

ne of the best-

kept secrets of

programmers-

turned-lawyers

is that there is a lot in

common between drafting and

programming 1 This in part,

explains why GPL 2 version 2 is

such a great piece of drafting,

as a collaboration between a

coder (Richard Stallman) and

a lawyer (Eben Mogien) ? I'm

assuming more readers of this

piece will have experience of

drafting than of coding so I'll

use a drafting analogy to explain

what linking is

Imagine you're drafting a

contract You want to insert

a 'termination for insolvency'

clause, and you need a

definition of 'unable to pay its

debts as they fall due' Being

creatively lazy" like all the best

lawyers (and programmers)

you II want to use a precedent

There are essentially three ways

of achieving the aim

1. You can cut and paste the

relevant words from your

f i rms precedent

2 Make a note to your

secretary to import the

relevant words from your

firm's precedent, checking

the cross references

numbering and defined

terms

3 You can make a reference to

s 123 of the Insolvency Act

1986

Likewise, if you are a

programmer writing a program,

and you want a piece of code

which terminates the program

if the computer runs low on

memory 5 you have three

options:

1 Copy and paste a piece of

code from somewhere else

2 You can 'include a reference

to a static code library

(which is, essentially, a set

of precedents, sitting on

your disk)

3 You can 'call' a subroutine

in an external code library

which carries out the same

function

Copying and pasting is

directly comparable When

you include' a piece of code,

in practice, what the compiler

does (like a good secretary)

is to import the text of the

code from the precedent

system somewhere else on

the computer, check all the

cross references and variables

(essentially making sure the

numbering scheme in your

contract is consistent, and that

the terminology is correct -

fixing references to 'Vendor'

in the precedent so that they

read Seller' to match the rest

of the contract, for example)

The process of importing and

correcting the cross-references,

etc is called 'linking' and

works in a virtually identical

way whether you are drafting or

coding If your imported code

doesn't make sense (because

something in the imported code,

or text, needs to be defined) then

a good compiler (and a good

secretary) will point out the error

and you can have another go

Method one and method

two will both result in a stand

alone piece of code (or contract).

When you send it out to your

client, the client won't need to

cross-refer to another document

to understand it This variety of

[inking is called 'static linking'

Method three is more

interesting If your drafting says

'A company is insolvent if it is

unable to pay its debts as they

fall due as defined in section

123 of the Insolvency Act 1986'

your client wont be able to

understand exactly what you

mean unless they have a copy

of s 123 of the Insolvency Act

1986 to hand

Likewise when you are

writing computer code you can

make a reference to an external

library function.

When you send the code to

the client unless you know that

they already have the library

in place on their computer

you will have to send them the

library as well If you look in

the \windows\system directory

your Windows computer,

you will see files ending ' dil':

'DLL stands for'dynamic link

library' These libraries perform

tasks as diverse as providing

mathematical functions

decoding MP3s and video files

interfacing with hardware and

providing database functions.

Many of these libraries

are already supplied with

Windows and will be updated

from time to time through the

Windows update function, to

add functionality and correct

er rors 6 Subsequent versions

are designed to be backwards

compatible (so that programs

written for earlier versions will

continue to function if the DLL

is upgraded to a later version)

When you run a program which

uses DLLs, the operating system

first checks that the DLL is there

(and generates an error - or

may offer to download it) and

then links to the functions in the

DLL just as the program needs

them The linking takes place

each time the program is run

(not just the one time when the

program is compiled) - hence

the term 'dynamic

All major operating systems

have a mechanism for calling

dynamic link libraries: they have

a number of advantages over

static linking

1 The binaries (object code

files) are smaller, as they

don't have to include the

code included in the DLL

2 If there is a bug in the DLL

(or the core application) then

only that component needs

fixing

3 One single DLL (for example

a video codec) may be used

by a number of different

programs, so each program

doesn t need to incorporate

code for that function

thereby saving space

4 The DLL may be upgraded

and maintained by a third

party, and not the original

coder

5 If you're a closed source

software house, i ts much

easier to keep the internal

workings of your library and

its source code, confidential

if you release it as a binary

DLL with a published

interface

6 You can have different

DLLs for different hardware

environments but the

underlying application

remains the same

7. A DLL can be written in a

different language from the

application that calls it

It's perfectly possible to write

a program using calls to DLLs

by relying on their published

specification, without ever calling

the DLL at ali Of course, you

can't test it or run it unless

you have the DLL in question

(or a compatible one), but it is

possible This is an important

point for reasons I'll come onto

later 7

So where does the GPL

come in?

(Incidentally. I'm

concentrating on GPL2 here

The overwhelming majority

of GPL software is released

under GPL2 Although there

are some major projects which

have announced transition to

GPL3 (such as Samba), the

reality is that GPL2 will be the

overwhelmingly popular GPL

licence (and arguably open

source/free software licence)

for the next few years at least

if not indefinitely Aiex Newson

in the accompanying article

VOL 18 ISSUE 3 AUGUST/SEPTEMBER 2007 M A G A Z I N E OF THE SOCIETY FOR COMPUTERS A N D LAW 13

file:///windows/system

www.scl.ors GPL

points out many of the issues

with GPL3) I'm also assuming a

general familiarity with the terms

of GPL2

The Free Software

Foundation is Richard Staffman's

baby 6 and the guardian of the

GPL, in all its forms The FSF

FAQ 9 states very simply that

any software linking to a library,

either statically or dynamically,

which is covered by GPL2 1 0 must

itself be released under GPL2

Luckily, the FSF is not a

judicial body, and the GPL

will, ultimately be subject to

interpretation in the courts of

the relevant jurisdiction The

FSF FAQ is not a legally binding

document "

The relevant questions are:

1 Does linking an application

dynamically to a GPL library

render that application

subject to the GPL?

2 Does linking an application

statically to a GPL library

render that application

subject to the GPL?

3 Does cutting and pasting

GPL code into an application

render that application

subject to the GPL?

D o e s l inking an appl icat ion

dynamica l l y to a G P L l ibrary

render that appl icat ion

subject to the GPL?

No !n spite of the FSF's

comments in their FAQ, linking

a piece of software to GPL code

dynamically does not render

that application subject to the

GPL There are several reasons

for this:

1 It is the end-user at

run-time, and not the

programmer who causes

the application to interface

with the DLL It follows that

the programmer cannot be

in breach of copyright as he

has not undertaken the act

which would be an alleged

breach of the GPL 1 2

2 The alleged act of

infringement could take

place after the creation of

the application has been

completed.

3 The applications calls

to DLL may be equally

applicable to a number of

different DLLs each with

consistent APIs all of which

are under separate copyright

ownership and which may

be subject to different

licensing terms, and it is the

user's choice which DLL

they wish to use. 1 3

Note that none of this reasoning

even requires looking at the

wording of the GPL itself: it is a

consequence of the fact that the

GPL, as a software licence only

purports to deal with acts which

would otherwise be a breach

of copyright It is the end-user

and not the programmer, who

is undertaking those acts,

and therefore the GPL has

no impact on the programmer

in these circumstances For

completeness and from the

end-user's perspective the

end-user is merely running

the program an act which

is not restricted in any way

by the GPL Of course, if the

programmer modifies the GPL

library and redistributes it (or

indeed if the end-user does)

then the GPL obligations to

license the modified library to

all third parties applies as do

various other obligations in the

GPL: but the question focuses

on whether linking an application

to a GPL library requires the

application (as opposed to the

library) to be released under

GPL code

Does l inking an app l ica t ion

stat ical ly to a G P L l ibrary

render that app l ica t ion

subject to the G P L ?

This is a somewhat more

complex question, and does

require an analysis of the text of

the GPL

The most relevant clause

is 2(b):

'You may modify your copy or

copies of the Program or any

portion of it, thus forming a work

based on the Program and copy

and distribute such modifications

or work under the terms of

section 1 above, provided that

you also meet all of these

conditions you must cause

any work that you distribute or

publish, that in whole or in part

contains or is derived from the

Program or any part thereof to

be licensed as a whole at no

charge to all third parties under

the terms of this License'

This is qualified by the

following:

'These requirements apply to

the modified work as a whole

If identifiable sections of that

work are not derived from the

Program and can reasonably

be considered independent and

separate woiks in themselves,

then this License and its terms,

do not apply to those sections

when you distribute them as

separate works But when you

distribute the same sections

as part of a whole which is a

work based on the Program, the

distribution of the whole must

be on the terms of this License

whose permissions for other

licensees extend to the entire

whole, and thus to each and

every part regardless of who

wrote it'

It is also important to bear

in mind the definition of 'work

based on the Program':

'a work based on the Program

means either the Program

or any derivative work under

copyright law, that is to say a

work containing the Program

or a portion of it, either

verbatim or with modifications

and/or translated into another

language*1*

The GPL therefore only

attaches to a 'work based on

the Program'. Assuming the

library is a 'Program', is the

application calling it a 'work

based on the Program? Can, in

the legal sense, the application

be considered a derivative work

of the library?

Just to be clear: statically

linking to the library requires a

licence It's an act of copying,

and as such, will be 1 5 a breach

of the Copyright Act in the

absence of a licence The

question is, whether the licence

in question GPL2, permits

that copying if the resultant

application (or at least the parts

not incorporating the library) is

to be released under a licence

other than GPL2

My view is that that the

answer to the question 'Does

linking an application statically

to a GPL library render that

application subject to the GPL?

is a somewhat more hesitant

'no': the application is not a

derivative work of the library

and the application as a whole

does not have to be licensed

under the GPL If you distribute

the resultant application it's

clear that you will be distributing

GPL code: namely those parts

of the application derived f rom

the library, and you'll have to

comply with the GPL to the

extent that it attaches 1o those

parts of the code However,

I'd argue that what you are

distributing is a collective work, 1 6

and not a derivative work and

all the relevant definitions in the

GPL refer to a 'work based on

the Program' which is defined

(in the GPL) as a derivative

work as determined by

applicable copyright law 1 7 We

are on slightly shakier ground

here I m confident that the

GPL could have been drafted

to ensure that static linking to a

GPL library brought the whole

14 MAGAZINE OF THE SOCIETY FOR COMPUTERS A N D LAW VOL 18 ISSUE 3 AUGUST/SEPTEMBER 2 0 0 7

http://www.scl.ors

application within the ambit of

the GPL, and indeed, it seems

clear to me from other wording

in the licence that the intention

of Stallman and Mogien was that

it should

However the crux of my

argument relies on the definition

of 'work based on the Program'

and my contention that a program

and its libraries are a collection

of works of separate copyright,

and therefore in no sense is the

program as a whole a derivative

work' of any of its components,

but a collective wo rk 1 8 If you

look at the source code of any

reasonably-sized application, in

all probability the preamble will

contain a list of headers linking

to external libraries The external

libraries will not be modified by

the linker portion of the compiler

but will simply be imported

almost verbatim 1 9

Lawrence Rosen in the

seminal work 'Open Source

Licensing' 2 0 makes the argument

that, unless the relevant GPL

components are modified in

some way, merely combining or

linking them with other works

does not render the whole work

subject to the GPL His book

is based on US copyright law

but for the purposes of this

argument, I contend that there is

no material difference between

English law and the US law

However, this article is limited to

English law.

Note also that where an

ambiguity exists, the contra

proferentem rule would

traditionally require the court to

resolve the ambiguity against

the licensor and in favour of the

licensee

There is also the interesting

argument, using s 50C of the

Copyright, Designs and Patents

Act 1988 (as amended), that

the lawful user of a piece of

software may copy or adapt it

as long as this is not prohibited

by contract The GPL clearly

does not prohibit copying or

adaptation," and therefore the

lawful user automatically has

the right to copy and adapt

Of course, this then invites

the counter argument 'but

if you copy and adapt (and

distribute) and do not follow the

other requirements of the GPL

(including making the source

available) then you are no longer

a lawful user'

Does cut t ing and past ing

G P L c o d e into an app l ica t ion

render that app l ica t ion

sub ject to the G P L ?

The arguments that apply to

static linking apply to cutting

and pasting: a programmer

cutting and pasting code and

amending the cross-references,

is, essentially doing the job of

a linker, but by hand However,

where the code is inline, there

is a much greater temptation

to modify and intermingle the

code and therefore it may

become increasingly difficult to

discern which portions of the

code are separate, at which

point it becomes more likely

that the whole is a derivative

work

in p rac t ice

There are versions of GPL2

which are explicitly intended to

deal with linking: these are the

LGPL and GPL with classpath

exception. I won't go into those

in detail in this article, which

is aimed squarely at GPL2

However, were I a licensor

Endno tes

1 There's also a lot in common between knitting patterns and programming, but maybe that's an article for Knitter's World.

2 When I talk about the GPL in this article, I'm specifically referring to version 2. However, occasionally I specifically refer to GPL2 to make

it absolutely clear that those comments are referable only to that version

3 It doesn't explain why GPL3 is, to put it charitably, a less good piece of drafting, but I'll leave that point to Alex Newsom in the

accompanying article. It may have something to do with the fact that two authors were responsible for GPL 2, as opposed to something over

1000 for GPL 3

4 There should be a synonym with less negative connotations

5 I am hoping that the carefully chosen analogy is appreciated.

6 And, occasionally, to remove functionality, if it turns out that a particular library breaches the IPRs of a third party, provides access to

functions, like decryption of DVD copy protection, or has been cracked by rogue coders

7 I wrote this article without looking at s 123 of the Insolvency Act 1986 and indeed I'm sure commercial lawyers frequently make the

reference without bothering to check it. In my case, it's the only statutory reference I've committed to memory and in fact I'd be quite happy

if it were wrong, if only to prove my point that while it is possible to code to a DLL without testing, it's not very wise '

8 Actually, GNU is Richard Stallman's baby: the FSF is the Zoo, of which he is head keeper, in which it is kept and nurtured

9 You'll have to trust me on this: the release of GPL3 has meant that the FAQ section of the FSF web site has been updated to cover

GPL3, but the original GPL2 FAQ has gone walkabout (a link will be posted on the SCL site if and when it re-emerges) GPL3 has some

other linking issues, which I will address in a subsequent article, if anyone reading this far asks me to.

10 This does not apply to libraries covered by the LGPL, or the GPL + classpath exception, which are topics for another day.

11 It is also worth pointing out that although the FSF is the copyright owner of a lot of GPL software, anyone can release software under

the GPL and retain the copyright themselves, and have indeed done so

12 And neither, by using the library, is the end-user in breach of copyright, so the programmer cannot be liable for procuring any breach

13 A particularly pertinent point is Windows Media Player. Windows media player can play back a number of different formats of video

and audio, through third party codecs. These codecs are essentially DLLs Several codecs (especially those for DivX and Ogg Vorbis) are

available under the GPL It is rather bizarre to suggest, as FSF does, that by making it possible for Windows Media Player to interface with

these DLLs, Microsoft is in breach of the GPL

VOL) 8 ISSUE 3 AUGUST/SEPTEMBER 2007 M A G A Z I N E OF THE SOCIETY FOR COMPUTERS A N D LAW 15

www.scl.org GPL

pursuing a licensee for copyright

infringement of my GPL code

by using my libraries, I would

certainly try to point out to

any judge that if I had wanted

software linked to my libraries

to be free of the GPL, I would

have chosen one of the other

licences

My advice to clients who

wish to release software under

a licence of their choice (which

may be another free or other

source licence, and not just the

GPL) is as follows

1 Try to find a library released

under the LGPLor GPL

with classpath exception

(or another more permissive

licence, like MIT or BSD,

or even a proprietary

licence with royalty-free

distribution rights which

are compatible with your

out-licence)

2 If you need to use a GPL

library try to persuade

the copyright owner of the

library to release it under

another licence, or think

hard about why you don't

want to release the whole

app under the GPL.

3 If you have no luck with

that then link dynamically

to the library, and if possible

try to arrange for the

end-users to download

the library separately ^ If

you can use a non-GPL

(or even a commercially

available) library during

the testing phase, even

better 2 S

4 Failing that link statically,

avoid amending the library,

remember to comply with

the GPL for the library when

you distribute the object

code containing it, and buy a

rabbit's foot

5 Failing that, cut and paste

the code you want, call it

only by using the published

interfaces, resist the

temptation to modify the

pasted code, remember to

comply with the GPL for the

library when you distribute

it and wait for a cafl from

gpl-violatians org

Remember to get local advice in

any jurisdiction where your code

might end up

Its also worth bearing in

mind that the closer you sail

to the wind the more likely it

is that you will attract the ire of

the vociferous GPL community

If you make some useful and

worthwhile amendments to a

GPL library which you then

release back to the community,

then you re less likely to be

hounded for GPL violations than

if you try to conceal all the juicy

bits in the closed part of your

code ®

Andrew Katz is a partner at
Moorcrofts LLP, where he
specialises in technoiogy
law with a bias towards
open source software, in a
former Eife he was a software
developer and has released
software under the GPL, He
can be reached at Andrew,.
katz@moorcrofts com,

Endno tes (Continued)

14 I'd argue that the part of section 1 quoted which follows 'that is to say : is technically both irrelevant to the GPL's interpretation, and

legally an incorrect summary of the law

15 Subject to fair use exceptions or unless copyright has expired or the code is otherwise in the public domain

16 As a reminder, a collective work is a set of works, each individually attracting copyright (or not, as the case may be) like an anthology

of poems A derivative work is a work based on a previous work, such as a translation, or a recasting of a previous work (like Return to

the Forbidden Planet) Both attract copyright in their own right, but will also require a licence from the previous copyright owner(s) for

exploitation.

17 This is my view in English law - but the answer may be different in different jurisdictions,

18 One thing that makes me feel uncomfortable is that although this argument makes sense as far as the source is concerned, the object

code generated from the source is undeniably a derivative work of the source - even if it is a collective work, and it would be much more

difficult (although probably not impossible) to distinguish the each portion of the object code which correlate to the GPL and non-GPL

portions of the source Still, if the source is not a 'work based on the Program', then it's difficult to see how a derivative work can be a 'work

based on the Program' Note that, to comply with the GPL (if the object code is distributed), the source code of the GPL portions (and any

amendments to those portions) needs to be made available, and this is easy to achieve, especially if the GPL parts of the code remain in

separate libraries

19 The linker will make trivial changes to the cross-references and variables in the imported sections, but this does not affect the

argument.

20 Prentice Hall 2005 - but watch out: if you have the same edition I have, some crucial clauses in the GPL are omitted from the copy in

the book's appendix.

21 And is probably not a contract (another topic for another day)

22 If the library is downloaded separately, it's clearer that it must be the end-user who is doing the linking, and not the programmer.

However, there is an explicit clause towards the end of section 2 of the GPL which makes it clear that 'mere aggregation' of files

on the same storage medium does not render the non-GPL files subject to the GPL This is really a clarification and goes without

saying

23 The logic here being that, a-la-Microsoft media player, if your app has never even touched a GPL library, even during testing and

development, then it really is impossible to see how the app can be subject to the GPL if the user then chooses to use a GPL library, For

example, if you are developing a video app, you might want to use an Nvidia MPEG2 codec for testing purposes (which is available for $20

or so from the Nvidia web site, but for singie user use only) but then release your app without a codec, allowing the customer to use the

GPL codec from Sourceforge, or buy a commercial one from Nvidia (or another vendor)

16 M A G A Z I N E OF THE SOCIETY FOR COMPUTERS A N D LAW VOL 18 ISSUE 3 AUGUST/SEPTEMBER 2 0 0 7

http://www.scl.org

