Tracking the Evolution of Communities in
Dynamic Social Networks

Derek Greene Dénal Doyle
School of Computer Science & Informatics Idiro Technologies
University College Dublin Dublin, Ireland
derek.greene@ucd.ie donal.doyle@idiro.com

Padraig Cunningham
School of Computer Science & Informatics
University College Dublin
padraig.cunningham@ucd.ie

University College Dublin
Technical Report UCD-CSI-2011-06
May 2011

Abstract

Real-world social networks from many domains can naturally be modelled as dy-
namic graphs. However, approaches for detecting communities have largely fo-
cused on identifying communities in static graphs. Therefore, researchers have
begun to consider the problem of tracking the evolution of groups of users in
dynamic scenarios. Here we describe a model for tracking communities which
persist over time in dynamic networks, where each community is characterised
by a series of evolutionary events. Based on this model, we propose a scal-
able community-tracking strategy for efficiently identifying dynamic communi-
ties. Evaluations on a large number of synthetic graphs containing embedded
evolutionary events demonstrate that this strategy can successfully track commu-
nities over time in dynamic networks with different levels of volatility. We then
describe experiments to explore the evolving community structures present in real
mobile operator networks, represented by monthly call graphs for millions of sub-
scribers.

1 Introduction

Social network analysis methods have traditionally focused on the representation of graphs as static
networks. This has been the case for the task of community detection, where the goal is to identify
meaningful group structures in the network. However, by representing a dynamic source of data
as a static network, the structures present over shorter periods of time can be difficult to identify
or may be completely ablated. In addition, by discarding temporal information, the detail of the
evolutionary behaviour of groups in the network is lost.

Modelling structural changes in networks is important in a range of real-world social network anal-
ysis problems where the data naturally has a temporal dimension. The evolving nature of social
media makes it a candidate for this type of analysis. Researchers may be interested in examining
the formation and change in communities — such as clusters of frequently interacting authors in the
blogosphere (Lin et al., [2008), or the formation of circles of friends in online social networks such
as Facebook and Twitter. Other application areas include the analysis of the evolution of research

communities within and across academic disciplines (Palla ef al| 2007). A particularly relevant
application is the analysis of mobile subscriber networks (Wu et al.l [2009), where the behaviours
of groups of users over time are potential predictors of future activity that is of specific interest to
network operators, such as subscriber churn or handset adoption. However, the scale of such net-
works presents a challenge even for existing static community finding techniques which disregard
temporal data.

Increasingly, researchers have highlighted the importance of identifying the key events that char-
acterise the life cycle of a community of users in dynamic social networks (Palla et al.| 2007). In
this paper we describe a model for tracking the evolution and structure of communities in multiple
snapshots of a dynamic network, where the life-cycle of each community is characterised by a series
of significant events. Based on this model, we propose a simple but effective method for efficiently
identifying and tracking these dynamic communities, which involves matching communities found
at consecutive time steps in the individual snapshot graphs. Unlike other approaches (e.g.|Palla ef al.
(2007)), the method is independent of the choice of underlying community finding algorithm which
is applied to the individual step graphs. It can also aggregate information from either disjoint or
overlapping groupings of nodes. To evaluate the method, we introduce a procedure for generating
synthetic dynamic networks. These networks contain embedded communities (both disjoint and
overlapping) and evolutionary events, which provide a “ground truth” for validation. We show that
our method performs well on this data, where it readily scales to networks consisting of millions of
nodes and tens of thousands of communities. In the second part of our evaluation, we describe our
experiments on real-world mobile operator call graphs generated over a 24 week period, containing
approximately four million unique users.

The remainder of the paper is structured as follows. In the next section we provide an overview of
existing work in the area of dynamic community finding and related research areas. In Section [3|
we outline the proposed model for dynamic community finding, and provide a detailed description
of the associated tracking method. Evaluations of the operation of this method on both synthetic
benchmark networks and large mobile call graphs are given in Section d] The paper concludes in
Section 5| with a summary and suggestions for plans for future work.

2 Related Work

2.1 Dynamic Community Finding

A large body of literature exists concerning the problem of finding communities in static graphs
(Fortunato} [2010). Many different algorithms have been proposed to identify communities in a single
network snapshot, based on different objective functions and search strategies. Motivated by the
temporal nature of real-world social networks, some of this focus has recently shifted to the topic of
mining dynamic graphs. Although previously proposed dynamic community finding models differ
in the approach used to actually find communities, a commonly-employed broad strategy involves
considering a dynamic network in terms of [individual time step graphs, representing successive
snapshots of the graph taken at regular intervals.

For instance, [Palla et al.| (2007) proposed an extension of the popular clique percolation method
to identify community-centric events in the evolution of dynamic graphs. This extension involved
applying community detection to joint graphs for pairs of consecutive time steps. The resulting
clique-based communities are subsequently matched to communities in either of the individual
time steps. This approach was applied to both mobile subscriber networks and bibliographic co-
authorship graphs. A similar life-cycle model was proposed by Tantipathananandh etz al.| (2007,
where the dynamic community finding approach was formulated as a graph colouring problem.
Since the problem is NP-hard, the authors employed a heuristic technique that involves greedily
matching pairs of node sets between time steps, in descending order of similarity. This technique
was shown to perform well on a number of small well-known social network datasets.

Asur et al.|(2007) described a community event identification strategy which used a matching-based
approach, which was implemented in the form of bit operations computed on time step community
membership matrices. This strategy was applied to both bibliographic networks and clinic trial data
in the context of pharmaceuticals. Unlike in other work, the authors placed a significant emphasis
on the life cycle of nodes themselves. However, this type of analysis may not always be practical or

relevant for larger datasets where network high-level summarisation is the primary objective, rather
than ego-centric analysis.

Rosvall & Bergstrom! (2010) proposed a framework for identifying changes in dynamic networks.
Each network time step graph is clustered. Subsequently, the network is perturbed using a bootstrap
resampling process and re-clustered — this is repeated for a large number of runs. This ensemble
process is used to quantify the significance of the clusters generated at each time step. Associated
clusters from different time steps are visually linked using “alluvial” diagrams, which chart the
progression of a small number of clusters over time. The authors applied these techniques to study
changing citations patterns in dynamic bibliographic networks covering a range of fields.

2.2 Other Related Areas

The more general problem of identifying clusters in dynamic data has been studied by a number of
authors. Notably, Chakrabarti et al.|(2006) proposed an “evolutionary clustering” framework to han-
dle this problem, where both current and historic information was incorporated into the objective of
the clustering process. The authors used this to formulate dynamic variants of common partitional
and agglomerative clustering algorithms suitable for feature-based data. Evolutionary versions of
common spectral clustering algorithms have also been proposed (Chi et al.l [2007)), combining cur-
rent and historic data to cluster relational data in the form of a pairwise affinity matrix.

Set matching heuristics have been applied to other problems that resemble the dynamic community
finding task. In data integration tasks, such techniques have been used as part of “late integration”
strategies to aggregate previously generated clusterings produced independently on each view of the
same network (Greene & Cunningham| [2009). More generally, the problem of ensemble cluster-
ing is concerned with combining a diverse set of clusterings to produce a consensus solution that
summarises the information provided by the constituent clusterings. A number of such algorithms
construct a consensus clustering by matching together related clusters identified across multiple runs
of a standard clustering algorithm such as k-means (Dimitriadou et al., [2002; Dudoit & Fridlyand,
2003). However, the unique temporal aspect of the data in dynamic community detection distin-
guishes the problem from these two tasks, where the sequence of groupings to be aggregated is not
considered.

3 Methods

3.1 Model for Dynamic Community Analysis
In this section, we provide a generalization of previously proposed models for dynamic community

finding, focused around the life cycle of communities. This model is used to frame and motivate the
method described in Section[3.2]

3.1.1 Dynamic Timelines

Firstly, we represent a dynamic network as a set of [time step graphs {g1, ..., g;}, providing snap-
shots of the nodes and edges in the overall network at successive intervals. The problem then be-
comes the identification of a set of k' dynamic communities D = {D;, ..., Dy} that are present

in the network across multiple time steps. We refer to step communities that are identified at indi-
vidual time steps, which represent specific observations of dynamic communities at a given point
in time. Unlike the approach described by [Palla et al.| (2007), these need not necessarily comprise
of cliques. Rather, the observations can be taken from any disjoint or overlapping grouping that
provides assignments for some or all of the nodes in the complete network. We denote the set of &
step communities identified at time ¢t as C; = {Cyq, ..., Ci, }.

Each dynamic community D; can be represented by a timeline — that is, a sequence of its constituent
step communities, ordered by time, with at most one step community for each step ¢. The diagram in
Figure[I|shows a simple case involving three step clusterings containing three dynamic communities.
The timelines for these three dynamic communities are straight-forward:

o Di: {Ci1,C21,C31}
[} DQ: {0227032}

b e
>

Figure 1: Example of three dynamic communities tracked over three time steps, featuring continua-
tion, birth, and death community life-cycle events.

Dy @\

-

b @
e

Dy \

Figure 2: Example of four dynamic communities tracked over three time steps, featuring merging
and splitting life-cycle events.

o Dj: {Ci2,Ca3}

A more complex example is shown in Figure [2| Note that, while there appear to be three distinct
branches at time ¢ = 3, there are in fact four dynamic communities with four corresponding time-
lines:

e Dy {C11,C21,C31}

o Dy: {C12,01,C31}

o D3: {C13,C,C32}

o Dy: {C13,C23,C33}
The most recent observation in a timeline is referred to as the front of the dynamic community —
the front for D; is denoted F;. The fronts for the three dynamic communities are highlighted in

Figure[I] Note that the dynamic community D3 does not have a corresponding observation at time
t = 3 —its front is the step community Cs3 from the previous step ¢t = 2.

3.1.2 Evolutionary Events

In the dynamic community finding literature there can be seen a broad consensus (e.g.|Palla et al.
(2007); [Tantipathananandh et al.| (2007); |Asur et al.| (2007)) on the fundamental events that can
be used to characterize the evolution of dynamic communities. Given the notation above, we can
formulate these key events in terms of a set of rules covering step and dynamic communities:

e Birth: The emergence of a step community C';; observed at time ¢ for which there is no
corresponding dynamic community in ID. A new dynamic community D; containing Cy; is

b @)
e e

Figure 3: Example of two “intermittent” dynamic communities which are not observed at all time
steps after birth. The dynamic community D, is unobserved in the graph at time ¢ = 2, but continues
in time ¢t = 3, while D5 is missing from both ¢t = 2 and ¢ = 3.

created and added to D. An example in Figure[I]is the community D5 born in the second
time step.

e Death: The dissolution of a dynamic community D; occurs when it has not been observed
(i.e. there has been no corresponding step community) for at least d consecutive time steps.
D; is subsequently removed from the set D. An example in Figure[T]is Ds, assuming that
no further step communities are subsequently assigned to its timeline.

o Merging: A merge occurs if two distinct dynamic communities (D;, D;) observed at time
t — 1 match to a single step community Cy, at time ¢. The pair subsequently share a
common timeline starting from C},. In Figure[2]the dynamic communities D; and D, are
both matched to C5; in the second step.

e Splitting: It may occur that a single dynamic community D; present at time ¢t — 1 is matched
to two distinct step communities (Cy,, Cyp) at time ¢. A branching occurs with the creation
of an additional dynamic community D; that shares the timeline of D; up to time ¢ — 1, but
has a distinct timeline from time ¢ onwards. In Figure[2]an existing dynamic community Dj
is matched to both Cs5 and Cs3 in the second step, resulting in the creation of an additional
dynamic community Dy.

e FExpansion: The expansion or growth of a dynamic community D; occurs when its corre-
sponding step community at time ¢ is significantly larger than the previous front associated
with D; (e.g. a growth of > 10%).

e Contraction: The contraction or reduction of a dynamic community D; occurs when its
corresponding step community at time ¢ is significantly smaller than the previous front
associated with D; (e.g. a reduction of > 10%).

We may also have trivial one-to-one matching or continuation events where a dynamic community
observed at time ¢ also has an observation at time ¢ + 1. However, a dynamic community need
not necessarily be observed at all steps after birth — it may be observed at birth time ¢ and at death
time ¢ > ¢, but may be missing from one or more intermediate steps in between. Two examples
are shown in Figure [3] This reflects the notion that temporally “intermittent” structure may exist
in a network, which is dependent on the behavior of the nodes in the network and the duration or
granularity of each time step. By maintaining a set of fronts for all dynamic communities (rather than
simply the communities from the previous time step), we can support the identification of timelines
with this kind of intermittent behavior.

3.2 Tracking Communities Across Time Steps
3.2.1 Tracking Procedure

In the context of the model described above, a key question concerns how best to map step com-
munities at each time ¢ to the existing set of dynamic communities . Further questions may arise
regarding the feasibility of performing this correspondence process in an efficient manner for graphs
containing a large number of nodes and communities.

One approach is to formulate this problem as a weighted bipartite matching task, which involves
finding the optimal correspondence between the dynamic community fronts and the step commu-
nities. A common solution to the optimal weighted bipartite matching problem is the Hungarian

method (Kuhnl [1955)). The strategy of finding the optimal match between communities in different
time steps was previously considered by [Tantipathananandh et al.| (2007). However, in general, bi-
partite matching approaches will assume a zero-to-one or one-to-one mapping between nodes in the
two sets — which will not readily support the identification of dynamic events such as community
merging and splitting. Rather, we propose a heuristic threshold-based method, which allows for
many-to-many mappings between communities across different time steps. Threshold-based cluster
aggregation techniques have previously been employed in dynamic community finding (Asur ef al.}
2007), and also in data integration (Greene & Cunningham), 2009). This strategy is independent
of the choice of the underlying static community finding algorithm applied to the individual step
graphs.

The strategy proceeds as follows. The first step grouping C; is generated by applying a chosen
static community finding algorithm to the graph g; — we use this graph to bootstrap the process. A
distinct dynamic community is created for each step community. The next grouping Cs is generated
on the graph go. An attempt is made to match these step communities with the fronts {7, ..., Fj}
(i.e. the step communities from C;). All pairs (Ca,, F;) are compared, and the dynamic community
timelines and fronts are updated based on the event rules described previously in Section [3.1] The
process continues until all [step graphs have been processed.

3.2.2 Matching Communities

To perform the actual matching between C; and the fronts {F7, ..., F}/}, we employ the widely-

adopted Jaccard coefficient for binary sets (Jaccard, [1912). Given a step community C, and a front

F;, the similarity between the pair is calculated as:

_ |Cta n F i|
|Cta UF z|

If the similarity exceeds a matching threshold 6 € [0, 1], the pair are matched and C}, is added to
the timeline for the dynamic community D;.

sim(Cta, Fi))

For practical purposes, the intersection calculations required for Eqn.|l|can be performed efficiently
using a number of strategies, including optimizations based on sorted sets (Baeza- Yates| 2004, or bit
array operations (Asur et al.| [2007). In the implementation used in this paper, we represent dynamic
communities in terms of a node-community map against which incoming step communities are
compared. This change leads to substantial performance improvements when compared to a naive
implementation based on pairs of set structures.

The output of the matching process between C; and {F}, ..., Fi/ } will reveal series of community
evolution events. A step community C}, matching to a single dynamic community indicates a
“continuation”, while the case where C}, matches multiple dynamic communities results in a merge
event. If no suitable match is found for Cy, above the threshold €, a new dynamic community is
created for Cy,. An outline of the entire process is provided in Figure 4]

1. Apply static community finding algorithm on g; to extract C;. Initialize ID by creating a new
dynamic community for each step cluster Cy; € C;.

2. For each subsequent step ¢t > 1, extract C; from g;.
3. Process every Cy, € C; as follows:

1. Match all dynamic communities D; for which sim/(Cy,, F;) > 6.
2. If there are no matches, create new dynamic community containing Ci,,.
3. Otherwise, add C}, to each matching dynamic community.
4. Update the set of fronts for each dynamic community to be the latest matched step commu-

nity. For each case where one existing dynamic community has been matched to 2 or more
step communities, create a split dynamic community.

5. Repeat from #2 until all time step graphs have been processed.

Figure 4: Summary of the proposed dynamic community finding method.

3.3 Post-Processing
3.3.1 Generating Static Communities

At any given time step, a conventional overlapping set of communities can be derived from the
current set of all dynamic community timelines in). Specifically, for each active (i.e. non-dead)
dynamic community D; with timeline {Cg, . .., Ct, }, we construct a corresponding group with the
nodes from the union of the step communities in its timeline {C, U - - UCy, }. Any exact duplicate
groups are removed. We will generally be interested in those “long-lived” dynamic communities
that persist over more than one time step, rather than potentially noisy “short-lived” communities
that only appear once and are never observed again. Therefore, groups corresponding to short-lived
communities are also removed. As an example, for D, in Figure |2} the corresponding overlapping
group will consist of the nodes contained in {C}3 U Ca3 U C33}.

3.3.2 Ranking Dynamic Communities

For large networks analyzed over long time periods, the dynamic community finding process may
generate a large number of timelines. For instance, for mobile call graphs such as the one described
later in Section [4.6] hundreds of thousands of dynamic communities may be identified. This nat-
urally leads to issues regarding interpretability. Therefore, it can be helpful to rank large sets of
dynamic timelines based on some measure of significance. We consider two key aspects of signifi-
cance: (a) the consistency or stability of node memberships in a dynamic community over time, (b)
the longevity of a dynamic community. Specifically, for a dynamic community D; we compute the
mean Jaccard similarity between each of its constituent step communities and the previous dynamic
community front:

. 1 |Cy; N Fy
sig(D;) = - ©)
-1 C”Ze:Di |Cy; U Fy

Note that, to reward longevity, we normalize the sum with respect to the number of all possible
pairs [— 1, even if the dynamic community does not have an observation for every time step. This
computation yields a score € [0,1]. A stable dynamic community, appearing frequently and with
similar node memberships between time steps, will have a significance score close to 1. Less stable
or infrequently appearing communities will have a score close to 0. The scores produced by Eqn.
can be used to produce a ranking of all dynamic communities identified on a given dataset.

4 Evaluation

4.1 Benchmark Network Generation

We wanted to examine the behaviour of the proposed approach on dynamic networks in the presence
of the evolution events described previously using a form of ground truth. However, to the best of
our knowledge no comprehensive benchmarks have been proposed for this purpose. Previously, at-
tempts at synthesising dynamic network data have used artificial data based on simple membership
switching. For instance, Tang ef al.|(2008) described an approach for generating small-scale syn-
thetic multi-mode dynamic network data, by generating a set of latent communities, and randomly
changing a proportion of community memberships at each stage. Similarly, Duan et al.| (2009) gen-
erated synthetic streams of random weighted directed graphs with embedded community structure,
where the community structure changes between four different time slices. |Lin et al.|(2008)) adapted
two well-known toy networks to produce additional time step networks using membership switching
and corresponding changes to node edges.

To produce more realistic benchmark data, we developed an alternative set of benchmarks based on
the embedding of events in synthetic graphs. |[Lancichinetti & Fortunato| (2009) proposed techniques
for generating static networks with embedded ground truth communities, which can be used for
benchmarking community finding techniques. A network is generated based on a user-specified set
of parameters related to network size, node degree range, and community size. The generator uses
these parameters to construct a suitable set of embedded communities around which the network is
constructed.

°
o DQ
0o%0
D; o e o © ® o
°
® o © ® °
° o & o
o Q. o 0
oo
© g0 v o
o e < o o
o ° »
° t=2
© ° °
e® el ©
® @ o e o
e o 9 o)
o S} Q/Q ® ®
F iy, o °
e © & ie - ® ° D
o 0 o @ 4
° e o_©
% %% *
& °
® o
D5

Figure 5: Simple benchmark dynamic graph representing 100 nodes over two time steps. At time
t = 2, a split event occurs, where the embedded community D, divides into a pair of communities
(D1, Dy).

We adapted the tool provided by Lancichinetti & Fortunato to generate sets of unweighted undi-
rected time step graphs with embedded communities, both disjoint and overlapping. These graphs
share similar characteristics, but each has community memberships (and edges) that have been per-
muted in a particular way. The change is controlled through the injection of a user-specified number
of community events of a specific type. In this way the generator produces a ground truth for quan-
titative evaluation, in the form of a set of dynamic community timelines. A small example dynamic
graph produced by the generator is shown in Figure[5] involving 100 nodes, four embedded dynamic
communities, and a single merge event.

For the evaluations described here, we constructed four different types of synthetic dynamic net-
works covering different evolutionary behaviours, corresponding to the community evolution events
outlined in Section [3.1.2] In each of the four network types, 20% of node memberships were ran-
domly permuted at each time step to simulate the natural movement of users between communities
over time. The behavior types are as follows:

1. Intermittent communities: Firstly, we consider the case of intermittently-appearing commu-
nities that are observed in only a subset of time steps. In addition to membership switching
as described above, we also randomly hide a certain proportion of the communities from
the original set C; at each time step — 10% of original embedded communities are missing
from the second time step onwards.

2. Expansion and contraction: To examine the effect of rapid community expansion and con-
traction, we created graphs where 40 randomly selected communities expand or contract
by 25% of their previous size. In the case of expansion, the new community members are
chosen at random from other communities.

[Parameter | Description [Setl Set2 Set3 |

k average degree 20 10 50
Kkmaz max degree 40 40 120
Chmin minimum community size 20 10 60
Craz maximum community size 60 50 100
T1 degree exponent -2 -2 —2
To community exponent -1 -1 —2
m mixing parameter 0.2 0.4 0.2
O, overlapping nodes 0 N/2 N
Om communities per node 1 2 3

Table 1: Parameter values used to generate three different sets of dynamic networks, each containing
N = 15,000 nodes. Ten time step graphs were generated using these parameters for each of four
event behaviour types.

3. Birth and death: To replicate the creation and destruction of communities, at each step we
create 40 additional communities by removing nodes from other existing communities, and
randomly remove 40 existing communities.

4. Merging and splitting communities: Finally, we considered the case where community
merging and splitting events are embedded in the data. Based on an initial set of commu-
nities, at each subsequent time step, 40 instances of community splitting were introduced,
together with 40 cases where two existing communities were merged.

The generated graphs share a number of parameters with the generation process described by |Lan-
cichinetti & Fortunato| (2009). To investigate the effect of graphs with different levels of community
membership overlap and inter-community connectivity, we created three different sets of dynamic
networks for all of the behaviours listed above, resulting in 12 synthetic datasets in total. Each
dataset consisted of 15,000 nodes represented over 10 time steps. Details for the different parameter
sets are shown in Table [I] The parameters for Ser I correspond to those used in experiments for
networks containing non-overlapping communities by (Greene et al.| (2010). The other two sets are
based on parameters used by [Lee ef al.| (2010) for benchmarking static community finding algo-
rithms: the networks in Set 2 contain some community overlap, but the level of inter-community
connectivity or “mixing” is high; in Set 3 the ground truth communities for the networks exhibit
high overlap, with every node assigned to three different communities. For further discussion of the
significance of the step graph generation parameters, consult Lancichinetti & Fortunato| (2009).

4.2 Experimental Setup

As noted previously, our dynamic community finding approach is independent of the choice of the
underlying static community finding algorithm applied to the individual time steps. For the purpose
of our experiments here, we used the MOSES overlapping community finding algorithm proposed
byMcDaid & Hurley|(2010) to identify groups of nodes on individual time step graphs. This allowed
us to test the dynamic community finding approach for both the case of disjoint and overlapping step
communities.

The validation of dynamic community finding techniques is not straight-forward. Based on the
ground-truth available in the synthetic networks, we make use of conventional cluster validation
techniques as follows. After each time step, we derive a static grouping from the set of active
(i.e. non-dead) dynamic communities identified by our approach, as described in Section [3.3.1] To
externally validate this grouping, we use the generalised form of Normalised Mutual Information
(NMI) introduced by [Lancichinetti et al.|(2009) to compare the memberships of nodes in this group-
ing relative to those in the grouping derived in the same manner on the ground truth dynamic com-
munities at the same time step.

We used a C++ implementation of the dynamic community tracking approach. We ran the experi-
ments using a single core on a Pentium Intel 2.40GHz server with 128GB RAM. An implementation
of the tracker, together with the synthetic graph generator and the synthetic datasets used in our ex-
periments, are made available onlin

'Seelhttp://mlg.ucd.ie/snam

http://mlg.ucd.ie/snam

4.3 Evaluation: Community Identification

In our first evaluation, we examined the ability of the proposed approach to correctly identify the
ground truth communities in the sets of benchmark dynamic networks described previously. The
goal here was to determine whether applying a step-based dynamic community finding process
could improve our ability to detect dynamic communities, when compared with traditional static
community finding methods which treat dynamic networks as a single graph without regard to tem-
poral information. In our experiments we investigated a range of matching threshold parameters
6 € [0.1,0.5], with a fixed maximum age d = 3 for determining dead communities. As a base-
line for comparison, we applied static community finding to the graph constructed from aggregating
edges across multiple time steps. Specifically, for each step ¢, we employed the MOSES algorithm
(McDaid & Hurleyl 2010) to the aggregated graph constructed from the nodes and edges present
in {g1 U---Ug:}. This process was repeated for all three sets of networks generated using the
parameters listed in Table I}

Figure [6]shows a comparison of the output of the two strategies in terms of NMI accuracy, relative to
the ground truth communities, as calculated after the addition of each time step graph from the four
benchmark networks in Ser 1. These networks contain non-overlapping ground truth communities
that are well-separated in the step graphs. For all four event types we see that performance of
static community detection degrades over time — the addition of more edges from successive time
steps does not provide the community detection algorithm with a clearer picture of the network.
On the contrary, the decreasing NMI scores show that performance degrades as contradictory edge
information is added. The effect is most pronounced on the data with embedded merge and split
events, where the changes in community structures over time are most volatile. In the case of
dynamic community finding, relaxed matching thresholds (f < 0.3) yield significantly better results.
In particular, the choice of & = 0.1 leads to little or no degradation in performance over time — for
the intermittent and expansion/contraction cases the ground truth communities are identified with
almost 100% accuracy.

s s
£ £
g 8
T T
E E
k] s
£ £
E E
= g
s s
= b=
& o5t £
[©
£ Static —— £ Static ——
S 04| Dynamic(0.1) % 1 2 04| Dynamic(0.1) -x-
Dynamic (0.3) Dynamic (0.3)
03 Dynamic (0.5) --&-))))) 03 Dynamic (0.5) =
T 2 3 4 5 6 7 8 9 10 1 2 3 4 5 6 7 8 9 10
Time Step (t) Time Step (t)
(a) set I — “intermittent” communities (b) set 1 — expansion & contraction events
10
g S ool .
£ £
H § o8l
g g
E E
E % 0.7
E E]
E 5 06
s s
b= b=
& o5t £ o5t o
< ©
13 Static —— 13 Static ——
S 04| Dynamic (0.1) - 1 2 04| Dynamic(0.1) -
Dynamic (0.3) Dynamic (0.3)
oplLDwame0$) o] op lLDwame0®) o]
T 2 3 4 5 6 7 8 9 10 T 2 3 4 5 6 7 8 9 10
Time Step (t) Time Step (t)
(c) set 1 — birth & death events (d) set I —merging & splitting events

Figure 6: Comparison, in terms of Normalized Mutual Information (NMI), of static and dynamic
community finding on the four synthetic networks in Set /. These networks contain non-overlapping
embedded communities that are well-separated from one another.

10

0.7 T T T T T T T T 0.7

0.6

0.5 -

0.3 0.3

Normalized Mutual Information (NMI)
Normalized Mutual Information (NMI)
o
IS

02 H Static —— 02 - Static ——
: Dynamic (0.1) «-%-- : Dynamic (0.1) -
Dynamic (0.3) Dynamic (0.3)
01 Dynamic (05) & 01 Dynamic (05) &
T 2 3 4 5 6 7 8 9 10 T 2 3 4 5 6 7 8 9 10
Time Step (t) Time Step (t)
(a) set 2 — “intermittent” communities (b) set 2 — expansion & contraction events
0.7 ! ! ! ! ! ! ! ! 0.7
s s
B B3
8§ s
g 3
E E
8 S
£ £
g |
s s
T 03 3
N N
: : g - :
E L Static —— E L tatic ——
S 0.2 Dynamic (3{3 e 2 02 Dynamic (g.lc) e °
Dynamic (0.3) Dynamic (0.3)
01 Dynamic (05) & 01 Dynamic (05) &
T 2 3 4 5 6 7 8 9 10 T 2 3 4 5 6 7 8 9 10
Time Step (t) Time Step (t)
(c) set 2 — birth & death events (d) set 2 — merging & splitting events

Figure 7: Comparison, in terms of NMI, of static and dynamic community finding on the four
synthetic networks in Set 2. These networks contain some overlapping embedded communities,
with relatively high inter-community edge connectivity.

Figure [/| shows the results of evaluations performed on the four networks in Set 2 which contain
embedded communities with limited overlap — 50% of the 15,000 nodes belong to more than one
community, while the remainder are assigned to a single embedded community. There is also a con-
siderable proportion of edges outside communities, making distinct communities more difficult to
identify. The results indicate that dynamic community finding with a low 6 parameter provides con-
sistent accuracy over time. This is in contrast to the decreasing NMI scores for the static approach.
For these four networks we also observe that a high threshold value (# > 0.5) is not appropriate —
an overly conservative matching policy can lead to pairs of associated step communities not being
matched together. This may be due to both changing memberships between time steps, or the inabil-
ity of the underlying community finding algorithm to accurately identify communities on the time
step graphs. The issues of volatility and the effects of different 6 values are explored in more detail
in Section 4.4l

Figure [§] lists results for the networks in Set 3, where every node is assigned to multiple commu-
nities which overlap considerably — this is designed to replicate the kind of pervasive overlap often
observed in real-world networks (Ahn et al., [2010). The communities are also larger than those
present in Set / and Ser 2. These networks demonstrate a significant difference in performance
between the static and dynamic approaches. Again the presence of contradictory information, aris-
ing from changing node memberships due to evolution events and membership switching, leads to
a large decline in NMI scores for the static approach from ¢ = 3 onwards. For the less volatile
behaviour types (i.e. intermittent communities and expansion/contraction), conservative matching
thresholds were effective in this case. For the merging and splitting data, lower thresholds yielded
the highest accuracies.

4.4 Evaluation: Effects of Volatility

Following the results shown in the previous section, we now examine the degree to which community
membership volatility impacts upon both the static and dynamic community finding strategies. That

11

1.0

0.6 -

0.6 -

Static ——
Dynamic (0.1) «-%--

Static ——
Dynamic (0.1) -

Normalized Mutual Information (NMI)
Normalized Mutual Information (NMI)

Dynamic (0.3) Dynamic (0.3)
o Rmame@s) o] o5 Dmamel0®) o
1 2 3 4 5 6 7 8 9 10 T 2 3 4 5 6 7 8 9 10
Time Step (t) Time Step (t)
(a) set 3 — “intermittent” communities (b) set 3 — expansion & contraction events

1.0 T T T T T T T T 10

08

0.7

0.6 -

Static —— 06 - Static ——
Dynamic (0.1) - Dynamic (0.1) «-x--
Dynamic (0.3) Dynamic (0.3)

quam\c (0‘.5) L)))) Dypamic (0;5) a-

.
1 2 3 4 5 6 7 8 9 10 1 2 3 4 5 6 7 8 9 10
Time Step (t) Time Step (t)

Normalized Mutual Information (NMI)
Normalized Mutual Information (NMI)

0.5

(c) set 3 — birth & death events (d) set 3 — merging & splitting events

Figure 8: Performance, in terms of NMI, of dynamic community finding on the four synthetic
networks in Ser 3. These networks contain highly overlapping embedded communities, with every
node assigned to approximately three communities at each time step.

is, we evaluate the degree to which increasing rates of change in community memberships impacts
on the ability of the two strategies to correctly identify communities. Based on the generation
parameters given for Sez / in Table[I] we generated six additional dynamic synthetic networks, each
containing 15,000 nodes and 10 time steps. In each dataset an increasing proportion of nodes was
moved between communities after each time step — the proportion ranged from 5% to 50%.

Figure[0]shows the effect of this increasing volatility on both static and dynamic community finding,
in terms of generalised NMI scores relative to the ground truth communities embedded in the data.
For a switching rate of 5%-10%, static community finding using the MOSES algorithm achieves
reasonable accuracy, while the dynamic community finding approach recovers the embedded com-
munities almost perfectly. As the level of volatility increases, the ability of static community finding
to correctly identify communities at later time steps decreases dramatically. This is perhaps un-
surprising, as the presence of many intra-community edges from the earlier time steps could prove
misleading. This strongly suggests that taking a static view of such rapidly changing networks will
not be helpful in identifying meaningful communities.

The results shown in Figure [9] also provide us with interesting observations regarding the choice
of threshold parameter 6 for dynamic community finding. For the networks with a switching rate
> 30%, the choice of a conservative matching threshold (# > 0.5) leads to results which are worse
than those provided by static community finding. In these cases we observe that an overly strict
policy on matching will naturally lead to a failure to match changing but related pairs of communities
between time steps — this is a consequence of the similarity measure defined in Eqn.[I] In contrast,
a relaxed matching threshold (f = 0.1) leads to the almost perfect identification of the ground truth
groupings. Only in the case of switching 50% of nodes between time steps do we notice a minor
degradation in performance in the later time steps. This represents an extreme case — at this point
effectively half of the nodes from each community have moved elsewhere after each step. These
results suggest that the choice of a relatively relaxed matching threshold can serve to identify core

12

Normalized Mutual Information (NMI) Normalized Mutual Information (NMI)

Normalized Mutual Information (NMI)

1.0

0.9

08 -

0.7

0.6 -

0.5

0.4

0.3

0.2

01

Static ——
L| Dynamic (0.1) --x
Dynamic (0.3)
Dynamic (0.5) o

1 2 3 4 5 6 7 8 9
Time Step (t)

(a) 5% of memberships switched

10

10 —

0.9

08 -

0.7

0.6

0.5

0.4

0.3

0.2

01

Static ——
L| Dynamic (0.1) --x
Dynamic (0.3)
Dynamic (0.5) o

1 2 3 4 5 6 7 8 9
Time Step (t)

(c) 20% of memberships switched

10

10

0.9

08

0.7

0.6

0.5

0.4

0.3

0.2

0.1

Static ——
L| Dynamic (0.1) -
Dynamic (0.3)
Dynamic (0.5) o

1 2 3 4 5 6 7 8 9
Time Step (t)

(e) 40% of memberships switched

10

Normalized Mutual Information (NMI) Normalized Mutual Information (NMI)

Normalized Mutual Information (NMI)

0.9

0.8

0.7

0.6

05

0.3

0.2

0.1

0.2

0.1

0.9

0.8

0.7

0.6

05

Static ——
L| Dynamic (0.1) =
: Dynamic (0.3)
Dynamic (0.5] 8 . .

1 2 3 4 5 6 7 8 9

' 5
Static ——
L| Dynamic (0.1) =
Dynamic (0.3)
Dynamic (0.5] 8
1 2 3 4 5 6 7 8 9

Time Step ()

(b) 10% of memberships switched

Static ——
L| Dynamic (0.1) =
Dynamic (0.3)
Dynamic (0.5] 8

1 2 3 4 5 6 7 8 9

Time Step (1)

(d) 30% of memberships switched

Time Step (1)

(f) 50% of memberships switched

Figure 9: Performance, in terms of Normalised Mutual Information (NMI), of static and dynamic
community finding methods on six synthetic networks as the level of volatility increases — i.e. an
increasing proportion of node memberships are switched between consecutive time steps.

community structure, in dynamic networks where community structures are changing either slowly
or very rapidly between time steps.

In general, when examining various network generation parameters, we observed that the static
approach proved effective in cases where there was relatively little volatility between time steps,
even when the community structures were relatively poorly defined within time steps (i.e. high inter-
community connectivity). In this case the simple aggregation of the persistent edges was sufficient
to uncover community structure. In contrast, the proposed dynamic strategy was most successful
in cases where communities were evolving rapidly across time steps. Our experiences with mobile
call data, described later, suggest that the latter scenario is more likely to occur in many real-world
dynamic networks.

4.5 Evaluation: Scalability

To examine the scalability of the dynamic community finding method proposed in Section [3] we
used the synthetic graph generation process to produce dynamic networks of successively larger

13

le+03 T T

le+02 |

le+01 |

1e+00 [

Time (milliseconds)

le-01

le-02 L L
1le+03 le+04 1le+05 1e+06

Number of Nodes

Figure 10: Plot of running time in milliseconds against number of nodes, for the proposed dynamic
community finding method (¢ = 0.3) on synthetic dynamic graphs with 10 time steps and of in-
creasing size from 1,000 to 1 million nodes.

sizes. We generated networks using parameter ser / from Table[I|to create step graphs with disjoint
communities, with the membership of 5% of nodes switching from one step community to another
over 10 time steps. Step communities were identified using the MOSES algorithm, and the dynamic
community finding process was repeated over 10 runs.

Figure[I0]shows the running times for dynamic community finding with matching threshold 6 = 0.3.
We observe that the scaling of the dynamic community method is close to linear in the number of
nodes in the graph. A dynamic network with 100k nodes and 10 time steps can be processed in 4.6
seconds —resulting in 2,739 dynamic community timelines, while a graph containing 1 million nodes
can be processed in approximately 210 seconds, resulting in the discovery of over 27k community
timelines. Similarly, the number of maintained dynamic communities does not significantly impact
on running times. We observed almost identical patterns on the same synthetic graphs for other
matching threshold values 6 € [0.2,0.5].

In these experiments, most of the computation time was due to the underlying community finding
algorithm (MOSES) used to find communities in each step graph. For instance, the time taken to
identify step communities on the 1 million node graph using MOSES was approximately 10 hours,
in contrast to the dynamic tracking time of ~ 210 seconds. Since the majority of the computation
during tracking (calculating front-step community similarities and matching step communities to
dynamic communities) can be performed independently, we suggest that further scope exists for im-
proving computational performance by parallelising the matching procedure. Even with the current
implementation, we can readily process dynamic graphs far larger than those that can handled by
existing methods, such as those based on clique percolation (Palla ez al., [2007)).

4.6 Application to Mobile Call Data

In our second evaluation, we applied the proposed method to a real mobile operator network. We
analysed weekly voice call graphs over 24 consecutive weeks, each containing approximately four
million unique subscribers and tens of millions of edges.

4.6.1 Experimental Setup

We preprocessed the data to produce unweighted, undirected graphs. A small number of nodes with
unusually high degree in a given weekly call graph (calls to > 250 other nodes per week) were
removed — these typically represent service numbers which can potentially obscure communities
of “real” network subscribers. To improve the stability of the communities identified on individual
network snapshots, we constructed longer time steps covering four weeks by aggregating the weekly
graphs with no overlap. This yielded six step graphs containing approximately 3.9-4.2 million nodes
and 20-26 million edges each. The mean node degree for each graph was in the range [10.3,12.6],
with maximum degree range [671, 830].

14

Since we might expect pervasive overlap in a network of this type, we again applied the MOSES
algorithm (McDaid & Hurley, 2010) to each step graph to identify overlapping communities. We
examined a range of relaxed matching thresholds 6 € [0.2,0.5] for dynamic community finding,
with d = 3 used to remove communities that were no longer active.

4.6.2 Discussion of Results

The running time to identify each set of step communities was approximately 30 hours using the
MOSES algorithm. The number of step communities identified in each graph was relatively con-
sistent, ranging from 502k-574k communities per step. The distribution of community sizes across
time steps was similar, with the vast majority (on average ~ 85%) of communities containing ten
or less callers. We also observed significant overlap between step communities — on average each
node was assigned to ~ 2.5 step communities, with a small number of high-degree nodes assigned
to over 50 communities per step.

To identify meaningful dynamic communities, we naturally require that some structure persists in
the network across time. In the call data, on average 86% of nodes were preserved between succes-
sive time step graphs, with an average 47% of edges being preserved. To explore this further, we
examined the agreement between the sets of step communities generated by the MOSES algorithm
on each step graph. This was done by calculating the generalized NMI similarity between succesive
pairs of sets of step communities. The resulting NMI scores were surprisingly low, falling in the
range [0.09, 0.11]. The low level of agreement across time steps raised the concern that coherent dy-
namic groups might not be identifiable using these step communities — the results described herein
indicates that this is not necessarily the case.

The average running time for dynamic community finding was approximately 7-8 hours for each
full set of time steps on a single core, yielding 2-3 million dynamic communities for each threshold
value. As discussed in Section[4.5] the computational bottleneck for large datasets will be the time
required to identify the underlying groups in the step graphs, rather than the dynamic tracking proce-
dure itself. Also in a real-world scenario the dynamic community finding process would typically be
run incrementally as new batches of data arrive, rather than repeatedly re-applying the entire process
to months or years worth of data.

Table [2| provides details of the dynamic communities identified on the caller network for the range
of thresholds 6 € [0.2,0.5]. Recall from Sectionmmat, for a given timeline, the overall dynamic
community membership is defined as the union of the set of nodes appearing in its constituent step
communities. We observe that a large proportion of communities only appear in a single time step
— this indicates that many communities in the call data are ephemeral and do not persist across
time. However, even in the most conservative case ~ 282k long-lived dynamic communities were
identified (i.e. communities observed in two or more steps). In the case of § = 0.2 this rises to
~ 935k. This represents a substantial number of subscriber communities from the perspective of
a mobile operator. Table [2] also shows that a large proportion of “intermittent” communities were
found, which were observed in non-consecutive time step graphs.

To examine the issue of dynamic community longevity in more detail, Figure [T1] illustrates the
number of steps in which long-lived dynamic communities appeared. As the value of 6 increases,
we observe that a more conservative matching policy results in fewer matches between communities
in different time steps, and consequently shorter dynamic timelines. But even in strictest case (6 =
0.5), the dynamic community finding algorithm identifies ~ 190k timelines observed in at least 50%
of the time steps.

[Timelines | Long-Lived (%) | Intermittent (%)
0.2 2,014,651 46.4% 33.8%
0.3 2,306,976 27.7% 19.8%
0.4 2,626,672 17.1% 17.4%
0.5 2,900,921 9.7% 15.7%

Table 2: Details of all dynamic communities identified on 24 weeks of call data for matching thresh-
old values 6 € [0.2,0.5].

15

350,000 m 02
m 03
, 300000 0.4
Q
E 250,000 W 05
3
E 200,000
38
o 150,000
£
& 100,000
=
a
50,000
0
2 3 4 5 6

Number of Steps

Figure 11: Number of time steps in which long-lived dynamic communities were observed in mobile
call data covering 24 weeks, divided into six time steps, for matching thresholds 6 € [0.2,0.5].

200,000

150,000

100,000

Number of Communities

50,000

5 10 15 20 25 30 35 40 45 50

Dynamic Community Size

Figure 12: Distribution of long-lived dynamic community sizes for matching thresholds 6 €
[0.2,0.5].

We also examined the distribution of community sizes resulting from the dynamic analysis of the
call graphs. The resulting size distributions for the dynamic communities identified by different ¢
values are shown in Figure [T2] Note that the plot is truncated after communities of size 50 — this
represents 86.7% of all dynamic communities for the most conservative case (f = 0.2) and 99.5%
for the most relaxed case (¢ = 0.5). The majority of communities are of size 5-10 nodes, with a
tendency towards slightly larger communities as 6 decreases. This roughly corresponded to our prior
assumptions regarding user calling patterns. These small communities tend to persist over many or
all of the time steps in the data, indicating the presence of small core groups of users consistently
calling one another over a six month time period.

5 Conclusions

In this paper, we have described both a general model for tracking communities in dynamic net-
works, and a fast, effective method based on that model which readily scales to graphs with ~ 10°
nodes and 107 edges. We have described an approach for benchmarking dynamic community finding
using synthetic graphs with embedded community events. Evaluations on these synthetic networks
show that the proposed method performs at least as well if not better than traditional static commu-
nity finding strategies which do not take temporal information into account. Additionally, we have
performed an evaluation on a large real-world mobile call network over a 40 week period. On this
data our proposed method uncovered a large number of dynamic communities in this network with
different evolutionary characteristics, while requiring comparatively little computational overhead.

16

The fact that our proposed method is independent of the choice of underlying algorithm is advanta-
geous from one point of view — a suitable algorithm can be selected depending on the characteristics
of the network (e.g. weighted/unweighted edges, disjoint/overlapping communities). However, an
interesting avenue for further work would be to integrate the matching-based tracking procedure
with a scalable overlapping community finding algorithm, so that information from dynamic com-
munity timelines can be used to seed or direct community detection in the next time step. This
could potentially lead to improved temporal smoothing, yielding a higher degree of consistency in
communities found across time steps.

Given the large number of communities which may be identified on large dynamic networks such
as mobile operator call graphs, another important area of research concerns the development of
an appropriate, scalable visualization technique for the output of the dynamic community finding
process. We intend to extend initial work in this area by |[Rosvall & Bergstrom! (2010) to deal with
the case of large networks with substantial numbers of small communities.

Acknowledgements

This research was supported by Science Foundation Ireland (SFI) Grant No. 08/SRC/11407. The
authors thank Idiro Technologies for their participation in the analysis of the mobile operator net-
work.

References

Ahn, Y.Y., Bagrow, J.P. & Lehmann, S. (2010). Link communities reveal multiscale complexity in
networks. Nature, 466, 761-764.

Asur, S., Parthasarathy, S. & Ucar, D. (2007). An event-based framework for characterizing the
evolutionary behavior of interaction graphs. In Proc. 13th ACM SIGKDD international conference
on Knowledge Discovery and Data mining, 921, ACM.

Baeza-Yates, R. (2004). A fast set intersection algorithm for sorted sequences. In Proceedings of the
15th Annual Symposium on Combinatorial Pattern Matching (CPM 2004), vol. 3109, 400-408,
Springer.

Chakrabarti, D., Kumar, R. & Tomkins, A. (2006). Evolutionary clustering. In Proc. 12th ACM
SIGKDD International conference on Knowledge Discovery and Data mining, 554-560, ACM.

Chi, Y., Song, X., Zhou, D., Hino, K. & Tseng, B. (2007). Evolutionary spectral clustering by
incorporating temporal smoothness. In Proc. 13th ACM SIGKDD International conference on
Knowledge Discovery and Data mining, 153-162, ACM.

Dimitriadou, E., Weingessel, A. & Hornik, K. (2002). A combination scheme for fuzzy clustering.
International Journal of Pattern Recognition and Artificial Intelligence, 16, 901-912.

Duan, D., Li, Y., Jin, Y. & Lu, Z. (2009). Community mining on dynamic weighted directed graphs.
In Proc. 1st ACM international workshop on Complex networks meet information & knowledge
management, 11-18, ACM, New York, NY, USA.

Dudoit, S. & Fridlyand, J. (2003). Bagging to improve the accuracy of a clustering procedure. Bioin-
formatics, 19, 1090-1099.

Fortunato, S. (2010). Community detection in graphs. Physics Reports, 486, 75-174.

Greene, D. & Cunningham, P. (2009). Multi-view clustering for mining heterogeneous social net-
work data. In Workshop on Information Retrieval over Social Networks, 31st European Confer-
ence on Information Retrieval (ECIR’09).

Greene, D., Doyle, D. & Cunningham, P. (2010). Tracking the evolution of communities in dynamic
social networks. In Proc. International Conference on Advances in Social Networks Analysis and
Mining (ASONAM’10), IEEE.

Jaccard, P. (1912). The distribution of flora in the alpine zone. New Phytologist, 11, 37-50.

Kuhn, H.W. (1955). The hungarian method for the assignment problem. Naval Research Logistics
Quaterly, 2, 83-97.

17

Lancichinetti, A. & Fortunato, S. (2009). Benchmarks for testing community detection algorithms
on directed and weighted graphs with overlapping communities. eprint arXiv: 0904.3940.

Lancichinetti, A., Fortunato, S. & Kertész, J. (2009). Detecting the overlapping and hierarchical
community structure of complex networks. New J. Phys, 11, 033015.

Lee, C., Reid, F.,, McDaid, A. & Hurley, N. (2010). Detecting highly overlapping community struc-
ture by greedy clique expansion. In Proc. 4th Workshop on Social Network Mining and Analysis.

Lin, Y.R., Chi, Y., Zhu, S., Sundaram, H. & Tseng, B.L. (2008). Facetnet: a framework for analyzing
communities and their evolutions in dynamic networks. In Proc. 17th International conference on
World Wide Web (WWW’08), 685-694.

McDaid, A. & Hurley, N. (2010). Detecting highly overlapping communities with Model-based
Overlapping Seed Expansion. In Proc. International Conference on Advances in Social Networks
Analysis and Mining (ASONAM’10), 112-119, 1EEE.

Palla, G., Barabasi, A. & Vicsek, T. (2007). Quantifying social group evolution. Nature, 446, 664—
667.

Rosvall, M. & Bergstrom, C.T. (2010). Mapping change in large networks. PLoS ONE, 5, e8694.

Tang, L., Liu, H., Zhang, J. & Nazeri, Z. (2008). Community evolution in dynamic multi-mode
networks. In Proc. 14th ACM SIGKDD international conference on Knowledge Discovery and
Data mining, 677-685, ACM.

Tantipathananandh, C., Berger-Wolf, T. & Kempe, D. (2007). A framework for community iden-
tification in dynamic social networks. In Proc. 13th ACM SIGKDD International conference on
Knowledge Discovery and Data mining, 717-726, ACM.

Wu, B, Ye, Q. & Yang, S. (2009). Group CRM: a new telecom CRM framework from social network
perspective. In Proc. 1st ACM International Workshop on Complex Networks in Information and
Knowledge Management, Hong Kong, China.

18

	Introduction
	Related Work
	Dynamic Community Finding
	Other Related Areas

	Methods
	Model for Dynamic Community Analysis
	Dynamic Timelines
	Evolutionary Events

	Tracking Communities Across Time Steps
	Tracking Procedure
	Matching Communities

	Post-Processing
	Generating Static Communities
	Ranking Dynamic Communities

	Evaluation
	Benchmark Network Generation
	Experimental Setup
	Evaluation: Community Identification
	Evaluation: Effects of Volatility
	Evaluation: Scalability
	Application to Mobile Call Data
	Experimental Setup
	Discussion of Results

	Conclusions

