On the form of an odd perfect number

Tim S. Roberts*

It has been known since the time of Euler that an odd perfect number N (if it exists) must have the form $N=p^{a} Q^{2}$ where p is prime and $p=a=1 \bmod 4$ (see, e.g., [1, pp. 3-33]). Further, it has been shown that N must equal $1 \bmod 12$, or $9 \bmod 36$ [3], [2]. However, we can do a little better than this.

From either result it is immediately evident that if 3 divides N, then 3^{k} divides N, where $k=0 \bmod 2$.

If $k=0$, then N must be of the form $1 \bmod 12$.
For any positive integer $N=p_{1}^{k 1} p_{2}^{k 2} \ldots p_{n}^{k n}$, the sum S of all of the divisors (including 1 and N itself), is given by

$$
S=\left(1+p_{1}^{1}+p_{1}^{2}+\ldots p_{1}^{k 1}\right)\left(1+p_{2}^{1}+p_{2}^{2}+\ldots p_{2}^{k 2}\right) \ldots\left(1+p_{n}^{1}+p_{n}^{2}+\ldots p_{n}^{k n}\right) .
$$

If N is perfect, it is equal to the sum of its divisors (excepting itself), so $N=$ $S-N$, so $2 N=S$. Thus, if N is perfect, and a factor of N is 3^{k}, then N is itself divisible by $\left(1+3^{1}+3^{2}+\cdots+3^{k}\right)$.

If $k=2$, then N must be of the form $9 \bmod 36$. Further, since N is perfect, from the above we know that $3^{0}+3^{1}+3^{2}=1+3+9=13$ must divide $2 N$, and hence $N=0 \bmod 13$. Thus, N must satisfy both $N=9 \bmod 36$ and $N=0 \bmod 13$. From the Chinese remainder theorem, we can deduce that N must equal $117 \bmod 468$.

If $k>2$, then N is divisible by $3^{4}=81$. Thus, N must satisfy both $N=9 \bmod 36$ and $N=0 \bmod 81$. From the Chinese remainder theorem, we can deduce that N must equal $81 \bmod 324$.

Thus, if N is an odd perfect number, it must be of the form $N=1 \bmod 12$ or $N=117 \bmod 468$ or $N=81 \bmod 324$.

Of course, it is possible to further refine the last of these results in a similar way, by considering separately values of k greater than or equal to 4 .

References

[1] Dickson, L.E. (2005). History of the Theory of Numbers, Vol. 1, Divisibility and Primality. Dover, New York.
[2] Holdener, J.A. (2002). A theorem of Touchard and the form of odd perfect numbers. American Mathematical Monthly 109, 661-663.
[3] Touchard, J. (1953). On prime numbers and perfect numbers. Scripta Mathematica 19, 35-39.

[^0]
[^0]: *Faculty of Business and Informatics, Central Queensland University, Bundaberg, QLD 4670.
 E-mail: t.roberts@cqu.edu.au

