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It has been known since the time of Euler that an odd perfect number N (if it
exists) must have the form N = paQ2 where p is prime and p = a = 1 mod 4 (see,
e.g., [1, pp. 3–33]). Further, it has been shown that N must equal 1 mod 12, or
9 mod 36 [3], [2]. However, we can do a little better than this.

From either result it is immediately evident that if 3 divides N , then 3k divides
N , where k = 0 mod 2.

If k = 0, then N must be of the form 1 mod 12.
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If N is perfect, it is equal to the sum of its divisors (excepting itself), so N =
S − N , so 2N = S. Thus, if N is perfect, and a factor of N is 3k, then N is itself
divisible by (1 + 31 + 32 + · · · + 3k).

If k = 2, then N must be of the form 9 mod 36. Further, since N is perfect, from
the above we know that 30 + 31 + 32 = 1 + 3 + 9 = 13 must divide 2N , and hence
N = 0 mod 13. Thus, N must satisfy both N = 9 mod 36 and N = 0 mod 13. From
the Chinese remainder theorem, we can deduce that N must equal 117 mod 468.

If k > 2, then N is divisible by 34 = 81. Thus, N must satisfy both N = 9 mod 36
and N = 0 mod 81. From the Chinese remainder theorem, we can deduce that N
must equal 81 mod 324.

Thus, if N is an odd perfect number, it must be of the form N = 1 mod 12 or
N = 117 mod 468 or N = 81 mod 324.

Of course, it is possible to further refine the last of these results in a similar way,
by considering separately values of k greater than or equal to 4.
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