
Microarchitectural Mechanisms to

Exploit Value Structure in SIMT Architectures

Ji Kim, Christopher Torng, Shreesha Srinath, Derek Lockhart, and Christopher Batten

School of Electrical and Computer Engineering, Cornell University, Ithaca, NY

{jyk46,clt67,ss2783,dml257,cbatten}@cornell.edu

ABSTRACT
SIMT architectures improve performance and efficiency by ex-
ploiting control and memory-access structure across data-parallel
threads. Value structure occurs when multiple threads operate on
values that can be compactly encoded, e.g., by using a simple func-
tion of the thread index. We characterize the availability of control,
memory-access, and value structure in typical kernels and observe
ample amounts of value structure that is largely ignored by current
SIMT architectures. We propose three microarchitectural mecha-
nisms to exploit value structure based on compact affine execution
of arithmetic, branch, and memory instructions. We explore these
mechanisms within the context of traditional SIMT microarchi-
tectures (GP-SIMT), found in general-purpose graphics processing
units, as well as fine-grain SIMT microarchitectures (FG-SIMT), a
SIMT variant appropriate for compute-focused data-parallel accel-
erators. Cycle-level modeling of a modern GP-SIMT system and a
VLSI implementation of an eight-lane FG-SIMT execution engine
are used to evaluate a range of application kernels. When com-
pared to a baseline without compact affine execution, our approach
can improve GP-SIMT cycle-level performance by 4-17% and can
improve FG-SIMT absolute performance by 20–65% and energy
efficiency up to 30% for a majority of the kernels.

Categories and Subject Descriptors
C.1.2 [Processor Architectures]: Multiple Data Stream Archi-
tectures—parallel processors, SIMD; I.3.1 [Computer Graphics]:
Hardware Architecture—graphics processors

General Terms
Design, Performance

1. INTRODUCTION
General-purpose graphics-processing units (GPGPUs) are grow-

ing in popularity across the computing spectrum [2, 28, 35]. Most
GPGPUs use a single-program multiple-data (SPMD) model of
computation where a large number of independent threads all ex-
ecute the same application kernel [25, 27, 29]. Although these
SPMD programs can be mapped to the scalar portion of general-
purpose multicore processors (an active area of research [11, 32]),
architects can improve performance and efficiency by using spe-
cialized data-parallel execution engines to exploit the structure in-
herent in SPMD programs. Examples include compiling SPMD

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
ISCA’13, June 23–27, 2013, Tel Aviv, Israel.
Copyright 2013 ACM 978-1-4503-2079-5/13/06 ... $15.00

programs to subword-SIMD units [5, 18, 19], to more traditional
vector-SIMD units [2, 17], or to single-instruction multiple-thread
(SIMT) units [1, 16, 22, 28].

We focus on SPMD programs mapped to SIMT microarchitec-
tures which use an explicit representation of the SPMD model: a
SIMT kernel of scalar instructions is launched onto many data-
parallel threads. Threads use their thread index to work on disjoint
data or to enable different execution paths. Threads are mapped to
an architecturally transparent number of hardware thread contexts
to enable scalable execution of many kernel instances in parallel.
A SIMT microarchitecture usually includes several SIMT engines;
each engine is responsible for managing a subset of the threads,
including its own inner levels of the memory hierarchy, and is rela-
tively decoupled from the other engines.

SIMT microarchitectures exploit control structure and memory-
access structure in SPMD programs to improve performance and
area/energy efficiency. Control structure characterizes how often
multiple threads execute the same instruction in the kernel, while
memory-access structure characterizes the regularity of inter-thread
addresses for the same load/store instruction. To exploit control
structure, a SIMT engine executes a set of consecutively indexed
threads (usually called a warp or wavefront) in lock-step on the
SIMT engine, amortizing control overheads (e.g., instruction fetch,
decode, interlocking) and hiding execution latencies. Performance
and efficiency are maximized when all threads take the same path
through the kernel. To exploit memory-access structure, a memory
coalescing unit dynamically compares memory requests made by
threads and merges multiple scalar memory requests into one wide
memory request, amortizing control overheads in the memory sys-
tem (e.g., arbitration, tag check, miss management) and reducing
bank conflicts. Performance and efficiency are maximized when all
threads access the same or consecutive addresses.

In this work, we study GPGPU SIMT architectures (GP-SIMT)
and a fine-grain SIMT variant more appropriate for compute-
focused data-parallel accelerators (FG-SIMT). Our GP-SIMT mi-
croarchitecture is modeled after an NVIDIA Fermi-class graphics
processor [28]. Our FG-SIMT microarchitecture is a new approach
targeted towards general-purpose data-parallel accelerators focused
purely on computing as opposed to graphics rendering. FG-SIMT is
designed for improved performance and energy efficiency on more
irregular kernels that require fewer data-parallel threads. FG-SIMT
might be a viable alternative for use in future Intel Many Integrated
Core (MIC) accelerators [17]. Currently these accelerators include
tens of general-purpose processors each with a wide vector-SIMD
coprocessor. FG-SIMT can enable a simple programming model
(e.g., handling complex control flow or modular function calls from
within data-parallel threads) yet still achieve much of the benefit of
more traditional vector-SIMD execution.

Prior work by Collange et al. introduced the concept of value
structure in SIMT kernels and used static and dynamic analysis to



characterize value structure in CUDA programs [5, 7, 8]. Value
structure refers to situations where threads execute the same in-
struction operating on data that can be described in a simple, com-
pact form. For example, all threads might operate on the same value
or on values that can be represented with a function of the thread
index. In vector-SIMD microarchitectures (e.g., Intel MIC [17],
AMD Graphics Core Next [2]), value structure is exploited by
refactoring work onto a scalar control processor, but the SIMT
thread-focused model leads to unexploited value structure when
threads calculate common expressions, execute inner loops, or gen-
erate structured addresses. In this paper, we extend prior studies
on value structure in GP-SIMT kernels with our own detailed study
of value structure in FG-SIMT kernels. These studies motivate our
interest in exploring new microarchitectural mechanisms to exploit
value structure in SIMT architectures.

Previous dynamic hardware schemes in this area include: track-
ing affine values derived from shared loads or thread index and
reusing the SIMT register file and lane functional units to execute
affine arithmetic (but without support for expanding compact val-
ues after divergence) [7]; tracking identical values with many value
comparisons across threads in a warp (but without support for affine
values) [15]; and tracking affine values in load/store data for com-
pact storage in the memory system [8].

In this paper we propose a detailed implementation of the affine
value tracking technique sketched in [7], but in addition we de-
scribe a new way to exploit value structure using compact affine
execution on a separate affine functional unit which supports lazily
expanding compact values after divergence. We also propose sup-
port for affine conditional branches, which avoid lengthy branch
resolution, and affine memory operations, which allow us to infer
vector memory operations in a SIMT architecture. We use cycle-
level modeling within the GPGPU-Sim framework [3] to estimate
the performance impact of our technique in GP-SIMT architectures.
Since most GP-SIMT microarchitecture and layout details are not
public, we focus our detailed evaluation of cycle time, area, and
energy on FG-SIMT architectures. We have developed a register-
transfer-level (RTL) model of an eight-lane FG-SIMT engine with
a corresponding L1 memory system, and we use commercial ASIC
CAD tools to synthesize and place-and-route the design in a modern
TSMC 40 nm process. Using these models, we present a variety of
results illustrating the benefits and some of the trade-offs involved
in exploiting value structure in SIMT architectures.

The contributions of this paper are as follows. We describe
three novel mechanisms to efficiently execute: (1) affine arithmetic
with support for lazy expansion of compact values after divergence;
(2) affine conditional branches with support for both uniform and
affine operands; and (3) affine memory operations which avoid the
need for memory coalescing to generate full-warp vector memory
accesses. We demonstrate these mechanisms in both GP-SIMT and
FG-SIMT architectures, and evaluate the cycle time, area, and en-
ergy impact of these techniques on a VLSI implementation.

2. STRUCTURE IN SIMT KERNELS
In this section, we illustrate and quantify control, memory-

access, and value structure in SIMT kernels using a simple example
and statistics from high-level functional simulation.

2.1 Example Application Kernel
Figure 1 shows C code and compiled assembly for a simple

SIMT kernel. Figure 1(a) shows a CUDA implementation, and
Figures 1(c)–(d) show the corresponding PTX assembly and ma-

chine assembly for an NVIDIA Fermi-class GPGPU. PTX is usu-
ally just-in-time compiled to the underlying machine instruction
set. Figure 1(b) shows the same example implemented using our
lightweight C++ FG-SIMT programming framework. The initial-
ization function manages kernel parameters and returns the thread
index. In contrast to GP-SIMT architectures, FG-SIMT architec-
tures execute the kernel launch code on a control processor tightly
integrated into the SIMT engine. A software run-time can manage
work distribution across multiple SIMT engines. Figure 1(e) shows
the corresponding assembly which uses a simple RISC instruction
set for both the control processor and data-parallel threads.

2.2 Control and Memory-Access Structure
Lines 2–3 in Figures 1(a)–(b) have significant control structure;

all threads execute in lockstep. The branch associated with line 4
may or may not exhibit control structure depending on the data in
the y array. Note that in the FG-SIMT assembly, this control flow
corresponds to a scalar branch instruction while in the GP-SIMT
machine assembly, it corresponds to predicated instructions.

Line 3 in Figures 1(a)–(b) also has significant memory-access
structure; all threads load data from consecutive elements. The
store on line 5 has less memory-access structure; it translates into a
conditional store or a store under branch, and thus threads may or
may not store the max value to consecutive elements.

2.3 Value Structure
Value structure occurs when values used by the same operation

across threads can be represented in a simple, compact form. For
example, on line 7 of Figure 1(c) the mad instruction operates on
three registers with values that are a simple function of the thread
index. Similarly, lines 2–4 in Figure 1(e) load the thread index into
a register, shift it by a constant, and then add the result to the array
base pointer. These instructions operate on affine values that can be
compactly represented in the following form:

V (i) = b+ i⇥ s

where i is the thread index, b is the base, and s is the stride. Affine
values with a stride of zero are a special case in which all the num-
bers in the sequence are identical, and we term these uniform val-
ues. We can exploit this kind of value structure by compactly en-
coding affine values as a base/stride pair.

Certain arithmetic operations can be performed directly on this
compact affine representation to produce an affine result. We term
this affine arithmetic. For example, an affine addition can be com-
puted as follows:

V0(i) = b0 + i⇥ s0 V1(i) = b1 + i⇥ s1
V0(i)+V1(i) = (b0 +b1)+ i⇥ (s0 + s1)

As another example, affine multiplication is possible if at least one
of the operands is uniform:

V0(i) = b0 + i⇥ s0 V1(i) = b1
V0(i)⇥V1(i) = (b0 ⇥b1)+ i⇥ (s0 ⇥b1)

It is straight forward to develop a system of rules for affine ad-
dition, subtraction, shifts, and multiplication (note that [7] does
not consider affine multiplication). Using these rules, we have la-
beled the instructions in Figure 1 that are able to operate directly
on compactly encoded affine values. A significant fraction of the
instructions are affine across all assembly sequences. This is a fun-
damental consequence of SIMT-based microarchitectures; threads
likely work on structured values to calculate the location of their
input/output values (e.g., lines 2–4 in Figure 1(e)) and to compute



1 __global__ void ex_gpsimt_kernel( int y[], int a ) {
2 int idx = blockIdx.x*blockDim.x + threadIdx.x;
3 y[idx] = a * y[idx];
4 if ( y[idx] > THRESHOLD )
5 y[idx] = Y_MAX_VALUE;
6 } (a) GP-SIMT CUDA Kernel

1 __fgsimt__ void ex_fgsimt_kernel( int y[], int a ) {
2 int idx = fgsimt::init_kernel( y, a );
3 y[idx] = a * y[idx];
4 if ( y[idx] > THRESHOLD )
5 y[idx] = Y_MAX_VALUE;
6 }
7

8 void ex_fgsimt( int y[], int a, int n ) {
9 fgsimt::launch_kernel( n, &ex_fgsimt_kernel, y, a );

10 } (b) FG-SIMT Kernel

1 u ld.param.u32 %r2, [_ex_gpsimt_kernel_y]
2 u ld.param.u32 %r3, [_ex_gpsimt_kernel_a]
3 u cvta.to.global.u32 %r4, %r2
4 u mov.u32 %r5, %ntid.x
5 a mov.u32 %r6, %ctaid.x
6 a mov.u32 %r7, %tid.x
7 a mad.lo.s32 %r8, %r5, %r6, %r7
8 a shl.b32 %r9, %r8, 2
9 a add.s32 %r1, %r4, %r9

10 a ld.global.u32 %r10, [%r1]
11 g mul.lo.s32 %r11, %r10, %r3
12 a st.global.u32 [%r1], %r11
13 g setp.gt.s32 %p1, %r11, THRESHOLD
14 u @%p1 bra L1
15 u ret
16 u L1: mov.u32 %r12, Y_MAX_VALUE
17 a st.global.u32 [%r1], %r12
18 u ret

(c) PTX “Virtual” Assembly

1 u mov R1, c[0x1][0x100]
2 a s2r R0, SR_CTAid_X
3 a s2r R2, SR_Tid_X
4 a imad R0, R0, c[0x0][0x8], R2
5 a iscadd R3, R0, c[0x0][0x20], 0x2
6 a ld R0, [R3]
7 g imul R0, R0, c[0x0][0x24]
8 g isetp.gt.and P0, pt, R0, THRESHOLD, pt
9 a st [R3], R0

10 u @p0 mov32i R2, Y_MAX_VALUE
11 a @p0 st [R3], R2
12 u exit

(d) Fermi Machine Assembly

1 u lw y_ptr, y_base_addr
2 a tidx i
3 a sll i, i, 0x2
4 a addu y_ptr, y_ptr, i
5 a lw y, 0(y_ptr)
6 u lw a, a_addr
7 g mul y, y, a
8 g slti t, y, THRESHOLD
9 a sw y, 0(y_ptr)

10 g bnez t, done
11 u li y, Y_MAX_VALUE
12 a sw y, 0(y_ptr)
13 done:
14 u exit

(e) FG-SIMT Assembly

Figure 1: Example SIMT Code and Compiled Assembly – Kernel multiplies input array by constant and then saturates to threshold. Ex-
plicit bounds check elminated for simplicity. Assembly instructions are manually labeled according to the ability for that dynamic instruction
to ideally exploit value structure: g: generic, cannot exploit value structure; u: uniform, affine stride is zero; a: affine with non-zero stride.

similar intermediate values (e.g., line 11 in Figure 1(e)). In addition
to affine arithmetic, value structure can also have a direct impact on
control structure and memory-access structure. For example, if a
kernel has an inner loop where the number of iterations is the same
across all threads, then the corresponding backwards branch ex-
hibits uniform value structure. Furthermore, the load on line 5 in
Figure 1(e) exhibits affine value structure in its source address.

Note that even though there is ample value structure in this exam-
ple, not all of this structure is trivial to exploit; value structure under
predication or after divergence is particularly difficult to exploit. If
not all threads handle the data-dependent threshold comparison in
the same way, then it is not clear that we can exploit the value struc-
ture when executing lines 11–12 in Figure 1(e).

2.4 Quantifying Structure in
FG-SIMT Kernels

To quantitatively characterize structure in FG-SIMT kernels, we
studied several benchmarks written using our C++ FG-SIMT pro-
gramming framework and executed on a high-level functional simu-
lator. This study is similar in spirit to previous studies on GP-SIMT
applications [5, 7, 8, 21]. Preliminary hardware techniques have
shown that affine values can be detected in up to 22% of dynamic
instructions [7]. Compiler techniques have shown affine values can
be exploited in up to 29% of dynamic instructions, with even greater
potential assisted by more sophisticated hardware techniques [21].

We make two assumptions that generalize the results across many
possible microarchitectures and differentiate our exploration from
previous studies: (1) our simulator uses an infinitely long warp
size; and (2) we post-process the results to calculate an idealistic
reconvergence scheme where all threads with the same dynamic in-
struction identifier are assumed to execute together. In addition, we
more explicitly characterize value structure after divergence, value
structure in the memory address stream, and the percentage of in-
structions that can ideally use compact affine execution. Figure 2

illustrates the results for four benchmarks selected to reflect a range
of structure types. More detail on these and the rest of our bench-
marks can be found in Section 5.3.

Control Structure – For each benchmark, we illustrate control
structure with a histogram of active threads. It is clear that the
benchmarks in the first column (i.e., sgemm, viterbi) have signif-
icant control structure (i.e., no divergence) while the benchmarks
in the second column (i.e., bfs, mfilt) have much less.

Memory-Access Structure – The load data address (LDA) and
store data address (SDA) bars illustrate memory-access structure
by showing the percent of loads and stores that are shared (i.e.,
uniform), strided (i.e., affine), or indexed (i.e., generic). sgemm,
viterbi, and mfilt all have significant memory-access structure,
while bfs have little memory-access structure.

Value Structure – There are a variety of different ways to char-
acterize the value structure in these benchmarks. The load data
(LDD) and store data (STD) bars indicate that some benchmarks
manipulate well-structured values residing in memory (e.g., viterbi
and mfilt). The register read (RRD) and register write (RWR) bars
show the percentage of register accesses that can be classified as
having value-structure; the benchmarks at the top of the figure have
less register value structure than those at the bottom. The instruc-
tion (INST) bar clearly shows that a significant percentage of in-
structions in several of these benchmarks can potentially use com-
pact affine execution.

These results illustrate how various structure types can be com-
bined in diverse ways: sgemm has significant control and memory-
access structure, but limited value structure. viterbi has signifi-
cant amounts of all three kinds of structure, while bfs has very lit-
tle structure at all. mfilt has less control structure, but still ample
amounts of memory-access and value structure.





















































































































































































































 















   




    





   



   




 


































Figure 2: Characterization of Control, Memory-Access, and Value Structure in FG-SIMT Application Kernels – Benchmarks executed
on high-level functional simulator assuming an infinite warp size and idealized reconvergence scheme. Histograms (left) show the distribution
of active threads across all dynamic instructions. Bar plots (right) show breakdown of structure present in various aspects of the kernel
including: memory-access structure in load/store addresses (LDA/STA), value-structure in load/store data (LDD/STD), value structure in
register read/writes (RRD/RWR), and perecentage of instructions that can ideally use compact affine execution.

3. BASELINE MICROARCHITECTURES
In this section, we describe our baseline GP-SIMT and FG-SIMT

microarchitectures.

3.1 Baseline GP-SIMT Microarchitecture
Our baseline GP-SIMT microarchitecture is based on an

NVIDIA Fermi-class GPGPU with four GP-SIMT engines (called
streaming multiprocessors), 16-bank configurable local memory
per GP-SIMT engine (configured as 16 KB L1 data cache and
48 KB shared memory), four 786 KB L2 cache banks, fast on-
chip crossbar connecting GP-SIMT engines to L2 banks, and two
DRAM memory controllers [28]. Each GP-SIMT engine sup-
ports extreme temporal multithreading of up to 48 warps (32
threads/warp) and four SIMT functional units: two SIMT arith-
metic units (capable of both short- and long-latency integer and
floating point operations), one special functional unit, and one
load/store unit. Both a 16- and 8-lane configuration are used. A
large register file is implemented using many banks of single-ported
SRAMs; multi-cycle read operand collectors and writeback queue-
ing is used to manage register file bank conflicts. An aggressive
memory coalescing unit aggregates cross-warp requests. The GP-
SIMT issue unit can issue up to two instructions per cycle from
independent warps. Two configurations for the front-end clock do-
main are used. One assumes the fetch, decode, and issue stages
of the SIMT engine are underclocked relative to the SIMT func-
tional units (slow front-end). The other assumes the same clock
for all stages (fast front-end). Warps are fetched and issued using
a fixed-priority scheduling policy. A stack-based immediate post-
dominator reconvergence scheme is used [13].

3.2 Baseline FG-SIMT Microarchitecture
FG-SIMT is a SIMT variant suitable for compute-focused data-

parallel accelerators (e.g., [17]) with an emphasis on efficiently exe-
cuting more irregular kernels that require fewer total threads. Com-
pared to GP-SIMT architectures, each FG-SIMT engine only exe-
cutes a single warp at a time, uses highly ported register files, in-
cludes a software programmable control processor, and lacks spe-
cialized hardware for graphics rendering. FG-SIMT still includes

the ability to exploit control and memory-access structure to effi-
ciently execute warps of data-parallel threads. The primary moti-
vation for FG-SIMT was to design an area-efficient SIMT microar-
chitecture that would exploit intra-warp instruction-level and data-
level parallelism to hide various latencies instead of relying on ex-
treme, inter-warp temporal multithreading. Banked, shared L1 data
caches are used to increase address bandwidth for scatters and gath-
ers. Multi-ported register files help better exploit ILP.

Figure 3 shows the microarchitecture for a FG-SIMT engine with
L1 memory system. As in GP-SIMT, a large-scale FG-SIMT pro-
cessor includes multiple engines interconnected through an on-chip
network and outer-level memory system. While inter-engine design
considerations are important, we limit our scope to a detailed imple-
mentation of a single engine to complement our system-level GP-
SIMT modeling. The FG-SIMT execution engine includes the con-
trol processor (CP), FG-SIMT issue unit (SIU), eight SIMT lanes,
and the FG-SIMT memory unit (SMU).

FG-SIMT Kernel Launch – The CP is a simple RISC proces-
sor with its own program counter (PC), register file, and integer
arithmetic unit. The CP uses the following instruction to launch a
FG-SIMT kernel:

launch_kernel r_n, kernel_addr

where r_n is a CP register containing the total number of threads to
execute. The instruction saves the kernel start address and the return
address in microarchitectural registers and initializes a warp counter
to n/m where n is the value in r_n and m is the number of threads
per warp. The instruction then initializes the active warp fragment
register (AWFR) with a new warp fragment. A warp fragment is
simply a PC and an active thread mask indicating which threads are
currently executing that PC (i.e., initially the AWFR will contain
the kernel address and a mask of all ones if n >= m).

FG-SIMT Control Processor – After launching a kernel, the CP
fetches scalar instructions at the PC in the AWFR and sends them
to the SIU, acting as the FG-SIMT engine’s fetch unit. Uncondi-
tional jumps can be handled immediately in the CP. Conditional
branch instructions are sent to the SIU, but the CP must wait for the
branch resolution to determine the new active thread mask. If all
threads take or do not take the branch, then the CP proceeds along
the appropriate control flow path. If the threads diverge, then the



CP creates a new warp fragment with the branch target and a mask
indicating which threads have taken the branch. The new warp frag-
ment is pushed onto the pending warp fragment buffer (PWFB) be-
fore continuing execution along the not-taken path. We use a two-
stack PC-ordered scheme which separates taken forward branches
from taken backward branches in the PWFB to more effectively
handle complicated control flow caused by intra-kernel loops [20].
The first warp brings kernel parameters into a shared load cache,
reducing access latency for later warps. New warps are not sched-
uled until all fragments for the current warp execute to completion.
Once all warps have been processed, the CP continues executing
the instructions after the launch_kernel instruction.

FG-SIMT Issue Unit – The SIU is responsible for issuing in-
structions in-order to the SIMT lanes. Sophisticated scoreboarding
is implemented to track various structural and data hazards and en-
able aggressive forwarding of data values between functional units.
Load instructions are split into two micro-ops: address generation
and SRF writeback. The former is issued to the lanes to generate the
memory request, whereas the latter is enqueued into a SIMT load
writeback queue (SLWQ). To facilitate aggressive forwarding from
load instructions, writebacks are only issued to the SLU when all
load responses have been received. Even though the SIU is single-
issue, it is still possible (and very common) to keep multiple func-
tional units busy, since each warp occupies a functional unit for four
cycles (warp size of 32, eight lanes, four threads per lane).

FG-SIMT Lanes – Each FG-SIMT lane is composed of five
SIMT functional units: two arithmetic units (SAU), an address gen-
eration unit (SGU), a store unit (SSU), and a load unit (SLU). The
lane control unit manages sequencing the functional units through
the threads within a warp. Both SAUs can execute simple integer
operations including branch resolution; long latency operations are
fully pipelined and distributed across the two units and include: in-
teger mult, div; and IEEE single-precision floating-point add, con-
vert, mult, div. Addresses and store data of memory requests are
generated by the SGU and SSU, respectively. The SLU manages
writeback of load data and the SLWQ in the SIU enables overlapped
memory requests. Each FG-SIMT lane also includes a bank of the
SIMT register file (SRF). The SRF is a large, multi-ported register
file that supports a maximum of 32 threads per warp.

FG-SIMT Memory Unit – The SMU includes several queues
for storing memory requests and responses as well as logic for
memory coalescing. Each lane has a memory request queue
(SMRQ) and a load data queue (SLDQ). The SMU has eight 32-
bit ports to the memory system, one for each lane, in addition to a
single 256-bit port used for coalesced requests and responses. Re-
quests to the same address or consecutive addresses across lanes
can be coalesced into a single wide access. Coalescing is only pos-
sible when the requests are cache line aligned. The SIMT memory
response reorder queue (SMRRQ) is used to coordinate the write-
back of scalar and coalesced responses and ensure that data is writ-
ten back in-order. A counter is used to keep track of all in-flight
memory requests, which is used to handle an implicit memory fence
between the CP and SMU at the end of each kernel.

FG-SIMT L1 Memory System – The L1 memory system in-
cludes a single 16 KB instruction cache along with an eight-bank
128 KB data cache. Both caches are blocking, direct mapped, and
use 32 B cache lines. Queued memory request/response crossbars
use round-robin arbitration and handle per-port response reordering
internally. The data cache request crossbar supports nine narrow re-
quest ports with a data size of 32 b and one wide request port with
a data size of 256 b. Each data cache bank is capable of servicing
one 32 b or one 256 b read/write per cycle.




















































     



























































   





 




Figure 3: FG-SIMT Baseline Microarchitecture – Eight-lane
FG-SIMT execution engine with L1 instruction cache and L1 eight-
bank data cache. Only one branch resolution path shown for sim-
plicity. PWFB = pending warp fragment buffer; AWFR = ac-
tive warp fragment reg; CP = control proc; µArch Kernel State =
kernel address reg, return address, warp counter reg; RF = reg-
file; SIQ = SIMT issue queue; SLWQ = SIMT load-write-back
queue; SRF = SIMT regfile; SAU0/1 = SIMT arithmetic units;
SGU = SIMT addr gen unit; SLU = SIMT load unit; SSU =
SIMT store unit; SMRQ/SLDQ/SMRRQ = SIMT mem-req/load-
data/resp-reorder queues; BMR = branch resolution mask register

4. MECHANISMS FOR EXPLOITING
VALUE STRUCTURE

This section describes three mechanisms to exploit value struc-
ture: affine arithmetic, branches, and memory operations.

4.1 Detecting and Tracking Value Structure
A per-warp affine SIMT register file (ASRF) is added to the

front-end of a SIMT microarchitecture. In GP-SIMT, the ASRF
is inserted into the decode stage of each stream multiprocessor
(SM). In FG-SIMT, the front-end is effectively the CP, and Fig-
ure 4 illustrates the required modifications. The ASRF compactly
stores affine values as a 32-bit base and 16-bit stride pair (smaller
stride storage is also possible to reduce area overhead especially in
GP-SIMT). The ASRF has one entry for each architectural register
along with a tag indicating whether that register is uniform, affine,
or generic. Explicit uniform tags enables more efficiently handling
affine arithmetic that is only valid for such values. The ASRF can
store both integer and floating-point values, but the latter is limited
to uniform values as expanding a floating-point affine value would
result in an unacceptable loss of precision.

There are three ways in which a register can be tagged as uniform
or affine: (1) destination of shared loads (e.g., GP-SIMT: ld.param



instructions; FG-SIMT loads with gp as base address); (2) destina-
tion of instructions reading the thread index (e.g., GP-SIMT: move
from ntid.x; FG-SIMT: tidx instruction); or (3) destination of
affine arithmetic.

4.2 Compact Affine Execution
Without Divergence

We first describe a basic scheme for affine arithmetic, branches,
and memory operations that cannot handle divergence. Note that
this scheme can still exploit value structure after branches as long
as the threads within the warp do not diverge (i.e., all threads either
take or do not take the branch).

Affine Arithmetic is valid for select instructions with two uni-
form/affine operands as described in Section 2. Eligible instructions
include addition, subtraction, multiplication, and shifts. Shift oper-
ations correspond to affine multiplication or division depending on
the direction of the shift. Immediate operands are treated as uni-
form values. We add an affine functional unit to the front-end of
a SIMT microarchitecture which is specifically designed to operate
on base/stride pairs. In FG-SIMT, we can reuse the CP’s standard
functional unit for base computations, but still must add an extra
functional unit for stride computations. Since GP-SIMT supports
two issue slots, we add two sets of affine functional units for im-
proved throughput of affine arithmetic. Each set is composed of
an integer and floating point arithmetic unit, but instructions can
only be issued to one of these units every cycle. The floating point
unit only supports computation on uniform operands. All arithmetic
units are pipelined and fully-bypassed. Eligible instructions are is-
sued to these affine pipelines instead of the SIMT lanes. The ASRF
still only needs two-read/one-write ports since we can partition the
ASRF by warp; odd warps use one set of ASRF and affine func-
tional units and even warps use the other set. Affine arithmetic ex-
ecutes by reading base/stride operands from the ASRF, running the
computation on the affine functional units, and (potentially) writing
the result back into the ASRF. If the destination register of a non-
affine instruction (i.e., an instruction sent to the SIU) is marked as
affine in the ASRF, that register’s tag must be set to generic since
the most recent value of the register will now be in the SRF. If any
of the operands of a non-affine instruction are in the ASRF then the
base/stride pair will be sent to the SIU along with the non-affine in-
struction. The SIMT lanes will use the iteratively expanded affine
values instead of reading from the SRF.

Affine arithmetic is implemented in both our GP-SIMT and FG-
SIMT microarchitectures. Affine arithmetic can improve both per-
formance and energy efficiency by avoiding multiple cycles of
operand collection, execution, and writeback on the SIMT lanes,
avoiding multi-cycle functional unit occupancy in the SIMT lanes,
and enabling the use the smaller and more efficient ASRF instead
of the larger SRF. For microarchitectures which execute instruc-
tions over multiple cycles on the SIMT lanes, affine arithmetic will
reduce execution to a single cycle.

Affine Branches are branches where the operands used in the
branch comparison are affine. When the branch operand is uni-
form, a single comparison using the affine functional unit in the CP
sufficiently applies to all threads in a warp. Uniform branches are
common for inner loops within each thread. Comparisons between
a uniform value and an affine value can be resolved on the CP if the
uniform value is greater than or less than all elements in the affine
sequence, implying a coherent branch resolution. Affine branches
are common when performing bounds checking in SIMT kernels
(e.g., stencil operations).




































  










 

 

Figure 4: FG-SIMT CP with Compact Affine Execution – The
ASRF and stride functional units are added to the baseline CP.

Uniform branches are implemented in both our GP-SIMT and
FG-SIMT microarchitectures, but currently only GP-SIMT sup-
ports more general affine branches. In GP-SIMT, affine branches
reduce pressure on the operand collectors. In FG-SIMT, uniform
branches decrease the branch resolution latency by eliminating
communication with the SIMT lanes. In both cases, energy ef-
ficiency is improved by avoiding reading the SRF and redundant
comparisons across all threads in a warp.

Affine Memory Operations are load instructions with an affine
base address. In FG-SIMT, the affine base address must also in-
dicate a “unit-stride access” (i.e., s = {1,2,4} for byte, halfword,
and word accesses respectively). Affine memory operations are still
sent to the SIU but are allowed to skip address generation on the
SIMT lanes. In GP-SIMT, they can also bypass the operand col-
lection stage since the source address is read and expanded from
the ASRF. Affine memory operations are issued to the SMU im-
mediately, since the access pattern is known from the affine base
address. Like coalesced memory requests, affine memory opera-
tions use a wide request port; a full-warp affine memory operation
is broken down into multiple cache-line width memory requests.
The number of memory requests depends on the element width and
cache alignment. For example, affine load word operations with 32
threads/warp and 32-byte cache lines require four wide accesses if
the requests are aligned, and five wide accesses otherwise. A rota-
tion network is used to assign the elements in each wide response
to the appropriate lane. An extra memory command queue coordi-
nates writeback between affine memory operations and other mem-
ory requests. Careful consideration is taken to avoid subtle memory
ordering issues between the wide port and the narrow ports.

In GP-SIMT, a sophiscated, albeit expensive, coalescing unit pro-
vides full-warp coalescing, so the main benefit from affine memory
operations is again from the reduced pressure on the operand collec-
tors which affine memory operations can skip over. Note that affine
memory operations can efficiently exploit value structure across a
warp without the area and energy overhead of a complex coalesc-
ing unit. Affine memory requests are also injected into the memory
system earlier. However, they are still issued to the SIMT pipeline
rather than the affine pipeline to preserve memory ordering. We
use a simpler coalescing unit in FG-SIMT which can only merge
requests across lanes, and this allows affine memory operations to
more significantly improve performance by more efficiently captur-
ing full-warp vector memory operations. For byte- and half-word
loads, this enables servicing the entire warp from potentially a sin-
gle cache line access. Perhaps more importantly, affine memory
operations avoid the energy required to redundantly compute 32
effective addresses and then dynamically detect that these are con-
secutive addresses. Both affine memory operations and coalesced
requests eliminate cache bank conflicts by consolidating requests to
consecutive addresses into a minimal number of accesses, improv-
ing both performance and energy efficiency.



4.3 Lazy Expansion Divergence Scheme
The basic scheme outlined in the previous section works only

when the threads are converged. When threads diverge into mul-
tiple warp fragments, each fragment essentially needs its own set
of affine registers; otherwise, one warp fragment could overwrite
an entry in the ASRF with a new affine value before a different
warp fragment has read the original affine value. Note that an im-
portant feature of our technique is that we can still efficiently ex-
ecute affine branches and memory operations after divergence; the
issue revolves around handling affine arithmetic after divergence.
The key to exploiting affine arithmetic while threads are converged
while still enabling correct execution after divergence is to carefully
manage affine expansion after divergence. A naive scheme might
use eager affine expansion to expand all values in the ASRF after
the first branch diverges. Preliminary investigation of eager expan-
sion determined that this caused unacceptable overhead; a signifi-
cant amount of work was spent expanding values that were never
used. In addition, eager expansion does not exploit the fact that we
can still perform compact affine execution after divergence; we just
cannot write to the ASRF after divergence.

Our single-ASRF divergence scheme uses lazy affine expansion
of compact values. After divergence, affine arithmetic is still per-
formed in the front-end, but the result is sent to the SIMT lanes to
be expanded instead of being written back to the ASRF. The corre-
sponding tag in the ASRF is updated to indicate that the destination
registers is now generic. A subtle issue arises if the destination
register in this situation was originally in the ASRF; we must ex-
pand the the original affine value for the non-active threads and then
write the new value for the active threads to ensure that later warp
fragments will read the proper value. Predicated instructions also
require careful consideration; we must expand the destination even
if they are not diverged since some threads might not execute based
on data-dependent conditionals.

We have implemented the single-ASRF divergence scheme in
both the GP-SIMT and FG-SIMT microarchitectures. This scheme
can still achieve some of the benefits of compact affine execution
after divergence, but also introduces overhead when we must lazily
expand results. The actual performance of this scheme is heavily
dependent on how early the workload diverges and how much op-
portunity for compact affine execution there is before divergence.

5. EVALUATION FRAMEWORK
This section describes the infrastructure used to evaluate compact

affine execution in both GP-SIMT and FG-SIMT architectures.

5.1 GP-SIMT Hardware Modeling
We use a modified version of GPGPU-Sim 3.0 configured to

model the GP-SIMT microarchitecture described in Section 3 with
a PTX front-end and a realistic on-chip and off-chip memory sys-
tem. GPGPU-Sim is a cycle-level microarchitectural model with a
functional/timing split to enable rapid preliminary design space ex-
ploration [3]. We will evaluate two configurations: gpsimt without
compact affine execution and gpsimt+abm which includes support
for affine arithmetic, branches, and memory operations.

Our goal is to improve not only performance but also energy effi-
ciency without negatively impacting area and cycle time. Unfortu-
nately, it is difficult to accurately model execution time, energy, and
area of real GPGPUs since the detailed microarchitecture of these
systems is not public. We therefore limit ourselves to preliminary
design space exploration using cycle-level modeling for GP-SIMT
architectures and augment this with a much more detailed evalua-
tion of FG-SIMT architectures.

5.2 FG-SIMT Hardware Modeling
We implemented a variety of different FG-SIMT configurations

using RTL, and we use commercial ASIC CAD tools to enable:
(1) cycle-accurate RTL simulation for design space exploration;
(2) standard-cell synthesis and place-and-route for generating lay-
out and estimating cycle time and area; and (3) gate-level simula-
tion for estimating power consumption.

We use a combination of Synopsys DesignCompiler, IC Com-
piler, and PrimeTime PX along with a TSMC 40 nm standard cell
library. We did not have access to a memory compiler for our tar-
get process, so we model tag/data SRAMs by creating abstracted
“black-box” modules, with area, timing, and power models suitable
for use by the CAD tools. We used CACTI [26] to explore a range
of possible implementations and chose one that satisfied our design
requirements. The rest of the cache is modeled using synthesiz-
able RTL. Cache refill/eviction requests/responses are serviced by
an idealistic functional main-memory model, and so we carefully
configure our FG-SIMT benchmarks such that they fit in the L1
cache for the key timing loop.

For the evaluation, we compare the performance of the follow-
ing designs at the RTL level: baseline FG-SIMT (fgsimt), FG-
SIMT with a single-ASRF divergence scheme and affine arith-
metic (fgsimt+a), affine arithmetic and branches (fgsimt+ab), and
affine arithmetic, branches, and memory operations (fgsimt+abm).
In addition, we also implemented an RTL model of an eight-core
RISC processor (in-order, single-issue, one thread per core, no
subword-SIMD units) with per-core private L1 instruction caches
and a shared eight-bank L1 data cache (similar to the FG-SIMT
design). The multicore configuration (mcore) is only provided
as a useful reference point for the primary comparison between
fgsimt and fgsimt+abm. Of these configurations, mcore, fgsimt, and
fgsimt+abm were pushed through our ASIC toolflow for detailed
evaluation of cycle time, area, and energy.

5.3 GP-SIMT and FG-SIMT Benchmarks
We have mapped a variety of benchmarks with diverse con-

trol, memory-access, and value structure to our GP-SIMT and
FG-SIMT architectures (see Section 2.4, Tables 1–3). GP-SIMT
benchmarks are drawn from the GPUGPU-Sim 3.0 distribution [3],
Parboil suite [33], and Rodina suite [4] and also include custom
benchmarks. FG-SIMT benchmarks mostly include custom bench-
marks implemented using our lightweight C++ SIMT programming
framework (see Section 2.1). In the rest of this section, we briefly
describe these custom benchmarks.

bilat performs a bilateral image filter with a lookup table for the
distance function and an optimized Taylor series expansion for cal-
culating the intensity weight. bsearch uses a binary search algo-
rithm to perform parallel look-ups into a sorted array of key-value
pairs. cmult does floating-point complex multiplication across an
array of complex numbers. conv is a 1D spatial convolution using a
20-element kernel. dither generates a black and white image from
a gray-scale image using Floyd-Steinberg dithering. Work is paral-
lelized across the diagonals of the image, so that each thread works
on a subset of the diagonal. A data-dependent conditional allows
threads to skip work if an input pixel is white. kmeans implements
the k-means clustering algorithm [4] . Assignment of objects to
clusters is parallelized across objects. The minimum distance be-
tween an object and each cluster is computed independently by each
thread and an atomic memory operation updates a shared data struc-
ture. Cluster centers are recomputed in parallel using one thread
per cluster. mfilt does a masked blurring filter across an image of



grayscale pixels. rgb2cmyk performs color space conversion on a
test image. rsort performs an incremental radix sort on an array of
integers. During each iteration, individual threads build local his-
tograms of the data, and then a parallel reduction is performed to
determine the mapping to a global destination array. Atomic mem-
ory operations are necessary to build the global histogram structure.
strsearch implements the Knuth-Morris-Pratt algorithm to search
a collection of byte streams for the presence of substrings. The
search is parallelized by having all threads search for the same sub-
strings in different streams. The deterministic finite automatas used
to model substring-matching state machines are also generated in
parallel. viterbi decodes frames of convolutionally encoded data us-
ing the Viterbi algorithm. Iterative calculation of survivor paths and
their accumulated error are parallelized across paths. Each thread
performs an add-compare-select butterfly operation to compute the
error for two paths simultaneously, which requires unpredictable
accesses to a lookup table.

6. EVALUATION RESULTS
In this section, we evaluate our approach using cycle-level GP-

SIMT modeling and RTL/VLSI FG-SIMT modeling to make a case
for exploiting value structure.

6.1 GP-SIMT: Cycle-level Performance
Figures 5 and 6 shows the performance of GP-SIMT with affine

arithmetic, branches, and memory operations (gpsimt+abm) com-
pared to the baseline (gpsimt) with a realistic memory system and
warmed-up caches, respectively. A DRAM latency of 120 cycles
was used for Figure 5. Results for a 16-lane (L16) and 8-lane (L8)
GP-SIMT configuration with a slow and fast front-end are shown in
both figures. We also studied a 32-lane design, where each warp oc-
cupies a functional unit for a single cycle. Affine execution yielded
less benefit in this context, since warp instructions take the same
number of cycles to execute in both the affine and SIMT pipelines.
However, the primary performance benefit of affine execution is de-
rived from the ability to skip the operand collection and writeback
stages of the SIMT pipeline, as well as the reduced occupancy of
the SIMT functional units. Note that reducing the number of lanes
might not always translate to better performance using affine execu-
tion because multithreading often adequately hides functional unit
latencies. Affine execution also helps to keep the functional units
busy more often as seen by the increasing average warp issue rate
for all applications.

We expect to see higher speedups in L8 which executes instruc-
tions over more cycles; affine execution reduces this to a single cy-
cle. However, Figure 5 shows that this is not always the case. This
can be attributed to the changing memory access patterns related
to the varying microarchitectural latencies which can significantly
affect performance. For instance, applications like cmult or conv
which are dominated by instructions dependent on multiple criti-
cal loads are especially sensitive to issue scheduling. Factoring out
this sensitivity to the memory system yields results more in line
with expectations as shown in Figure 6. Compute-limited applica-
tions with close dependencies between instructions, such as conv
and sgemm, see more benefit from affine execution on L8 compared
to L16. However, in many cases, warp multithreading is effective
in eliminating such dependencies, dampening the benefits of affine
execution.

The results for the slower front-end are shown to motivate the
need for a faster front-end for affine execution. With a slower front-
end, the affine functional units take the same number of cycles to

Name Description GP FG
aes Advanced encryption standard G
bfs Breadth-first search R P
bilat Bilateral image filtering C C
bsearch Parallel binary searches in linear array C C
cmult Vector-vector complex multiplication C C
conv Spatial convolution with large kernel C C
cutcp Distance-cutoff coulombic potential P’
dither Floyd-Steinberg image dithering C
kmeans KMeans clustering R C
lps Laplace discretisation w/ Jacobin iteration G
mfilt Masked image blur filter C C
nnet Artificial neural network G
nqueens N-Queens solver G
rgb2cmyk RGB-to-CMYK color conversion C
rsort Radix sort of array of integers C
sgemm Dense matrix-matrix multiply P P
strsearch Knuth-Morris-Pratt string search C
viterbi Viterbi decoder C

Table 2: SIMT Benchmarks – GP = benchmarks for GP-SIMT;
FG = benchmarks for FG-SIMT. C = custom implementation; G =
implementation included in GPGPU-Sim distribution [3]; P = im-
plementation adapated from Parboil suite [33]; P’ = Parboil imple-
mentation included in GPGPU-Sim distribution; R = implementa-
tion from Rodinia suite [4].

execute a warp instruction as the SIMT lanes. This severely limits
the ability of affine execution to more quickly reach the critical non-
affine instructions. It also hides the benefits of reducing the number
of cycles for a warp instruction to execute (i.e., affine execution on
L8 will not show more benefit than L16). Generally, a faster front-
end will yield higher speedups for compute-heavy applications with
a high density of affine instructions. Note that a faster front-end
can also benefit the baseline GP-SIMT which can affect the relative
speedup as well.

Table 1 lists statistics about the GP-SIMT results which will be
used in the following analysis. In general, applications with more
opportunities for affine execution show greater speedups. About
half the applications show notable speedups ranging from roughly
8–30%, a quarter with marginal or no speedup, and the rest show-
ing slightly worse performance. With a realistic memory system as
shown in Fig 5, cache misses and high memory latencies can domi-
nate the performance of many applications, overshadowing the ben-
efits of affine execution. We offer a set of results with warmed-up
caches to isolate the effects of affine execution.

nnet has the highest density of affine instructions of all the appli-
cations. Much of the computation is on a per-block basis, making it
ideal for affine execution. nnet also is dominated by address compu-
tation and complex mathematical approximations (i.e., tanh) which
introduce many affine values. As an aside, note that nnet has just
1.9 active threads on average. This is due to very short application
vector lengths as opposed to divergence.

Applications such as bfs, kmeans, lps, and median suffer from
high degrees of thread divergence which suppress affine execution
and add the overhead of affine expansions. kmeans in particular
has the highest expansion overhead at 15%, negating the effects of
affine execution and degrading performance. cutcp is an interest-
ing case as it has a high percentage of affine instructions but shows
no improvement. In this case, performance is dominated by non-
affine long latency operations, with the highest percentage of all
applications at 35%. Similarly, in nqueens, the serialized reduc-
tion stages dominate and overshadow the benefits of affine execu-
tion. It is worth noting that applications with lower average warp



aes bfs bilat bsearch cmult conv cutcp kmeans lps median mfilt nnet nqueens sgemm
0.85

0.90

0.95

1.00

1.05

1.10

1.15

1.20
S

p
ee

d
u
p

2.05 3.76
  

Figure 5: GP-SIMT Cycle-Level Performance with Realistic Memory – Each bar shows the speedup for GP-SIMT with all affine exten-
sions (gpsimt+abm) relative to a baseline (gpsimt) with the same number of lanes (L8 = 8 lanes, L16 = 16 lanes) and front-end configuration.

aes bfs bilat bsearch cmult conv cutcp kmeans lps median mfilt nnet nqueens sgemm
0.85
0.90
0.95
1.00
1.05
1.10
1.15
1.20
1.25
1.30

S
p
ee

d
u
p

2.06 3.78

Figure 6: GP-SIMT Cycle-Level Performance with Warmed-Up Caches – Each bar shows the speedup for GP-SIMT with all affine exten-
sions (gpsimt+abm) relative to a baseline (gpsimt) with the same number of lanes (L8 = 8 lanes, L16 = 16 lanes) and front-end configuration.
All datasets are sized to fit in the cache.

gpsimt gpsimt+abm
Dyn Act Avg LL Ctrl Mem Div Warp Aff Supp Exp Aff Aff Aff Aff

Name inst thds iss inst inst inst inst issue inst aff inst rds wrs bra mem
aes 30.1 32.0 0.5 11% 0% 25% 0% 0.5 29% 0% 0% 21% 28% 0% 53%
bfs 14.0 10.3 0.5 7% 8% 32% 78% 0.6 17% 52% 9% 24% 38% 91% 62%
bilat 7.2 31.1 0.9 24% 7% 7% 24% 1.1 39% 18% 6% 24% 40% 100% 18%
bsearch 0.2 25.0 0.6 4% 16% 12% 77% 0.6 9% 66% 5% 9% 14% 98% 78%
cmult 0.6 32.0 0.6 19% 3% 45% ~0% 0.8 52% 0% 0% 38% 52% 0% 14%
conv 2.1 31.9 1.1 10% 10% 28% ~0% 1.2 46% ~0% ~0% 32% 50% 91% 32%
cutcp 126.0 32.0 0.6 35% 5% 25% ~0% 0.6 45% ~0% ~0% 26% 45% 0% ~0%
kmeans 2.6 25.1 0.4 5% 5% 10% 66% 0.5 24% 52% 15% 16% 22% 85% 3%
lps 72.7 24.2 1.1 10% 12% 23% 92% 1.2 5% 86% 8% ~0% 5% ~100% 75%
median 0.3 20.1 0.8 1% 13% 3% 80% 0.8 5% 78% 3% 6% 9% 100% 34%
mfilt 2.5 29.5 0.4 13% 7% 24% 46% 0.5 41% 10% 3% 31% 41% 55% 38%
nnet 22.4 1.9 0.8 17% 8% 1% ~0% 1.7 98% ~0% ~0% 70% 77% ~0% 1%
nqueens 1.2 25.8 0.4 3% 11% 29% 29% 0.5 42% 16% 2% 55% 70% 42% 28%
sgemm 9.3 32.0 0.8 22% 1% 23% 0% 0.9 13% 0% 0% 9% 12% 0% 2%

Table 1: Statistics for GP-SIMT Bench-
marks Dyn inst = dynamic instructions
in millions; Act thds = avg. active threads
per warp (max=32); Avg iss = avg. instruc-
tions issued per cycle (max=2); LL, Ctrl,
Mem inst = % long latency, branch/jump,
load/store instructions; Div inst = % instruc-
tions under divergence; Aff inst = % affine
instructions (not including suppressed); Supp
aff = % affine instructions suppressed by di-
vergence; Exp inst = % overhead of affine
expansion; Aff rds/wrs = % reduction of
SRF reads/writes; Aff bra, mem = % affine
branches, loads; Values rounded to 0% or
100% are prefixed with ’~’.

instruction issue rates are usually bottlenecked by non-affine long-
latency operations or the memory system, which overshadows the
benefits gained from affine execution. The percent of affine instruc-
tions suppressed by divergence range from 10–86% for divergent
benchmarks, suggesting future optimizations for exploiting value
structures after divergence could further improve performance.

As a proxy for the energy savings provided by affine execution,
Table 1 also shows the percent of SRF reads/writes saved by ac-
cessing the more compact ASRF. In most cases, affine execution
replaces 16–55% of SRF reads and 11–52% of SRF writes with
more efficient accesses to the ASRF. Note that these savings also
apply to the 32-lane configuration.

Overall, these results provide additional motivation for our de-
tailed FG-SIMT evaluation to better quantify the cycle time, area,
and energy overheads associated with our approach.

6.2 FG-SIMT: Cycle Time, Area Comparison

Figure 7 shows the area breakdown of the placed-and-routed de-
signs. Amortizing the instruction fetch over a warp reduces the in-
struction cache size in fgsimt compared to mcore. However, fgsimt
pays a significant overhead for the large SRF. The additional wide
port for memory coalescing and affine memory operations adds area
overhead to the crossbar. The ASRF, stride functional unit, and ex-
pansion logic of fgsimt+abm slightly increases the area of the CP
and SIMT lanes.

The critical path of mcore is through the memory system. The
critical path of both the FG-SIMT designs are through the SRF read
and address generation. The marginal difference in cycle time of
fgsimt+abm and fgsimt is within the variability margin of the ASIC
CAD tools.





  





























Figure 7: Area Breakdown – (left) absolute area breakdowns of
fgsimt+abm, mcore, and fgsimt. Bars are annotated with cycle
times; (right) layout of placed-and-routed fgsimt+abm implemen-
tation in a TSMC 40nm process.

6.3 FG-SIMT: RTL Results
Figure 9 shows the RTL cycle count speedups of fgsimt+abm

compared to the baseline fgsimt. The trends are similar to those
found in the GP-SIMT results with some noticeable differences. Ta-
ble 3 shows the various metrics used to quantify the benefits gained
from each proposed mechanism.

For affine arithmetic, the percent of affine instructions reflects
the amount of work that is amortized across an entire warp by ex-
ecuting an instruction affinely on the CP. In addition, we obtain
higher energy efficiency by reading once from the ASRF instead
of having every active thread read from the SRF, as shown by the
increased percentage of affine reads and writes. Affine branches
avoid the expensive branch resolution latency of the SIMT lanes
which FG-SIMT cannot hide with multithreading, attributing to the
more pronounced performance increase of fgsimt+ab. Affine mem-
ops reduce the total number of memory requests and reduce bank
conflicts; this is reflected in the table as the percentage of memops
which we can infer to be vector memops. The results suggest that
affine memops can further improve the efficiency gained from co-
alescing. Overall, exploiting value structure using compact affine
execution in fgsimt+abm improves performance over fgsimt for a
majority of our benchmarks, with speedups ranging from 20–65%
for those with significant improvement. The degree of improve-
ment with each added mechanism depends on the amount of value
structure present in the corresponding class of instruction as char-
acterized in Section 2.

One interesting difference from the GP-SIMT results is kmeans
for which FG-SIMT shows a pronounced improvement. This is
partly because the FG-SIMT optimized kmeans eliminates some of
the divergence we saw in GP-SIMT. In bilateral, the lack of multi-
threading in FG-SIMT makes it difficult to hide the latency of long-
latency floating point operations which throttle the performance.
However, note that in the general case, FG-SIMT is still able to ob-
tain significant speedups without multithreading, which also means
it does not incur the associated, non-trivial overheads. Each mecha-
nism only improves or does not affect performance. The rare excep-
tion to this is inferred vmemops, as shown by rsort, which occurs
when the altered memory access pattern ends up causing more bank
conflicts between narrow and wide requests.

Minimal or no improvement is seen for the most divergent bench-
marks where execution is dominated by branch resolution (e.g. av-
erage number of active threads 13.2 and 17.1, for strsearch and bfs,
respectively). Although kmeans is quite divergent, the higher den-
sity of uniform branches mitigate the performance loss. rsort is not
divergent, but uses small number of threads so that fgsimt cannot
take advantage of the shared load cache. The shared load cache is
ineffective in this case since the cache is invalidated after the end of
each kernel to prevent coherence issues.

0.9 1.0 1.1 1.2 1.3 1.4 1.5 1.6 1.7

Task/Second

0.6

0.7

0.8

0.9

1.0

1.1

1.2

D
y
n
am

ic
 E

n
er

g
y
/T

as
k

cmult
mfilt

bsearch

viterbi

rsort

dither

strsearch

rgb2cmyk

conv

kmeans

bfs

sgemm

bilateral

Figure 8: FG-SIMT Normalized Dynamic Energy vs. Perfor-
mance – Results are for fgsimt+abm normalized to fgsimt anno-
tated on (1,1).

6.4 FG-SIMT: Energy vs. Performance
Figure 8 shows the dynamic energy and performance of

fgsimt+abm relative to fgsimt. A majority of the benchmarks show
energy reductions, with maximum savings up to nearly 30%. Over-
all, compact affine execution reduces the amount of work to com-
plete the same task. For example, in one of the best cases, viterbi
shows a 54% decrease in the combined register file (SRF + ASRF)
energy, a 29% decrease in the combined functional unit (SIMT lane
units + CP affine units) energy, and a 34% reduction in the memory
system energy by enabling affine execution.

Divergent benchmarks can incur a significant dynamic en-
ergy overhead from affine expansions which are triggered when
affine registers are overwritten after divergence. The worst case,
strsearch, exemplifies this overhead. The energy consumption in
strsearch increases from 115uJ to 130uJ, a percent increase of 12%.
Of the 15uJ increase, 89% is attributed to the SIMT lanes, specif-
ically the VAUs which manages affine expansion. In such cases,
compact affine execution is not amortized across enough threads, so
that the energy overheads of affine expansion outweigh the marginal
performance benefit.

7. RELATED WORK
There have been numerous proposals for microarchitectural

mechanisms to improve the performance of SIMT architectures in-
cluding: dynamically creating new warp fragments to better han-
dle irregular control flow and memory accesses [24, 34]; dynami-
cally merging warp fragments into new warps to mitigate control
divergence [12, 13, 30]; new reconvergence schemes [6, 10]; and
new SIMT register file organizations [14]. These techniques are all
complementary and orthogonal to the mechanisms presented in this
paper.

The closest work to our own is a preliminary study by Collange
et al. in [7] which uses a cycle-level simulator to track the number
of affine values read and written to the SIMT register file for CUDA
benchmarks. Similar to our own study in Section 2 for FG-SIMT
benchmarks, Collange at al. found significant value structure that is
currently not exploited in SIMT architectures. This prior work also
describes a scheme for tracking affine values derived from shared
loads and thread indices similar to our own (although we also han-
dle affine multiplications) and sketches a possible way to exploit
this value structure using the SIMT register file to hold affine val-
ues and the SIMT functional units to perform affine arithmetic. We



cmult mfilt bsearch viterbi rsort dither strsearch rgb2cmyk conv kmeans bfs sgemm bilat

0.2

0.4

0.6

0.8

1.0

1.2

1.4

1.6
S

p
ee

d
u

p
   

Figure 9: FG-SIMT Cycle-Level Performance – Results for all affine configurations and mcore normalized to fgsimt.

mcore fgsimt fgsimt+a fgsimt+ab fgsimt+abm
Dyn Exec Power Dyn Int FP Ctrl Mem Act Mem Exec Power SL Aff Aff Aff Exec Aff Exec Aff Aff Exec Power

Name inst time (mW) inst inst inst inst inst thds B/cyc time (mW) inst inst rds wrs time inst time inst mem time (mW)
bfs 16 46 120 53 48% 0% 16% 32% 17.1 1.9 46 94 1% 4% 34% 12% 46 4% 46 4% 1% 45 106
bilateral 860 3058 108 6304 29% 48% 6% 15% 31.3 3.7 1103 125 4% 8% 22% 5% 1092 8% 1092 8% ~0% 1092 136
bsearch 28 47 145 207 78% 0% 4% 14% 28.0 5.9 22 135 2% 10% 27% 10% 21 10% 21 10% ~0% 21 149
cmult 2 7 133 20 20% 27% 1% 42% 31.3 12.5 2.9 168 13% 55% 64% 38% 2.2 55% 2.2 55% 6% 2.2 200
conv 25 88 115 171 34% 19% 11% 32% 31.0 9.2 27 139 3% 53% 83% 54% 24 63% 21 63% 3% 17 157
dither 1054 2018 129 3414 62% 0% 3% 30% 28.9 6.1 684 116 12% 44% 64% 49% 603 44% 603 44% 5% 584 118
kmeans 74 221 123 522 40% 15% 13% 29% 14.0 4.1 149 130 1% 51% 49% 33% 142 62% 104 62% 8% 103 152
mfilt 26 74 119 274 52% 0% 3% 38% 24.9 8.2 54 119 13% 44% 68% 43% 49 44% 49 44% 3% 45 137
rgb2cmyk 57 167 122 185 66% 0% 4% 29% 26.7 11.1 20 181 ~0% 25% 54% 17% 18 29% 16 29% 3% 16 214
rsort 43 101 129 290 52% 0% 14% 32% 30.9 3.5 113 104 ~0% 5% 38% 9% 112 6% 108 6% 1% 109 115
sgemm 34 97 130 252 39% 22% 11% 25% 32.0 7.5 38 124 2% 14% 44% 16% 37 26% 23 26% 0% 23 168
strsearch 200 379 136 1237 70% 0% 13% 15% 13.2 3.1 363 113 0% 6% ~0% ~0% 363 6% 363 6% 1% 363 126
viterbi 947 2156 121 3819 61% 0% 6% 29% 32.0 7.5 608 113 8% 42% 78% 65% 536 45% 455 45% 3% 417 116

Table 3: Statistics for FG-SIMT Benchmarks – Dyn inst = dynamic instructions in thousands; Exec time = execution time in thousands of
cycles; Power = avg. power in mW; Int, FP, Ctrl, Mem, SL inst = % integer, floating point, branch/jump, load/store, shared load instructions;
Act thds = See Table 1; Mem B/cyc = avg. L1 memory traffic in bytes/cycle (max=32B/cyc); Aff inst, rds/wrs, mem = See Table 1; Values
rounded to 0% or 100% are prefixed with ’~’.

found this approach to be difficult to implement in practice, and
it does not enable compact affine execution to take advantage of a
more energy efficient register file dedicated for holding affine val-
ues. This prior work does not handle affine multiplication, support
non-power of two strides, describe a way to manage the interaction
between affine execution and divergence, nor quantitatively inves-
tigate the cycle time, area, and energy impact of the proposed tech-
niques. In addition, our own approach supports efficient execution
of affine branches with both uniform and affine operands as well as
affine memory operations enabling dynamically generating vector
memory operations without the need for memory coalescing. We
see the prior work in [7] as useful characterization of the poten-
tial for compact affine execution, and valuable motivation for the
mechanisms proposed in this paper.

Other prior work on exploiting value structure is either more lim-
ited or orthogonal to our own. A scheme briefly mentioned by Gi-
lani et al. uses many cross-lane comparators to dynamically detect
uniform values across all threads in a warp [15]. Our own approach
achieves the same effect in the common case by more efficiently
tracking value structure derived from shared loads and the thread
index. It is true, however, that actually comparing all values across
all threads in a warp is more general since this can detect value
structure in load/store data or in register values after divergence (al-
though we did not find these situations to be very common). The
affine vector cache proposed by Collange et al. exploits value struc-
ture in load/store data, and specifically increases the prevalence of
this structure by overconstraining register usage and forcing register
spilling [8]. Since compact affine values can be stored as base/stride
pairs in the memory system, this can enable more warps in-flight
by reducing the number of registers required by each thread. This

technique is orthogonal to our own, and an interesting direction for
future work would be to investigate the interaction between these
two proposals.

There has additionally been a considerable amount of compiler
work for optimizing SIMT code, including optimizations which
leverage value structure detection to enable redundant code re-
moval [5, 9, 11, 19, 21, 31, 32]. Collange proposed a compiler anal-
ysis pass for detecting value, memory, and control structure, in-
cluding a technique called scalarization to detect scalar instruc-
tions [5]. Other work proposed divergence analysis which stati-
cally detects uniform and affine variables in CUDA code [9, 31].
Compiler techniques can be effective in simple cases where a sin-
gle value is shared across all threads, but it is challenging to stati-
cally exploit more sophisticated value structure especially after con-
trol flow [21]. The microarchitectural mechanisms presented in this
paper can complement SIMT compiler techniques; compiler opti-
mizations can potentially simplify our implementation, while com-
pilers can now take advantage of the more sophisticated compact
affine execution resources available in our design.

There has also been work on exploiting value structure in non-
SIMT architectures. Long et al. introduced minimal multithread-
ing, a microarchitectural mechanism to eliminate redundant com-
putation in SPMD applications [23]. Unlike our technique which
assumes a data-parallel SIMT architecture, minimal multithread-
ing builds on top of a multi-threaded SMT core. Lee et al. pro-
posed vector-threading as an alternative approach to SIMT-based
data-parallel accelerators [20]. Vector-threading enables manually
exploiting value structure by allowing the programmer to factor
out redundant computation onto the architecturally exposed con-
trol processor. In traditional subword/vector-SIMD architectures,



value structure is also often exploited in the compiler by refac-
toring work onto a scalar control processor and mixing scalar and
vector computation at a fine granularity. SIMT microarchitectures
usually lack a software-exposed control processor or a fine-grain
mechanism for mixing scalar and vector computation, thus threads
within a warp often spend time and energy inefficiently execut-
ing operations on well-structured values. While scalar work can
be refactored onto FG-SIMT’s software-exposed control-processor,
the techniques proposed in this paper simplify the compiler and al-
low more complicated code to be easily grouped into a single FG-
SIMT kernel; the hardware will dynamically handle executing what
is traditionally refactored onto the CP and exploit dynamic informa-
tion for further improvements.

8. CONCLUSIONS
In this paper, we proposed mechanisms to exploit value struc-

ture in SIMT architectures that enable efficiently tracking and ex-
ecuting affine arithmetic, branches, and memory operations. The
proposed mechanisms can be applied to the GP-SIMT microarchi-
tectures found in graphics processing units as well as FG-SIMT mi-
croarchitectures, a SIMT variant targeted towards compute-focused
data-parallel accelerators. We discussed many of the implementa-
tion details required to make this approach feasible (e.g., lazy ex-
pansion of compact values, handling affine branch operands). In-
teresting potentials for future work include exploiting value struc-
ture more effectively after divergence, compactly encoding value
structure in branch resolution, optimizing affine execution to bet-
ter tolerate significant memory latencies, and adaptive scheduling
based on the presence of affine values. This work demonstrated
the promise of this approach in improving both the performance
and energy-efficiency of SIMT architectures within the context of
a more traditional GP-SIMT cycle-level model and a more detailed
FG-SIMT VLSI implementation.

ACKNOWLEDGMENTS
This work was supported in part by NSF CAREER Award

#1149464, a DARPA Young Faculty Award, an NDSEG Fellow-
ship, and donations from Intel Corporation, NVIDIA Corporation,
and Synopsys, Inc. The authors acknowledge and thank Christo-
pher Fairfax and Berkin Ilbeyi for their help in writing application
kernels.

REFERENCES
[1] HD 6900 Series Instruction Set Architecture, Rev 1.1. AMD

Reference Guide, Nov 2011.
[2] AMD Graphics Cores Next Architecture. AMD White Paper, 2012.
[3] A. Bakhoda et al. Analyzing CUDA Workloads Using a Detailed

GPU Simulator. ISPASS, Apr 2009.
[4] S. Che et al. Rodinia: A Benchmark Suite for Heterogeneous

Computing. IISWC, Oct 2009.
[5] S. Collange. Identifying Scalar Behavior in CUDA Kernels.

Technical Report HAL-00622654, ARENAIRE, Jan 2011.
[6] S. Collange. Stack-less SIMT Reconvergence at Low Cost.

Technical Report HAL-00622654, ARENAIRE, Sep 2011.
[7] S. Collange et al. Dynamic Detection of Uniform and Affine Vectors

in GPGPU Computations. Workshop on Highly Parallel Processing
on a Chip, Aug 2009.

[8] S. Collange et al. Affine Vector Cache for Memory Bandwidth
Savings. Technical Report ENSL-00622654, ENSL, Dec 2011.

[9] B. Coutinho et al. Divergence Analysis and Optimizations. PACT,
Oct 2011.

[10] G. Diamos et al. SIMD Re-Convergence at Thread Frontiers.
MICRO, Dec 2011.

[11] G. Diamos et al. Ocelot: A Dynamic Compiler for
Bulk-Synchronous Applications in Heterogenous Systems. PACT,
Sep 2010.

[12] W. W. Fung et al. Thread Block Compaction for Efficient SIMT
Control Flow. HPCA, Feb 2011.

[13] W. W. Fung et al. Dynamic Warp Formation: Efficient MIMD
Control Flow on SIMD Graphics Hardware. ACM Trans. on
Architecture and Code Optimization, 6(2):1–35, Jun 2009.

[14] M. Gebhart et al. Energy-Efficient Mechanisms for Managing
Thread Context in Throughput Processors. ISCA, Jun 2011.

[15] S. Z. Gilani et al. Power-Efficient Computing for Compute-Intensive
GPGPU Applications. HPCA, Feb 2013.

[16] Intel OpenSource HD Graphics Programmer’s Reference Manual,
Vol 4, Part 2, Rev 1.0. Intel Reference Manual, May 2011.

[17] Introducing Intel Many Integrated Core Architecture. Intel Press
Release, 2011.

[18] Intel SDK for OpenCL Applications: Optimization Guide. Intel
Reference Manual, 2012.

[19] A. Kerr et al. Dynamic Compilation of Data-Parallel Kernels for
Vector Processors. CGO, Apr 2012.

[20] Y. Lee et al. Exploring the Tradeoffs between Programmability and
Efficiency in Data-Parallel Accelerator Cores. ISCA, Jun 2011.

[21] Y. Lee et al. Convergence and Scalarization for Data-Parallel
Architectures. CGO, Feb 2013.

[22] E. Lindholm et al. NVIDIA Tesla: A Unified Graphics and
Computer Architecture. IEEE Micro, 28(2):39–55, Mar/Apr 2008.

[23] G. Long et al. Minimal Multi-Threading: Finding and Removing
Redundant Instructions in Multi-Threaded Processors. MICRO, Dec
2010.

[24] J. Meng et al. Dynamic Warp Subdivision for Integrated Branch and
Memory Divergence Tolerance. ISCA, Jun 2010.

[25] Graphics Guide for Windows 7: A Guide for Hardware and System
Manufacturers. Microsoft White Paper, 2009.

[26] N. Muralimanohar et al. CACTI 6.0: A Tool to Model Large Caches,
2009.

[27] J. Nickolls et al. Scalable Parallel Programming with CUDA. ACM
Queue, 6(2):40–53, Mar/Apr 2008.

[28] NVIDIA’s Next Gen CUDA Compute Architecture: Fermi. NVIDIA
White Paper, 2009.

[29] OpenCL Specification, v1.2. Khronos Working Group, 2011.
[30] M. Rhu et al. CAPRI: Prediction of Compaction-Adequacy for

Handling Control-Divergence in GPGPU Architectures. ISCA, Jun
2012.

[31] D. Sampaio et al. Divergence Analysis with Affine Constraints.
Technical Report HAL-00650235, ARENAIRE, Dec 2011.

[32] J. A. Stratton et al. Efficient Compilation of Fine-Grained
SPMD-Threaded Programs for Multicore CPUs. CGO, Apr 2010.

[33] J. A. Stratton et al. Parboil: A Revised Benchmark Suite for
Scientific and Commercial Throughput Computing. Technical
report, UIUC, IMPACT-12-01, Mar 2012.

[34] D. Tarjan et al. Increasing memory miss tolerance for SIMD cores.
Supercomputing, Aug 2009.

[35] M. Yuffe et al. Fully Integrated Multi-CPU, GPU, and Memory
Controller 32 nm Processor. ISSCC, Feb 2011.


