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The theory of possibility described in this paper is related to the theory of fuzzy sets by defining the 
concept of a possibility distribution as a fuzzy restriction which acts as an elastic constraint on the 
values that may be assigned to a variable. More specifically, if F is a fuzzy subset of a universe of 
discourse U = {u} which is characterized by its membership function/~r, then a proposition of the 
form "X is F," where X is a variable taking values in U, induces a possibility distribution Hx which 
equates the possibility of X taking the value u to/~r.(u)--the compatibility of u with F. In this way, X 
becomes a fuzzy variable which is associated with the possibility distribution Fix in much the same 
way as a random variable is associated with a probability distribution. In general, a variable may be 
associated both with a possibility distribution and a probability distribution, with the weak 
connection between the two expressed as the possibility/probability consistency principle. 

A thesis advanced in this paper is that the imprecision that is intrinsic in natural languages is, in 
the main, possibilistic rather than probabilistic in nature. Thus, by employing the concept of a 
possibility distribution, a proposition, p, in a natural language may be translated into a procedure 
which computes the probability distribution of a set of attributes which are implied by p. Several types 
of conditional translation rules are discussed and, in particular, a translation rule r,~r propositions of 
the form"X is F is ~-possible, "~ where ~ is a number in the interval [0, ! ], is formulate~ and illustrated by 
examples. 

1. Introduction 

The pioneering work of Wiener and Shannon on the statistical theory of 
communication has led to a universal acceptance of the belief that information is 
intrinsically statistical in nature ~nd, as such, must be dealt with by the methods 
provided by probability theory. 

Unquestionably, the statistical point of view has contributed deep insights into the 
fundamental processes involved in the coding, transmission and reception of data, and 
played a key role in the development of modern communication, detection and 
telemetering systems. In recent years, however, a number of other important 
applications have come to the fore in which the major issues center not on the 
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transmission of information but on its meaning. In such applications, what matters 
is the ability to answer questions relating to information that is stored in a 
database---as in natural language processing, knowledge representation, speech 
recognition, robotics, medical diagnosis, analysis of rare events, decision-making under 
uncertainty, picture analysis, information retrieval and related areas. 

A thesis advanced in this paper is that when our main concern is with the meaning of 
information--rather than with its measure--the proper framework for information 
analysis is possibilistic t rather than probabilistic in nature, thus implying that what is 
needed for such an analysis is not probability theory but an ana logous -and  vet 
different--theory which might be called the theory of possibility. 2 

As will be seen in the sequel, the mathematical apparatus of the theory of fuzzy sets 
provides a natural basis for the theory of possibility, playing a role which i.s similar to 
that of measure theory in relation to the theory of probability. Viewed in this 
perspective, a fuzzy restriction may be interpreted as a possibilfi y distribution, with its 
membership function playing the role of a possibility distribution function, and a fuzzy 
variable is associated with a possibility distribution in much the same manner as a 
random variable is associated with a probability distribution. In general, however, a 
variable may be associated both with a possibility distribution and a probability 
distribution, with the connection between the two expressible as tiae 
possibility~probability consistency principle. This principle--which is an expression of 
a weak connection between possibility and probability--will be described in greater 
detail at a later point in this paper. 

The importance of the theory of possibility stems from the fact that--contrary to 
what has become a widely accepted assumption--much of the information on which 
human decisions are based is possibilistic rather than probabilistic in nature. In 
particular, the intrinsic fuzziness of natural languages--which is a logical consequence 
of the necessity to express information in a summarized form--is, in the main, 
possibilistic in origin. Based on this premise, Jt is possible to construct a universal 
language a in which the translation of a proposition expressed in a natural language 
takes the form of a procedure for computing the possibility distribution of a set of fuzzy 
relations in a data base. This procedure, then, may be interpreted as the meaning of the 
proposition in question, with the computed possibility distribution playing the role of 
the information which is conveyed by the proposition. 

The present paper has the limited objective of exploring some of the elementary 
properties of the concept of a possibility distribution, motivated principally by the 
application of this concept to the representation of meaning in natural languages. Since 
our intuition concerning the properties of possibility distributions is not as yet well 
developed, some of the definitions which are formulated in the sequel should be viewed 
as provisional in nature. 

~The term possibilistic--in the sense used here--was coined by Gaines and Kohout in their paper on 
possible automata [1]. 

2The interpretation of the concept of possibility in the theory of possibility is quite different from that of 
modal logic [2] in which propositions of the form "It is possible that. . ."  and "It is necessary that . . ."  are 
considered. 
3Such a language, called PRUF (Possibilistic Relational Universal Fuzzy,), is described in [30]. 
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2. The concept of a possibility distribution 

What is a possibility distribution ? It is convenient to answer this question in terms of 
another concept, namely, that of a fuzzy restriction [4, 5], to which the concept of a 
possibility distributic a bears a close relation. 

Let X be a varial'~e which takes values in a universe of discourse U, with the generic 
element of U denoted by u and 

X =u  (2.1) 

signifying that X is assigned the value u, u~U. 
Let F be a fuzzy subset of U which is characterized by a membership function/iv. 

Then F is afi4zzy restriction on X (or associated with X ) ifF acts as an elastic constraint 
on the values that may be assigned to X-- in  the sense that the assignment of a value u to 
X has the form 

X =u:/tv(u) (2.2) 

where/~r(u) is interpreted as the degree to which the constraint represented by F is 
satisfied when u is assigned to X. Equivalently, (2.2) implies that 1 -lay(u) is the degree 
to which the constraint in question must be stretched in order to allow the assignment 
of u to X.* 

Let R (X) denote a fuzzy restriction associated with X. Then, to express that F plays 
the role of a fuzzy restriction in relation to X, we write 

R(X)=F. t2.3) 

An equation of this form is called a relational assignment equation because it represents 
the assignment of a fuzzy set (or a fuzzy relation) to the restriction associated with X. 

To illustrate the concept of a fuzzy restriction, consider a proposition of the form p 
a_X is F, 5 where X is the name of an object, a variable or a proposition, and F is the 
name of a fuzzy subset of U, as in "Jessie is very iatelligent," "X is a small number," 
"Harriet is blonde is quite true," etc. As shown in [4] and [6], the translation of such a 
proposition may be expressed as 

R(A(X))=F (2.4) 

where A (X) is an implied attribute of X which takes values in U, and (2.4) signifies that 
the proposition pa--X is F has the effect of assigning F to the fuzzy restriction on the 

values of A (X). 
As a simple example of (2.4), let p be the proposition "John is young," in which young 

is a fuzzy subset of U = [0, 100] characterized by the membelship function 

#you,g(U) = 1 - S(u; 20, 30, 40) t2.5) 

'~A poim that must be stressed is that e fuzzy set per s~ is not a fuzzy restriction. To be a fuzzy restriction, it 

must be acting as a constraint  on the values of a variable. 

SThe symbol a__. stands for "denotes" or "is defined to be". 
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where u is the numerical age and the S-function is defined by [4]. 

S(u;~,fl,7)=O for u < ~  

= 2  for 0c<u<fl  
\ 7 - 0  U 

= l _ 2 ( u - - ' ~  2 \ ~ - ~ /  forfl<=u<~ 

=1 for u>),, 

(2.6) 

in which the parameter fl -~ (a + ),)/2 is the crossover point, that is, S(fl;~, fl, 't)=0.5. In 
this case, the implied attribute A (X) is Age(John) and the translation of"John is young" 
assumes the form: 

John is young- ,  R (Age(John)) = young. (2.7) 

To relate the concept of a fuzzy restriction to that of a possibility distribution, we 
interpret the right-hand member of 12.7) in the following manner. 

Consider a numerical age, say u = 28, whose grade of membership in the fuzzy set 
young (as defined by (2.5)) is approximately 0.7. First, we interpret 0.7 as the degree of 
compatibility of 28 with the concept labeled young. Then, we postulate that the 
proposition "John is young" converts the meaning of 0.7 from the degree of 
compatibility of 28 with young to the degree of possibility that John is 28 given the 
proposition "John is young." In short, the compatibility of a value of u with young 
becomes converted into the possibility of that value of u given "John is young." 

Stated in more general terms, the concept of a possibility distribution may be defined 
as follows. (For simplicity, we assume that A (X) =X.) 

Definition 2.1. Let F be a fuzzy subset of a universe of discourse U which is 
characterized by its membership function #r, with the grade of membership, pr(u), 
interpreted as the compatibility of u with the concept labeled F. 

Let X be a variable taking values in U, and let F act as a fuzzy restriction, R(X), 
associated with X. Then the proposition "X is F,"  which translates into 

R(X)=F, (2.8) 

associates a possibility distribution, l-I x, with X which is postulated to be equal to R (X), 
i.e., 

l-lv = R(X). (2.9) 

Correspondingly, the possibility distribution function associated with X (or the 
possibility distribution function of Fix) is denoted by nx and is defined to be 
numerically equal to the membership function of F, i.e., 

A 
rrx=#v. (2.10) 

Thus, nx(U), the possibility that X =u, is postulated to be equal to/~r(u). 
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In view of (2.9), the relational assignment equation (2.8) may be expressed 
equivalently in the form 

Hx=F. (2.11) 

_A_X placing in evidence that the proposition p is F has the effect of associating X with a 
possibility distribution Fix which, by (2.9), is equal to F. When expressed in the form of 
12.1 l), a relational assignment equation will be referred to as a possibility assignment 
equation, with the understanding that l-I x is induced by p. 

As a simple illustration, let U be the universe ofpositive integers and let F be the fuzzy 
set of small integers defined by ( 4 a__ union) 

small integer = 1/1 + 1/2 +0.8/3+0.6/4+0.4/5+0.2/6.  

Then, the proposition "X is a small integer" associates with X the possibility 
distribution 

Hx = 1/1 + 1/2 +0.8/3+0.6/4+0.4/5+0.2/6 {2.12) 

in which a term such as 0.8/3 signifies that the possibility that X is 3, given that X is a 
small integer, is 0.8. 

There are several important points relating to the above definition which are in need 
of comment. 

First, {2.9) implies that the possibility distribution l-Ix may be regarded as an 
interpretation of the concept of a fuzzy restriction and, consequently, that the 
mathematical apparatus of the theory of fuzzy sets--and, especially, the calculus of 
fuzzy restrictions [4]--provides a basis for the manipulation of possibility distri- 
butions by the rules of this calculus. 

Second, the definition implies the assumption that our intuitive perception of the 
ways in which possibilities combine is in accord with the rules of combination of fuzzy 
restrictions. Although the validity c f this assumption cannot be proved at this juncture, 
it appears that there is a fairly close agreement between such basic operations as the 
union and intersection of |uzzy sets, on the one hand, and the possibility distributions 
associated with the disjunctions and conjunctions of propositions of the form "X is F."  
However, since our intuition concerning the behaviour of possibilities is not very 
reliable, a great deal of empirical work would have to be done to provide us with a 
better understanding of the ways in which possibility distributions are manipulated by 
humans. Such an understanding would be enhanced by the development of an 
axiomatic approach to the definition of subjective possibilities--an approach which 
might be in the spirit of the axiomatic approaches to the definition of subjective 
probabilities [7, 8]. 

Third, the definition of ~rx(U) implies that the degree of possibility may be any 
number in the interval [0,1] rather than just 0 or 1. In this connection, it should be 
noted that the existence of intermediate degrees of possibility is implicit in such 
commonly encountered propositions as "There is a slight possibility that Marilyn is 
very rich," "It is quite possible that Jean-Paul will be promoted, . . . .  It is almost 
impossible to find a needle in a haystack," etc. 
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It could be argued, of course, that a characterization of an intermediate degree of 
possibility by a label such as"slight possibility" is commonly meant to be interpreted as 
"slight probability." Unquestionably, this is frequently the case in everyday discourse. 
Nevertheless, there is a fundamental difference between probability and possibility 
which, once better understood, will lead to a more careful differentiation between the 
characterizations of degrees of possibility vs. degrees of probability---especially in legal 
discourse, medical diagnosis, synthetic languages and, more generally, those 
applications in which a high degree of precision of meaning is an important 
desideratum. 

To illustrate the difference between probability and possibility by a simple example, 
consider the statement "Hans ate X eggs for breakfast," with X taking values in U = { 1, 
2, 3, 4,...}. We may associate a possibility distribution with X by interpreting nx(U) as 
the  degree of ease with which Hans can eat u eggs. We may also associate a probability 
distribution with X by interpreting Px(t~) as the probability of Hans eating u eggs for 
breakfast. Assuming that we employ some explicit or implicit criterion for assessing the 
degree of ease with which Hans can eat u eggs for breakfast, the values of rex(U) and 
pxlu) might be as shown in Table 1. 

Table 1 

The possibility and probability distributions associated with X 

u 1 2 3 4 5 6 7 8 

rex(U) 1 1 1 1 0.8 0.6 0.4 0.2 
Px(u) 0.1 0.8 0.1 0 0 0 0 0 

We observe that, whereas the possibility that Hans may eat 3 eggs for breakfast is 1, 
the probability that he may do so might be quite small, e.g., 0.1. Thus, a high degree of 
possibility does not imply a high degree of probability, nor does a low degree of 
probability imply a low degree of possibility. However, if an event is impossible, it is 
bound to be improbable. This heuristic connection between possibilities and 
probabilities may be stated in the form of what might be called the 
possibility/probability consistency principle, namely: 

If a variable X can take the values Ul,...,un with respective possibilities H =(n~, .... n~) 
and probabilities P=(p~,...,p,), then the degree of consistency of the probability 
distribution P with the possibility distribution H is expressed by ~ + A= arithmetic sum) 

Y = ~1Pl + "" " + rtnPn. (2.13) 

It should be understood, of course, that the possibility/probability consistency 
principle is not a precise law or a relationship that is intrinsic in the concepts of 
possibility and probability. Rather it is an approximate formalization of the heuristic 
observation that a lessening of the possibility of an event tends to lessen its 
probabili ty--but not vice-versa. In this sense, the principle is of use in situations in 
which what is known about a variable X is its possibilitymrather than its probabil i ty--  
dist~:ibution. In such cases--which occur far more frequently than those in which the 
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reverse is true--the possibility/probability consistency principle provides a basis for 
the computation of the possibility distribution of the probability distribution of X. 
Such computations play a particularly important role in decision-making under 
uncertainty and in the theories of evidence and belief [9-12]. 

In the example discussed above, the possibility of X assuming a value u is interpreted 
as the degree of ease with which u may be assigned to X, e.g., the degree of ease with 
which Hans may eat u eggs for breaktast. It should be understood, however, that this 
"degree of ease" may or may not have physical reality. Thus, the proposition "John is 
young" induces a possibility distribution whose possibility distribution function is 
expressed by (2.5). In this case, the possibility that the variable Age(John) may take the 
value 28 is 0.7, with 0.7 representing the degree of ease with which 28 may be assigned to 
Age(John) given the elasticity of the fuzzy restriction labeled young. Thus, in this case 
"the degree of ease" has a figurative rather than physical significance. 

2.1. Possibility measure 

Additional insight into the distinction between probability and possibility may be 
gained by comparing the concept of a possibility measure with the familiar concept of a 
probability measure. More specifically, let A be a nonfuzzy subset of U and let Fix be a 
possibility distribution associated with a variable X which takes values in U. Then, the 
possibility measure, n(A), of A is defined as a number in [0, 1] given by 6 

rc(A ) ~ Supu~A rcX(U), (2.14) 

where nx(U) is the possibility distribution function of l-I x. This number, then, may be 
interpreted as the possibility that a value of  X belongs to A, that is 

Poss{X ~ A} a-n(A) 
A 
=Sup.~A rcx(U ). 

t2.15) 

When A is a fuzzy set, the belonging of a value of X to A is not meaningful. A more 
general definition of possibility measure which extends (2.15) to fuzzy sets is the 
following. 

Definition 2.2. Let A be a fuzzy subset of U and let I-Ix be a possibility distribution 
associated with a variableX which takes values in U. The possibility measure, rc(A ), of A 
is defined by 

Poss{X is A} A =~(A) 

£ Sup.~t, #.4(u) ^ rex(U), 

(2.16) 

~'The measure defined by {2.14) may be viewed as a particular case of the fuzzy measure defined by Sugeno 
and Terano [20, 21]. Furthermore, n(A) as defined by (2.14) provides a possibilistic interpretation for tile 
scale function, a(A), which is defined by" Nahmias [22] as the supremum of a membership function over a 
nonfuzzy set A. 
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where "X is A'" replaces "'XeA'" in (2.15), ttA is the membership function of A, and ^ 
stands, as usual, for min. It should be noted that, in terms of the height of a fuzzy set, 
which is defined as the supremum of its membership function [23], (2.16) may be 
expressed compactly by the equation 

u(A)a= Height(A c~ fix). (2.17) 

As a simple illustration, consider the possibility distribution (2.12) which is induced 
by the proposilion "X is a small integer." In this case, let A be the set {3, 4, 5}. Then 

~z(A )=0.8 v' 0.6 v 0.4 =0.8, 

where v stands, as usual, for max. 
On the other broad, if A is the fuzzy set of integers which are not small, i.e., 

A ~ 0.2/3 + 0.4/4 + 0.6/5 + 0.8/6 + 1/7 + . . .  (2.18) 

then 

Poss{X ~s not a small integer} = Height(0.2/3 +0.4/4 +0.4/5 +0.2/6) 

=0.4. (2.19) 

It should be noted that (2.19) is an immediate consequence of the assertion 

X is F ~ P o s s { X  is A} = Height(F n A), (2.20) 

which is implied by (2.11) and (2.17). In particular, if A is a normal fuzzy set (i.e., 
Height(A)= 1 ), then, as should be expected 

X is A:~Poss{X is A} = 1. (2.21) 

Let A and B be arbitrary fuzzy subsets of U. Then, from the definition of the 
possibiht2~ measure of a fuzzy set (2.16), it follows that 7 

x(AwB)=x(A ) v rr(B). (2.22) 

By comparison, the corresponding relation for probability measures of A, B and 
A w B {if they exist) is 

P(A w B)<P(A)+P(B) (2.23) 

and, if A and B are disjoint (i.e., VA(U)#n(u)--O), 

P(A w B)=P(A)+ P(B), (2.24) 

Tit is of interest that (2.22) is analogous to the extension principle for fuzzy sets [5], with + (union) in the 
right-hand side of the st;atement of the principle replaced by v. 
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which expresses the basic additivity property of probability measures. Thus, in contrast 
to probability measure, possibility measure is not additive. Instead, it has the property 
expressed by (2.22), which may be viewed as an analog of (2.24t with + replaced 
by v .  

In a similar fashion, the possibility measure of the intersection of A and B is related to 
those of A and B by 

rc(A n B)<rc(A) A re(B). ~2.25) 

In particular, if A and B are noninteractive, 8 (2.25) holds with the equality sign, i.e., 

n(A n B ) = n ( A J ^ n ( B ) .  (2.26) 

By comparison, in the case of probability measures, we have 

P(A n B ) < P ( A ) ^ P ( B )  (2.27) 

and 

P ( A ~ B ) = P ( A ) P ( B )  (2.28) 

ifA and B are independent and nonfuzzy. As in the case of (2.22), (2.26) is analogous to 
(2.28), with product corresponding to min. 

2.2. Possibility and injbrmation 

If p is a proposition of the form p a=X is F which translates into the possibility 
assignment equation 

I-I AIX) = F, (2.29) 

where F is a fuzzy subset of U and A (X) is an implied attribute of X taking values in U, 
then the information conveyed by p, l(p), may be identified with the possibility 
distribution, l-lA(x~, of the fuzzy variable A(X). Thus, the connection between l(p), 
Flatx~, R(A(X))  and F is expressed by 

where 

l(p) a= l-lmx~, (2.30) 

I-IAtx~= R(A(X) )=F .  (2.31) 

A For example, if the proposition p =John  is young translates into the possibility 
assignment equation 

l-lAge(Johnl"- young, (2.32) 

aNoninteraction in the sense defined here is closely related to the concept of noninteraction of fuzzy 
restrictions [5, 6]. It should also be noted that (2.26) provides a possibilistic interpreta'don for"unrelatedness' 
as defined by Nahmias [22]. 
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where young is defined by (2.5), then 

/(John is young)= HAge0ohn) 

in which the possibility distribution function of Age(John) is given by 

(2.33) 

~ t A g e O o h n ) ( u ) = l - - S ( U ; 2 0 , 3 0 , 4 0  ) . U E [0, 100]. (2.34) 

From the definition of 1 (p) it follows that if p ~ X is F and q A= X is G, then p is at leas! 
as informative as q, expressed as 1 (p) > 1 (q), if F ~ G. Thus, we have a partial ordering o1' 
the l (p) defined by 

F ~ G~I(X is F)>=I(X is G) (2.35) 

which implies that the more restrictive a possibility distribution is, the more 
informative is the proposition with which it is associated. For example, since very tall 
c tall, we have 

I (Lucy is very tall) > l(Lucy is tall). (2.36) 

3. N-ary possibility distributions 
In asserting that the translation of a proposition of the form p ~ X  is F is expressed by 

X is F-+R(A(X))=F 

or, equivalently, 

X is F-) Ha(x) = F, 

(3.1) 

(3.2) 

we are tacitly assuming that p contains a single implied attribute A(X) whose 
possibility distribution is given by the right-hand member of (3.2). 

More generally, p may contain n implied attributes A~(X),...,A.(X), with Ail X) 
taking values in Uz, i=  1,...,n. In this case, the translation of p~-X is F, where F is a 
fuzzy relation in the cartesian product U = Uj x . .-  x U., assumes the form 

X is F--+R(AI (X),...,A.(X))=F 

or, equivalently, 

X is F--+H(A~(X) ..... A.(X)) = F  

(3.3) 

(3.4) 

where R(AI(X),..., A.(X)) is an n-ary fuzzy restriction and H(al(x) ..... A.(X)) is an n-ary 
possibility distribution which is induced by p. Correspondingly, the n-ary possibility 
distribution function induced by p is given by 

7t(al(X) ..... A.(x,(Ut,...,Un)=lar(Ul,...,U:,), (ul,..-,u.)¢U, (3.5) 

where/tr  is the membership function of F. In particular, if F is a cartesian product of n 
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unary fuzzy relations F~, . . . ,F. ,  then the righthand member of (3.3) decomposes into a 
system of n unary relational assignment equations, i.e., 

X is F-"R(A1  (X) = F ,  (3.6) 

R(A2(X))=F2 

k(A.(x)) 
Correspondingly ,9 

and 

where 

I'I(A,(X) ..... A.(X)) ----- HAt(X) X • • • X I-IA.(X ) 

n ( A , ( x )  . . . . .  A n ( X ) ) ( U , , . . . , U , , ) = r U , ( x ) ( U , )  ^ . . .  A rCA.(x)(U, , ) ,  

(3.7) 

(3.8) 

7rA,(x)(Ui)=laF,(Ui), u ieUi ,  i= 1 . . . .  ,n (3.9) 

and A denotes min (in infix form). 
A 

As a simple illustration, consider the proposition p = carpet is large, in which large is 
a fuzzy relation whose tableau is of the form shown in Table 2 (with length and width 
expressed in metric units)• 

Table 2 

Tableau of large 

Large Width Length /~ 

250 300 0.6 
250 350 0.7 

300 400 0.8 

400 600 1 

In this case, the translation 13.3) leads to the possibility assignment equation 

l " I  ( widt  h l ca rpe t  }, l ength(carpe t}  --"  large, (3.10) 

which implies that if the compatibility of a carpet whose width is, say, 250 cm and length 
is 350cm with "large carpet" is 0.7, then the possibility that the width of the carpet is 

A 
250cm and its length is 350 cm--given the proposition p =carpet is l a rge- i s  0.7. 

Now, if large is defined as 

large = wide x long (3.11 ) 

91fF and G are fuzzy relations in U and V, respectivdy, then their cartesian product F x G is a fuzzy relation 
in [r ~ Vwhnse membership function is given by l,)(u)~', p,~lt,). 

B 
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where long and wide are unary fuzzy relations, then (3.10) decomposes into the 
possibility association equations 

and 

t'[width(carpet ) ---" wide 

l"l l e n g t h ( c a r p e t )  - -  long 

where the tableaux of long and wide are of the form shown in Table 3. 

Table 3 

Tableaux of  wide and long 

Wide Width /~ Long Length */t 

250 0.7. 300 0.6 
300 0.8 350 0.7 
350 0.8 400 0.8 

400 1 500 1 

3.1. Marginal possibility distributions 

The concept of a marginal possibility distribution bears a close relation to the 
concept of a marginal fuzzy restriction 1-4], which in turn is analogous to the concept of 
a marginal probability distribution. 

More specifically, let X = (Xt,.. . ,X,) be an n-ary fuzzy variable taking values in U 
= U t  x -.- x U,, and let Hx be a possibility distribution associated with X, with 
nx(Ut,..., u,) denoting the possibility distribution function of [Ix. 

Let 
A 

q = (it , . . . ,  ik) be a subsequence of the index sequence (1,..., n) and let X(q) be the 
q-ary fuzzy variable X(~) a= (Xi,,...,Xi~). The marginal possibility distribution [ix~q) is a 
possibility distribution associated with X(a) which is induced by l-Ix as the projection of 
Hx on U(o a__ Uit x . . .  x Uic Thus, by definition, 

Hx,~, a= Projv(~)l-lx, (3.12) 

which implies that the probability distribution function of X(q) is related to that of X by 

7rx,~,(u(q)= V rtx(U) (3.13) 
U~q,) 

where u,q,,,=a (uq,.. ., u~j), q,a= lit , . .  ",Jm) is a subsequence of (1,,..,n) which is 
A 

complementary to q (e.g., if n=5  and q=( i t  i2)= (2,4), then q '=~j t , j2 , ja )=( l ,3 ,5 ) ,  
A - 

u~¢) = (u~,,...,z.9,) and v,,  , denotes the supremum over (u~,,...,uj.)EU~, x ... x Uj,,. 
• . . q '  

As a simple illustration, assume that U 1 = U2 - U 3 = {a, b} and the tableau of rlx is 
given by 



Fuzzy sets as a basis.for a theory of possibility 15 

Then, 

Table 4 

Tableau of l'! x 

Hx Xl  X2 Xa n 

a a a 0.8 
a a b 1 
b a a 0.6 
b a b 0.2 
b b b 0.5 

H(x,,x,) = Projv~ , , u 2 H x - ~ l / ( a , a ) + O . 6 / ( b , a ) + O . 5 / ( b , b )  

which in tabular form reads 

Table 5 

Tableau of n~x,. g21 

l-l(x v x2) X1 

12 

b 
b 

(3.14) 

X2 n 

a 1 

,t 0.6 
b 0.5 

Then, from H~: it follows that the possibility that X 1 = b, X2 = a and X3 = b is 0.2, while 
from Fltxt.x2~ it follows that the possibility ofXl  = b  and X2 = a  is 0.6. 

By analogy with the concept of independence of random variables, the fuzzy 
variables 

and 

A 
X~q)=(Xi~ , . . . ,X~)  

A 

are noninteract ive  [5-1 if and only if the possibility distribution associated with X 
= (XI , . . . ,X, )  is the cartesian product of the possibility distributions associated wi~h 

Xtq) and Xt¢), i.e., 

Hx =Hx~q~ x Flx,q.~ (3.15) 

or, equivalently, 

nx(U~ .... , u,, ) = nx,,,,(ui, ..... u~ k) ^ nx,,, ,(ujt, ..., uj,,,). (3.16) 

In particular, the variables X 1, . . . ,X, are noninteractive if and only if 

l'Ix =l-Ix1 x Fix2 x "'" x l ' Ix .  (3.17) 
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The intuitive significance of noninteraction may be clarified by a simple example. 
Suppose that X a_. (X ~,X2 ), and X t and X2 are noninteractive, i.e., 

nx(ul, u2 )=nx,  (ui)/x nx ,(u21. (3.18) 

Furthermore, suppose that for some particular values ofut and u2, nx,(Ut )=~t ,  nx2 (u2) 
=or2 <oq and hence nx(Ut, U2)=ot2. Now, if the value of nx~(ut) is increased to oft +fit,  
61 >0,  it is not possilqe to decrease the value of ~tx2(u2) by a positive amount, say 62, 
such that the value of rtx(Ul,U2) remains unchanged. In this sense, an increase in the 
poss!~ .iity of ul cannot be compensated by a decrease in the possibility of u2, and vice- 
verst , hus, in essence, noninteraction may be viewed as a form of noncompensation in 
which a variation in one or more components of a possibility distribution cannot be 
compensated by variations in the complementary components. 

In the manipulation of possibility distributions, it is convenient to employ a type of 
symbolic representation which is commonly used in the case of fuzzy sets. Specifically, 
assume, for simplicity, that U1,..., U. are finite sets, and let r ~ a= (r], . . . ,  ?.) denote an n- 
tuple of values drawn from U t,.. . ,  U., respectively. Furthermore, let n~ denote the 
possibility of r ~ and let the n-tuple (r],. . . ,  r~) be written as the string r ] . . .  r~.. 

Using this notation, a possibility distribution Hx may be expressed in the symbolic 
form 

N 
= ~1  " .i ( 3 . 1 9 )  I-Ix nir] r~ "'" ~. 

i=  

or, in case a separator symbol is needed, as 

N 

H x =  E n,/r~r~2 " " " r~, (3.20) 
i=1  

where N is the number of n-tuples in the tableau of l-Ix, and the summation should be 
interpreted as the union of the fuzzy singletons ni/(r],... ,  r~). As an illustration, in the 
notation of (3.19), the possibility distribution defined in Table 4 reads 

Fix =0.8aaa + laab + 0.6baa + 0.2bab + 0.5bbb. (3.21) 

The advantage of this notation is that it allows the possibility distributions to be 
manipulated in much the same manner as linear forms in n variables, with the 
understanding that, if r and s are two tuples and ~ and fl are their respective 
possibilities, then 

~r+/ l r  = qu. v//br (3.22) 

u.r ,-~/It= 1~ ,~ 11~" (3.23) 

and 

~rx/Js =(~ ^ flits. (3.24) 
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where rs denotes the concatenation of r and s. For example, if 

and 

l-Ix = 0.8aa + 0.5ab + lbb 

then 

and 

(3.25) 

Hr=O.9ba +O.6bb (3.26) 

l-Ix+ Hr=O.8aa+O.5ab+O.9ba+ lbb (3.27) 

l-lx c~ l-Iv = 0.6bb (3.28) 

H x x Hv =0.8aaba + 0.5abba + 0.9bbba + 0.6aabh + 0.5abbb + 0.6bbbb. 
(3.29 j 

A 
To obtain the projection of a possibility distribution Hx on Utq~ = (Ui,,... ,  Uik), it is 

sufficient to set the values ofXi, , . . . ,Xj , ,  in each tuple in Hx equal to the null string A 
(i.e., multiplicative identity). As an illustration, the projection of the possibility 
distribution defined by Table 4 on U~ x U2 is given by 

Projv, × u2Hx = 0.8aa + 1 aa + 0.6ba + 0.2ba + 0.5bb (3.30) 

= laa+O.6ba+O.5bb 

which agrees with Table 5. 

3.2. Conditioned po,ssibilit), distributions 

In the theory of possibilities, the concept of a conditioned possibility distribution 
plays a role that is ana logous- - though not completely-- to that of a conditional 
possibility distribution in the theory of probabilities. 

More concretely, let a variable X = ( X ~ , . . . , X , )  be associated with a possibiJity 
distribution I-Ix, with I-Ix characterized by a possibility distribution function 
nx(Ul,...,Un) which assigns to each n-tuple (ul, .... u,) in U~ x . . .  x U, its possibility 
r C x ( U l ,  . . . ,  u , ) .  

Let q =  (i~,...,ik) and s =  (j'~ . . . .  , is)  be subsequences of the index sequence (1, . . . ,n) ,  
and let (aj,,...,aim) be an n-tuple of values assigned to XW}=(Xi, , . . . ,Xim).  By 
definition, the conditioned possibility distribution of 

given 

A 
X ( q ) = ( X i l , . . . , X i  k) 

X(~,~=(ai,, . . . ,ai.) 

is a possibility distribution expressed as 

1-Ix,~EX i, = aj, ; . . . ; X i = a ~ . ]  
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whose possibility distribution function is given by ~° 

nx,,,(u~,,.. ., u~, IX~, = %  ; . . .  ;Xj .  = aj.) (3.31) 

7rx(Ut,. •., un) [ uj, =% ..... uj =a~ . 

As a simple example, in the case of (3.21), we have 

I l t x , . x3)[Xl  = a ]  =0.8aa + lab  (3.32) 

as the expression for the conditioned possibility distribution of (X,,X a ) given X 1 = a. 
An equivalent expression for the conditioned possibility distribution which makes 

clearer the connection betweeo 

l-lx,,,[Xj, = %  ;. . . ;X~=aj.] 

and l'lx may be derived as follows. 
Let 

l-lx[Xh =aj,;...;Xj =a J 

denote a possibility distribution which consists of those terms in (3.19) in which the j t th 
element is ai,, thej , th element is aye,..., and thejmth element is a j .  For example, in the 
case of (3.21) 

Hx(X1 =a]  =0.8aaa  + laab. (3.33) 

Expressed in the above notation, the conditioned possibility distribution of Xtq} 
= (X~,,...,X~) giveh Xj, =aj~,...,Xj =aj  may be written as 

rlx,,,Ex h =% ;...;X~ = a j  

= Projv~,~Hx[X h = a  h ; . . . ; X j = a J  (3.34) 

which places in evidence that l-Ix, ~ (conditioned on X{s)=a{~)) is a marginal possibility 
distribution reduced by 1-1 x (conditioned on X~s)=ate}). Thus, by employing (3.33) and 
(3,34), we obtain 

II~x2. x3)[ X 1 = a] = 0.8aa + I ab (3.35) 

which agrees with (3.32). 
In the foregoing discussion, we have assumed that the possibility distribution of X 

= ( X 1 , . . . , X n )  is conditioned on the values assigned to a specified subset, X{s), of the 
constituent variables of X. In a more general setting, what might be specified is a 

~°In some applications, it may be appropriate to normalize the expression for the conditioned possibility 
distribution function by dividing the right-hand member of (3.31) by its supremum over Ui, x .-- x Uic 
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possibility distribution associated with X{~) rather than the values of Xj~,... ,Xj. In such 
cases, we shall say that 1-Ix is particularized ~ ~ by specifying that rlx{~} = G, where G is a 
given m-ary possibility distribution. It should be noted that in the present context l'Ix,~ 
is a given possibility distribution rather than a marginal distribution that is induced by 
l-I x . 

To analyze this case, it is convenient to assume--in order to simplify the no ta t ion~  
that Xj~ =X~, ?:h =Xz, . . . ,Xj .  =X~, m < n. Let G denote the cylindrical extension of G, 
that is, the possibility distribution defined by 

G ~ G x U s + ~  x ""  xUn (3.36) 

wlalch implies that 
A 

• " - "  #r.(ul,..,un) #~(u:,...,u~), u:eUj,  j = l , . . . , n ,  t3.37) 

where #~ is the membership function of the fuzzy relation G. 
The assumption that we are given l'Ix and G is equivalent to assuming that we are 

given the intersection Flx n G. From this intersection, then, we can deduce the 
particularized possibility distribution Ilx,,,[Hx,,= G! by projection on U,o. Thus 

Hx,q,[l'Ix,~ = G] = Projv,q,H x n G. (3.38) 

Equivalently, the left-hand member of (3.38) may be regarded as the composition of I-Ix 
and G [5]. 

As a simple illustration, consider the possibility distribution defined by (3.21) and 
assume that 

G = 0.4aa + 0.8ba + lbb. (3.39) 

Then 

(i =0.4aaa +0.4aab +0.8baa +0.8bab + lbba + Ibbb (3.40) 

and 

l-I x c~ G =0.4aaa +0.4aab +0.6baa +0.2bab +0.5bbb 

Flx3[Iltx,.x~) = G] =0.6a + 0.5b. 

(3.41) 

(3.42) 

A 
As an elementary application of (3.38), consider the proposition p=  John is big, 

where big is a relation whose tableau is of the form shown in Table 6 (with height and 
weight expressed in metric units). 

~ In the case of nonfuzzy relations, part icularization is closely related to what is commonly referred to as 
restriction. We are not employing this more convent ional  term here because of our use of the term "fuzzy 

restriction" to denote an elastic constraint  on the values that  may be assigned to a variable. 
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Table 6 

Tableau of big 

Big Height Weight /~ 

170 70 0.7 
170 80 0.8 
180 80 0.9 

190 90 1 

Now, suppose that in addition to knowing ihat John is big, we also know that q 
a= John is tall, where the tableau of tall is given (in partially tabulated form) by Table 7. 

Table 7 

Tableau of tall 

Tall Height /a 

170 0.8 
180 0.9 
190 1 

The question is" What is the weight of John ? By making use of (3.38), the possibility 
distribution of the weight of John may be expressed as 

I ']  weight = Proj weight 1"1 (height. weight 1[ f l  height - -  tail] (3.39) 

=0 .7 /70+0.9 /80+ 1/90. 

An acceptable linguistic approximation [5], [13] to the right-hand side.of (3.39) might 
be "somewhat heavy," where "somewhat" is a modifier which has a specified effect on 
the fuzzy set labeled "heavy." Correspondingly, an approximate answer to the question 
would be "John is somewhat heavy." 

4. Possibility distributions of composite and qualified propositions 

As was stated in the Introduction, the concept of a possibility distribution provides a 
natural way for defining the meaning as well as the information content of a 
proposition in a natural language. Thus, if p is a proposition in a natural language NL 
and M is its meaning, then M may be viewed as a procedure which acts on a set of 
relations in a universe of discourse associated with NL and yields the possibility 
distribution of a set of variables or relations which are explicit or implicit in p. 

In constructing the meaning of a given proposition, it is convenient to have a 
collection of what might be called conditional translation rules [30] which relate the 
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meaning of a proposition to the meaning of its modifications or combinations with 
other propositions. In what follows, we shall discuss briefly some of the basic rules of 
this type and, in particular, will formulate a rule governing the modification of 
possibility distributions by the possibility qualification of a proposition. 

4.1. Rules of type I 

Let p be a proposition of the form X is F, and let m be a modifier such as very, quite, 
rather, etc. The so-called modifier rule [61 which defines the modification in the 
possibility distribution induced by p may be stated as follows. 

If 

then 

X is F--,rlaix~ =F (4.1) 

X is mF--+Ha(x)  = F + (4.2} 

where A(X) is an implied attribute of X and F + is a modification of F defined by m. ~2 

~ . F +  F 2  a For example, if m - very, then = ; if m = more or less then F+ = \ / F "  and if m 
a= not then F + = F '  a= complement of F. As an illustration" 

If 

John is young--* H Age(Joh,,J-'- young 14.3) 

then 

John is very young ~ H A~,,h,,I = young 2. 

In particular, if 

young = 1 - S(20, 30, 40) 14.4) 

then 

young 2 = (1 - S(20, 30, 40))2, 

where the S-function (with its argument suppressed) is defined by (2.6). 

4.2. Rules of type II 
A 

If p and q are propositions, then r = p * q  denotes a proposition which is a 
composition of p and q. The three most commonly used modes of composition are (i) 
conjunctive, involving the connective "and"; (ii) disjunctive, involving the connective 
"or"; and (iii) conditional, involving the connective " i f . . . then."  The conditional 
translation rules relating to these modes of composition are stated below. 

12 A more detailed discussion of the effect of modifiers (or hedges) may be found in [ 15, 16,17, 8, 6,13 and 

18]. 
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and 

then 

Conjunctive (noninteractive): If 

X is F-- ,  IIA(x~ = F (4.5) 

Y is G - ,  Hstr~ = G (4.6) 

X is F and Y is G~l'lcatx~,n~r~ = F x G (4.7) 

wh,~re A (X) and B(Y) are the impliedattributes of X and Y, respectively, I'I(A(x),B(r)) is 
the possibility distribution of the variables A(X) and B(Y), and F x G is the cartesian 
product of F and G. It should be noted that F x G may be expressed equivalently as 

F x G=F n CJ (4.8) 

where F and Cr are the cylindrical extensions of F and G, respectively. 

Disjunctive (noni.nteractive): If (4.5) and (4.6) hold, then 

X is F or Y is G--*l-ltA~x~.B(r~ = F  +¢~ (4.9) 

where the symbols have the same meaning as in (4.5) and (4.6), and + denotes the 
union. 

Conditional ~noninteractive)" If (4.5) and (4.6) hold, then 

IfX is F then Y is G~II~A~x~.n{r}~ =F'~C, 

where F' is the complement of F and ~ is the bounded sum defined by 

(4.10) 

/#.~c,= 1 ^ {1--1tr+l.tc,), (4.11) 

in which + and - denote the arithmetic addition and subtraction, and #v and #6 are 
the membership functions of F and G, respectively. Illustrations of these rules-- 
expressed in terms of fuzzy restrictions rather than possibility distributions--may be 
found in I-6 and 14]. 

4.3. Truth qual~cation, probability qualification and possibility qualification 

In natural languages, an important mechanism for the modification of the meaning 
of a proposition is provided by the adjuction of three types of qualifiers: (i) is X, where 
is a linguistic truth-value, e.g., true, very true, more or less true, false, etc.; (ii) is 2, where 
2 is a linguistic probability-value (or likelihood), e.g., likely, very likely, very unlikely, 
etc.; and (iii) is ~c, where n is a linguistic possibility-value, e.g., possible, quite possible, 
sh~htly possible, impossible, etc. These modes of qualification will be referred to, 
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respectively, as truth .qualijication, probability qualijication and possibility quai+ 
ication. The rules governing these qualifications may be stated as follows. 

Truth qualification: If 

(4.12) 
. x 1s F+II&x, - -F 

then 

X is F isr+IIA(xj=F+, 

where 

PF+@)=P,(P&))9 UEUU; (4.13) 

~1, and PF are the membership functions of r and F, respectively, and U is the universe of 
discourse associated with A(X). As an illustration, if young is defined by (4.4); z = very 
true is defined by 

very true = S2 (0.6,0.&l ) (4.14) 

then 

John is young+IIAge(John) = young 

John is young is very true-+nApe(,ahn)=youngt 

where 

PI ,p&ll)=S’(l --WC 20, 30, 40); 0.6, 0.8, l), LIEU. 

It should be noted that for the unitary truth-value, u-true, defined by 

Pu-true(V) = v, 4-0911 (4.15) 

(4.13) reduces to 

PF+(U)=PF(U)~ UdJ 

and hence 

X is F is u-true+& =F. (4.16) 

Thus, the possibility distribution induced by any proposition is invariant under unitary 
truth qualification. 

Probability qualification: If 

then 

X is F+IIA(XI=F 

X is F is ~-‘n,,,,,,,,,,,,,,,,,=E. (4.17) 
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where p(u)du is the probability that the value of A (X) falls in the interval (u, u + du); the 
integral 

~v p(u)laF(u)du 

is the probability of the fuzzy event F [19]; and 2 is a linguistic probability-value. Thus, 
(4.17) defines a possibility distribution of probability distributions, with the possibility 
of a probability density p(-) given implicitly by 

n[jv p(u)l#(u )du] = #x[jv p(u )#r(u )du]. (4.18) 

As an illustration, consider the proposition p a= John is young is very likely, in which 
young is defined by (4.4) and 

Then 

/-/very likely - -  $ 2  (0.6, 0.8, 1 ). 

2 1 rc[~v p(u)#v(u)du] = S [jo p(u)(1 - S(u;20, 30, 40))du;0.6, 0.8, 1]. 

(4.19) 

It should be noted that the probability qualification rule is a consequence of the 
assumption that the propositions "X is F is 2" and "Prob{X is F} = 2" are semantically 
equivalent (i.e., induce identical possibility distributions), which is expressed in symbols 
a s  

X is F is 2oProb{X is F} =2. (4.20) 

Thus, since the probability of the fuzzy event F is given by 

Prob{X is F} = ~v p(u)l~v(u)du, 

it follows from (4.20) that we can assert the semantic equivalence 

X is F is 2 ~ v  p(u)lav(u)du is 2, 

which by (2.11) leads to the right-hand member of (4.17). 

Possibility qualification: Our concern here is with the following question:Given that 
"'X is F "  translates into the possibility assignment equation IIA~x}=F, what is the 
translation of "X is F is re," where rc is a linguistic possibility-value such as quite 
possible, very possible, more or less possible, etc. ? Since our intuition regarding the 
behavior of possibility distributions is not well-developed at this juncture, the answer 
suggested in the following should be viewed as tentative in nature. 

For simplicity, we shall interpret the qualifier "possible" as "l-possible," that is, as 
the assignment of the possibility-value 1 to the proposition which it qualifies. With this 
understanding, the translation of"X is F is possible" will be assumed to be given by 

X is F is possible ~ l'la(x)=F +, (4.21) 
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in which 

F + =FO)I-I 

where II is a fuzzy set of Type 2 la defined by 

(4.22) 

/Zn(U) = [0, 1], ueU, (4.23) 

and ~) is the bounded sum defined by (4.11). Equivalently, 

/tr+ (u)= [#r(u), 1], u~U, (4.24) 

which defines/# + as an interval-valued membership function. 

In effect, the rule in question signifies that possibility qualification has the effect of 
weakening the proposition which it qualifies through the addition to F of a possibility 
distribution H which represents total indeterminacy 14 in the sense that the degree of 
possibility which it associates with each point in U may be any number in the interval 
[0, 1]. An illustration of the application of this rule to the proposition pa=X is small is 
shown in Fig. 1. 

/*small 
Fsmoll + 

[ 
0 

Fig. 1. The possibility distribution ol "'X is small is possible". 

As an extension of the above rule, we have: If 

X is F-oI-la~x)=F 

then, for 0<0t<  1, 

X is F is ~t-possible--, Ha(x) = F + 

(4.25) 

(4.26) 

where F + is a fuzzy set of Type 2 whose interval-valued membership function is given 
by 

#r+(u)=[~. ^ l , r (u ) ,~ ) ( l -p ,~ (u ) ) ] ,  ueU. (4.27) 

t3The membership function of a fuzzy set of Type 2 takes values in the set of luzzy subsets of the unit 
interval [5.6]. 

J41-1 may be interpreted as the possibilistic counterpart of white noise. 
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As an illustration, the result of the application of this rule to the proposition p ~X is 
small is shown it~ Fig. 2. Note that the rule expressed by (4.24) may be regarded as a 
special ease of (4.27) corresponding to ct = 1. 

# 
/-F /-F" 

I I " - - - -  

4 

0 
u 

Fig. 2." The possibility distribution of"X is small is e-possible". 

A further extension of the rule expressed by t4.25) to linguistic possibility-values may 
be obtained by an application of the extension principle, leading to the linguistic 
possibility qualification rule: 

If 

X is F-- ,  Ha~x) = F 

then 

X is F is n-+HA(x)=F + (4.28) 

where F ÷ is a fuzzy set of Type 2 whose membership function is given by 

/@(u)- { =>c (rrA~r(u)) n ( ~ o  (rr~ (1--gF(U))))}, (4.29) 

where rc is the linguistic possibility (e.g., quite possible, almost impossible, etc.) and o 
denotes the composition of fuzzy relations. This rule should be regarded as speculative 
in nature since the implications of a linguistic possibility qualification are not as yet well 
llllde:'qlTr~d 

An alternative approach to the translation of "X is F is n" is to interpret this 
proposition as 

X isF is ~,-: Poss{X isF} =n, (4.30) 

which is in the spirit of (4.20), and then formulate a rule of the form (4.28) in which IIA(x) 
is the largest (i.e., least restrictive) possibility distribution satisfying the constraint 
Poss{X is F} =n. A complicating factor in this case is that the proposition "X is F is n" 
may be associated with other implicit propositions such as "X is not F is [0,1J- 
possible," or "X is not F is not impossible," which affect the translation of"X is F is n." 
In this connection, it would be useful to deduce the translation rules (4.21), (4.26) and 
(4.29) (or their variants) from a conjunction of "X is F is n" with other implicit 
propositions involving the negation of"X is F." 

An interesting aspect of possibility qualification relates to the invariance of 



Fuzzy sets as a basis for a theory of possibility 27 

implication under this mode of qualification. Thus, from the definition of implication 
[6], it follows at once that 

X is F=~X is G if F c G. 

Now, it can readily be shown that 

F c G = ~ F  + c G + (4.31) 

where c in the right-hand member of (4.31) should be interpreted as the relation of 
containment for fuzzy sets of Type 2. In consequence of (4.31), then, we can assert that 

X is F is possible=,,X is G is possible if F ~ G. (4.32) 

5. Concluding remarks 

The exposition of the theory of possibility in the present paper touches upon only a 
few of the many facets of this--as yet largely unexplored--theory. Clearly, the intuitive 
concepts of possibility and probability play a central role in human decision-making 
and underlie much of the human ability to reason in approximate terms. Consequently, 
it will be essential to develop a better understanding ofthe interplay between possibility 
and probability--especially in relation to the roles which these concepts play in natural 
languages--in order to er, hance our ability to develop machines which can simulate the 
remarkable human ability to attain imprecisely defined goals in a fuzzy environment. 
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