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Aspect-Oriented Software Development (AOSD) is a relatively  new software development 
paradigm that complements and improves on many contemporary development para-
digms. To this extent, AOSD provides unique and advanced program structuring and 
modularization techniques. The implementation of software applications using AOSD tech-
niques results in a better implementation structure which has an impact on many important 
software qualities such as enhanced reusability and reduced complexity. In turn, these 
software qualities lead to an improved software development lifecycle and, hence, to better 
software.

This document introduces readers familiar with software development to the concepts of 
aspect-orientation. We present why aspect-orientation is needed in modern software de-
velopment and what its contributions are to the improvement of software design and im-
plementation structure. Without delving too much into particular AO technology details, we 
present the various concepts of AOSD. After reading this introduction, the reader will un-
derstand what AOSD is about, know its key concepts and vocabulary  and can find direc-
tions to more elaborate descriptions of concrete AOSD technologies.

1. Introduction
The development of large and complex software applications is a challenging task. Apart 
from the enormous complexity of the software’s desired functionality, software engineers 
are also faced with many other requirements that are specific to the software development 
lifecycle. Requirements such as reusability, robustness, performance, evolvability, etc. are 
requirements about the design and the implementation of the software itself, rather than 
about its functionality. Nevertheless, these non-functional requirements cannot be ne-
glected because they contribute to the overall software quality, which is eventually per-
ceived by  the users of the software application. For example, a better evolvability will en-
sure that future maintenance tasks to the implementation can be carried out relatively  eas-
ily and consequently  also with less errors. Building software applications that adhere to all 
these functional and non-functional requirements is an ever more complex activity that 
requires appropriate programming languages and development paradigms to adequately 
address all these requirements throughout the entire software development lifecycle.
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To cope with this ever-growing complexity  of software development, computer science has 
experienced a continuous evolution of development paradigms and programming lan-
guages. In the early days, software was directly  implemented in machine-level assembly 
languages, leading to highly complex implementations for even simple software applica-
tions. The introduction of the procedural and functional programming paradigms provided 
software engineers with abstraction mechanisms to improve the design and implementa-
tion structure of the software and reduce its overall complexity. An essential element of 
these paradigms is the ability to structure the software in separate but cooperating mod-
ules (e.g. procedures, functions, etc.). The intention is that each of these modules repre-
sents or implements a well-identified subpart of the software, which renders the individual 
modules better reusable and evolvable. Modern software development often takes place in 
the object-oriented programming paradigm that allows to further enhance the software’s 
design and implementation structure through appropriate object-oriented modeling tech-
niques and language features such as inheritance, delegation, encapsulation and poly-
morphism. Aspect-oriented programming languages and the entire aspect-orientation 
paradigm are a next step  in this ever continuing evolution of programming languages and 
development paradigms to enhance software development and hence, improve overall 
software quality.

2. Separation of Concerns
The principle of separation of concerns promotes good design and reusable implementa-
tions. It is a driving factor in the continuous evolution of development paradigms because 
software engineers need appropriate development mechanisms to achieve it. Although the 
object-oriented paradigm already supports this principle quite well, aspect-orientation pro-
vides enhanced approaches and techniques which allow an even better separation of con-
cerns in the entire development lifecycle. Let us first explain what concerns are and what 
their separation means to software development. 

A concern is an interest which pertains to the system’s development, its operation or any 
other matters that are critical or otherwise important to one of the stakeholders [2]. The 
term separation of concerns was originally coined by Dijkstra in [11]: 

Let me try  to explain to you, what to my taste is characteristic for all intelligent thinking. 
It is, that one is willing to study  in depth an aspect of one’s subject matter in isolation 
for the sake of its own consistency, all the time knowing that one is occupying oneself 
only  with one of the aspects.

We know that a program must be correct and we can study  it from that viewpoint only; 
we also know that it should be efficient and we can study  its efficiency on another day 
[…] But nothing is gained – on the contrary  – by  tackling these various aspects simul-
taneously. It is what I sometimes have called “the separation of concerns” […]

The principle of separation of concerns essentially states that each concern that is relevant 
to the software application is best treated separately from the other concerns. This princi-
ple is not only  valid in a software engineering context. To better understand what this prin-
ciple is about, let us first consider it in the context of an architect’s work in the design of a 
building.
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When designing a building, architects do not make one single plan that describes the 
overall structure of the entire building. Instead, they use many different plans that each 
focus on a single part of the building: front and side views, floor plans, cross-sections, 
foundation, drainage system, electrical wiring, central heating, and so on. Each of these 
plans addresses a single concern of the building. They are separated because they are 
supposed to be used by different persons: clients, bricklayers, electricians, plumbers, and 
so on. Their separation makes them easier to understand and facilitates the modification of 
each single concern of the building.

In software engineering, developers also need to identify and implement many different 
concerns. A concern of an application can be related to its functionality. For example, a 
calculator application will need to contain an implementation of the mathematical operators 
and an implementation of a user-interface to represent the calculator on the screen. The 
implementation of the operators and the user-interface are two separate concerns. Con-
cerns can also be related to non-functional requirements such as performance and appli-
cation distribution over a network. The principle of separation of concerns states that each 
of these concerns must be considered in isolation throughout the entire software develop-
ment lifecycle. This requires that software engineers model, design and implement all con-
cerns separately. For example, at the software implementation level, this means that each 
concern is implemented in its own module. Separation of concerns thereby reduces the 
complexity  of each individual module which impacts the application’s evolvability  and re-
usability in a positive way. Concerns that are contained within a single module are rela-
tively easy to reuse, while concerns that are contained in modules together with other con-
cerns, are not.

2.1. Crosscutting Concerns
In object-orientation (which is one of today’s most advanced and wide-spread develop-
ment paradigms), separation of concerns is achieved by decomposing an application into 
individual objects. In an ideal situation, each object represents the implementation of a 
single concern. Object-orientation already provides significant support to achieve this 
through encapsulation, polymorphism, inheritance and delegation. Unfortunately, there are 
still concerns whose implementation will always remain distributed throughout many differ-
ent objects, regardless of the chosen decomposition in objects. These concerns are said 
to cross-cut the other concerns. Common examples of crosscutting concerns are synchro-
nisation policies in multi-threaded systems, error handling, enforcement of real-time con-
straints, fault tolerance mechanisms, and so on. Each of these crosscutting concerns re-

p. 3



quires an implementation that is at least partially scattered over many other modules. 
Crosscutting concerns are problematic because their implementations are tangled with 
other concerns and/or scattered throughout the entire application. The tangling of the im-
plementations breaks the principle of separation of concerns because a single module 
contains the implementation of more than one concern. This complicates the code, ham-
pers reuse of the individual concerns and makes them complex to evolve. The scattering 
of the representation of a crosscutting concern throughout the entire application’s design 
or implementation, renders it particularly hard to evolve because all modules that are 
crosscut need to be evolved. Even worse, the lack of an explicit representation and 
modularisation of crosscutting concerns makes it impossible to reuse them in other soft-
ware applications. This is exactly the problem that can be tackled using aspect-orientation. 
Aspect-oriented software development explicitly represents crosscutting concerns as 
separate entities, solving many of the associated evolution and reusability problems. How 
aspect orientation achieves this is explained in the next section.

A good illustration of crosscutting concerns versus modularized concerns in a software ap-
plication was given by Kiczales et al. in [7]. Consider the following three concerns in the 
Apache Tomcat webserver application: XML parsing (1), URL pattern matching (2) and 
logging (3). These concerns are respectively visualized in the following three figures (taken 
from [7]). The modules (classes) of the webserver’s implementation are visualized as ver-
tical bars. While the first two concerns are well modularized, the logging concern is spread 
across multiple implementation modules. The logging concern in this application is a good 
illustration of a crosscutting concern. 

(1) Implementation of the XML parsing concern (shown in red).
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(2) Implementation of URL pattern matching concern (shown in red).

(3) Implementation of the logging concern (shown in red).

Of course, crosscutting concerns are not limited to object-orientation. Crosscutting con-
cerns can also be observed when the development occurs in other paradigms. Crosscut-
ting concerns even exist in our example of the architectural design of the building. In fact, 
many of the mentioned plans are clearly crosscutting. For example, electrical wiring is a 
crosscutting concern that would be spread throughout all floor plans if it would not be 
drawn onto a separate plan. Crosscutting concerns are also inherent to any kind of de-
composition one would make. This is referred to as the tyranny of the dominant decompo-
sition. It means that there are restrictions (or tyranny) on the software engineer’s ability  to 
modularly represent particular concerns. These restrictions are imposed by the selected 
decomposition technique (i.e. the dominant decomposition) [2]. 

It is also important to stress that crosscutting concerns exist throughout the entire software 
development lifecycle. In other words, crosscutting concerns exist in the implementation as 
well as in the design and analysis artifacts of a software application. In what follows, we 
explain aspect-orientation with a large focus on the software implementation level (i.e. the 
aspect-oriented programming languages). Afterwards, we describe how aspect-oriented 
concepts are treated during other phases of software development (e.g. analysis and de-
sign).
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3. Aspectual Decomposition
To modularize the crosscutting concerns, software developers need a different decompo-
sition technique. Modules in contemporary programming languages and paradigms are all 
based on some form of functional (de)composition (e.g. subroutines, functions, objects, 
components). To characterize these modules, Kiczales [5] coined the term generalized 
procedure: 

Many existing programming languages, including object-oriented languages, proce-
dural languages and functional languages, can be seen as having a common root in 
that their key  abstraction and composition mechanisms are all rooted in some form of 
generalized procedure.

Aspect-orientation proposes a fundamentally new kind of modularisation that goes beyond 
generalized procedures: an aspect. An aspect is a module that can localize the imple-
mentation of a crosscutting concern. The key  to this modularisation technique lies in its 
module composition mechanism. Subroutines explicitly invoke the behaviors implemented 
by other subroutines. In contrast, aspects have an implicit invocation mechanism. An as-
pect’s behavior is implicitly invoked in the implementation of other modules. Consequently, 
the implementers of these other modules can be largely unaware of the crosscutting con-
cern. 

The difference between aspects and generalized procedures is illustrated in the figure be-
low (adapted from [8]). The left-side of the figure shows an object-oriented implementation 
where the concern ‘tracing support’ is modularized in an object. 

The right-side shows the corresponding implementation using an aspect. In the object-
oriented implementation, all other objects need to consistently invoke or call the tracing 
support object (these calls are visualized by the arrows). Although a lot of the implementa-
tion of tracing support is modularized inside a single object, this implementation requires 
that all other objects implement a consistent usage of the tracing support. Adapting the 
tracing support concern might require an adaptation of the other objects that invoke tracing 
support. Removing tracing support will even require to change the implementation of all 
other objects. In contrast, the implementation of the trace support concern as an aspect 
(on the right) ensures that the consistent invocation of the trace support object is captured 
by the implementation of trace support itself. In the figure, the aspect implementation con-
tains all red elements, which includes the tracing implementation and the invocation of 
tracing that would otherwise be spread throughout all other objects. The red line illustrates 
the crosscutting nature of this consistent invocation.

TraceSupport TraceSupport
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The implicit invocation mechanism still requires that the aspect itself specifies where or 
when it needs to be invoked. An aspect’s implementation consequently  consists of two 
conceptually  different parts: the aspect functionality code and the aspect applicability  code. 
The aspect’s functionality code is not essentially different from ‘regular’ code and is exe-
cuted when the aspect is invoked. This invocation of the aspect is determined by  the as-
pect applicability  code. This code contains statements that specify where or when the as-
pect needs to be invoked. In standard AOSD terminology [2], this aspect applicability code 
is referred to as a pointcut expression and the aspect functionality code is referred to as 
the aspect’s advice code. Since a single aspect can consist of multiple different function-
alities that need to be invoked from various different places in the code, an aspect’s im-
plementation can consist of several pointcuts and advice code segments. 

3.1. Join point Models and Pointcuts
In all aspect-oriented programming languages, aspects can only be invoked at some well 
defined and principled points in the program’s execution. These points are referred to as 
join points and the possible kinds of join points are described in a join point model. In 
standard AOSD terminology, the term join point is not limited to program execution but is 
extended to the entire software development lifecycle [2]:

A join point is a point of interest in some artefact in the software lifecycle through which 
two or more concerns may be composed.

A join point model defines the kinds of join points available and how they are accessed 
and used.

Possible kinds of join points in the execution of a program are, for example, assignment 
statements, method or constructor calls, variable references, etc. For each aspect-oriented 
programming language (in short: aspect language), a join point model describes these 
possible kinds of join points and how they can be determined in a pointcut. Since an as-
pect’s behavior can only be invoked at a join point, a pointcut describes the set of join 
points where the aspect’s advice needs to be invoked. More specifically  [2]:

A pointcut is a predicate that matches join points. A pointcut is a relationship ‘join point 
-> boolean’, where the domain of the relationship is all possible join points.

A pointcut is indeed often expressed using a set of dedicated predicates that reason about 
the entire possible set of join points in a software application to determine the correct set 
of join points for a specific aspect. The entire possible set of join points itself is determined 
by the join point model of the aspect language at hand. In our tracing example, the aspect-

TraceSupport
Implemented in advices

Determined by pointcut
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oriented implementation features a pointcut definition that describes exactly those points 
where the object-oriented implementation contains a call to the tracing support object. Of 
course, in the aspect-oriented implementation, these calls are not explicitly present in the 
code but are captured by the aspect implementation through the pointcut definition.

3.2. Advice
We mentioned that the aspect’s advice code (the aspect functionality code) is not substan-
tially different from other code, nevertheless, there are some interesting issues. While 
many aspect languages feature advice code segments that basically  can contain the same 
kind of procedural source code as standard functions or methods in that language, there 
are aspect languages where the advice code is expressed in a different language or even 
in a different paradigm. This is particularly true for domain-specific languages, that focus 
on the implementation of a single kind of crosscutting concern. Some of the earliest aspect 
languages were domain-specific aspect languages. Domain-specific languages are differ-
ent from general-purpose languages because they offer dedicated constructs for the im-
plementation of software in particular problem domains. For example, D is a domain-
specific aspect language for synchronization concerns [12]. It is domain-specific because it 
offers constructs specific to express synchronisation. Although it is not named as such, the 
advice code in D consists of a specification of a synchronization policy in a dedicated no-
tation. 

In the so-called ‘general-purpose’ aspect languages, the implementation of advice often 
features aspect-specific constructs which does make it a little different from regular 
method or function implementations. For example, aspect languages often feature a lan-
guage construct which offers explicit control over the control flow at a specific join point 
that is influenced by the advice. AspectJ is such a general-purpose aspect language 
where the statement proceed() can be used for that purpose. Using this construct, an 
advice can explicitly invoke or inhibit the execution of the original behavior defined at a 
certain join point. Of course, there exist more language features that are specific to advice 
code and specific to particular aspect languages, but these cannot be explained here.

3.3. An example: the synchronized buffer
To illustrate an implementation using aspects, consider the following code fragment taken 
from the implementation of a synchronized buffer. There are two major concerns here: 
buffer functionality and synchronization. The blue code statements are part of the imple-
mentation of the buffer functionality concern. The red code statements are part of the im-
plementation of the synchronization concern. Obviously, the implementations of these two 
concerns are tangled. In this case, we identify that the synchronization concern is the 
crosscutting concern since it also crosscuts other modules (which are not shown here). 
Therefore, we will modularize the synchronization concern in an aspect.
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class Buffer {
  char[] data;
  int nrOfElements;
  Semaphore sema;

  bool isEmpty() {
    bool returnVal;
    sema.writeLock();
    returnVal := nrOfElements == 0;
    sema.unlock();
    return returnVal;
  }}

The buffer implementation with tangled concerns.

From the above code fragment, one can distill that the join point of the synchronization as-
pect and the buffer functionality  concern is the execution of the isEmpty() method. In-
deed, whenever the method isEmpty() executes, we need to execute the synchroniza-
tion locking code. For simplicity, the pointcuts of the aspect shown below capture only this 
join point and are written in red (mind that the aspect is written in pseudo-code). Obviously, 
the advices of the aspect contain the implementation of the synchronization code and are 
shown in green. First, there is a before advice to execute the locking and secondly, there is 
an after advice to execute the unlocking. As such, when the isEmpty() method exe-
cutes, the aspect is implicitly invoked and the before advice executes, followed by the is-
Empty() method body. The after advice is executed when the isEmpty() method exe-
cution finishes. There is no more tangling, the implementation of both concerns is cleanly 
modularized and separated.

before: reception(Buffer.isEmpty)
{ sema.writeLock();}

after: reception(Buffer.isEmpty)
{ sema.unlock(); }

The synchronization aspect

class Buffer {
  char[] data;
  int nrOfElements;

  bool isEmpty() {
    bool returnVal;
    returnVal := nrOfElements == 0;
    return returnVal;
  }
}

The buffer implementation

3.4. A domain-specific aspect-language example: the synchronized stack
An example of a synchronisation aspect in a domain-specific aspect language is given 
below, as well as an excerpt from the stack implementation code that it concerns to. The 
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aspect specifies that the push and pop methods are mutually exclusive and self exclusive. 
This means they cannot execute concurrently. The stack implementation and the synchro-
nisation concern are clearly separated in different modules and the advice code of the 
synchronisation aspect is implemented in a domain-specific language for synchronisation. 

class Stack {
   push(...) { ... }
   pop() { ... } 
   ...
}

coordinator BoundedStackCoord {
    selfExclusive {pop,push};
    mutExclusive {pop,push};
}

3.5. Weavers
Aspect languages rely on a specific kind of compilers (or interpreters), called weavers, that 
compose the aspects’ implementation with the other modules.  Although one could argue 
that weavers are simply compilers for aspect languages and that many weavers are cur-
rently implemented as source-to-source or byte code transformations, there is an entire 
body of research that investigates efficient execution mechanisms for aspect languages, 
implemented through weavers or even aspect-aware virtual machines [16,17]. 

Compilers for aspect languages are called weavers because they need to weave the as-
pect code into the modules that are crosscut by the aspect. Since many of the existing as-
pect languages are extensions to contemporary object-oriented languages, their weavers 
transform the aspect language program into an object-oriented program where the aspect 
code is inserted (or woven) into the object-oriented implementation modules. Some weav-
ers use source code or byte code transformation to achieve this (e.g. AspectJ), while other 
weavers use reflection to achieve the same result (e.g. AspectS). Apart from this technical 
implementation issue, research in weaving techniques focuses on the efficient implemen-
tation of aspect languages through compilation, interpretation and aspect-aware virtual 
machines. Similar to how the concept of virtual method tables is fundamental to the com-
pilation of object-oriented programming languages, aspect-weaving techniques (or lan-
guage implementation techniques in general, for that matter) are being researched to con-
ceive the fundamental techniques for aspect weaving. For example, efficient weaving of 
aspects with complex and dynamic pointcuts or weaving of aspects that can be dynami-
cally removed from the running software application, require sophisticated weaving tech-
niques that are sound and that minimize the runtime performance overhead.

4. Symmetric vs. Asymmetric Decomposition
We have now described the aspectual decomposition technique which introduces a spe-
cial module to modularize crosscutting concerns: the aspect module. This technique is an 
asymmetric decomposition technique because crosscutting concerns are modularized in a 
special kind of module (i.e. an aspect). In contrast, in symmetric decomposition, the same 
kind of module is used to modularize all concerns, wether the concern is crosscutting or 
not. A good example of such a symmetric decomposition technique that allows to modu-
larize crosscutting concerns is Multidimensional Separation of Concerns [23]. 

In multidimensional separation of concerns, each concern of the system is modularized in 
a so-called ‘hyperslice’. A hyperslice contains a decomposition of the program that is ade-
quate for the implementation of a single concern. Consequently, a hyperslice again con-
tains a number of modules. In an object-oriented context, hyperslices contain an imple-
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mentation of a set of (cooperating) objects. Each of these objects contains only the re-
quired implementation elements (methods, variables, ...) for that concern. In other words, a 
hyperslice is a specific view on the entire software application, limited to one concern. In 
fact, multidimensional separation of concerns is a generalisation of Subject-Oriented Pro-
gramming [26].  

As an illustration, consider the following visualisation1 of three hyperslices, each containing 
the implementation of a concern of some software application. Each hyperslice is visual-
ized as a separate UML class diagram, representing the implementation of a single con-
cern of the software application.

 

As one can see from this visualization, the decomposition in hyperslices very much corre-
sponds to the different architectural design plans for the building that we presented earlier 
on. In essence, all modules are of the same kind (a hyperslice or a plan respectively), 
wether they implement a crosscutting concern or not. The entire building’s design is con-
structed by composing all separate design plans. Similarly, the complete software applica-
tion is a composition of all hyperslices. That software application thereby implements all 
the concerns that are implemented in each hyperslice. 

Hyperslices are composed into complete applications using a set of composition rules that 
establishes how the different modules inside a hyperslice need to be composed with the 
different modules in other hyperslices. Hyperslices can easily  contain the implementation 
of crosscutting concerns which crosscut the other hyperslices in ways specified in these 
(separate) composition rules. In essence, these composition rules fulfill the role of the join 
point model and the pointcuts of the aspects. In that respect, the definition of a join point is 
still adequate in the context of these symmetric approaches because it is a point in the im-
plementation of a hyperslice where it can be composed with another hyperslice through 
the specification of a composition rule.
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Other symmetric decomposition techniques are based on class families, mixin layers [27], 
class boxes [28], etc. Although the specific composition rules and other possibilities of 
each of these techniques can differ a lot, they are similar in the fact that they all propose a 
modularisation technique that is orthogonal to the (object-oriented) modularisation.

4.1. An example: the synchronized buffer revisited
Previously, we provided an example decomposition for the synchronized buffer imple-
mentation into a functionality module and a synchronization aspect. To clarify the symmet-
ric decomposition approach, we now present the same example using a symmetric de-
composition approach. Again, no particular technology is chosen and merely the concepts 
are clarified. Below, the modularisation of the two main concerns of the example are 
shown: the synchronisation and the functionality concern. The composition of these two 
concerns is specified through relations that compose the lock() method with the is-
Empty() method such that lock() executes before isEmpty(). Similarly, the un-
lock() method needs to be composed with the isEmpty() method such that it executes 
after the body of the isEmpty() method. Composition can be specified in a specific com-
position language (e.g. in multidimensional separation of concerns) or can use standard 
programming language composition relations (e.g. inheritance or mixin composition).

The buffer functionality concern

The synchronisation concern

class Buffer {
  char[] data;
  int nrOfElements;

  bool isEmpty() {
    bool returnVal;
    returnVal := nrOfElements == 0;
    return returnVal;
  }

class Synchronizer {
   Semaphore sema;

  bool lock()
  {return sema.writeLock;}

   bool unlock()
  { return sema.unlock();}
}
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5. AOSD
The field of Aspect-Oriented Software Development originated first at the programming 
level through the conception of aspect-oriented programming languages. In a sense, this 
led to the fact that most aspect-oriented ideas are perceived at the technology (i.e. pro-
gramming) level. Recently, aspect-oriented analysis and design techniques have emerged 
and attention is given to formal verification techniques dealing with aspect interactions and 
interferences. We will now provide an overview of many of today’s aspect-oriented soft-
ware development techniques and technologies throughout the software development life-
cycle.

5.1. Aspect-oriented Requirements Engineering
Requirements engineering techniques that explicitly recognize the importance of clearly 
identifying and treating crosscutting concerns are called Aspect-oriented Requirements 
Engineering Approaches (AORE approaches) [4]. The emergence of aspect-oriented pro-
gramming languages has raised the explicit need to identify crosscutting concerns already 
during the analysis phase. Besides this observation, the modular representation of cross-
cutting requirements is a first step to ensure traceability of crosscutting concerns through 
all other artifacts of the software lifecycle (architecture, design and implementation). 
Aspect-oriented requirements engineering approaches improve existing requirements en-
gineering approaches through an explicit representation (and modularisation) of concerns 
that were otherwise spread throughout other requirements artifacts (such as use cases, 
goal models, viewpoints, etc.). 

Contemporary (non-aspect-oriented) requirements engineering approaches have been 
developed to primarily deal with one type of concerns. Some approaches have underlined 
the importance of non-functional concerns and proposed means to ensure their fulfillment 
in a system. Other approaches have focused on ensuring the required functionality of a 
system. In contrast, aspect-oriented approaches such as Cosmos and CORE explicitly ac-
knowledge that all concerns are equally important and should be treated consistently  [4]. 
Furthermore, AORE recognizes that all kinds of requirements (both functional and non-
functional) can have a crosscutting influence on other requirements. For example, in tradi-
tional viewpoint-based analysis, security concerns are present in many viewpoints but the 
security requirement has no modular representation of its own. Furthermore, security and 
response-time requirements can influence each other.

Therefore, AORE approaches adopt the principle of separation of concerns at the analysis 
phase (the early separation of concerns). In other words, AORE approaches provide a rep-
resentation of crosscutting concerns in requirements artifacts. For example, AORE Arcade 
provides the notion of crosscutting concern next to viewpoints in a requirements artifact. 
Besides this fact, these approaches also focus on the composition principle: it should be 
possible to compose each concern/requirement with the rest of the concerns/requirements 
of the system under construction to understand interactions and trade-offs among con-
cerns. This composability  of requirements is a central notion of AORE. It means that AORE 
techniques should have well-defined join point models and composition semantics. Join 
point models of AORE approaches identify points through which requirements can be 
composed. For example, join points can be individual requirements expressed in a view-
point. 

As an example, consider a security aspect at the requirements-level which specifies sim-
ple login-based authentication for all users of the system (example taken from [29]). This 
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top-level requirement is refined to provide more specific rights for different categories of 
users, e.g., managers, system administrators, etc. Let us assume that we have a 
viewpoint-based partitioning of our stakeholder requirements. A composition specification 
(based on our above example definition of a join point model) would take the following 
form:

Constrain all requirements specified in all user viewpoints by the top-level 
security requirement.
     Constrain all requirements in administrator viewpoint 
     by the security policy for administrators.
     Constrain all requirements in manager viewpoint 
     by the security policy for managers.
     …
…

To draw an analogy with the aspect-oriented concepts introduced before: In the  above 
composition specification, the green parts correspond to pointcuts, the underlined ele-
ments are the kind of advice and the red elements are the advice behavior. In this exam-
ple, the requirements aspect itself is separated from its composition specification (which is 
provided above).

The composability of requirements allows not only reviewing the requirements in their en-
tirety, but also detection of potential conflicts very early on in order to either take corrective 
measures or appropriate decisions for the next development step. Last but not least, the 
mapping of the concerns at the requirement level to concerns in later lifecycle stages will 
reveal wether the concern maps to a crosscutting artifact or wether it becomes absorbed 
into other artifacts.

Summarizing, AORE approaches focus on systematically and modularly treating, reason-
ing about, composing and subsequently tracing crosscutting concerns via suitable ab-
straction, representation and composition mechanisms tailored to the requirements engi-
neering domain. Arcade, ARGM, Aspectual Use Cases, Cosmos, AOREC, etc. are such 
aspect-oriented requirements engineering approaches that are extensively described in 
[4]. 
5.2. Aspect-oriented Architecture
“The architecture of a program or computing system is the structure of the system, which 
comprise software components, the externally visible properties of those components, and 
the relations among them” [24]. Current software architecture design methods do not make 
an explicit distinction between conventional architectural concerns that can be localized 
using current architectural abstractions and architectural concerns that crosscut multiple 
architectural modules [4]. PCS, DAOP-ADL, AOGA, TranSAT, ASAAM, etc. are all new 
architectural design approaches that explicitly treat crosscutting architectural concerns and 
are described in [4].

In such aspect-oriented architectural design approaches, an architectural aspect is an ar-
chitectural module that has a broad influence on a number of other architectural modules 
(e.g.,security  module, providing authorisation, authentication and encryption/decryption 
functionality).  Using contemporary architectural approaches, the risk is that such potential 
aspects might be easily  overlooked during the software architecture design and remain 
unsolved at the design and programming level. This may lead to tangled code in the sys-
tem and consequently the quality factors that the architecture analysis methods attempt to 
verify  will still be impeded. Architectural design approaches offer explicit mechanisms to 
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identify and specify aspects at the architecture design level. In this sense aspectual archi-
tecture design approaches describe steps for identifying architectural aspects and their 
related tangled components. This information is used to redesign the given architecture in 
which the architectural aspects are made explicit. This is different from traditional ap-
proaches where architectural aspects are implicit information in the specification of the 
architecture. 

5.3. Aspect-oriented Design
Aspect-oriented design focuses on the explicit representation of crosscutting concerns 
using adequate design languages. An aspect-oriented design language consists of some 
way to specify  aspects, some way to specify how aspects are to be composed and a set of 
well-defined composition semantics to describe the details of how aspects are to be inte-
grated [4]. In object-orientation, the UML design language became the de-facto standard. 
Several aspect-oriented extensions to UML, were conceived to represent aspect-oriented 
concepts at the design-level. Some of these UML extensions are AODM, Theme/UML, 
SUP, UFA, AML, etc. These and also some new (non-UML) design languages such as 
CoCompose are extensively  described in [4]. Here we describe the main concepts of 
aspect-oriented design.

In the infancy of aspect orientation, developers simply used object-oriented methods and 
languages (such as standard UML) for designing their aspects. This proved difficult, as 
standard UML was not designed to provide constructs to describe aspects: Trying to de-
sign aspects using object-oriented modeling techniques proved as problematic as trying to 
implement aspects using objects. Without the design constructs to separate crosscutting 
functionality, similar difficulties in modularizing the designs occur, with similar maintenance 
and evolution headaches. At a high level, the main contribution of aspect-oriented design 
has been to provide designers with explicit means to model aspect-oriented systems, de-
riving software engineering quality properties as a result. In particular, this breaks down 
into a number of sub-contributions. Aspect-oriented design provides a means for the de-
signer to reason about concerns (whether they are crosscutting or not) separately, and to 
capture concern design specifications modularly. For example, AODM [31] extends UML 
with a design notation for AspectJ-like aspect-oriented programs; the Theme/UML [32] ap-
proach follows the symmetric decomposition approach and provides theme modules that 
can capture concerns (crosscutting or not) in the design.

Where there is modularisation, there must also be a means to specify how those modules 
should be composed into the full system design. Aspect-oriented design provides a means 
to specify how concern modules should be composed. This includes both a means to 
specify how to compose concerns at a later stage of the development cycle, and also a 
means to compose concern design artefacts. For example, the themes in Theme/UML are 
complemented with a composition specification that describes their integration. 

When composing concern designs, or specifying how concerns should be composed at a 
later stage of the development lifecycle, it is likely that there are points of conflict or coop-
eration between some concerns to be composed. Aspect-oriented design provides a 
means to specify how to resolve conflicts between concerns and to specify how concerns 
cooperate. Such conflict or cooperation specifications guide the composition process.

Another significant contribution of aspect-oriented design is the extent to which there is 
traceability of concerns to lifecycle stages both preceding design, and post design. Such 
traceability increases the comprehensibility and maintainability of the system. In addition to 
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traceability of concerns, aspect-oriented design provides a mapping of the constructs used 
in design to those used by lifecycle stages both preceding design and post design, further 
enhancing the traceability.

5.4. Aspect-oriented Programming
Aspect-orientation manifests itself at the programming level as aspect-oriented program-
ming languages. Most of these aspect languages are existing (object-oriented) languages 
extended with aspect-oriented features to represent aspects, express pointcuts, implement 
advice, etc .  

The most prominent and mature aspect language today is most probably AspectJ [9], 
which is an aspect-oriented extension to Java. Aspects in AspectJ look like regular Java 
class definitions but they can include advice and pointcut definitions. An advice is ex-
pressed using regular Java statements, augmented with some specific features for which 
we refer to [9]. An advice can influence the behavior at specific join points by executing 
before, after or around the execution of the join point. Join points in AspectJ are specific 
points in the execution of a Java program such as method calls, exception throwing, vari-
able references, etc . 

An overview of AspectJ and other important aspect languages today can be found in [10]. 
This includes a description of other prominent aspect languages such as JAsCo, CaesarJ, 
AspectS, Object Teams, HyperJ, JBOSS AOP, Compose*, DemeterJ, AspectC++, etc but 
also more prototypical and research-oriented aspect languages such as CARMA, OReA, 
AO4BPEL, Alpha, EAOP, FuseJ, AspectCOBOL, KALA, etc.

5.5. Verification of Aspect-oriented Programs
Although aspect-oriented programming languages allow software engineers to modularize 
crosscutting concerns, it does not mean that all concerns can be treated independently 
from each other. Aspects can depend on other aspects and aspects can potentially harm 
the reliability  of a system to which they are woven, and could invalidate essential proper-
ties that already were true of the system without the aspect. Consider for example our ex-
ample of the architectural design of a house. Multiple design plans are in fact modulariza-
tions of crosscutting concerns (e.g. the electrical wiring plans). Just because these plans 
are separated does not mean that they are independent of the other plans. Insertion of a 
new window may, for example, require to adapt the electrical wiring plan because wires 
cannot run through windows. 

Aspect-orientation rises new challenges in software validation and verification techniques  
to ensure that the desired functionality is exerted by the system. It is necessary  to show 
that aspects actually do add the intended cross-cutting properties to the system. To ensure 
the correctness of software with aspects, there is considerable research on using formal 
methods and testing techniques especially adapted to aspects. These are surveyed in 
[18].

5.6. Aspect-oriented Middleware
Although middleware is not lifecycle stage, it is an important and large application area for 
aspect-oriented ideas. Many software developers have adopted middleware approaches 
to aid in the construction of large-scale distributed systems. Middleware facilitates the de-
velopment of distributed software systems by accommodating heterogeneity, hiding distri-
bution details, and providing a set of common and domain specific services.
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However, middleware itself is becoming increasingly  complex; so complex in fact that it 
threatens to undermine one of its key aims: to simplify  the construction of distributed sys-
tems. In this regard, middleware and AOSD complement each other naturally, in that each 
plays to one another's strengths while obviating many of the problems inherent in tradi-
tional middleware approaches. Essentially,  aspect-oriented middleware offers an im-
provement over traditional middleware by delivering flexibility, reliability and performance 
in a more balanced manner. A detailed survey of aspect-oriented middleware approaches 
can be found in [25].

6. AOSD Timeline
Although the term Aspect-oriented Software Development (AOSD) was not coined before 
2002, this was not the beginning of AOSD-related research. Aspect-oriented Programming 
(AOP) was first introduced in 1997 [5] and other AOSD-related techniques and technolo-
gies, were first grouped as ‘Advanced Separation of Concerns’ techniques. Moreover, ad-
vanced separation of concerns has been a prominent topic in the metaprogramming and 
reflection community. We provide a brief summary of the history of AOSD here. The inter-
ested reader can find an extensive history by C.V. Lopez in [19].

6.1 Metaprogramming and reflection: the roots of AOP.
Metalevel architectures à la Smalltalk [13,14] and CLOS [15] have clearly illustrated the 
potential of reflection and metaprogramming [20] to deal with separation of concerns [6,7]. 
In a reflective architecture, crosscutting concerns were handled at the meta level, instead 
of at the base level. Reflective programs were used to modularize a crosscutting concern. 
These programs adapt the behavior of the base level program such that it includes the be-
havior of the crosscutting concern. Aspect-oriented programming differs from the meta 
level approach because it now provides specific language constructs to modularize cross-
cutting concerns. For example, aspect languages include a specific feature to quantify 
over the program’s join points to define a pointcut. It can also be argued that aspect lan-
guages provide limited and disciplined access to reflective programming for the specific 
purpose of modularizing crosscutting concerns. 

6.2 Advanced Separation of Concerns
With the conception of aspect-oriented programming (AOP) in 1997 [5], the aspect-
orientation community was born. AOP and other techniques and technologies that are fo-
cused on modularisation of crosscutting concerns, grouped into the common denominator 
of ‘Advanced Separation of Concerns’. These other techniques include Multidimensional 
Separation of Concerns [23], Adaptive Programming [21] and Composition Filters [22]. 
These latter techniques did not originate directly  from reflection and metaprogramming but 
rather originated directly from the need for a clear separation of concerns at the modeling 
as well as at the implementation level. Numerous workshops were held on this topic at 
various international conferences such as ECOOP, OOPSLA, ICSE, etc.

6.3 Aspect-oriented Software Development
With the advent of the first international conference on Aspect-Oriented Software Devel-
opment in 2002, the community  more-or-less adopted this common denominator to refer to 
advanced techniques and technologies for the modularisation of crosscutting concerns.
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