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Outliers and DFBETA 
 
Outliers can sometimes cause problems with regression results. Outliers are defined by Gujarati (p. 540-
541) as an observation with a large residual – a larger vertical distance between the observation and the 
predicted line than is generally true for the rest of the data. Such observations may have high “leverage” if 
they are disproportionately far away from the rest of the data points. High leverage observations may also 
be “influential”: that is, they pull the regression line toward that observation. Not every high leverage 
observation is an influential one. Below I reproduce a set of three graphs from Gujarati (p. 541). Only in 
graph (b) does the outlier (the asterisk in the box) really matter – it causes the regression line to be 
“pulled” down from what otherwise would be found using the rest of the data (the open circles). In (c), 
the outlier has leverage, but it falls in line with the other observations so the slope is unaffected. In (a) the 
outlier is has a large residual, but is not far from the mean of the independent. Thus only the intercept is 
really affected; the slope is unaffected. 
 

 
 
Dectecting Outliers 
 
There are multiple methods for detecting outliers (see the section in the Stata manual title regress 
postestimation – Postestimation tools for regress). Probably the most popular 
tools is DFBETA. DFBETA is a measure found for each observation in a dataset. The DFBETA for a 
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particular observation is the difference between the regression coefficient for an included variable (say 
age, or education in our well-worn salary example) calculated for all of the data and the regression 
coefficient calculated with the observation deleted, scaled by the standard error calculated with the 
observation deleted. The cut-off value for DFBETAs is 2/sqrt(n), where n is the number of observations. 
However, another cut-off is to look for observations with a value greater than 1.00. Here cutoff means, 
“this observation could be overly influential on the estimated coefficient.” 
 
The Stata command for DFBETA is dfbeta. If you want to know the DFBETA for a single variable, 
use the following command: 
 
dfbeta age 
 
The results are, by default, put into a variable with the name DFage. 
 
To examine the results, use the following commands 
 
list salary age DFage if abs(DFage) > 2/sqrt(950), divider 
list salary age DFage if abs(DFage) > 1, divider 
 
The first command uses the 2/sqrt(n) criteria to identify high-leverage, high influence observations; the 
second uses the 1.00 cutoff. 
 
A second option is to get a measure of DFBETA for all included regressors: 
 
dfbeta 
 
This results in a set of new variables being created, where each has the name DF <var name>. 
 
In the example below first I ran: 
 
reg salary age age2 educ fem 
 
Then:  
 
dfbeta 
 
The command created variables named DFage, DFage2, DFeduc, and DFfem. 
 
To inspect the results I used the following commands: 
 
list salary age DFage DFage2 DFeduc DFfem if (abs(DFage) > 1 | 
abs(DFage2) > 1 | abs(DFeduc)> 1 | abs(DFfem) > 1), divider 
 
list salary age DFage DFage2 DFeduc DFfem if (abs(DFage) > 2/sqrt(950) 
| abs(DFage2) > 2/sqrt(950) | abs(DFeduc)> 2/sqrt(950) | abs(DFfem) > 
2/sqrt(950)), divider 
 
list salary age DFage DFage2 DFeduc DFfem if (abs(DFage) > .2 | 
abs(DFage2) > .2 | abs(DFeduc)> .2 | abs(DFfem) > .2), divider 
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DFBETA is a rule of thumb: drop observations that have too much influence on the regression line, where 
“too much” is defined by the 2/sqrt(n) or 1.00 cutoffs. Choices about outliers are controversial. Some 
statisticians would suggest that dropping valid observations (i.e., ones that conform to the design of the 
survey instrument) is never a good idea: the sample is what it is. Bias may result, or the range over which 
the regression is applicable may change. For instance, in the gender.dta dataset, many of the high-
leverage, high-influence observations are for people who are very old or very young. One strategy may be 
to restrict the nature of the study – to those individuals between 18 and 65, for instance. Yet we lose 
something in the process. 
 
Others would suggest that leaving in outliers can lead to the “crack-using granny” problem I have 
discussed before in class: one observation is allowed to have too much influence over the regression (and 
any research or policy conclusions that flow from it). 
 
One solution is to report findings with and without outliers so that fair readers can make up their own 
minds. 
 
Once again, regression analysis is both an art and a science. Here, we are closer to the art end of the 
spectrum. 


