
 Imagination Technologies Copyright

POWERVR MBX 1 Revision 1.5f

POWERVR MBX

Technology Overview

Copyright © 2009, Imagination Technologies Ltd. All Rights Reserved.

This publication contains proprietary information which is subject to change without notice and is
supplied 'as is' without warranty of any kind. Imagination Technologies and the Imagination

Technologies logo are trademarks or registered trademarks of Imagination Technologies Limited. All
other logos, products, trademarks and registered trademarks are the property of their respective

owners.

Filename : POWERVR MBX.Technology Overview.mht

Version : 1.5f (POWERVR SDK 2.05.25.0295)

Issue Date : 06 May 2009

Author : POWERVR

 Imagination Technologies Copyright

Revision 1.5f 2 Technology Overview

Contents
1. Introduction3

1.1. What is POWERVR? ..3

2. POWERVR MBX Architecture4
2.1. Structure ...4
2.2. Tile Processing ...4
2.3. TA – Tile Accelerator ..5
2.4. ISP - Image Synthesis Processor...6
2.5. TSP - Texture and Shading Processor...7

3. Internal True Colour™.............................. ..9

4. Full Scene Anti Aliasing10

5. Depth Complexity11

6. Features only for Tile Based Render13

7. Comparison with brute force........................ ...14
7.1. Traditional renderer ..14
7.2. POWERVR renderer ..14
7.3. Comparison ..15

8. Answering public comments.......................... ...16
8.1. Tile-based render parameters ..16

9. Conclusion17

List of Figures
Figure 1: POWERVR chip structure..4
Figure 2: Tile Processing ..5
Figure 3: A typical strip..5
Figure 4: Tile buffer ...6
Figure 5: Tile data ...6
Figure 6: ISP and Texture Grouping module ..7
Figure 7: Texture and Shading Processor ..8
Figure 8: Escape from Monkey Island Normal and 4x FSAA’ed...10
Figure 9: Quake 3 Arena screenshot ..11
Figure 10: Same Quake 3 Arena screenshot rendered translucently...12
Figure 11: Traditional renderer's pixel pipeline ...14

 Imagination Technologies Copyright

POWERVR MBX 3 Revision 1.5f

1. Introduction
Most 3D graphic hardware uses the brute force approach to render polygons on screen. Tile-based
rendering is an alternative 3D rendering technique that is used in POWERVR graphic chips. This
document explains why tile-based rendering and its particular POWERVR implementation allow for
great performance, image quality and low power consumption and why tile-based rendering is very
well suited for present and future real-time 3D graphic applications in embedded systems.

1.1. What is POWERVR?
POWERVR is a 3D technology developed by Imagination Technologies. It is a display list renderer
using a tile-based approach. This 3D technology is radically different from existing solutions as it uses
a more subtle approach to rendering than traditional renderers. The main differences are in the way
pixels are rendered on the screen: while a traditional renderer (or “brute force” renderer) renders
everything on screen and relies on a Z-Buffer to sort the end results, POWERVR determines up-front
what is visible or not and only renders what is necessary. This ingenious approach makes great
savings in memory bandwidth and thus enables modern games and other graphics rich applications
to run at optimal performance in memory and power limited environments.

 Imagination Technologies Copyright

Revision 1.5f 4 Technology Overview

2. POWERVR MBX Architecture

2.1. Structure
A chip based on POWERVR architecture is mainly composed of three modules. These modules will
interact with on-board memory to convert 3D data sent by the CPU to on-screen pixels. These three
modules are the Tile Accelerator (TA), the Image Synthesis Processor (ISP) and the Texture and
Shading Processor (TSP).

TA CPU ISP TSP

MEMORY

Figure 1: POWERVR chip structure

TA
The Tile Accelerator has the responsibility of storing the scene data and dividing the screen into tiles.
This process consists of distributing the 3D data among the screen tiles.

ISP
The Image Synthesis Processor is the module that performs Hidden Surface Removal (HSR). It
determines which pixels are visible or not.

TSP
The Texture and Shading Processor has the responsibility of shading and texturing pixels before they
are drawn onto the frame buffer.

2.2. Tile Processing
Instead of rendering each polygon on the screen until the full image is rendered, POWERVR will
render each screen tile one after the other until the full image is rendered. The TA will create 3D
parameters for each tile of the screen until the scene has been completely sent to the 3D hardware.
The actual 3D rendering starts once all tile data is in memory. Each tile is then processed in turn: first
the ISP will determine which are the visible pixels in the tile and then only these visible pixels will be
rendered by the TSP. After the current tile has finished rendering the ISP starts working on the next
tile until the scene is completely rendered.

 Imagination Technologies Copyright

POWERVR MBX 5 Revision 1.5f

Scene
data TA

Local
Memory

First tile
data

Second tile
data

Third tile
data

Last tile
data

ISP TSP Render tile

ISP TSP Render
complete

ISP TSP Render tile

ISP TSP Render tile

Figure 2: Tile Processing

2.3. TA – Tile Accelerator

Tiling
The main advantage of tiling a scene is the reduced external memory bandwidth requirement. Other
advantages such as great cache efficiency and parallel processing of localized data are also
important factors. The data for each tile is stored in board memory and contains all the polygons
which affect this tile

The choice of a tile size corresponds to the best compromise considering current application
technology, hardware design and overall cost.

Storing parameters
The TA creates a “display list” for each tile on the screen. Each tile’s display list will eventually include
references to all 3D data contained within the tile’s boundaries. This process is performed on the fly,
as each new primitive call will cause the TA to update the display lists affected by this call.
The display lists contain all relevant scene data, including triangles, texture handles, multitexturing
arguments, render states, etc. The scene is effectively “captured” to be rendered later on, hence the
term “scene-capture renderer”.

Vertex stripping
In order to maximize memory usage efficiency, the TA automatically converts all primitives to strips.
Strips are a primitive type requiring less memory than triangle lists. Using strips, n triangles are
defined by n+2 vertices. The following figure shows a 6-triangle strip defined by 8 vertices:

Figure 3: A typical strip

 Imagination Technologies Copyright

Revision 1.5f 6 Technology Overview

Tile Buffer
This term refers to the portion of memory that contains pointers to the triangles present in the tile. The
tile buffer consists in a linked list of pointers pointing to strip data in local memory. The same strip can
cross a tile boundary; in this case a pointer to the strip data will be added to the display list of both
tiles.

 Object data

(x-1,1)

(2,2)

(1,2)

(1,1)

(2,1)

(x-1,2)

(2,y)

(1,y)

(x-1,y)

(x,y)

Screen of X*Y tiles

(x,1
)

(x,2
)

Strip 4

Strip n-2

Strip n-1

Strip n

Figure 4: Tile buffer

2.4. ISP - Image Synthesis Processor

Visible Pixel Determination
The ISP has the responsibility of determining which pixels in a tile are visible. Hidden Surface
Removal is performed on a tile per tile basis, with each tile’s HSR results sent to the TSP for
rasterization of visible pixels. Only the triangles affecting a tile will be processed. If a strip is shared
between two tiles, say, then only the triangles contained within the current tile will be processed.

Tile Buffer

Object data

 Strip 4

Strip n-2

Strip n-1

Strip n

Figure 5: Tile data

 Imagination Technologies Copyright

POWERVR MBX 7 Revision 1.5f

The ISP processes all triangles affecting a tile one by one. Calculating the triangle equation and
projecting a ray at each position in the triangle return accurate depth information for all pixels. This
depth information is then compared with the values in the tile’s depth buffer to determine whether
these pixels are visible or not.

HSR is done at very high speed, as each line in a tile is processed in one clock (32 pixels). This is an
obvious advantage compared to immediate mode renderers, which have to perform per-pixel depth
interpolation for each polygon. Another advantage of this technique is that vertical and horizontal
clipping (XY clipping) is free, as HSR is only performed on the pixels we’re interested in (i.e. on-
screen pixels).

ISP Output and Texture Grouping
After the ISP has finished processing all triangles in a tile, each pixel has a “tag” attached to it whose
role is to identify the polygon properties that should be used to texture this pixel. However, texturing is
always better done when dealing with whole polygons rather than individual pixels. Indeed dealing
with whole polygons sharing the same texture properties greatly improves cache memory efficiency.

Because the ISP outputs spans of HSR result on a per-pixel basis, a “texture grouping” module has
the responsibility of re-ordering this data into whole polygons. All pixels of the same texture handle
are grouped together to maximize cache effectiveness. This module also acts as an input FIFO to the
TSP so that both ISP and TSP are kept busy at all times.

The following diagram illustrates this process on an arbitrary 8x4 tile:

ISP Texture
Grouping

HSR results

Spans

Tag A

Tag B

Tag C

Figure 6: ISP and Texture Grouping module

2.5. TSP - Texture and Shading Processor

Shading and Texturing
The shading and texturing module in the POWERVR pipeline behaves much like a traditional shading
and texturing engine. The output spans from the Texture Grouping module tell the TSP what are the
lighting and texturing parameters, and what pixels they affect in the tile.

 Imagination Technologies Copyright

Revision 1.5f 8 Technology Overview

TSP Spans

Local Memory

Parameters Textures

Frame Buffer

Figure 7: Texture and Shading Processor

A great feature of the TSP is that all shading and texturing takes place with 32 bits of colour precision,
independent of the frame buffer colour depth. This feature is called Internal True Colour (more on
this later in this document).

 Imagination Technologies Copyright

POWERVR MBX 9 Revision 1.5f

3. Internal True Colour™
Internal True Colour is a term that refers to the internal processing of all blending operations in 32
bits colour precision. This feature is only possible on tile-based architectures where all colour
processing is done in the 32 bits tile buffer.

On immediate mode renderers, image quality is a direct result of the frame buffer colour depth. On a
16 bits colour depth frame buffer, multiple reads and writes will result in a loss of precision for the final
colour. This problem usually creates a “banding” effect on the screen. While dithering is often used to
try to alleviate this problem, it can potentially create worse result by giving the image a “grainy” look.
On POWERVR, each pixel is only written once to the frame buffer, hence the final render looks much
better.

To illustrate this feature, here are two Serious Sam screenshots taken on a 16-bit and a 32-bit internal
colour cards.

Internal True Colour comparison

 Imagination Technologies Copyright

Revision 1.5f 10 Technology Overview

4. Full Scene Anti-Aliasing
Super-sampling is the POWERVR method for Full Scene Anti-Aliasing; it is one of the best anti-
aliasing methods available. It produces crisp results and greatly enhances the overall look of the final
render. Super-sampling is the process of rendering a frame at a higher resolution and filtering it down
to the frame buffer size. POWERVR supports 2x horizontal, 2x vertical and 4x anti-aliasing.

Because POWERVR is a tile-based renderer, no extra memory is required for the frame and depth
buffers. i.e. they will keep their original size during the whole process. What happens in the hardware
is that more tiles are rendered to match the super-sampled size but the scaling-down process is
transparent. This is a clear advantage compared to immediate more renderers, which have to allocate
precious video memory to cater for the super-sampled frame and depth buffers.

The following are two portions of screenshot taken from LucasArts’ Escape from Monkey Island. The
left image is normal while the right one is 4x super-sampled. Both images were scaled up 2x to allow
for better comparison:

Figure 8: Escape from Monkey Island Normal and 4x F SAA’ed

 Imagination Technologies Copyright

POWERVR MBX 11 Revision 1.5f

5. Depth Complexity
What is Depth Complexity?
Depth complexity (also sometimes called “overdraw”) is the average number of times pixels overwrite
each other in a scene. Depth complexity varies from one game to another, depending on the scene
and rendering algorithms used.

Fill rate
Nowadays, fill rate is very often used to compare capabilities of different 3D graphics processors.
Most of the time, fill rate is the limiting factor that prevents a scene to be rendered at full speed. In
these cases the CPU is idle, waiting for the render to finish before it can send the parameters for the
new scene to the 3D processor. A game suffering from this behaviour is called “fill-rate limited.”

POWERVR “super” fill rate
Because POWERVR performs HSR up-front in the pipeline, it will only render what is visible on
screen. No hidden pixels will be rendered, thus enabling an effective and intelligent use of fill rate.
This architecture enables POWERVR to beat the traditional bandwidth barrier and reach “super” fill
rates.

Real game example
The following are two screenshots from Quake 3. The first screenshot is a normal screenshot from a
scene in Quake 3 while the second renders everything translucently to get an idea of the overdraw of
the scene:

Figure 9: Quake 3 Arena screenshot

 Imagination Technologies Copyright

Revision 1.5f 12 Technology Overview

Figure 10: Same Quake 3 Arena screenshot rendered t ranslucently

As you can see there is much more on the screen than one would think there is!

Although Quake 3 uses BSP and portal techniques to attempt to reduce overdraw, the scene
complexity is such that overdraw is very often quite high. As an example we measured overdraw of
the Quake 3 demo001 at 3.39 (i.e. each pixel on the screen is drawn an average of 3.39 times).

Some immediate mode renderers are implementing some techniques to try to reduce overdraw. Early
Z test (the action of testing and rejecting a pixel very early in the pixel pipeline) is one of these
techniques but because one cannot predict the rendering order of polygons on the screen, this
method is still quite ineffective. The overdraw value for the same scene using early Z test is 3.14, i.e.
only a small improvement compared to the normal value.

What about the future?
As game complexity increases, overdraw will too. Far clipping planes will become larger and larger
and as such more objects will be rendered onto the screen. Real-world type environments like cities
or outdoor terrains cannot benefit from efficient occlusion detection algorithms, and as such will
generate a great amount of overdraw which will impact the fill-rate of immediate mode renderers.

 Imagination Technologies Copyright

POWERVR MBX 13 Revision 1.5f

6. Features only for Tile Based Render
There are features that naturally scale themselves very well to a tile-based architecture. These
optional implementations can be incorporated depending on product design, platform and cost.

True Scalability
POWERVR is a very scalable architecture. For instance MBX is POWERVR implementation for hand-
held devices. Sega’s Naomi 2 uses two POWERVR chips in parallel and these are used to render
alternate tiles in the frame buffer.

Super Fast front-end Super-Sampling FSAA
A tile-based architecture is ideal to perform very fast FSAA. The fetching of samples would be done in
the HSR module for optimal image quality and performance. Because the tile buffer memory is very
fast, samples can be fetch quicker than on a traditional architecture.

There are other features that scale themselves very well to a tile-based architecture but this document
does not cover these ☺.

 Imagination Technologies Copyright

Revision 1.5f 14 Technology Overview

7. Comparison with brute force

7.1. Traditional renderer
Let’s examine the pixel pipeline of a traditional, immediate mode renderer:

TEXTURING

ALPHA
TEST

BLENDING

STENCIL /

DEPTH TEST
Current

pixel colour

FRAME
BUFFER

STENCIL /
DEPTH

BUFFER

TEXTURE
MEMORY

Figure 11: Traditional renderer's pixel pipeline

The most important thing to notice in this diagram is that Texturing is performed before the depth test,
which means that all pixels will be textured even if they turn out to be masked in the depth buffer (i.e.
they fail the depth test). Memory accesses will be performed during the depth test and blending with
the frame buffer, even if the current pixel doesn’t turn out to be the final pixel at this screen location.
All these memory accesses are the reason why immediate mode renderers are hitting the bandwidth
barrier.

7.2. POWERVR renderer
The following is a simplified pixel pipeline for POWERVR:

TEXTURING

ALPHA
TEST

ACC.
BUFFER

STENCIL /

DEPTH TEST
Final pixel

colour

TILE
BUFFER

TEXTURE
MEMORY

Punch-through feedback

BLENDING

Figure 12: POWERVR pixel pipeline

The main difference resides in the fact that HSR (depth test) is performed up-front. All HSR results
are kept in chip (tile) memory. Once visible pixels have been determined, texturing can take place,
then alpha testing. The feedback loop to the depth test is there so that pixels succeeding the alpha
test are flagged as transparent by the depth test module. Then blending with the current contents of
the tile buffer is performed. Finally the pixel colour at the current screen location will be written (once)
to the frame buffer.

Localising data by tiling the screen enables the use of ultra-fast on-chip memory and thus to break the
traditional memory bandwidth barrier.

 Imagination Technologies Copyright

POWERVR MBX 15 Revision 1.5f

7.3. Comparison
The following is a table comparing traditional and tile-based architectures:

Immediate mode rendering POWERVR Tile-based renderi ng
“For each polygon process all the pixels” “For each pixel, process all polygons in a tile”

“Texel fetch for every pixel in a polygon” “Paint by numbers – fetch only the visible
texels”

Multiple frame buffer accesses for blending Single frame buffer access to output final
colour

Expensive design (embedded memory, number
of pins…)

Cost-effective architecture

Table 1: Immediate mode rendering vs. POWERVR Tile- based rendering

 Imagination Technologies Copyright

Revision 1.5f 16 Technology Overview

8. Answering public comments
In this section we’ll be trying to answer common questions that sometimes get raised about tile-based
rendering or POWERVR products.

8.1. Tile-based render parameters
“As complexity increases, tile-based renderers will run out of space to store scene parameters”

This assumption is usually raised when dealing with tile-based rendering. Because scene-capture
renders effectively “capture” the whole scene parameters, some people fear that they will run out of
memory to contain all the data.

A key aspect of POWERVR technology is parameter management. Minimising parameter data is an
important part of the technology since less memory transfers equates to more performance! Possible
techniques to permit efficient storage of parameter data are culling, stripping and indexing. There are
different techniques to trade overdraw for parameter space while still retaining some degree of
architectural advantage.

 Imagination Technologies Copyright

POWERVR MBX 17 Revision 1.5f

9. Conclusion
POWERVR’s tile-based rendering allow for great performance and image quality on any platform. Its
intelligent architecture minimises external memory accesses and thus manages to break the
traditional memory bandwidth barrier. Great features like multitexturing, internal true colour, bump
mapping and texture compression enable current games to reach an unrivalled image quality, even in
16 bits colour depth. This intelligent architecture is affordable thanks to the correct choice of features
and a cost-effective design. POWERVR has already solved the memory bandwidth problem when
immediate mode renderers are still struggling with it. Future hardware will have to go tile-based if they
want to stay competitive, as adding more pipes, memory and even chips will only succeed in
dramatically increasing the cost. POWERVR is already proving today that tile-based rendering is a
solution for 3D graphics; in the future it will be the only one…

