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Section I 
 
 

The course of everyday events reversed in time would 
contain many miracles. We have all seen movies run backwards: 
broken glasses resurrect themselves, newspapers emerge from 
roaring flames; chaos gives way to order without apparent cause. 
Though not so easily portrayed by the camera, in the reversed 
course of events there would be many uncaused coincidences among 
things distant in space and time. Consider the following 
sequence: two packs of cards are put in the same order, one pack 
removed to a distant place and both shuffled. Seen backwards, 
two packs of cards, shuffled in different places, would 
miraculously come into the same order. More generally, the loss 
of some resemblance between distant objects due to their decay 
or destruction would seem, reversed in time, like the miraculous 
emergence of that resemblance. 

 
To say that an event reversed in time would seem 

miraculous is to say that the known laws of nature which bear on 
that event are asymmetrical in time. This is the case with most 
laws, especially those which are relatively particular, which 
bear on limited ranges of phenomena. And yet the laws of 
mechanics, which tie together so many particular laws and to 
which science largely owes its unity and power, are symmetrical 
in time. This suggests that time symmetry is the more 
fundamental condition of nature. In this paper I shall argue 
that it is also the more general condition; that the 
asymmetrical laws of the everyday world are special cases of 
symmetrical laws, and that their asymmetry may not be perfectly 
realized. Thus decay, destruction, learning, forgetting may 
sometimes occur reversed in time; I suggest that these 
occurrences explain the psychic phenomena. 

 
In the present paper I hope to take a first step towards 

formulating a unified theory which includes present day physics 
and which removes the anomalous aspect of the psychic phenomena. 
The point of departure has been suggested: to find a law which 
will allow for certain familiar processes occurring reversed in 
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time. The phenomena of precognition suggests that these should 
include something like memory, or more generally, the retention, 
transfer and destruction of information. Thus our first task 
will be to find a way of describing memory, so conceived, which 
remains intelligible reversed in time. Such a description must 
be quite general, and must bring out those laws which 
characterize a memory process as such. 

 
Most laws of nature are formulated in terms of causes and 

effects. However, I believe it would be unwise to employ causal 
descriptions in the first stages of our inquiry. This point 
requires some expansion. Part of the meaning of "A causes B" is 
that A is always accompanied by B. Another and very important 
part is that we can imagine ourselves controlling A and 
independently observing B. An electric current in a light bulb 
is always accompanied by light, but so is light in a light bulb 
always accompanied by current. Yet we say that the current 
causes the light because we are accustomed to switching on the 
current and observing the light. There are situations where our 
habits are more symmetrical. Thus a certain current in the light 
bulb is always accompanied by a certain voltage and conversely. 
If we wish to discover the relation between voltage and current 
we could set up an experiment in which we control the current 
and measure the voltage, in which case we would say that the 
impressed current causes a certain voltage, or an experiment in 
which we control the voltage and measure the current, in which 
case we would say that the impressed voltage causes a certain 
current. What happens in the light bulb is the same in both 
cases; what has changed is in the relation between the light 
bulb and our will. 

 
The concepts of cause and effect are of central 

importance in the applied and experimental sciences, but in the 
theoretical sciences, especially physics and astronomy, they 
have played a much smaller role. This is understandable, since 
in trying to find the most intelligible view of the way things 
are, we don't want to be encumbered by premature or excessively 
general commitments concerning what we can do. Thus in the 
present investigation I believe it is important that we first 
obtain a clear idea simply of what would happen if a process of 
memory were reversed in time, without attempting to decide what 
is cause and what is effect. 

 
It must not be thought that I regard a causal analysis of 

reversed memory as meaningless or unimportant; quite the 
contrary. In particular it is of the first importance to know 
whether a cause can occur after its effect. I believe most 
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people would agree that this had happened if the following 
conditions were realized: 

 
1) An event A is always accompanied by a prior event B. 
 
2) After the occurrence of B we can choose whether or not 

A occurs. 
 
3) We can observe conclusive evidence of whether or not B 

occurs. 
 
Our observation of the evidence must come after our 

choice, for if we observed that B did not occur, we would no 
longer be free to choose that A occur. However, the problem 
arises as to what would happen if we should try to observe 
before we choose, especially if the choice would falsify our 
observation. 

 
Then I throw a ball, the force which I exert on the ball 

causes it to move. When I catch a ball, the succession of 
velocities and forces is precisely the time reversal of those in 
some instance of throwing the ball, exemplifying the time 
symmetry of the laws of mechanics. Yet there is nothing about 
catching a ball that suggests time reversed causality in the 
above sense; we would say that the velocity of the ball causes a 
force on my hand, or that my hand exerts a force which stops the 
ball. Similarly, when I remember an event in the past, the event 
certainly causes the memory, but we must not assume that this is 
also the case when the memory is of a future event. It may be 
that reversed memory is subject to a causal analysis just as 
"normal" as that of catching a ball. I don't believe that this 
matter can be settled on the basis of the results in the present 
paper. 

 
Let us return to the problem of describing memory. Our 

experiences of our own memory, that is, our experiences of 
learning, bearing in mind, recalling, and forgetting, offer 
little help, for we have no way of identifying the time 
reversals of these experiences, if indeed there are such. 
However, our experience with writing, reading and erasing, i.e.,  
with making and using records, seems more promising. Since 
records often function interchangeably with memories, there must 
be something essential in common. Most psychologists today 
postulate that our memories are associated with physical traces 
in our nervous system, which presumably are formed, transferred 
and erased like records on paper or "memory" traces in a 
computing machine; whatever the case, in the present paper we 
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shall be concerned with only those features of memory that can 
be found in the behavior of physical traces. 

 
For us the important thing about physical traces is that 

their behavior can be described in terms of motion, the motion 
of atoms, molecules, electrons, etc. Motion reversed in time is 
still motion; thus if we can discover those peculiarities of 
aggregate atomic motion which identify remembering and 
forgetting, the same peculiarities of the reversed motion should 
identify reversed remembering and reversed forgetting. We can 
then contemplate two possibilities: First, that there actually 
are aggregates of atoms whose motion displays reversed memory, 
second, that there are objects as yet unidentified whose 
aggregate behavior is compounded from their individual behavior 
in a way that embodies the same formal relation as that of 
reversed "physical" memory to atomic motion. I shall offer what 
seems to me strong evidence for the second possibility and 
equivocal evidence for the first; in particular, I doubt whether 
there is reversed memory in the atoms of the brain. 

 
Let us further specialize our initial inquiry by 

considering only those traces in which information is 
represented by a spatial arrangement of atoms (this excludes the 
circulating and magnetic memory traces found in computing 
machines; these require a more complicated but not essentially 
different analysis). Such a trace will persist, i.e. its 
information will be remembered, as long as too many atoms do not 
move in a way that would break up the pattern. Thus the process 
of forgetting, which will concern us first, may be defined as 
the disappearance, of a pattern, which accompanies a suitable 
aggregate motion of the constituent atoms. We know that the 
atoms of any object are in constant uncoordinated motion whose 
energy constitutes the heat of that object; this thermal motion 
may lead to the forgetting of a suitably isolated trace. Let us 
consider a simple example where this happens in a fairly short 
time. 

 
Suppose I take a fountain pen (the old fashioned kind, 

not a ball point) and write my name in a dish of water. There 
results a trace whose persistence is defined by the condition 
that in some regions of the water (the letters) there is a much 
greater concentration of ink molecules than in the rest. The 
trace slowly becomes more diffuse until it is illegible. Finally 
the ink is distributed uniformly throughout the dish; in this 
state we may regard the trace as completely forgotten. 
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The atomic explanation of this phenomena goes roughly as 
follows: Since water is a liquid, the ink molecules are free to 
move independently to any part of the dish, thus the motion of 
their heat causes them to wander in an uncoordinated way, each 
disregarding, as it were, the motion of the others. Thus more 
ink molecules go from regions of high concentration to regions 
of low concentration than go the other way, and the 
concentration of the whole tends towards uniformity. 

 
Consider the disappearance of the trace reversed in time. 

Starting from a uniform distribution in the dish, the ink 
gradually concentrates into the letters of my name. First let us 
inquire: Is there anything in our common experience which 
resembles this, in the way that catching a ball resembles the 
time reversal of throwing a ball? Superficially the answer seems 
to be yes, it resembles the concentration of a liquid in a 
selective field of force; something like it would happen in a 
suitably shaped and polarized electric field if the ink 
molecules were ionized. When we examine the phenomena on the 
molecular level, however, the resemblance disappears entirely. 

 
In the absence of a force field, a typical molecule of 

ink moves an approximately equal amount in every direction. In 
the presence of a force field, although the molecule's motion is 
still largely random, there is more motion in the direction of 
the force, with the result that it and the others drift in that 
direction. Since the first condition is obviously symmetrical in 
time, the tendency towards concentration in reversed forgetting 
cannot be the result of such a drift;* in fact it seems to result 
from an enormous number of coincidences in seemingly random 
changes of direction of the various molecules. There is no 
counterpart to such coincidences in our common experience, 
except possibly the psychic phenomena. 

 
More generally, if we conceive of forgetting as the loss 

of order or structure due to the uncoordinated motion of parts, 
the time reversal of forgetting will contain many coincidences 
which we should have an awkward time explaining in terms of 
forces or other familiar agencies. What force could put Humpty 
Dumpty together again? 

 

                                                           
* Of course the aggregate of molecules shows a surplus of motion towards the 
regions of higher concentration; the important point is that the drift of 
each molecule is within its normal range of fluctuation, while this is not 
the case with "forced" migration. 
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To return to our examples: Can we conceive of a process 
in the brain which resembles ink diffusing through water 
reversed in time, and which might explain precognition? With 
such a process, our coming to know of a future event would 
really be forgetting the future event reversed in time. 
Presumably this would occur at some unconscious level, along 
with ordinary forgetting, and the reversed trace would be 
brought into consciousness by the same kind of associative 
devices that bring up ordinary memories. 

 
This simple model of precognition is open to a strong 

objection. We have been treating the time direction of diffusion 
as a property of the dish of water any ink in isolation, but how 
do we know that this direction was not established by the 
interaction of the dish with the pen? If we leave the dish in 
isolation forever traces will occasionally be formed by accident 
which will be forgotten backwards as well as forwards. If a 
trace is formed by the dish interacting with something else, 
such as a pen, it is reasonable to conjecture that it is the 
time direction of the free energy expended in the trace 
formation that establishes the time direction of forgetting. 
Applying this to precognition: whenever we learn of an event by 
sensory means, the information is conveyed to us by energy 
expended to stimulate our senses, and this energy is oriented 
forward in time. Thus it seems reasonable that this information 
could only be forgotten forward in time. 

 
To answer this objection it is necessary to modify the 

ink example somewhat. Instead of writing my name with a pen, I 
will write it by letting a blob of ink diffuse through a 
template in which my name has been punched. In more detail: I 
take a thin flat piece of metal and punch many holes in it so as 
to spell out my name. Then I drop a blob of ink into one side of 
the dish of water. I place the template in the water on the 
other side of the dish and slide it over the blob. The ink 
diffuses through the holes writing my name above the template. I 
slide the template out and the remaining trace is forgotten as 
before. 

 
It seems possible to conceive of the system of water and 

ink blob being reversed in time, while that of the template and 
myself remains forward-going. The template does not leave a 
trace by expending energy but merely by its passive presence. 
Even inserting and withdrawing it should do negligible work on 
the ink since this motion is at right angles to its expansion. 
Thus the time direction of the diffusion should be established 
by that of the energy which inserts the ink blobs and should be 
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independent of the direction of the energy that forms and 
inserts the template. The ink blob may be regarded as a trace 
and its expansion as a form of forgetting; the important thing 
for our precognition model is that the information contained in 
the template is not contained in the blob. If our sense 
impressions form something like a template, they may leave a 
time reversed trace of an event provided our brain later 
acquires something like a time reversed ink blob to diffuse 
through the template. Perhaps the "ink blob" comes from our food 
like ordinary free energy; of course it is not the food that we 
have eaten but the food that we will eat. 

 
In the above example we treated the forward and reversed 

processes as if they were isolated except for the intervention 
of the template. This seems quite implausible; if there are 
processes of reversed forgetting they are probably compounded 
with normal processes and if we hope to discover them we must 
discover the laws of the compounds. I shall propose one such law 
in the present section and another in section three; the latter 
is more general and seems more natural but demands more 
difficult mathematics, so most of the paper will be devoted to 
exploring the consequences of the former. 

 
First we must take a somewhat more abstract approach to 

normal forgetting. Let us perform the following thought 
experiment. We take the dish filled with a mixture of water and 
ink and isolate it from the rest of the world forever. Or rather 
to be more accurate, since the actual dish is not an object of 
thought, let us take an idealized representation of the dish and 
imagine that it preserves certain attributes forever. We might 
choose any one of the following three representations: 

 
1) The dish is idealized as a permanent impenetrable 

barrier (suppose it completely encloses the water). The 
molecules of water and ink are idealized as perfect Newtonian 
particles. The system retains its energy forever and its 
behavior is completely determined by its initial state. 

 
2) The dish is ignored, the water is idealized as a 

permanent container of the ink molecules which are idealized as 
particles undergoing independent random motion specified by 
transition probabilities (e.g. random walk). 

 
3) The system of water, ink and dish is idealized as 

being constrained to a fixed finite set of quantum states, the 
transitions among which are governed by a fixed set of 
probabilities. 
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Define the microstate of the system as the most complete 

description which our idealization will allow. Thus in 1) the 
microstate is the shape of the dish and the position and 
momentum of each of the molecules. In 2) it is the shape of the 
water, the position and perhaps the velocity of each of the ink 
molecules. In 3) it is the quantum state. 

 
Define the macrostate of the system as the distribution 

of ink throughout the water, conceived as a continuous function. 
We know the macrostate if we know the density of ink at every 
point of the water.* 

 
We have been regarding traces as properties of the 

macrostate of the system; we shall now formulate a general law 
of forgetting in terms of the evolution of the macrostate in our 
thought experiment. 

 
If a macrostate occurs once in the thought experiment, it 

will recur in infinite number of times, though perhaps very 
infrequently. Furthermore, every sufficiently simple** macrostate 
will occur. Choose a particular macrostate M. Choose a time 
interval ∆. It can be shown that there exists a macrostate M' 
which almost always follows M after time ∆. Thus if M is the 
concentration of the ink in a quarter inch blob and ∆ is one 
second, then M' might be the concentration of the ink in a half 
inch blob. In almost every instance where the ink becomes 
"accidently" concentrated into a quarter inch blob, it will be 
found in a half inch blob a second later. We shall say that M' 
is the expected state after one second, given state M. The 
expected state will always have a more uniform concentration, 
and in particular, the expected state after a sufficiently long 
time will always be the equilibrium state of completely uniform 
concentration, whatever the initial state. This justifies the 
name of the following empirical law, which holds of the actual 
dish, not the thought experiment. 

 
Law of decay: The macrostate at a later time is always 

the expected state given the macrostate at an earlier time. 
 

                                                           
* Macrostate, like differential, is a limit concept. Statements about 
macrostates become logically rigorous only when paraphrased as rather 
complicated statements about what happens when the number of elements in an 
ensemble (in the above case, molecules) becomes arbitrarily large, or (as in 
the next section) when certain statistical parameters approach zero. Such 
paraphrases seldom serve the purposes of communication. 
** Which can be represented continuously by the limited number of molecules. 
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The purpose of the thought experiment is to enable us to 
define and calculate the expected state. Any of the three ways 
of idealizing the water-ink system, if carried out properly in 
detail, should lead to expected states such that the law of 
decay holds within the limits of experimental error. 

 
Our thought experiment is an example of a very general 

procedure used more or less consciously in all the sciences. The 
scientist wants to investigate a system whose gross behavior is 
deterministic, that is, under suitably uniform conditions of 
environment, a given state is always followed by the same 
"expected" state. He has some knowledge of the microstructure of 
his system which leads him to imagine an ensemble of similar 
systems which are initially in the same macrostate but which may 
differ in their microstates.  He makes certain assumptions about 
the distribution of the various microstates in the ensemble, and 
about the way that the microstates will change with time. If his 
assumptions are fortunate, he will find that most of the systems 
will evolve into the same macrostate, which is the expected 
macrostate in our sense. If his luck holds out, the resulting 
law of decay will predict the behavior of the actual system. 

 
We used the successive recurrences of a macrostate in an 

isolated system to generate the ensemble. This is the method 
used in classical statistical mechanics, where it has the beauty 
that the distribution of microstates in the ensemble is 
completely determined by the laws of Newtonian mechanics. 

 
It should be clear that the law of decay by itself is not 

a simple empirical law; one is tempted to regard it as without 
empirical content as merely a convention of scientific 
procedure. I believe that this would be going too far, for we 
can conceive of perfectly intelligible worlds which the law of 
decay would be of no help in understanding, in particular, our 
familiar world run backwards in time. Furthermore, it may be 
possible to use thought experiments of the kind discussed above 
to illuminate a much wider range of phenomena by generalizing 
the law of decay. 

 
The law of decay seems to formalize our intuitive 

understanding of physical forgetting; uncoordinated motion can 
occur in many more ways than coordinated motions and the former 
always leads to the expected state. Reversed forgetting should 
therefore be formalized by the 
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Law of Reversed Decay: The macrostate at a given time is 
always the state which would be expected from a later state, 
were that later state earlier by the same length of time. 

 
We now return to the question: Is there a law which might 

formalize the behavior of a system containing both forward and 
reversed forgetting? I shall propose a law which has both the 
law of decay and the law of reversed decay as special cases and 
which may apply to some such systems. 

 
Let M and M' be two particular macrostates of the ink 

system. Consider in the thought experiment the class of all 
instances in which M' follows M after time ∆. Even though M' is 
not the expected state it may occasionally occur "accidentally"; 
if it occurs at all it will occur an infinite number of times. 
What can be said about the state which occurs at an intermediate 
time in these instances? If this intermediate time is fixed 
relative to the occurrence of M (say ∆/2 later) the intermediate 
state will almost always be the same, hence we may refer to it 
as the expected state given M and M'.* We can now formulate 

 
The first symmetrical law: The macrostate at a given time 

is the expected state given the macrostates at both earlier and 
later time. 

 
The intuitive meaning of this law may become clearer from 

an example. Let M and M' be the same state, that where the ink 
is in a quarter inch blob. Suppose this state occurs and then 
recurs after ten seconds. Of course this would be impossible 
under the law of decay, but in the thought experiment it will 
occur occasionally. The first symmetrical law (which will 
henceforth be referred to as the first law) says that during the 
intervening ten seconds the ink will behave as "probably" as it 
can; thus the wanderings of the ink molecules will not be 
constrained by any condition other than that they be back in the 
blob after ten seconds. The wanderings cannot be completely 
uncoordinated, but they will be as uncoordinated as possible, 
thus the blob will begin to expand, then contract again. It will 
not expand as rapidly as it would when decaying, for then the 
molecules would have to do an excessive amount of coordinating 
to get back together; better that they spend some of that in 
staying together. 

 

                                                           
* There will be an expected intermediate state for any system in which the 
macrostates are defined as distributions in an ensemble of independent 
systems. 
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The first law clearly has the law of decay as a special 
case. To see that it has the law of reversed decay as a special 
case we note that the statistics of macrostates in the thought 
experiment is symmetrical in time, that is, the states occur 
before a given state with the frequency that they occur after 
it. This symmetry is characteristic of the thought experiments 
in statistical mechanics, and derives from the time symmetry of 
the fundamental laws of mechanics. 

 
Let us briefly consider the relevance of the first law to 

psychic phenomena. Define the constraint on a future state of a 
system as the way in which that state differs from the expected 
state conditioned by a past state. In our last example, the 
recurrence of the blob was constrained in that the blob was too 
small; it might have been constrained to be too large, or too 
irregular, or in the wrong place, etc. It must not be thought 
that constraint has anything to do with destiny or miracles or 
extraphysical guiding forces or what-not. It merely refers to 
the failure of a given thought experiment to provide an 
appropriate law of decay. It may be that with a new thought 
experiment, which takes into account new forces or finer 
micro-structure, the state would not seem constrained. The 
important point at present is this: If, given the old thought 
experiment, the course of events leading to the constrained 
state satisfies the first law, these events will exhibit the 
same peculiar kind of coincidences that we noted in pure 
reversed forgetting. These coincidences will seemingly disregard 
space and time, thus discouraging the attempt to find new micro-
entities or forces which could save the law of decay (I shall 
argue in the next section that we may be able to regard forces 
as resulting from constraints satisfying something like the 
first laws but not conversely). 

 
What sort of events might be constrained so as to lead to 

the psychic phenomena? The first law says that any constraint 
must be such as we would expect from a future constraint; this 
limits the possibilities somewhat, for it seems to imply that 
nothing can be constrained which is completely forgotten, which 
leaves no trace or effect. This does not tell us much about what 
can be constrained, however. We distinguish a spectrum of 
possibilities: On the one hand we might have a completely 
amorphous constraint, which has very little to do with the 
particulars of a person's life; something in his brain might be 
constrained in the way that the ink blob was constrained to be 
too small. If this "blob" were to leave a reversed trace which 
would result in an earlier precognition, then some of the 
person's particular actions would also be constrained, e.g.,  
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his telling someone of his precognition. This leads us to the 
other end of the spectrum, where some peculiarities of a human 
situation are constrained. For instance, the end state of an 
experiment in extrasensory perception might be constrained such 
that the experimenters believe the experiment a success. If the 
experiment was well designed, the most likely course of events 
leading to this state might include the percipient actually 
guessing the targets correctly. If psychic researchers become 
obliged to study constraints such as this, they will clearly 
have to drastically revise their concepts of experimental 
method. 
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Section II 
 
In the first section we contemplated a law which, if it 

held in familiar domains of nature, would result in coincidences 
among events separated by space and time which would be very 
hard to explain by more familiar laws. Since we know essentially 
nothing more about the psychic phenomena than that they exhibit 
such coincidences, it is at least possible that they result from 
the operation of this law. Yet this is a very weak conclusion, 
for the first law asserts much more than the occurrence of 
strange coincidences. If we are to separate it from its 
competitors, we must find phenomena which not only might be 
explained by it, but which clearly exhibit its lawful character. 
Since human events are so complicated and hard to repeat, it 
would seem wise to look first at the behavior of the lower 
animals, or at inorganic nature. In the present section we shall 
do the latter, and we shall see that the first law, with a 
suitable thought experiment, leads to the laws of Newtonian 
mechanics. 

 
It was remarked in the first section that the laws of 

Newtonian mechanics are symmetrical in time. This sharply 
distinguishes them from all other known laws of change which 
apply to the macroscopic world. In the last century this caused 
no embarrassment since the Newtonian laws are deterministic, 
while the others were assumed to be ultimately statistical, 
their apparent determinism deriving from the large number of 
atoms involved. Since all statistical changes were analysed by 
the law of decay, the asymmetry of these laws seemed guaranteed. 

 
In the present century physicists have discovered that 

the Newtonian laws do not apply to sufficiently small particles, 
whose motion is subject to irrepressible fluctuations, given by 
the Heisenberg uncertainty principle. This strongly suggests 
that the Newtonian laws are also statistical, or more precisely, 
that those objects which obey Newtonian laws seem deterministic 
because their motion is an aspect of the behavior of a very 
large number of elementary processes. 

 
Let x be the position of the center of gravity of a 

Newtonian object moving in a conservative force field (to 
simplify the discussion we will suppose that the object can move 
in only one direction). The trajectory of x will satisfy the 
equation: 

F = ma 
 
where F is the force, m the mass and a the acceleration. We can 
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calculate this trajectory if we know the mass, the force field 
(i.e., F as a function of x) and boundary conditions, i.e. 
either the value of x and of dx/dt at a single time or the value 
of x at two times. 

 
If x is a large-number variable, that is, if x bears the 

kind of relation to the changes in some large aggregate of 
elementary processes that temperature bears to the motion of 
atoms, it should be possible to derive the law F = ma from a 
statistical analysis of these elementary processes, just as the 
laws of heat flow have been derived from the statistics of 
atomic motions. The procedure should follow that which we used 
in analysing the ink-water system. We construct a suitable 
idealization of the aggregate of elementary processes which we 
can imagine to be in permanent isolation. This idealization 
should embody the mass and force field as permanent features, 
while allowing that all possible boundary conditions occur by 
accident. The class of expected or most probable trajectories, 
given the accidental occurrences of the boundary conditions, 
should then be the class of trajectories satisfying F = ma. 

  
Consider the conventional way of carrying this out, i.e., 

so as to use the law of decay. The macrostate of the system 
would be defined by the position and velocity of the object; the 
two would fluctuate to some extent independently so that by 
chance they would occasionally come to any pair of values. In 
the vast majority of cases, after the successive recurrences of 
a given pair of values the system would evolve according to F = 
ma, with this pair as boundary conditions. 

 
No doubt systems can be imagined which carry out this 

procedure. But the procedure does not recommend itself, for 
several reasons. First, there is no reason to think that 
velocity has any meaning apart from change of position, thus the 
definition of macrostate is artificial. If the two can fluctuate 
independently, we may sometimes have the velocity going one way 
while the position goes the other, which is absurd. More serious 
is the consideration of time symmetry. The statement that the 
law of decay leads to asymmetrical laws needs some 
qualification, since particular variables of a decaying system 
may exhibit time symmetry, e.g. the voltage and current in an 
electrical oscillator. However, the oscillator is an open 
system; it maintains its oscillation by taking in free energy 
and losing heat, which is quite asymmetrical. If we wish to 
idealize the oscillator as an isolated system, we must introduce 
an asymmetry into its microstatistics which just counterbalances 
the tendency of its voltage and current to decay. The same is 
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presumably true of our Newtonian model; the microstatistics 
would need some sort of "rejuvenating" asymmetry, which seems 
completely artificial. 

 
Now consider the experiment carried out to use the first 

law. The macrostate will be defined simply as the position, 
which will fluctuate so as to occasionally take any pair* of 
values at the beginning and end of a fixed time interval. In the 
vast majority of cases the position will change during this 
interval according to F = ma, with the initial and final 
positions as boundary conditions. 
 

It has long been known that the motion of a Newtonian 
system can be regarded as determined by a variational principle. 
The system is assumed to be initially in one configuration** and 
finally in another, its evolution being governed by the 
condition that a certain integral of the motion is minimized. 
The first law, as applied above, gives a simple statistical 
interpretation of the variational method; that which is 
minimized is the improbability, in the thought experiment, of 
the system's behavior. Given the initial configuration, it may 
be very improbable that the system be in the final configuration 
at the allotted time, but if we are also given that it goes to 
the final configuration, its most probable behavior in getting 
there will satisfy the Newtonian laws of motion. That the 
probability*** of the most probable behavior can be expressed by 
an integral of motion follows from what seems to be the 
characteristic feature of large-number variables: the 
fluctuations in consecutive time intervals are statistically 
independent. It appears that the theory of arbitrary systems of 
large-number variables under the first law is almost formally 
identical with the theory of Newtonian motion. The assumptions 
we shall make will be such as to simplify our cases; dropping 
them would mean that mass is no longer constant, that the 
coordinates are no longer rectangular, etc., but would not 
destroy the essentially Newtonian character of the motion. 

 
Before going on to mathematical details it seems in order 

to pause for a moment and take stock -- to view in a general way 
the nature of our enterprise. In the first section we considered 
a thought experiment which provides a statistical means for 
finding the most probable succession of states in those 
processes which we intuitively recognized to embody forgetting 

                                                           
* Or any pair not too distant. We shall not be concerned with very high 
velocities, which belong in the province of relativity theory. 
** The configurations are only of positions, not velocities. 
*** Or more accurately, its logarithm. 
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or decay. We saw that the same thought experiment provides a 
more general statistics which would give the most probable 
succession of states in a process embodying both decay and time-
reversed decay. After remarking its relevance to the psychic 
phenomena, we inquired whether there is anything in nature which 
exhibits the lawful character of these statistics, preferrably 
in a simple quantitative way. We found (with details still to 
come) that if any collection of things whose collective behavior 
is characterized by large-number variables exhibits these 
statistics, the large-number variables will behave according to 
Newton's laws. Now, where does this leave us? It seems that 
there are two hypotheses up for test: 

 
1. There are some processes in nature satisfying the 

first law, for a suitable thought experiment. 
 
2. There exist elementary things whose collective 

behavior, satisfying the first law, makes up the motion of large 
objects. 

 
If these elementary things do not exist our derivation of 

Newton's laws is a mere mathematical curiosity, which does not 
further the case for the first law. It would be very helpful if 
we had some independent knowledge of the elementary things. Is 
it possible that they are to be found among the known micro-
entities -- atoms, electrons, etc.? I very much doubt it, for 
these things satisfy laws which are sufficiently close to 
Newtonian to suggest that they are individually subject to 
something like first law constraints, and that the motion of a 
large object is merely the sum of the motion of its atoms, in 
the way that the heat in a pail of sand is merely the sum of the 
heat in the grains of sand, and has nothing to do with the 
motion of the grains. Furthermore, the statistics of atomic and 
particle notion is to some extent covered by statistical 
mechanics, and in the simple cases we know of seems to be pure 
decay. If the elementary things exist, the known micro-entities 
must be composed of relatively small collections of them. This 
could explain why the laws of microscopic motion are more 
complicated than the Newtonian laws (ten musicians playing 
different tunes make a complicated polyphony, a million 
musicians merely make a hiss). 

 
Our knowledge of elementary things will probably have to 

come from very indirect pieces of evidence which will tend to 
confirm or modify our theory as a whole rather than adding to it 
separately. In this respect it resembles our knowledge of atoms 
rather than e.g. our knowledge of cells in biology. The history 
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of atomic theory shows certain parallels to our present inquiry 
of which we may profitably take note. In the eighteenth and 
nineteenth centuries it was found that the atomic hypothesis, 
together with certain statistical assumptions, led to the laws 
governing a wide range of macroscopic phenomena. Yet no one had 
ever seen, heard, measured or otherwise encountered a single 
atom, and the phenomena were all amenable to alternative 
explanations in terms of continuous "fluids" subject to 
deterministic laws. As late as 1905 W. Ostrand contended that 
the atomic hypothesis was the sort of speculation that had no 
place in science. The laws explained by atoms were all stated in 
deterministic form; their statistical interpretation was of the 
expected behavior of large-number variables or fluid 
macrostates. It was apparently Einstein who first realized that, 
due to the finite number of atoms involved certain phenomena 
should exhibit measurable fluctuations from their expected 
behavior; the magnitude of the former should be predictable from 
the same statistics that give the latter. His successful 
analysis of Brownian motion on this basis effectively ended 
opposition to the atomic hypothesis, for there was no longer a 
reasonable continuous alternative. 

 
It seems to me that the Heisenberg uncertainty principle 

provides an argument for the existence of elementary things, 
something like that which the laws of Brownian motion provide 
for the existence of atoms. We can derive the uncertainty 
principle from the assumption that the center of mass is a 
large-number variable, whose fluctuations are related to the 
mass in what seems to be the only natural way. Let x be the 
center of mass of, say, a water molecule. Suppose the 
fluctuations of x in successive small time intervals are 
independent. Then the probability distribution for the value of 
x after a sufficiently long time will be normal* with the 
expected position as mean, and, assuming the fluctuation rate 
constant, with dispersion proportional to time. Let Dw be the 
dispersion in unit time. If two water molecules do not interact 
at all their fluctuations will be independent, while if they 
interact strongly their fluctuations should be correlated. It 
seems a safe guess that if their energy of interaction is small 
compared with their energy of mass, the correlation should be 
negligible. This is certainly true of the molecules in a glass 
of water, which we shall regard as independent. Let Dg be the 
dispersion after unit time of the center of gravity of all the 
water molecules in the glass. Since the sum of independent 

                                                           
* By the central limit theorem. 
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dispersions is the dispersion of the sum, it is easily seen 
that: 

Dg = Dw/n 
 

where n is the number of water molecules. Let M be the mass of 
the water; M will be proportional to n, hence for some constant 
k: 

 
1 ) Dg = k/M 
 
Thus it is clear that if the dispersion is a function of 

mass alone, this function is given by 1), where k is a universal 
constant. 

 
Suppose that a body starts in a position x and after 

moving uniformly for a very long time T ends at y. In the 
Newtonian idealization the instantaneous velocity is always  
v = x-y/T, but if we take into account fluctuations the 
instantaneous velocity will be unrelated to v. If we want to 
estimate v at the initial time we could take the average 
velocity over an interval t from the beginning; the longer is t 
the better the estimate. However, the longer we take t the more 
will the position at the end of t err from the ideal position of 
the Newtonian trajectory which starts at x and travels at v. It 
is easily seen from 1) that the product of this error times the 
error in momentum based on the velocity estimate is the constant 
k; taking k as Planck's constant, this is the uncertainty 
principle. 

  
The above argument for the existence of elementary things 

is of course independent of the argument from the first law. 
However, the two strongly reenforce each other because of the 
following coincidence: The relationship between mass and 
dispersion given by 1) is precisely that in the thought 
experiment when the first law is interpreted as giving Newton's 
laws. Thus there is a parallel with the case for atoms. A 
certain thought experiment with atoms leads to expected states 
which, with the law of decay, give the laws of thermodynamics, 
and exhibits fluctuations matching those of Brownian motion, 
etc. A certain thought experiment with elementary things leads 
to expected states which, with the first law, gives Newton's 
laws of mechanics, and exhibits fluctuations which may be 
interpreted as the uncertainty principle. 

 
It may seem strange to consider arguments for the 

existence of things about which we have assumed absolutely 
nothing except that they are very numerous -- which as yet have 
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no individual features. In that we are trying to build up a 
plausible theory on the basis of very indirect evidence, it is 
important that we not start with overly detailed hypotheses, for 
the erroneous details may be hard to weed out, especially when 
we become used to them. On the other hand, it seems to me a 
great mistake to regard the elementary things as a mere 
convenience, to be judged by their usefulness in physics. It may 
be that the laws of physics express as little of what really 
happens to these things as the diffusion equation would express 
of the scattering of a company of soldiers under bombardment. 
Our ignorance should stimulate our curiosity. Are we dealing 
with little billiard balls or cavorting angels? Are the things 
totally exotic or are they perhaps already known to us in 
another context? Are they uniform or diverse in their qualities? 
Are they small or large or are they perhaps not in space at all? 

 
Let us return to the derivation of Newton's laws. Since 

we will often have occasion to contrast the expected states of 
the first law and the law of decay, it will be useful to have a 
distinguishing terminology. An expected state conditioned by 
both a past and future state will be called a constrained state, 
while expected state, without further qualification, will mean 
expected state conditioned by a past state alone. The same 
distinction will be made of trajectories, velocities, moments, 
accelerations, etc., thus a constrained trajectory will be a 
succession of constrained states conditioned by the initial and 
final states, an expected trajectory a succession of expected 
states conditioned by the initial state. 

 
First, let us consider an isolated system with only one 

position variable, such as that discussed at the beginning of 
the section. This system will be characterized by several 
assumptions about x. 

 
Axiom 1. x defines the macrostate of the system, and the 

system provides both expected and constrained states. 
 
We must now pay a slight penalty for our cavalier logic 

in treating macrostates. Since x is always undergoing small 
fluctuations, clearly we do not intend by axiom 1 that the exact 
same value of x almost always recurs as the expected state, but 
rather that the conditioned values of x are almost always close 
to the expected value which is their average or expectation. 
With this understood, we can retain our old way of speech with 
"macrostate" regarded as the approximate value of x; in the 
limit as the fluctuations approach zero this becomes the exact 
value. 
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Axiom 2. The fluctuations in x during a sufficiently long 

time interval are independent of the fluctuations before or 
after that interval. As we remarked before, this seems to be the 
characteristic property of a large-number variable, and says, in 
effect, that the elementary processes are to some extent random 
and independent. 

 
Axiom 3. The expected trajectories are continuous. 
 
Axiom 4. The fluctuations of x during a fixed time 

interval are independent of time and of the initial value of x. 
 
Axiom 5. The statistics of x are symmetrical in time. 
 
The last two axioms are conditions of symmetry which 

simplify our case. 
 
Our problem is now this: given an initial position x1 and 

a final position x2 after time T, what is the constrained 

trajectory between these positions? This means: if we observe 
those instances in the thought experiment where x1 occurs 

followed T seconds later by x2
* what, in the vast majority of 

instances, will be the succession of intermediate states? 
 
As we observed before, axiom 2 implies that after a 

sufficiently long time the fluctuations will be normal. In the 
thought experiment this means that if we observe the successive 
recurrences of the position x1, the positions after t seconds 

will be normally distributed about the expected position; the 
dispersion is proportional to t. Due to the enormous number of 
atoms in a macroscopic body, t may be extremely short for our 
purposes, of infinitesimal length. Let us define mass by 
equation 1), for convenience taking k as unity: 

 
 2) M = l/D 

 
where D is the dispersion after one second. Our unit of mass is 
extremely small; if k is Planck's constant and distance is 
measured in centimeters unit mass is about 7x10-27 grams. This 
gives us some idea of how small the fluctuations must be; the 
expected deviation from the mean of a one gram object after one 
second is only about 10-13 centimeters. 

                                                           
* The pair x1 and x2 may never occur exactly; since we are only concerned with 

the approximate position, it suffices that the system come arbitrarily close. 
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We will evaluate the constrained trajectory by regarding 

it as a very large (and of course very improbable) fluctuation 
from the expected trajectory. By axiom 2 the probability P of 
any trajectory (not necessarily the most probable) joining x1 

and x2 conditioned by x1 is the product of the probabilities of 

the successive fluctuations in time intervals dt, conditioned by 
the initial positions in these intervals. Let us evaluate the 
probability p of the fluctuation in an interval dt, assuming the 
trajectory is continuous. During dt the motion may be regarded 
as uniform; furthermore, this must be the most probable motion 
leading from the initial to the final point during dt.* Thus p 
may be identified with the probability of the deviation of the 
final point from the expected final point. Let the initial point 
be x. By axiom 3 there will be an expected velocity at x; call 
it V; call the actual velocity v. At the end of dt the expected 
position will be x + Vdt, the actual position x + vdt, the 
deviation (V-v)dt. The distribution is normal with dispersion 
Ddt = 1/Mdt, hence we can express p approximately: 
 

3) p = (½ M(V-v)2dt)-½ * e½ M(V-v)
2dt . 

 
Taking the negative logarithm of both sides: 

 
4) -log p = ½ M(V-v)2dt plus negligible term. 
 

The negative logarithm of the probability of the entire 
trajectory can be written:  

 

5) -log p = 
t1
∫t2 ½ M(V-v)2dt 

 
where t1 and t2 are the times of occurrence of x1 and x2 

respectively. The constrained trajectory will be that for which 
this expression is a minimum. 

 
We can repeat the above argument regarding the trajectory 

as a large fluctuation conditioned by the final state x2. Since 

the statistics are symmetrical in time, the expected velocities 
conditioned by the final state will be the negatives of those 
conditioned by the initial state and we can write for the 
overall probability P' 

 

                                                           
* If the most probable overall trajectory is continuous, which it must 
certainly be. 
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6) -log p = 
t1
∫t2 ½ M(V+v)2 dt . 

 
Since the quantities under the integral signs in both 5) and 6) 
are always positive and each is a minimum for the constrained 
trajectory their sum must be a minimum. Let A be ½ the sum. Then 

 

7) A = 
t1
∫t2(½ Mv2 + ½ MV2) dt 

 
The expression ½ Mv2 + MV2 may be regarded as the Lagrangian of a 
Newtonian object of mass M in potential energy field given by 

 
8) U = - ½ MV2 
 
Thus when the expression 7) is a minimum the trajectory 

will satisfy 
 
9) F = Ma 
 

where the force is defined as usual as the negative gradient of 
the potential field: 

 
10) F = -∂U/∂x . 

 
The formal resemblance between the terms for kinetic and 

potential energy is striking, but it becomes more so when we 
examine the meaning of equation 5). The negative logarithm of a 
probability has become familiar in recent times as a measure of 
information; in equation 5) this seems not inappropriate. 
Suppose that the basic things were people who in the case of 
pure decay are completely out of communication; each makes a 
series of decisions disregarding the others, and x measures some 
aspect of the totality of what is decided. The lack of 
coordination among the decisions ensures that x follows the 
expected trajectory. Suppose that we wished to steer the 
trajectory of x to something other than the expected by 
instructing the people what to decide, a separate instruction 
being required for each decision. Then the least possible number 
of words in all the instructions should be proportional to -logP 
of equation 5). To move a mass of one gram a distance of one 
centimeter in one second when it is expected to remain at rest 
would require a hundred thousand billion times as many words as 
are in all the books in the library of congress, which is a hint 
of the enormous number of things which must be involved in 
macroscopic motion. 
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Referring to equation 5) we see that the kinetic energy 

gives the amount of information required per second to sustain 
the object in uniform motion if it is not in a potential energy 
field. In constrained motion this information would all be 
“remembered” from the future. Symmetrically, the negative 
potential energy gives the time rate of information required to 
maintain the object at rest in a potential field. I suspect that 
this relationship between energy and information is fundamental, 
and will be retained in the generalizations of the first law 
necessary for a more complete physics. 

 
The Newtonian laws for any number of objects in three 

dimensions* can be derived by a straightforward extension of the 
above analysis, which will not be carried out here. Axioms 1 
through 5 are simply generalized, and we add a sixth axiom 
saying that the objects fluctuate independently. 

 
I shall conclude this section with a brief discussion of 

a more specialized thought experiment which seems to throw some 
light on the relation of energy and mass, and which may provide 
a small clue as to the nature of the elementary things. Suppose 
that in an aggregate of elementary things there occur two kinds 
of instantaneous events, call them left events and right events. 
The two kinds of events occur at completely random times, but, 
during unconstrained motion, at constant and equal rates. If R 
is the number of right events per second then R is constant in 
time and equal to the number of left events per second, and the 
probability of a right (or of a left) event in a sufficiently 
small time dt is always Rdt. The sequences of left and right 
events form independent Poisson processes. 

 
Assume that the center of mass x is related to the left 

and right events in any way so that over a period of uniform 
motion the approximate velocity of x is proportional to the 
excess of right over left events divided by the total number of 
events. It is convenient to have an exact definition of x even 
though this be artificial and without a counterpart in nature.* 
Suppose that x always travels with the speed of light but in 
alternate directions, increasing after a right event and 
decreasing after a left event; this clearly satisfies the above 
assumption. It also satisfies axioms 1 through 5. The expected 

                                                           
* In rectilinear coordinates. There may be new problems in general 
coordinates. 
* There is no reason to think that the center of mass of an actual object has 
more than an approximate value. 
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velocity is always zero so there is no potential field and the 
constrained motions are uniform. 

 
Define mass as before, M = 1/D where D is the dispersion 

after one second. It is easily seen that at low speeds the mass 
equals the total number of events per second divided by the 
square of the speed of light, M = 2R/c2 . We shall also be 
concerned with high speeds, beyond that at which Newton's laws 
hold; we don't yet know the meaning of mass at these speeds. 

 
The energy is purely kinetic; at low speeds this is ½ Mv2, 

and is equal to the information rate -logP due to the 
constraint, where P is the probability of v occurring 
"accidentally" for one second. Let us assume that the energy at 
high speeds is also given by the information rate. Suppose x 
were constrained to increase at the speed light. This means that 
there would be no left events. Since the left events form a 
Poisson process, the probability of there being none for one 
second is e-R, thus the information rate is simply R. This 
constraint should not affect the probability of the right 
events, hence the "light packet" contains R right events per 
second. 

 
The combined center of mass of two objects given as above 

would ordinarily be the average of their separate centers 
weighted by their masses. The approximate value of the resulting 
variable changes correctly, but its exact value does not always 
change at the speed of light. We can also obtain the correct 
approximate center of mass of the combined object by simply 
adding the right and left events of the two objects and defining 
the exact center as above. This procedure seems more natural, 
and we shall assume it extends to objects at high velocities 
whose mass may not be defined. 

  
Suppose we have two light packets each of energy R but 

traveling in opposite directions. One packet consists of R right 
events, the other of left events, so their combined center of 
mass is at rest and has mass 2R/c2. This means that 
 

E = Mc2  
 

for this system, where E is the energy in the two packets. 
 
In view of the symmetry between kinetic and potential 

energy, the above analysis suggests a picture of the equivalence 
of energy and rest mass: A solid object at rest, were it to 
behave in the expected way conditioned only by the past state of 
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the elementary things, would fly apart in all directions at the 
speed of light. It remains together due to a constraint, the 
information in which is equal to the negative potential energy 
of the mass, 

 
This picture suggests a mechanism for force, or at least 

for those forces between gross objects which can be thought to 
occupy distinct regions of space: The stability of an object is 
a dynamic stability, like that of a wave; the elementary things 
may come and go, for what persists is a pattern. Thus it 
generally happens that the information required to maintain 
stability will change in the proximity of another object because 
of the flux of elementary things to and from the other object. 
The object will travel in such a path as to minimize the 
information required to get to its ultimate destination, thus it 
will deviate from a straight course to be near the other object 
if the stability there is easy, and to be away from it if the 
stability is hard; the result is a force. 

 
More precisely: Suppose that in a moving object, as well 

as in an object at rest, the mass is related to the information 
rate required to hole the object together by 

 
-E = Mc2  

 
where -E is the information rate, regarded as a negative 
potential energy. Of course mass retains its old meaning, at low 
velocities, as the reciprocal of the dispersion rate. Suppose 
the quantity -E is a function of position. If the object is 
subject to something like first law constraint, it will move so 
that the total information required both to move it and to hold 
it together is a minimum. Thus if we identify the total 
information rate with the Lagrangian, the object's motion will 
be Newtonian at low velocities, with potential energy simply 
equal to E; the forces are contained in the way E varies with 
distance, and there is no potential energy other than that of 
mass. 

 
This may also explain the mass of kinetic energy. If the 

object is traveling in a fixed conservative force field, an 
increase K of the kinetic energy will be accompanied by an equal 
decrease of the potential energy in the Lagrangian; since the 
latter is the potential energy of mass and since it is negative, 
there will result an increase in the mass of K/c2. Thus the 
kinetic energy in itself does not actually contribute to the 
mass, but in order for the object to gain kinetic energy it must 
also gain mass. 



Etter 1960  26 

 
There is a seeming anomaly in the above model of force; 

it seems as if stability should be easier in the vicinity of an 
attractive object, harder in the vicinity of a repulsive object, 
and yet the sign of the energy of mass shows that it must be the 
other way around. Suppose the stability of A is easy in the 
vicinity of B. Then A should want to spend as much time as 
possible in that vicinity. In human terms this is attraction, 
but in physical terms it is repulsion, for it means that A 
decelerates while approaching B, accelerates while leaving B. 
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Section III 
 

In view of the suggestive results obtained in the last 
section concerning the relation of energy and mass, the question 
arises whether it is possible to extend the first law analysis 
to high velocities and derive the special theory of relativity. 
We must find a model which exhibits the correct relation between 
the information required to keep an object together and the 
fluctuations of its position, at any velocity. The stability of 
an object is a much more complicated concept than the motion of 
its center of mass, and it seems very doubtful that it can be 
formulated in terms of large number variables. There is more 
hope for an analysis in terms of spatial distribution and flow. 
The first law does not seem well suited to such an analysis.  

 
Not that the first law cannot be applied to 

distributions; we have seen such an application in section 1. 
Rather, the first law is not general enough. Consider the glass 
of water and ink undergoing the following two events: First, it 
starts in the equilibrium state of uniform distribution and 
remains in it, the molecules following independent random 
courses, and second, it starts in the uniform state, remains in 
it, but the molecules follow sufficiently coordinated courses so 
that the ink as a whole slowly rotates. Clearly the macrostates 
cannot be constrained by the first law to bring about the second 
event; even if the first and last macrostates were rotating, the 
intermediate states would not be. And yet the second event is 
quite distinct from the first when regarded as a flow of ink. We 
shall undoubtedly have to take into account flow in this sense 
in an adequate field theory of matter.   

In order to obtain a natural description of flow, I 
believe that we must give up the familiar scientific device of 
regarding the course of events as a succession of states. This 
is not such a radical step, for we seldom employ this device in 
our non-scientific thought. We tend to think of change in terms 
of events. Consider the event of picking up my pencil. As a 
scientist I might regard a particular occurrence of this event 
as a succession of states described by the position and velocity 
of the hand and pencil. However, as pencil user I am concerned 
with something more macroscopic; picking up the pencil means 
something common to many events which differ in details of 
position and velocity. Yet what these events have in common 
cannot be understood by a more general concept of state; there 
is no way of defining macrostate as a class of positions and 
velocities of the hand and pencil such that the concept of 
picking up the pencil can be described as a succession of these 
macrostates. We understand a complex event by breaking it into 
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smaller events which form a familiar or intelligible pattern. In 
science this generally means breaking it into a succession of 
very short events, or states, and also into a collection of 
things which persist through the event and, so to speak, tie the 
states together. The latter decomposition is usually contained 
in our way of describing the former; the description of a state 
contains a description of the permanent things which are 
identified by means of distinguishing marks or labels. To 
understand a flow we must know how its states are tied together, 
that is, which part of the fluid goes where. If the fluid is 
homogeneous its parts have no identifying marks so that its 
states, conceived as what we could observe at successive times, 
do not characterize the flow. Of course, we can imagine labels 
attached to the various parts of the fluid; if the labels remain 
attached the succession of label states, i.e. distributions of 
the labels through space, will describe the flow. Or more 
exactly, since the labels were attached arbitrarily, the flow is 
that which is common to all label flows which differ only in 
their initial distributions of labels.  

 
 We wish to find a decomposition of the complex event 

of a flow into component events whose pattern will contain 
simple regularities which render the flow as a whole 
intelligible. The decomposition of the label flow into label 
states seems very unsatisfactory, for one suspects that 
regularities in their succession have as much to do with 
labeling as with flow. We can dispense with the labels, however, 
if we decompose the flow, not into states, but into changes.  
  

A change, conceived as something connected with an 
earlier and a later time* is a relation between an object at the 
earlier time and the same object at the later time. Sometimes a 
change may be described by properties of the state of the object 
at the two times: "He died" means "He was alive, now he is 
dead." But this is not usually the case; consider "He grew an 
inch." Nor is it the case with flow.  

 
We know the flow of a fluid if, given any two regions of 

space and any two times, we know how much of the fluid which was 
in the first region at the first time is in the second region at 
the second time. This knowledge, for all regions and a given 
pair of times, specifies a change in the fluid from the first 
time to the second, the most detailed change we can describe if 
the fluid elements are indistinguishable. I suggest that these 
changes are the natural time components of flow, as states are 

                                                           
* We sometimes think of changes as occurring throughout a period of time. 
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the natural time components of the motion of distinguishable 
objects. The second symmetrical law will be a principle for 
deriving regularities in the pattern of these changes.  

 
We know the state of the fluid if we know how much fluid 

is in every region of space. But it suffices to know the amounts 
of fluid in the infinitesimal regions, thus the state may be 
specified by a distribution function. Similarly a change* may be 
specified by a six dimensional distribution function which 
gives, for any pair of points, the amount of fluid in the 
infinitesimal region of the first point at the first time which 
is also in the infinitesimal region of the second point at the 
second time.**  

 
Let us perform as thought experiment as before: Consider 

a container of fluid, idealized as a collection of identical 
particles moving to some extent at random, brought into a state 
of permanent isolation. We shall now be concerned with the 
recurrence of changes in the fluid. Let C be a change occurring 
between times T1 and T2. If C' is another change occurring 

within the time interval T1 to T2, we shall say that C contains 

C', or C' is within C. If the fluid is sufficiently random, not 
only all possible states but all possible changes will occur by 
accident an infinite number of times. Consider the successive 
recurrences of C. In the vast majority of these, the changes 
within C will be the same. That is, for any pair of times 
between and fixed with respect to the times at which C recurs, 
in the vast majority of cases the change will be the same. We 
shall refer to this as the expected change conditioned by C, or, 
to distinguish it from the expected change conditioned by a past 
state, as the change constrained by C. As before, the thought 
experiment is used to generate concepts with which we can 
formulate a law which may hold of an actual fluid:  

 
The second symmetrical law for closed systems: The 

changes within a given change C are constrained by C.  
 

                                                           
* The change in a fluid will always mean the most detailed change. 
** If the flow is such that adjacent elements of fluid always remain adjacent, 
a change may be represented by a transformation of the space of the fluid. 
However, if the fluid motion is to some extent random, the fluid elements 
will tend to spread, so that such a transformation would have to be 
discontinuous; if the fluid idealizes the behavior of a finite collection of 
particles, this would be extremely artificial. The distribution function is 
always continuous, for anything which we could reasonably describe as a 
fluid.   
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By a system being closed we mean that no fluid is 
entering or leaving the system. The second law is easily 
extended to open systems, in which form it seems more relevant 
to physics. The flow over a period of time may be specified by 
an eight dimensional distribution function which combines all 
the distribution functions of the changes: call this the flow 
function. Let R be an arbitrary region of space-time within that 
occupied by the flow. The boundary of R is three dimensional, 
hence the flow function confined to that boundary is only six 
dimensional. We shall regard this confined flow function as the 
change in R. Let R and R' be two regions of space-time in the 
thought experiment, where R' is contained in R. Define a 
recurrence of the pair R and R' as a new pair obtained through a 
translation in time. Suppose this is accompanied by a recurrence 
of the change in R. Then the change in the majority of cases in 
the recurrence of R' is the same, the change constrained by the 
change in R.  

 
The second symmetrical law for open systems: If a region 

of spacetime R includes a region R', the change in R' is 
constrained by the change in R. Or equivalently, the flow in a 
region of space-time is constrained by the flow on its boundary.  

 
The second law for open systems holds of the fluid in a 

closed system which satisfies the second law for closed systems, 
but it can also hold of fluid not in a closed system, even fluid 
distributed throughout all of space. We now come to the 
fundamental questions: Is it possible that some aspect of the 
activity of the elementary things can be idealized as a changing 
fluid, an ether, distributed through space and time and 
satisfying the second law? And would the resulting field theory 
be a sufficient basis for mechanics?  

 
We should not submit to the temptation to identify the 

ether with the elementary things. It may be as violent an 
abstraction to regard the things as a fluid as it would be to 
regard a crowd of people as a fluid. Thus even if an ether 
theory, under the second law or any other, leads to all of 
modern physics, it may be put a peripheral fragment compared 
with the understanding to be gained by a more concrete knowledge 
of the things: like Boyle's law set beside modern chemistry. 
Nevertheless, the problem of finding a simple and intelligible 
basis for modern physics is a very pressing one, so for the 
present the etherial aspect of the things should perhaps be 
their chief interest.  
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If the fluctuations in non-overlapping regions of space-
time are independent, the information* in the changes is an 
extensive quantity, and thus the flow can be derived from a 
variational principle. It should be possible to characterize the 
flow in the infinitesimal region of a point-instant by a finite 
set of quantities (e.g. a tensor) and thus the flow as a whole 
by a set of differential equations in these quantities together 
with the boundary change. Unfortunately I do not know how to 
carry out this analysis, nor do I know of an adequate model for 
the ether.  

 
Aside from the possibility of its leading to a unified 

field theory, the second law is relevant to our present purposes 
for two reasons:  

 
1.) It is the simplest conceivable law connecting the 

changes in a random fluid, which lends a certain a-priori 
plausibility to the idea of a fluid being constrained to other 
than its decay behavior. As we remarked earlier, the second law 
generalizes the first; this means that for any succession of 
states of a fluid satisfying the first law there is a flow 
satisfying the second which exhibits this succession. Thus the 
random decisions in a second law flow will exhibit the same kind 
of "miraculous" coincidences that we noted in the ink flow, 
though they only seem miraculous when we regard the flow in 
terms of states rather than changes.  

 
 2.) Suppose that the first law analysis of the last 

section applies to a large collection of identical particles 
regarded as a dynamical system (the state of the collection is 
specified by the position of every particle). We might also 
regard the particles as composing a fluid. If the interactions 
among the particles are sufficiently weak the flow of this fluid 
will satisfy the second law. The molecules of a gas are 
sufficiently large so that at normal temperature their motion is 
approximately Newtonian. Thus if this motion results from first 
law constraint we should expect gas flow to satisfy the second 
law; in fact it seems to satisfy a much more restrictive law. 
This weighs against the present basis for mechanics unless we 
can account for the additional restrictions on that basis. 

 

                                                           
* Defined as -log P, where P is the probability of the change conditioned by 
the distribution of the ingoing fluid. Presumably the Lagrangian of the field 
is the average of forward and reverse information in the infinitesimal 
region.   
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Section IV 
 
In the last two sections we have been contemplating the 

statistics of things as yet undiscovered, whose existence is 
still highly conjectural. Large parts of present day science are 
based on the statistics of things quite well known, both from 
direct observation and from many independent large-number 
effects. In all cases where large-number laws of change have 
been discovered these have conformed to the law of decay. In 
fields like biology and psychology, where our ignorance is still 
very great, it may be that only decay laws have been discovered 
because no one has thought of looking for any other kind. 
However, in the field of thermodynamics our knowledge is much 
more comprehensive, and in the normal range of temperatures, 
pressures, etc., can all be derived from a very natural thought 
experiment with the law of decay. It will be necessary to 
account for this, and more generally, to understand the 
relationship between the statistics of the elementary things and 
of familiar things. At present this understanding seems remote; 
the problems appear to be very complicated. In this section we 
shall briefly consider some of the concepts of statistical 
mechanics, such as entropy and heat, as they apply to systems 
exhibiting reversed decay. 

 
First we must clearly distinguish between thermal thought 

experiments and those of the last two sections which will be 
referred to as ethereal thought experiments. In the former the 
elementary objects are known micro-entities such as molecules, 
atoms, electrons, etc., while in the latter they are unknown. 
The states of the former depend on the velocities of the 
particles; the microstates are specified by the position and 
velocity of every particle, the macrostates by the distribution 
of the particles in the six dimensional phase space of position 
and momentum. The microstates of the latter are unknown, but the 
macrostates depend only on position or spatial distribution. 
Finally, the condition of isolation of the former the energy is 
assumed constant, while in the latter energy is the result of 
constraint. Decay has a very different meaning for the two 
experiments; in the latter it means that the total energy is 
zero. 

 
The ethereal thought experiment is more basic -- we 

should be able to derive the expected thermal states from it as 
well as from the thermal thought experiment. Furthermore it is 
more general, in the sense that the ethereal macrostates and 
changes may contain more information about a system than the 
thermal macrostate. We can conceive of systems for which a 
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knowledge of the hidden ethereal structure is necessary to 
understand the orderly evolution of even the thermal 
macrostates. The special case where the thermal experiment 
renders a system intelligible is probably a degenerate case in 
the same sense that equilibrium is a degenerate case of decay. 
Such systems as have been thoroughly analyzed in statistical 
mechanics are highly simplified, such that even the thermal 
macrostate is specified by a few continuously changing 
variables. The question naturally arises whether such systems 
invariably decay, or whether they may occasionally exhibit first 
law constraints. A general answer to this question is beyond our 
present means, but we shall consider a theoretical argument 
against the possibility of finding such systems under normal 
terrestrial conditions. 

  
For a thermal system under first law constraint the 

change in entropy bears a very simple relation to the 
information in the constraint, as defined in section 2. Let M 
and N be the macrostates of the system at the beginning and end 
of the time interval ∆t. The forward information ∆If is given by 

 
1) ∆If = -log P(M,N) 

 
where P(M,N) is the probability of M conditioned by N at time ∆t 
later. 

 
Similarly the reverse information ∆Ir is given by 
 
2) ∆Ir = -log P(N,M) . 
 
Then the change of entropy ∆S over ∆t is proportional to 

their difference: 
 
3) ∆S = k (∆Ir - ∆If)* 

 
where k is Boltzman's constant. 

 
The relation 3) obtains not only under first law 

constraint but at any two times in the thought experiment and 
thus for any freakish behavior of the system. However, it is 
only under first law constraint that the terms ∆If and ∆Ir 
measure what is forgotten of the initial and final states during 

                                                           
* This follows from the elementary formula P(M and N) = P(M)P(N,M) = 
P(N)P(M,N) from which we derive P(N)/P(M) = P(N,M)/P(M,N); taking the 
logarithm of both sides leads to 3). 
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∆t, which justifies calling them forward and reverse 
information. 

 
During a first law history the quantities ∆If and ∆Ir are 

(separately) additive in time. This suggests that we regard them 
as components of the entropy change. More precisely, define the 
change of forward entropy ∆Sf 

 
4) ∆Sf = k∆If 

 
and the change of reverse entropy ∆Sr 
 

5) ∆Sr = -k∆Ir 
Then 

 
6) ∆S = ∆Sf + ∆Sr 
 
In a system at temperature T an entropy increase ∆S means 

that a quantity ∆q of available energy has degenerated into 
heat, where 

 
7) ∆q = T∆S . 
 
Let us define forward and reversed heat by 
 
8) ∆qf = T∆Sf, ∆qr = T∆Sr . 
 
∆qr is the amount of energy which has "miraculously" come 

from the random motion of the molecules to perform work in 
changing the macrostate. 

 
At normal temperatures (300°K) a very small amount of 

work represents a large amount of information: 
 
9) ∆If ≈ 5x1013 ∆qf 

 
where ∆qf is measured in ergs. This is relevant to 
psychokinesis. It has often been argued by critics of Rhine's 
experiments that the energy required to influence dice would be 
so large that it could be applied to produce more definite 
physical effects such as moving a suspended needle. If the dice 
are influenced by time-reversed energy resulting from a thermal 
constraint this criticism is unfounded. Suppose a die is thrown 
100 times consecutively, and each throw is a hit. The 
probability of this run conditioned by a prior thermal 
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macrostate is 6100, hence the forward information given by 1) is 
about 50. By 9) this represents about 10-12 ergs which, were it 
expended by a force, could not move anything macroscopic. 

 
It is precisely because of the large information content 

of work that we should not expect to find isolated systems in 
which the usual thermodynamic variables exhibit first law 
constraints. The most probable behavior of a system leading to a 
constrained future state is that which minimizes the forward 
information. The reversed work required to steer variables such 
as temperature pressure etc. an appreciable amount from their 
decay courses would represent an enormous amount of information 
which could be much more efficiently spent in "triggering" 
normal agencies to intervene in the system to bring about the 
constrained end state, i.e., the system could not remain 
isolated. 

 
This analysis presupposes that the agencies which could 

be easily triggered (e.g. living beings) are not committed 
elsewhere, i.e. that they are not required to bring about an 
even less probable state in some other system. Thus what we have 
shown is that if thermodynamic variables are for the most part 
unconstrained, as the experimental evidence strongly indicates, 
we should not expect to find occasional systems in which they 
are constrained. 

 
Nevertheless, we may find other aspects of the course of 

events which depart radically from thermal decay behavior. We 
can now contemplate two conditions which might lead to such 
departures first, the thermal macrostate of a system is 
constrained from the future (such a constraint being realized by 
the conspiracy of isolated "chance" events) and second, the 
relevant structure needed to understand the lawful changes of 
the system is not completely described by the thermal 
macrostate. It seems very likely that the latter condition 
obtains in living beings; the crucial question for our present 
inquiry is whether a more complete description of the relevant 
structure of living beings can be formulated in terms of an 
ethereal thought experiment. 

 
In a system which is partly governed by hidden ethereal 

variables the thermal macrostate may be regarded as deviating 
from its decay course on the basis of information injected from 
the ethereal substratum. This information might coordinate 
apparently chance events similarly to that derived from a future 
constraint. However, unlike the latter, the injected information 
will not necessarily be the minimum which would bring about the 
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future thermal macrostate and hence is not related to its 
conditional probability. Thus there is not any simple 
relationship between the injected information and the entropy of 
the system. 

 
Nevertheless the concepts of reversed entropy heat etc. 

may still be relevant to this information. If the ether is 
subject to first or second law analysis, its structures will 
contain traces of both past and future. Injected information 
based on an ethereal trace of the future may behave much like 
that due to thermal constraint, in fact it might even place a 
constraint on the future of a purely thermal system. Suppose a 
man, while playing dice, has a precognition of his wife being 
hit by a car. He has a strong impulse to telephone her and tell 
her not to leave the house. But just then he begins to win 
heavily. He dare not interrupt his winning streak which lasts 
long enough for his wife to get out of the house; when he calls 
her it is too late. The information concerning his wife's 
accident places a constraint on the purely thermal system of 
rolling dice, which win for him as the most probable way to keep 
him from falsifying his precognition. 

 
Whether this example is at all realistic is impossible to 

say; we still have no idea of the relationship between injected 
ethereal information and conscious knowledge or will. More 
generally it is impossible to say whether this information, in 
conjunction with or by lending to thermal constraints, explains 
the psychic phenomena. As we remarked, all we know of the 
psychic phenomena is that they involve strange conditions over 
space and time. In the absence of more definite identifying 
marks, the most that our theory, or any general theory, can do 
at present is to allow for their possibility. 

  
I believe that the first line of experimental inquiry 

should be the search for simple phenomena in inorganic nature 
which are intelligible within the present theory and which 
directly exhibit the peculiarities of the psychic phenomena. 
Certain anomalies have appeared in electrical conduction and 
fluid flow at low temperatures which are very suggestive. Some 
metals appear to lose all electrical resistance at a few degrees 
above absolute zero. Since the conducting electrons interact 
with the metal lattice this phenomena is completely 
inconceivable in classical statistical mechanics -- it 
flagrantly violates the law of decay. The present explanation, 
as far as I can make out, is that although the electrons move 
individually at random, there are certain pairs of electrons 
whose wanderings are correlated so that their net contribution 



Etter 1960  37 

to the current does not change. Could this be an intrusion of 
ethereal information? 

 
I am afraid this paper has raised many more questions 

than it has answered. At least I hope I have established two 
points: that it makes sense to inquire whether memory-like 
processes occur reversed in time, and that the laws of mechanics 
may be large-number laws in spite of their time symmetry. 
Whether the proposed symmetrical laws lead to present day 
physics or explain the psychic phenomena only a much more 
extensive investigation will reveal. 
 
 


	Copyright © 1960 by Thomas L. Etter
	Section I
	F = ma
	Dg = Dw/n


