReentrantLock = new ReentrantLock()

function useReentrantLockNew() {
using(_lock) {

// do your main work here
}

}

Similarly, you can cast any object to a monitor lock by adding “as IMonitorLock” after the object. For example,
the following method call code uses itself (using the special keyword this) as the monitor lock:

function monitorLock() {
using(this as IMonitorLock) {

 // do stuff
 }
 }

This approach effectively is equivalent to a synchronized block in the Java language.

Assigning Variables Inside ‘using’ Expression Declaration

The using clause supports assigning a variable inside the declaration of the using clause.

This is useful if the expression that you pass to the using expression is both:

• something other than a single variable

• you want to reference it from inside the statement list inside the using clause declaration

For example, suppose you call a method that returns a file handle and you pass that to the using clause as the
lock. From within the using clause contents, you probably want to access the file so you can iterate across its
contents.

To simplify this kind of code, assign the variable before the expression using the var keyword:
using (var VARIABLE_NAME = EXPRESSION) {

// code that references the VARIABLE_NAME variable
}

For example:
using(var out = new FileOutputStream(this, false)) {

out.write(content)
}

Passing Multiple Items to the ‘using’ Statement

You can pass multiple items in the using clause expression. Separate each item by a comma character.

For example,
function useReentrantLockNew() {

using(_lock1, _lock2, _lock3) {
// do your main work here

}
}

You can combine the multiple item feature with the ability to assign variables. For more about assigning vari-
ables, see “Assigning Variables Inside ‘using’ Expression Declaration” on page 281 .

For example:
using(var lfc = new FileInputStream(this).Channel,

var rfc = new FileInputStream(that).Channel) {

 var lbuff = ByteBuffer.allocate(bufferSize)
 var rbuff = ByteBuffer.allocate(bufferSize)

 while (lfc.position() < lfc.size()) {
 lfc.read(lbuff)
 rfc.read(rbuff)

 if (not Arrays.equals(lbuff.array(), rbuff.array()))
 {
 return true
 }
Concurrency with Monitor Locks and Reentrant Objects 281

Gosu Reference Guide

 lbuff.clear()
 rbuff.clear()
 }
 return false
 }
 }

Gosu ensures that all objects are properly cleaned up. In other words, for each object to create or resource to
acquire, if it creates or acquires successfully, Gosu releases, closes, or disposes the object. Also note that if one of
the resources fails to create, Gosu does not attempt to acquire other resources in later-appearing items in the
command-seperated list. Instead, Gosu simply releases the ones that did succeed.

For more information about using clauses, see “Object Lifecycle Management (‘using’ Clauses)” on page 122 in
the Gosu Reference Guide.

Note: For more information about concurrency and related APIs in Java, see:

http://java.sun.com/docs/books/tutorial/essential/concurrency/index.html
282 Chapter 26: Concurrency

chapter 27

Properties Files

Gosu includes automatic support for reading properties files in the Java properties format.

This topic includes:

• “Reading Properties Files” on page 283

Reading Properties Files

Gosu includes automatic support for reading properties files in the Java properties format. Gosu accomplishes
this with a custom type loader that adds types in the type system for any file with the .properties file extension
in the class hierarchy. The location of the file within the class hierarchy defines the package (namespace) for
created types. Gosu creates a type that matches the name of the properties file without the file extension. The
following procedure describes in detail how to use this feature.

To read a properties file from Gosu

1. Find your root of your class hierarchy.

If your Gosu code is in a Gosu program (a .gsp file), you can add a root directory to your class path using the
classpath statement. See “Setting the Class Path to Call Other Gosu or Java Classes” on page 58.

2. Decide where in your package hierarchy that you want to reference your properties file. For example, suppose
the root of your class hierarchy is the path /MyProject/gsrc. If you want your properties file to be in the
package com.mycompany.config and the properties file to be called MyProps.properties, create a new file at
the path:
/MyProject/gsrc/com/mycompany/config/MyProps.properties

3. In that file, add the following content:
the hash character as first char means the line is a comment
! the exclamation mark character as first char means the line is a comment

website = http://gosu-lang.org/
language = English

The backslash below tells the application to continue reading
the value onto the next line.
message = Welcome to \
Properties Files 283

Gosu Reference Guide

 Gosu!

Unicode support
tab : \u0009

multiple levels of hierarchy for the key
gosu.example.properties.Key1 = Value1

A few things to notice:

• The message property definition uses multiple lines, using the backslash to continue reading from the next
line.

• The tab property definition uses Unicode syntax with \u followed by four hexadecimal digits for the Uni-
code code point.

• The last property in the file uses multiple levels of hierarchy

4. To test this code from another Gosu class, use the following code:
uses com.mycompany.config.*

print("accessing properties...")
print("")

print(" message: ${MyProps.message}")
print(" website: ${MyProps.website}")
print(" gosu.example.properties.Key1: ${MyProps.gosu.example.properties.Key1}")
print(" unicode support (tab char): before${MyProps.tab}after")

Run this code to print the following:
accessing properties...

 message: Welcome to Gosu!
 website: http://gosu-lang.org/
 gosu.example.properties.Key1: Value1
 unicode support (tab char): before after

To test this code with a Gosu program instead of a Gosu class, create a Gosu program called PropsTest.gsp one
level higher than the root of your class hierarchy. Add a classpath statement to add the root of the class hier-
archy to the class path. See “Setting the Class Path to Call Other Gosu or Java Classes” on page 58.

Limitations of the Properties File Type Loader

The properties file type loader does not support key values with spaces, or any other characters that would be
illegal in a Gosu property name. Gosu omits any such properties.

For example, the following Java property file includes a key with a name that includes embedded spaces using
the backslash character before each space character,

Add spaces to the key
key\ with\ spaces = This is the value that could be looked up with the key "key with spaces".

Although it is a legal Java property, Gosu does not provide programmatic access to it.
284 Chapter 27: Properties Files

chapter 28

Coding Style

This topic lists some recommended coding practices for the Gosu language. These guidelines encourage good
programming practices that improve Gosu readability and encourage code that is error-free, easy to understand,
and easy to maintain by other people.

This topic includes:

• “General Coding Guidelines” on page 285

General Coding Guidelines

Omit Semicolons

Omit semicolons, as they are unnecessary in almost all cases. Gosu code looks cleaner this way.

Semicolons are only needed if separating multiple Gosu statements all written on one line within a one-line state-
ment list. Even this is generally not recommended, although it is sometimes appropriate for simple statement lists
declared in-line within Gosu block definitions.

Type Declarations

Omit the type declaration if you declare variables with an assignment. Instead, use “as TYPE” where appropriate.
The type declaration is particularly redundant if a value needs coerce to a type already included at the end of the
Gosu statement.

In other words, the recommended type declaration style is:
var delplans = currentPage as DelinquencyPlans

Do not add the redundant type declaration:
var delplans : DelinquencyPlans = currentPage as DelinquencyPlans

The == and != Operator Recommendations and Warnings

The Gosu == and != operators are safe to use even if one side evaluates to null.
Coding Style 285

Gosu Reference Guide

Use these operators where possible instead of using the equals method on objects. This protection with null is
called null-safety.

Notice that Gosu’s == operator is equivalent to the object method equals (obj1.equals(obj2)) other than its
difference in null-safety.

Note: For those who use the Java language also, the null-safety of the Gosu == operator is similar to the
null-safety of the Java code ObjectUtil.equals(...). In contrast, for both the Gosu and Java languages,
the object method myobject.equals(...) is not null-safe.

So, any Gosu code that use the equals method, such as:
(planName.equals(row.Name.text))

...can be written in easier-to-understand code as:
(planName == row.Name.text))

Although the == and the != comparison operators are more powerful and more convenient than equals(), be
aware of coercions that may occur. For example, because expressions adhere to Gosu’s implicit coercion rules,
the expression 1 == "1" evaluates to true. In other words, the number 1 and the string representing the number
1 is true. This is because of implicit coercion that allows the string "1" to be assigned to an integer variable as the
integer 1 without explicit casting.

While coercion behavior is convenient and powerful, it can be dangerous if used carelessly. Gosu produces
compile warnings for implicit coercions. Take the warnings seriously and in most cases explicitly cast using the
as keyword in cases that you want the coercion. Otherwise, fix the problem by rewriting in some other way
entirely.

For example, an expression equates a date value with a string representation of a date value:
(dateVal == strVal)

It is safest to rewrite this as the following:
(dateVal == strVal as DateTime)

Carefully consider any implicit direct coercions that might occur with the == operator, and explicitly define coer-
cions where possible.

If comparing array equality with the == and != operators, Gosu does not let you compare incompatible array
types. For example, the following code generates a compile time error because arrays of numbers and strings are
incompatible:

new Number[] {1,2} == new String[] {"1","2"}

However, if the array types are comparable, Gosu recursively applies implicit coercion rules on the
array’s elements. For example, the following code evaluates to true because a Number is a subclass of Object,
so the Gosu compares the individual elements of the table:

new Number[] {1,2} == new Object[] {"1","2"}

WARNING Be careful if comparing arrays. Note the recursive comparison of individual elements for
compatible array types.

For more information about the difference between == and === operators in Gosu, see “=== Operator Compares
Object Equality” on page 81

Class Variable and Class Property Recommendations

Always prefix private and protected class variables with an underscore character (_).

Avoid public variables. Convert public variables to properties, so that the interface to other code (the property
names) is separated from the implementation (the storage and retrieval).
286 Chapter 28: Coding Style

Gosu Reference Guide

Although Gosu supports public variables for compatibility with other languages, the standard Gosu style is to use
public properties backed by private variables rather than public variables. You can do this easily in Gosu on the
same line as the variable definition using the as keyword followed by the property name.

In other words, in your new Gosu classes that define class variables, use this variable declaration syntax:
private var _firstName : String as FirstName

This declares a private variable called _firstname, which Gosu exposes as a public property called FirstName.

Do not do this:
public var FirstName : String // do not do this. Public variable scope is not Gosu standard style

For more information about defining properties, see “Properties” on page 130.

IMPORTANT For Gosu classes data fields, the standard Gosu style is to use public properties backed
by private variables rather than public variables. Do not use public variables in new Gosu classes. See
“Properties” on page 130 for more information.

Use ‘typeis’ Inference

To improve the readability of your Gosu code, Gosu automatically downcasts after a typeis expression if the
type is a subtype of the original type. This is particularly valuable for if statements and similar Gosu structures.
Within the Gosu code bounded by the if statement, you do not need to do casting (“as TYPE” expressions) to that
subtype. Because Gosu confirms that the object has the more specific subtype, Gosu implicitly considers that
variable’s type to be the subtype, at least within that block of code.

The structure of this type looks like the following:
var VARIABLE_NAME : TYPE_NAME

if (VARIABLE_NAME typeis SUBTYPE_NAME) {

// use the VARIABLE_NAME as SUBTYPE_NAME without casting
// This assumes SUBTYPE_NAME is a subtype of TYPE_NAME

}

For example, the following example shows a variable declared as an Object, but downcasted to String within
the if statement in a block of code within an if statement.

Because of downcasting, the following code is valid:
var x : Object = "nice"
var strlen = 0

if(x typeis String) {
strlen = x.length

}

This works because the typeis inference is effective immediately and propagates to adjacent expressions.

It is important to note that length is a property on String, not Object. The downcasting from Object to String
means that you do not need an additional casting around the variable x. In other words, the following code is
equivalent but has an unnecessary cast:

var x : Object = "nice"
var strlen = 0

if(x typeis String) {
strlen = (x as String).length // "length" is a property on String, not Object

}

Use automatic downcasting to write easy-to-read and concise Gosu code. Do not write Gosu code with unneces-
sary casts. For more information, see “Automatic Downcasting for ‘typeis’ and ‘typeof’” on page 260.
General Coding Guidelines 287

Gosu Reference Guide

288 Chapter 28: Coding Style

	Gosu Reference Guide
	About This Document
	Downloads, Technical Questions, and Submitting Feedback
	Conventions in This Document

	Gosu Introduction
	Welcome to Gosu
	Control Flow
	Blocks
	Enhancements
	Collections
	Access to Java Types
	Gosu Classes and Properties
	Interfaces
	List and Array Expansion Operator *.
	Comparisons
	Case Sensitivity
	Compound Assignment Statements
	Delegating Interface Implementation with Composition
	Concurrency
	Exceptions
	Annotations
	Gosu Templates
	XML and XSD Support
	Web Service Support (Consuming WSDL)
	Gosu Character Set

	Running Gosu Programs and Calling Other Classes
	More About the Gosu Type System
	Compile Time Error Prevention
	Type Inference
	Intelligent Code Completion and Other Gosu Editor Tools
	Null Safety for Properties and Other Operators
	Generics in Gosu
	Gosu Primitives Types

	Gosu Case Sensitivity
	Gosu Statement Terminators
	Gosu Comments
	Gosu Reserved Words
	Notable Differences Between Gosu and Java
	Get Ready for Gosu

	Getting Started with Gosu Community Release
	System Requirements
	Getting Started With IntelliJ IDEA Gosu Plugin
	Install the IntelliJ Gosu Plugin
	Do Not Depend Directly on Gosu JARs
	The Gosu Scratchpad
	Keep Only One Project Open at a Time

	Getting Started With Gosu Command Line Tools
	Advanced Gosu Command Line Tool Usage

	Using XML and SOAP Libraries with Gosu Community Release
	Advanced Examples
	Servlet Example

	Gosu Command Line Shell
	Gosu Command Line Tool Basics
	Command Line Tool Options
	Writing a Simple Gosu Command Line Program

	Command Line Arguments
	Gosu Interactive Shell
	Helpful APIs for Command Line Gosu Programs

	Gosu Programs
	The Structure of a Gosu Program
	Metaline as First Line
	Functions in a Gosu Program
	Setting the Class Path to Call Other Gosu or Java Classes
	Advanced Remote Maven-style Configuration of Dependencies (Command Line Only)

	Types
	Access to Java Types
	Primitive Types
	Objects
	Object Instantiation
	Object Property Assignment
	Object Property Access
	Object Methods

	Boolean Values
	Sequences of Characters
	Array Types
	List Access Using Array Index Notation
	Array Expansion
	Associative Array Syntax for Property Access
	Legacy Array Type

	Numeric Literals
	Compatibility with Earlier Gosu Releases
	DateTime
	Number
	Array

	Gosu Operators and Expressions
	Gosu Operators
	Operator Precedence

	Standard Gosu Expressions
	Arithmetic Expressions
	Equality Expressions
	Evaluation Expressions
	Existence Testing Expressions
	Logical Expressions
	New Object Expressions
	Relational Expressions
	Unary Expressions
	Importing Types and Package Namespaces
	Conditional Ternary Expressions
	Special Gosu Expressions
	Function Calls
	Static Method Calls
	Static Property Paths

	Handling Null Values In Expressions
	Null-safe Property Access
	Null-safe Default Operator
	Null-safe Indexing for Arrays, Lists, and Maps
	Null-safe Math Operators

	Statements
	Gosu Statements
	Statement Lists

	Gosu Variables
	Variable Type Declaration
	Variable Assignment

	Gosu Conditional Execution and Looping
	If() … Else() Statements
	For() Statements
	While() Statements
	Do…While() Statements
	Switch() Statements

	Gosu Functions
	Named Arguments and Argument Defaults
	Public and Private Functions

	Intervals
	What are Intervals?
	Reversing Interval Order
	Granularity (Step and Unit)

	Writing Your Own Interval Type
	Custom Iterable Intervals Using Sequenceable Items
	Custom Iterable Intervals Using Manually-written Iterators
	Custom Non-iterable Interval Types

	Exception Handling
	Try-Catch-Finally Constructions
	Throw Statements
	Catching Exceptions in Gosu
	Object Lifecycle Management (‘using’ Clauses)
	Disposable Objects
	Closeable Objects and ‘using’ Clauses
	Reentrant Objects and ‘using’ Clauses
	Returning Values from ‘using’ Clauses

	Classes
	What Are Classes?
	Creating and Instantiating Classes
	Creating a New Instance of a Class
	Naming Conventions for Packages and Classes

	Properties
	Properties Act Like Data But They Are Dynamic and Virtual Functions
	Property Paths are Null Tolerant
	Static Properties
	More Property Examples

	Modifiers
	Access Modifiers
	Override Modifier
	Abstract Modifier
	Final Modifier
	Static Modifier

	Inner Classes
	Named Inner Classes
	Anonymous Inner Classes

	Enumerations
	Using Enumerations
	Extracting Information from Enumerations
	Comparing Enumerations

	Interfaces
	What is an Interface?
	Defining and Using an Interface
	Defining and Using Properties with Interfaces
	Modifiers and Interfaces

	Composition
	Using Gosu Composition
	Overriding Methods Independent of the Delegate Class
	Declaring Delegate Implementation Type in the Variable Definition
	Using One Delegate for Multiple Interfaces
	Using Composition With Built-in Interfaces

	Annotations
	Annotating a Class, Method, Type, or Constructor
	Built-in Annotations

	Annotations at Run Time
	Defining Your Own Annotations
	Customizing Annotation Usage

	Enhancements
	Using Enhancements
	Syntax for Using Enhancements
	Creating a New Enhancement
	Syntax for Defining Enhancements
	Enhancement Naming and Package Conventions
	Enhancements on Arrays

	Gosu Blocks
	What Are Blocks?
	Basic Block Definition and Invocation
	Variable Scope and Capturing Variables In Blocks
	Argument Type Inference Shortcut In Certain Cases
	Block Type Literals
	Blocks and Collections
	Blocks as Shortcuts for Anonymous Classes

	Gosu Generics
	Gosu Generics Overview
	Using Gosu Generics
	Parameterized Classes
	Parameterized Methods

	Other Unbounded Generics Wildcards
	Generics and Blocks
	How Generics Help Define Collection APIs
	Multiple Dimensionality Generics
	Generics With Custom ‘Containers’
	Generics with Non-Containers

	Collections
	Basic Lists
	Creating a List
	Type Inference and List Initialization
	Getting and Setting List Values
	Special Behavior of List in Gosu

	Basic Hash Maps
	Creating a Hash Map
	Getting and Setting Values in a Hash Map
	Creating a Hash Map with Type Inference
	Special Enhancements on Maps

	List and Array Expansion (*.)
	Array Flattening to Single Dimensional Array

	Enhancement Reference for Collections and Related Types
	Collections Enhancement Methods
	Finding Data in Collections
	Sorting Collections
	Mapping Data in Collections
	Iterating Across Collections
	Partitioning Collections
	Converting Lists, Arrays, and Sets
	Flat Mapping a Series of Collections or Arrays
	Sizes and Length of Collections and Strings are Equivalent

	Gosu and XML
	Manipulating XML Overview
	Introduction to the XML Element in Gosu
	Dollar Sign Prefix for Properties that Are XSD Types

	Exporting XML Data
	Export-related Methods on an XML Element
	XML Serialization Options Reference and Examples

	Parsing XML Data into an XML Element
	Creating Many QNames in the Same Namespace
	XSD-based Properties and Types
	Important Concepts in XSD Properties and Types
	XSD Generated Type Examples
	Automatic Insertion into Lists
	XSD List Property Example

	Getting Data From an XML Element
	Manipulating Elements and Values (Works With or Without XSD)
	Attributes

	Simple Values
	Methods to Create XML Simple Values
	XSD to Gosu Simple Type Mappings
	Facet Validation

	Access the Nillness of an Element
	Automatic Creation of Intermediary Elements
	Default and Fixed Attribute Values
	Substitution Group Hierarchies
	Element Sorting for XSD-based Elements
	Built-in Schemas
	The XSD that Defines an XSD (The Metaschema)

	Schema Access Type

	Calling WS-I Web Services from Gosu
	Consuming WS-I Web Service Overview
	Loading WS-I WSDL Directly into the File System
	How Does Gosu Process WSDL?
	Learning Gosu XML APIs
	What Gosu Creates from Your WSDL
	A Real Example: Weather
	Request XML Complexity Affects Appearance of Method Arguments

	Adding WS-I Configuration Options
	HTTP Authentication
	Setting a Timeout
	Custom SOAP Headers
	Server Override URL
	Setting XML Serialization Options
	Implementing Advanced Web Service Security with WSS4J

	One-Way Methods
	Asynchronous Methods
	MTOM Attachments

	Java and Gosu
	Overview of Calling Java from Gosu
	Java Classes are First-Class Types
	Many Java Classes are Core Classes for Gosu
	Java Packages in Scope
	Static Members in Gosu
	Simple Java Example
	Java Get and Set Methods Convert to Gosu Properties
	Interfaces
	Enumerations
	Annotations
	Java Primitives

	Deploying Your Java Classes
	Java Class Loading, Delegation, and Package Naming
	Java Class Loading Rules

	Gosu Templates
	Template Overview
	Template Expressions
	When to Escape Special Characters for Templates

	Using Template Files
	Creating and Running a Template File
	Template Scriptlet Tags
	Template Parameters
	Extending a Template From a Class
	Template Comments

	Template Export Formats

	Type System
	The Type of All Types
	Basic Type Coercion
	Basic Type Checking
	Automatic Downcasting for ‘typeis’ and ‘typeof’

	Using Reflection
	Type Object Properties
	Java Type Reflection
	Type System Class

	Compound Types
	Type Loaders

	Running Local Shell Commands
	Running Command Line Tools from Gosu

	Checksums
	Overview of Checksums
	Creating Fingerprints
	How to Output Data Inside a Fingerprint

	Extending Fingerprints

	Concurrency
	Overview of Thread Safety and Concurrency
	Gosu Scoping Classes (Pre-scoped Maps)
	Concurrent Lazy Variables
	Concurrent Cache
	Concurrency with Monitor Locks and Reentrant Objects

	Properties Files
	Reading Properties Files

	Coding Style
	General Coding Guidelines
	Omit Semicolons
	Type Declarations
	The == and != Operator Recommendations and Warnings
	Class Variable and Class Property Recommendations
	Use ‘typeis’ Inference

