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Abstract

We define a constructive topos to be a locally cartesian closed pretopos. The
terminology is supported by the fact that constructive toposes enjoy a relation-
ship with constructive set theory similar to the relationship between elementary
toposes and (impredicative) intuitionistic set theory. This paper elaborates
upon one aspect of the relationship between constructive toposes and construc-
tive set theory. We show that any constructive topos with countable coproducts
provides a model of a standard constructive set theory, CZFExp (that is, the
variant of Aczel’s Constructive Zermelo-Fraenkel set theory CZF obtained by
weakening Subset Collection to the Exponentiation axiom). The model is con-
structed as a category of classes, using ideas derived from Joyal and Moerdijk’s
programme of algebraic set theory. A curiosity is that our model always vali-
dates the axiom V = Vω1

(in an appropriate formulation). It follows that the
full Separation schema is always refuted.

1. Introduction

The notion of elementary topos, first axiomatized by Lawvere and Tierney,
provides an elegant category-theoretic abstraction of the category of sets (which
we take to be axiomatized by ZFC). Four aspects of the relationship between
elementary toposes and set theory are:

1. The category of sets is itself an elementary topos with natural numbers
object (nno).

2. Elementary toposes have an internal logic which captures type-theoretic
constructions on sets. This allows the objects of an elementary topos
to themselves be considered as collections of unstructured elements, that
is, as abstract sets in the sense of Lawvere [19]. However, the logic for
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manipulating such sets is a higher-order intuitionistic type theory rather
than classical first-order set theory.

3. There is a natural intuitionistic first-order set theory, BIST, which con-
servatively extends higher-order intuitionistic type theory [4]. Every ele-
mentary topos with nno arises (up to equivalence) as the category of sets
in a model of BIST. For proof-theoretic reasons, BIST is necessarily
weaker than Intuitionistic Zermelo-Fraenkel set theory (IZF), the stan-
dard intuitionistic counterpart of ZF (which has the same proof-theoretic
strength as ZF).

4. If an elementary topos has small sums (hence is cocomplete) then it models
full IZF [14, 16].

To the constructive mathematician, unwilling to accept the impredicativity
of the powersets present in both elementary toposes and set theory, the connec-
tions outlined above carry little significance. Instead, constructive mathemati-
cians use alternative weaker formulations of set theory, in which powersets are
not available. A leading such theory is Aczel’s Constructive Zermelo-Fraenkel
set theory (CZF). This was first presented in [1], where the main technical
contribution was an interpretation of CZF within Martin-Löf’s Intuitionistic
Type Theory (ITT), providing a convincing demonstration of the constructive
credentials of the set theory. Proof-theoretically, CZF has only the strength of
Kripke-Platek set theory. Nevertheless, CZF enjoys the property that if one
extends it with the Law of Excluded Middle (LEM) then one obtains classical
ZF. Thus, in this context, LEM carries (considerable) proof-theoretic power.
More to the point, as is appropriate for the constructive version of a classical
theory, LEM is the only gap between constructive CZF and classical ZF.

In this paper, we take a mild variant of CZF as our primary set theory of
interest. The theory we focus on, CZFExp, is obtained by replacing the Subset
Collection schema of CZF with the weaker Exponentiation Axiom, which asserts
that the collection of all functions between two sets itself forms a set. (See
Section 2 for a detailed presentation.) The theory CZFExp inherits Aczel’s
constructive interpretation in ITT from CZF, and still statisfies the property
that its extension with LEM yield classical ZF. It is a natural theory in its
own right, since it is the Exponentiation Axiom, not Subset Collection, that is
most commonly used in the practice of constructive mathematics. Indeed, it is
common for formulations of constructive set theories to take the Exponentiation
Axiom as basic (for example, Myhill’s CST [25], Friedman’s systems in [15]).

It is natural to ask whether there is a compelling notion of “constructive
topos”, which enjoys a multi-faceted relationship with constructive set theory
similar to the relationship, summarized above, between elementary toposes and
impredicative intuitionistic (and classical) set theory. We argue that the appro-
priate notion is that of locally cartesian closed pretopos (see Section 3 for the
definition). Indeed, defining constructive topos to mean locally cartesian closed
pretopos, we have, analogously to the points above:

1. The category of sets in CZFExp is a constructive topos with nno.
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2. Constructive toposes model an intuitionistic type theory with dependent
sums, dependent products and quotients, capturing the type-theoretic con-
structions on sets available in CZFExp.

3. There is a natural constructive first-order set theory for which every con-
structive topos appears as the category of sets in a model of the theory [6].
This set theory is obtained from BIST by replacing the Powerset Axiom
by the Exponentiation Axiom, a modification which is analogous to one
possible route from IZF to CZFExp.

4. If a constructive topos has countable sums then it models CZFExp.

The two additional properties below further underline the naturalness of taking
locally cartesian closed pretopos as the notion of constructive topos.

5. Every elementary topos is a constructive topos (but not vice versa). Thus
the constructive notion of topos is a (proper) generalisation of the standard
(impredicative) notion.

6. Every boolean constructive topos is a boolean elementary topos. Thus the
only gap between constructive toposes and classical toposes is LEM.

Taken in combination, we believe that points 1–6 above give convincing justifi-
cation for the appropriateness of taking locally cartesian closed pretopos as the
definition of “constructive topos”.

Points 1, 2, 5 and 6 above all describe more or less straightforward properties
of locally cartesian closed pretoposes. Item 3 is covered in detail in [6]. The
main technical goal of the present paper is to establish point 4: constructive
toposes with countable sums model the (fairly canonical) constructive set theory
CZFExp. We view this fact as an analogue for constructive toposes of the
result of Fourman and Hayashi that elementary toposes with small sums model
IZF [14, 16].

Our proof of point 4 involves a detour through models of algebraic set theory
in the sense of Joyal and Moerdijk [18], extending the work of [4, 5, 6]. Given a
constructive topos E with countable sums, we show that the category Sh∞(E) of
sheaves for the countable cover topology contains within it a full subcategory of
∞-ideals which acts as a category of classes whose internal logic models the set
theory CZFAExp (which extends CZFExp with a class of atoms), hence it also
models CZFExp. Furthermore, up to equivalence, E itself is recovered as the
category of sets within this category of classes. Thus the objects of an arbitrary
constructive pretopos with countable sums can be seen as the collection of sets
in a model of CZFAExp.

There is one perspective on this result that we wish to emphasise. The
usual motivations advanced for considering weak constructive set theories, such
as CZF, in preference to standard classical or intuitionistic set theories, such
as ZF or IZF, are philosophically based, relying on scepticism over the valid-
ity of the non-constructive and impredicative principles supported by ZF and
IZF. Our results supply a different and philosophically neutral reason for find-
ing the theory CZFExp of interest: it is has a wide range of naturally occurring
models. Indeed, examples of constructive toposes with countable sums abound.
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Decidable Sethood S(x) ∨ ¬S(x)
Membership y ∈ x → S(x)
Extensionality S(x) ∧ S(y) ∧ (∀z. z ∈ x↔ z ∈ y) → x = y
Emptyset Sz.⊥
Pairing Sz. z = x ∨ z = y
Equality Sz. z = x ∧ z = y
Union Sz.∃y ∈ x. z ∈ y
(Strong) Collection (∀y ∈ x. ∃z. φ) →

∃w. (S(w) ∧ (∀y ∈ x.∃z ∈ w. φ) ∧ (∀z ∈ w.∃y ∈ x. φ) )
Set Induction (∀x. (∀y ∈ x. φ[y]) → φ[x]) → ∀x. φ[x]

Figure 1: Basic set-theoretic axioms

Of course, all cocomplete (hence all Grothendieck) toposes are included. But,
importantly, there are naturally occurring mathematical examples of construc-
tive toposes with countable sums that are neither cocomplete nor elementary
toposes. In such examples, the stronger (impredicative) intuitionistic set theo-
ries such as IZF cannot be interpreted, and hence one is forced to use a weaker
constructive set theory, such as CZFAExp, if one wishes to reason with the
category as if it were a category of sets.

The structure of the paper is as follows. In Section 2 we introduce the
main constructive set theories of relevance to us, including CZF, CZFExp and
CZFAExp. In Section 3, we expand on the definition of constructive topos,
given above, and discuss examples of constructive toposes with countable sums.
In Section 4, we review the structure of categories of classes needed to provide
category-theoretic models of CZFExp and CZFAExp, building on work in [18,
28, 4, 6]. Our main technical contribution is presented in Section 5, where we
show that the category of ∞-ideals over a constructive topos with countable
sums provides a category of classes in the sense of the previous section. Finally,
in Section 6, we discuss some surprising properties of the induced models of
CZFExp and CZFAExp. The Separation axiom always fails. More strikingly,
the models validate the curious axiom V = Vω1

.
Throughout the paper, we use ZFC as the metatheory for our work. In

section 7 we discuss the possibilities of weakening the metatheory.

2. Constructive set theories

The set theories in this paper are formulated in intuitionistic first-order
logic with equality. Because we allow atoms, the language contains one unary
predicate, S, and one binary predicate, ∈. The formula S(x) expresses that x is
a set. The binary predicate is set membership.

Figure 1 presents a basic set of axioms, which will be extended below. All
axioms are implicitly universally quantified over their free variables. The axioms
make use of the following notational devices. We write ∀x ∈ y. φ and ∃x ∈ y. φ as
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abbreviations for ∀x. (x ∈ y → φ) and ∃x. (x ∈ y ∧ φ) respectively, and we refer
to the prefixes ∀x ∈ y and ∃x ∈ y as bounded quantifiers. In the Set Induction
schema, we use the notational device of writing φ[x] to mean a formula with the
free variables x (which may or may not occur in φ) distinguished. Moreover,
once we have distinguished x, we write φ[t] for the formula φ[t/x]. Note that φ
is permitted to contain free variables other than x. We also make heavy use of
the notation Sx. φ, which abbreviates

∃y. (S(y) ∧ ∀x. (x ∈ y ↔ φ)) ,

where y is a variable not occurring free in φ (cf. [3]). Thus Sis generalized
quantifier, where Sx. φ reads as “there are set-many x satisfying φ”. Using the
convenience of class notation, where any formula φ[x] determines a class {x | φ},
the formula Sx. φ states that the class {x | φ} forms a set.

The first two axioms in Figure 1 are basic ontological axioms about the
nature of sets and atoms. The decidability of the S predicate allows the other
axioms to be formulated without making explicit assumptions that variables x
are sets. For example, because of this decidability property, the Union axiom,
as we have formulated it, is equivalent to its “morally correct” version:

S(x) ∧ (∀y ∈ x. S(y)) → Sz.∃y ∈ x. z ∈ y .

The proof of this exploits

Replacement (∀y ∈ x. ∃!z. φ) → Sz.∃y ∈ x. φ ,

which is present as a special case of Collection. Note that our formulation allows
there to be a proper class of atoms. This flexibility will be important later.

One non-standard ingredient, in the axioms of Figure 1, is the inclusion of
an explicit Equality axiom. With this axiom, the schema,

Bounded Separation Sy. (y ∈ x ∧ φ) (φ bounded),

is derivable, where a formula is said to be bounded if all quantifiers in it are
bounded. The proof, see [4, Section 2], again exploits Replacement.

Many constructions are naturally described using a class notation. We write
U for the universal class {x | x = x}. Given a class A = {x | φ}, we write y ∈ A
for φ[y], and we use relative quantifiers ∀x ∈ A and ∃x ∈ A in the obvious way.
We write A×B for the product class:

{p | ∃x ∈ A.∃y ∈ B. p = (x, y)} ,

where (x, y) = {{x}, {x, y}} is the standard Kuratowski pairing construction.
Using Replacement, if A and B are both sets then so is A×B [3].

Our basic set theory is sufficient to develop Aczel’s theory of inductively-
defined classes. We follow the treatment in [3]. An inductive definition is a class
Φ of ordered pairs, such that the first component of each pair in the class is a
set. A class A is Φ-closed if, for all (X, a) ∈ Φ, if X ⊆ A then a ∈ A. The result
below is proved as Theorem 5.2 of [3].
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Exponentiation Exp S(x) ∧ S(y) → S(yx)
(Strong) Infinity Inf Sx. x ∈ N
Only sets U=V ∀x. S(x) .

Figure 2: Additional set-theoretic axioms

Theorem 2.1 (Class Inductive Definition Theorem). For any inductive defini-
tion Φ, there is a smallest Φ-closed class I(Φ).

Proof. We outline the argument from [3], because some details from it will be
useful to us later.

The main step is to stratify the construction of I(Φ), using elements a of
the universe to indicate the strata Ja arising in the construction. Formally,
{Ja}a∈U is a family of classes indexed by arbitrary sets a, so it is given by a
formula J [x, a], all of whose other free variables are also free in Φ. The family
Ja is required to satisfy the recursive specification:

x ∈ Ja ⇐⇒ ∃Y. (Y, x) ∈ Φ ∧ ∀y ∈ Y.∃b ∈ a. y ∈ Jb . (1)

Once this is done, I(Φ) is defined as the class
⋃
a∈U Ja. The proof that this is

contained in every Φ-closed class uses Set Induction. The proof that it is itself
Φ-closed uses Collection.

To finish the proof, one needs to define a family {Ja}a∈U satisfying (1). A
set G of ordered pairs is called good if:

(x, a) ∈ G =⇒ ∃Y. (Y, x) ∈ Φ ∧ ∀y ∈ Y. ∃b ∈ a. (y, b) ∈ G .

Define:

x ∈ Ja ⇐⇒ ∃G. S(G) ∧ G ⊆ U × U ∧ G good ∧ (x, a) ∈ G .

The proof that this satisfies the right-to-left implication of (1) again uses Col-
lection.

One important example of an inductively defined class is the class V of
hereditary sets. This is obtained by taking, as the generating inductive defini-
tion, the class of all pairs (X,X), where X is a set. Explicitly, V is the smallest
class satisfying: if S(X) and X ⊆ V then X ∈ V .

The set theory of primary interest in this paper CZFAExp, is obtained from
our basic theory by adjoining two extra axioms. Given a set x, we write Ax for
the class

{f | S(f) ∧ (∀p ∈ f. p ∈ x×A) ∧ (∀y ∈ x. ∃!z. (y, z) ∈ f)}

of all functions from x to A. We shall use standard notation for manipulating
functions. Under our basic axioms, it does not follow that the class of all func-
tions between two sets is itself a set. The Exponentiation Axiom, of Figure 2,
forces this to be the case.
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For the second axiom, we first define the class N of von-Neumann natu-
ral numbers, using the inductive definition consisting of all pairs of the form
({x}, x ∪ {x}) where S(x), and also (∅, ∅). Thus N is the smallest class satisfy-
ing: ∅ ∈ N, and, for all x ∈ N, if S(x) then x ∪ {x} ∈ N. The Infinity Axiom
of Figure 2 states that this inductively defined class is a set. By its inductive
definition, N satisfies the full induction schema:

Induction φ[0] ∧ ∀x. (φ[x]→ φ[s(x)]) → ∀x ∈ N. φ[x] ,

where, as usual, we write 0 for ∅, and s(x) for x ∪ {x} (in the case that x is an
atom, one can define s(x) arbitrarily).

Figure 2 contains one other axiom, asserting that there are no atoms. This
equivalently states that the equality U = V holds, hence the chosen name in
the figure. The two main set theories considered in this paper are:

CZFAExp = basic axioms + Exp + Inf

CZFExp = CZFAExp + U=V .

In this paper, we will primarily focus on the more general theory CZFAExp.
The theory CZFExp is easily interpretable in CZFAExp by relativizing all
quantifiers to the class V .

To end this section, we comment on two standard set-theoretic axioms that
are not theorems of CZFAExp (nor of CZFExp).

Separation Sep Sy. (y ∈ x ∧ φ) (φ arbitrary),
Powerset Pow Sx. S(x) ∧ x ⊆ y .

Were classical logic assumed, the full Separation schema would follow from
Replacement, and Powerset would follow from Exponentiation. However, under
intuitionistic logic, neither consequence holds. As is well known, the Powerset
axiom and some instances of Separation are not theorems of CZFExp. In fact, as
will be shown in Section 6, the models we construct of CZFAExp and CZFExp,
in Section 5, will always refute Separation, and often refute Powerset.

3. Constructive toposes

We recall some standard category-theoretic definitions. For the definitions
below, let C be a category with finite limits.

Definition 3.1.

1. C is regular if the kernel pair r1, r2 : R - A of every arrow f : A - B
has a coequalizer q : B - C, and regular epimorphisms are stable under
pullback.

2. C is exact if it is regular and every internal equivalence relation

〈r1, r2〉 : R- - A×A

is a kernel pair.
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3. C is extensive (also called positive) if it has finite coproducts, and these
are disjoint and stable under pullback.

4. C is a pretopos if it is both exact and extensive.

Definition 3.2.

1. C has dual images if, for every arrow f : C - D, the inverse image map
f−1 : Sub(D) → Sub(C) (where Sub(C) is the poset of subobjects) has
a right adjoint ∀f : Sub(C) → Sub(D) (considering f−1 as a functor be-
tween posets) satisfying the “Beck-Chevalley condition” of stability under
pullback.

2. C is locally cartesian closed if, for every arrow f : C - D, the reindexing
functor f∗ : C/D → C/C has a right adjoint Πf : C/D → C/C.

It is standard that any locally cartesian closed category has dual images. Also,
in a regular category, the Beck-Chevalley condition holds automatically if all
right adjoints ∀f : Sub(C)→ Sub(D) exist.

We will be primarily interested in two combinations of the structure dis-
cussed above. The weaker combination of structure is sufficient for modelling
first-order intuitionistic logic in the category.

Definition 3.3. An extensive Heyting category is an extensive regular category
with dual images.

Proposition 3.4. In every extensive Heyting category, each partial order Sub(C)
of subobjects of C is a Heyting algebra. For every arrow f : C - D, the in-
verse image functor f−1 : Sub(D)→ Sub(C) has both right and left adjoints ∀f
and ∃f satisfying the “Beck-Chevally condition” of stability under pullbacks. In
particular, C models intuitionistic, first-order logic with equality.

The stronger combination of structure is the notion we are promoting as a
constructive analogue the notion of topos.

Definition 3.5. A constructive topos is a locally cartesian closed pretopos (also
called a Π-pretopos).1

Since a consequence of local cartesian closedness is that existing coproducts are
stable, we remark that any locally cartesian closed exact category with disjoint
finite coproducts is a constructive topos. In the sequel, we shall focus on a
restricted class of constructive toposes, those with countable coproducts. By
the previous remark, such countable coproducts are automatically stable, and
their disjointness is an easy consequence of the disjointness of finite coproducts.

Obviously every constructive topos is an extensive Heyting category. Also,
it is standard that every elementary topos is a constructive topos. However,

1Such categories are called predicative toposes in [6]. It has been brought to the attention of
the authors that some authorities object to the word predicative being applied in this context.
Also, the adjective constructive ties in better with its use in the context of constructive set
theory. Other “predicative” notions of topos have been proposed elsewhere, e.g., in [24].
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there are natural mathematical examples of constructive toposes that are not
elementary toposes. We list five related such examples below, all given as exact
completions of familiar categories. The first three examples arise as instances of
ex/lex completions, that is, as exact completions as categories with finite limits;
the last two are given by ex/reg completions, that is, as exact completions as
regular categories. The reader is referred to [12, 22, 26] for detailed discussion
of the different exact completion constructions and their interaction with local
cartesian closedness.

1. The ex/lex completion of the category Top of all topological spaces.

2. The ex/lex completion of the category Top0 of all T0 topological spaces.

3. The ex/lex completion of the category ωTop0 of all T0 topological space
with countable base.

4. The ex/reg-completions of the categories Mod(P(ω)) and Mod(K2) of mod-
est sets over the partial combinatory algebras P(ω) (Scott’s graph model)
and K2 (second Kleene algebra for function realizability), respectively.
(See [26] for background information on realizability in categorical style.
In particular, one finds there a detailed account of the partial combinatory
algebras P(ω) and K2.)

5. The ex/reg-completions of the categories Asm(TPω) and Asm(TK2) of as-
semblies over the typed partial combinatory algebras TP(ω) and TK2

aris-
ing from the well-pointed categories Mod(Pω) and Mod(K2), respectively.
(See [20] for explanation of typed partial combinatory algebras and cate-
gories of assemblies over them.)

Here, the first two examples give rise to constructive toposes with all small
sums. However, the third and the fourth example produce essentially small

categories (they are equivalent to categories with 22
ℵ0

objects). The resulting
constructive toposes have countable coproducts, but not all small coproducts.
The fifth example produces constructive toposes which are not essentially small.
They are realizability models arising from typed partial combinatory algebras
generalizing the more familiar realizability toposes arising from untyped partial
combinatory algebras (see [26] for a comprehensive account).

None of constructive toposes described above are toposes. In the first two
cases, the categories, though locally small, are not well-powered, hence cannot
be toposes. The third example is not a topos because it has no generic proof in
the sense of Menni [22]. (Morphisms with Euclidean space R as codomain form

at least 22
ℵ0

equivalence classes under interfactorizability. Then no countably-
based T0 space X can be the codomain of a generic proof, since there are at
most 2ℵ0 continuous maps from R to X.) Curiously, the category ωTop of all
countably-based topological spaces, does have a generic proof, and so its exact
completion is a topos (it is equivalent to the realizability topos over Scott’s
combinatory algebra P(ω)). The constructive toposes of the fourth example

are not toposes because there are objects with at least 22
ℵ0

many subobjects
whereas all hom-sets have at most 2ℵ0 many elements. In fact, this example
subsumes the third, since the ex/reg-completion of Mod(P(ω)) is equivalent to
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the ex/lex completion of ωTop0. That the constructive toposes of the fifth
example are not toposes has been shown in [20].

4. Categories of classes

In this section, we introduce category-theoretic models for the set theory
CZFAExp, using the approach, pioneered in Joyal and Moerdijk’s Algebraic Set
Theory [18], of axiomatizing the category-theoretic structure of the category C
of classes. The basic idea is to axiomatize properties of a distinguished collection
of “small” maps in the category, corresponding to those class functions whose
fibres are sets.

Two main strands of axiomatizations have been considered in algebraic set
theory. Both start by assuming basic properties of small maps, such as (S1–6)
below, deriving from [18]. On top of this, one strand, originating in [18], and
continuing with [7, 9, 8, 11, 10] takes, as basic, axioms asserting the exponen-
tiability and representability of small maps, from which a powerclass functor
and set-theoretic universe are derived, using assumed exactness properties of
C and an appropriately defined well-founded tree. The second strand, devel-
oped in [28, 4, 6], requires only a regular category C, assumes the powerclass
functor and set-theoretic universe as basic, and derives the exponentiability and
representability of small maps from this.

In this paper, we follow the strand of [28, 4, 6], and the reader is referred
to these papers for detailed discussion and proofs of properties of the axiom-
atization below. Our reason for following this strand is that our construction
of a particular model Idl∞(E) in Section 5 makes use of an explicitly defined
powerclass functor and set-theoretic universe, as does the analysis of the set-
theoretic properties of Idl∞(E) in Section 6. So it is useful to have an axiom-
atization based on this structure. Having said this, the notion of countably
constructive well-founded class structure developed in this section, should be
considered as a pragmatic notion designed to facilitate the proof of our main
Theorem 4.6 and the properties of Section 6. Fundamentally, there is no con-
flict with the approach of [7, 9, 8, 11, 10], which in some ways provides a more
natural category-theoretic framework for developing properties of small maps.

Let C be an extensive Heyting category. Let S be a distinguished collection
of maps in C, the small maps. A small object is an object A of C whose terminal
map A - 1 is small. A small relation is a relation r : R- - A× I in C for
which the second projection π2 ◦ r : R - I is a small map.

The following properties of small maps are assumed as basic.

(S1) S is closed under composition

(S2) S is stable under pullbacks in C
(S3) S contains all regular monomorphisms of C
(S4) if f ◦ e is in S and e is a regular epi then f is in S
(S5) if a : A - I and b : B - I are in S then [a, b] : A+B - I is also

in S.

10



(S6) For every small map A - I and regular epi X -- A, there exists a
quasi-pullback diagram2

B - X -- A

J
?

-- I
?

(2)

with J -- I regular epi and B - J small.

Axiom (S6) is called the collection axiom in [18], since it implements the
essence of set-theoretic Collection. Indeed, it asserts, in the internal logic of C,
that every cover of a small object can be refined to a small subcover, i.e., for
every cover e : X -- A of a small object A there exists a small object B and
a map f : B - X such that e ◦ f : B - A is still a cover. Because this
assertion holds in the internal logic of C, the object B and map f need not exist
externally in C (but they do exist in a suitable slice of C).

For the category C to have the structure of a category of classes compatible
with the basic set theory of Section 2, we assume two further properties. The
first states that every object A has a corresponding powerclass object Ps(A),
which can intuitively be understood as the class of subsets of A.

(P) for every object A there exists an object Ps(A) together with a distin-
guished small relation ∈A - - A × Ps(A) such that, for every small
relation r : R- - A × I, there exists a unique map ρ : B - Ps(A),
called the classifying map for r, for which the diagram below is a pullback.

R - ∈A

A× I

r
?

?

idA × ρ
- A× Ps(A)

?

?

The operation A 7→ Ps(A) extends to a functor on C, whose action on
morphisms maps f : A - B to the classifying map for the relation r arising
as the image factorization below.

∈A -- R-
r- B × Ps(A) = ∈A- - A× Ps(A)

f×idPs(A)- B × Ps(A)

This relation is indeed small.
An important property of the structure we have identified so far is that it

is fibred, that is, it is stable under slicing. Specifically, the small maps in any
slice category C/I also satisfy (S1–6) and (P), and for every f : J - I, the
reindexing functor f∗ : C/I → C/J preserves the structure. Furthermore, when
the map f is small, f∗ has a right adjoint Πf : C/J → C/I, defining an indexed

2Diagram (2) is a quasi-pullback if it commutes and the canonical map B - J ×I A to
the actual pullack is a regular epi.
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product. This analogue of the “fundamental theorem” of topos theory is proved
in [4]. Following [23], we use indexed products, to define a polynomial functor
Qf : C → C, associated to a small map f , by:

X 7→ Σ(I - 1) Πf (X × J πJ- J) .

(Here Σf is the left adjoint to reindexing, which is given by composition.) In

more readable notation, Qf (X) = Σi:I X
f−1(i).

The second additional assumption we place on C is the existence of a set-
theoretic universe in C, freely generated from an object At of atoms by applying
the functor PS(−). Technically, the free generation is implemented by asking
for an initial algebra for the functor At + PS(−).

We split the assumptions we make on the set-theoretic universe U in C into
two parts.

(U1) There is an distinguished object At of atoms for which the endofunctor
At + Ps(−) has an initial algebra [a, i] : At + Ps(U) - U .

(U2) For every object A of C there exists a monomorphism A- - U .

Axiom (U2) says that a the set-theoretic universe U is a universal object in the
sense of [28, 4]. As in those references, given a category C with collection of
small maps S satisfying the other axioms, property (U2) can be enforced by
simply cutting down C to its full subcategory on subobjects of U .

For the purposes of the present paper, we refer to a class S of small maps
satisfying (S1–6), (P), and (U1–2) as basic well-founded class structure on an
extensive Heyting category C. A functor between categories with basic well-
founded class structure is said to be logical if it: preserves the extensive Heyting
structure, preserves small maps, preserves the powerclass structure (including
the membership relations), preserves the object At, and preserves the initial
algebra for the functor At+Ps(−). Here, all preservation properties are required
to hold up to isomorphism.

Proposition 4.1. If C has basic well-founded class structure S, then the small
maps also provide basic well-founded class structure on every slice category C/I.
Furthermore, for every f : I - J , the reindexing functor f∗ : C/J → C/I is
logical.

Proof. Most of the claims follow from Proposition 5.17 of [4]. For At in C/I we
take I∗At which thus is preserved by f∗. It remains to show that the initial
algebra of At+Ps(−) is preserved by reindexing. For this, the argument for the
closely related [8, Theorem 7.3] adapts straightforwardly to our setting. (The
central idea is to show that an algebra for the functor At + Ps(−) is initial if
and only if its structure map is an isomorphism and, in addition, the algebra
has no non-trivial subalgebras.)

Following [18, 28, 4, 6], one can interpret the first-order language of Sec-
tion 2 in a category C with basic well-founded class structure as follows. A

12



formula φ(x1, . . . , xk) is interpreted as a subobject of the object Uk, using the
internal first-order logic of Heyting categories, where the interpretation of the
predicates is given by: the unary predicate S(x) is interpreted as the subobject
i : Ps(U)- - U , where i is from the copair [a, i] constituting the initial algebra
in (U1); and the binary predicate x ∈ y is interpreted as the subobject

∈U- - U × Ps(U)-
idU×i- U × U .

The notion of basic well-founded class structure has been defined in such a way
that each of the basic axioms of Section 2 is validated by the interpretation.
Moreover, the syntactic category, as in [28, 4, 6], is an extensive Heyting cat-
egory with basic well-founded class structure. Therefore a completeness result
holds for interpretations of the first-order language in categories with basic well-
founded class structure. We omit details, since the proof is a routine verification,
along the lines of the proof in [4, Section 7].

Exploiting the connection with the basic set-theoretic axioms of Section 2,
we develop an analogue, in our category-theoretic setting, of the class inductive
definition theorem (Theorem 2.1). Given any Φ- - PS(X)×X, we say that
a subobject Y- - X is Φ-closed if the statement

∀(u, x) : Φ. if ∀y ∈ u. y ∈ Y then x ∈ Y

holds in the internal logic of E .

Theorem 4.2. Suppose C has basic well-founded class structure S. Given any
Φ- - PS(X)×X, there exists a smallest Φ-closed subobject I(Φ)- - X.

Proof. By (U2) there is an assumed embedding m : X- - U . Then Ps(m) is
also a mono [4, Proposition 5.12]. Thus, using Ps(m)×m we can transfer Φ to
Φ- - Ps(U)× U and carry out the argument there.

The argument now directly follows the proof of Theorem 2.1. In particular,
the construction of the family {Ja}a∈U produces a subobject

{(x, a) | x ∈ Ja}- - U × U .

satisfying (1) internally in E . The required I(Φ)- - U is obtained as the
image factorization of

{(x, a) | x ∈ Ja}- - U × U π1- U ,

where π1 is first projection. It is easily shown that I(Φ)- - U factors through
m : X- - U . That I(Φ) has the required properties as a subobject of X
follows from it having these properties as a subobject of U , as in the proof of
Theorem 2.1.

The next result is a useful application of Theorem 4.2, corresponding to Example
3 in Section 5.1 of [3].

13



Theorem 4.3. Suppose C has basic well-founded class structure S. For every
small map f : X - Y , the polynomial functor Qf : C → C has a fibred initial
algebra.

Proof. By proposition 6.10 of [4], by (U2) there exists g : Y → Ps(U) fitting
into a pullback square:

X
f - Y

∈U
?
-- U × Ps(U)

πPs(U)- Ps(U)

g
?

Also we have m : Y- - U . We define the following Φ- - Ps(U)× U .

Φ = {(u, t) : Ps(U)× U | ∃y : Y. ∃r : ug(y). t = (m(y), r)} ,

using Kuratowski tupling in U , and the coding of individual functions r : uv,
for v, u : Ps(U) as a set of ordered pairs, hence element of U .

The carrier object of the required initial algebra is the domain of I(Φ)- - U ,
given by Theorem 4.2. The algebra structure map Qf (I(Φ)) - I(Φ) sends

〈y, r〉 in Σy:Y .I(Φ)f
−1(y) to (m(y), r) which is in I(Φ) since I(Φ) is Φ-closed.

Initiality is a consequence of I(Φ) being the smallest Φ-closed subobject. Fi-
bredness follows from Proposition 4.1, which shows that all the structure used
in the definition of I(Φ) is fibred.

We remark that Theorem 4.3 provides another contrast between our style
of axiomatization and the alternative approach of [9, 8, 11, 10]. There, the
property of Theorem 4.3 is assumed as an axiom (WE), which is used, together
with other properties, to construct the set-theoretic universe. In this paper,
we work the other way round, and derive Theorem 4.3 from an assumed set-
theoretic universe.

To obtain a correspondence with CZFAExp, we require two further axioms
on the structure, implementing, and closely mirroring, the axioms Exp and Inf
from Section 2. The exponentiation axiom is implemented by

(E) For every f : J - I in S, the functor f∗ : C/I → C/J preserves small
objects. That is, for every small g : K - J , the map Πf (g) - I is
small.

To implement the infinity axiom, we note that, since the right injection
inr : 1 - 1 + 1 is small, it follows from Theorem 4.3 that the polynomial
functor Qinr has an initial algebra. In other words, C has a natural numbers

object 1 +N
[0,s]- N .

(I) The natural numbers object N is a small object in C.

We say that a class of small maps provides constructive well-founded class struc-
ture on an extensive Heyting category C if it gives basic well-founded class
structure and also satisfies axioms (E) and (I).

14



Theorem 4.4. The set theory CZFAExp is sound and complete relative to
interpretations of the first-order language in categories with constructive well-
founded class structure.

The proof is a routine extension of the corresponding result, discussed above,
relating the basic axioms of Section 2 with basic well-founded class structure.

We have now established categories with constructive well-founded class
structure as an abstract framework for modelling categories of classes com-
patible with CZFAExp. This framework provides a means to investigate the
question:

Which categories can be considered as categories of sets compatible
with the set theory CZFAExp?

Technically, given a category C with collection of small maps S, we define its
small part as the full subcategory CS of C on small objects. We then interpret
the above question as: which categories arise as the small part of a category
with constructive well-founded class structure? The result below gives part of
the answer.

Proposition 4.5. If S provides constructive well-founded class structure on C
then CS is a constructive topos with natural numbers object.

The constructive topos structure is obtained as a special case of Theorem 3.27
of [6], where a more general notion of class structure is assumed. The natural
numbers object is immediate from axiom (I).

However, the “converse” of Proposition 4.5 does not hold. That is, not ev-
ery constructive topos with natural numbers object arises as the small part of a
category with constructive well-founded class structure. For example, there are
versions of CZF without set induction and with natural-number-induction only
for bounded formulas, such as CZF0 of [3], for which the associated syntactic
categories of sets are nonetheless constructive toposes with natural numbers ob-
ject. Since such set theories are known to be proof-theoretically weaker than
CZFExp, the resulting constructive toposes cannot arise as the small part of
categories with constructive well-founded class struture. Thus, to obtain a con-
verse to Proposition 4.5, one needs to assume further properties of a construc-
tive topos. One possible framework for doing this might be to utilise Shulman’s
stack semantics [27], to formulate a “structural” logical property equivalent to
embedability in constructive well-founded class structure, or, in logical terms,
equivalent to Set Induction. As already remarked in [27], it is by no means
obvious how to do this.

Instead, we take a different route and strengthen the notion of constructive
well-founded class struture. As the main technical result of the paper, we char-
acterise the categories of sets that arise as the small part of categories carrying
this strengthened structure. Specifically, we assume that C has stable countable
coproducts, and we replace axioms (S5) and (I) with a common strengthening:3

3Axiom (I) is implied because the countable copower of the terminal object 1 is a natural
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(Iω) For any countable family (Ai - B)i∈I in S its cotupling
∐
i∈I Ai

- B
is again in S

We refer to such structure as countably-constructive well-founded class struc-
ture. We now state our main result, which characterises the small parts of such
categories as exactly the constructive toposes with countable sums.

Theorem 4.6.

1. If C is a category with countably-constructive well-founded class structure
S then CS is a constructive topos with countable sums.

2. If E is a small constructive topos with countable sums then there exists a
category C with countably-constructive well-founded class structure S such
that CS is equivalent to E.

Statement 1 of the theorem is a straightforward consequence of Proposition 4.5,
since the extra structure of countable sums is trivially transferred to CS from C.
The more interesting result is statement 2. For one thing, this implies that every
(small) constructive topos with countable sums models CZFAExp (and hence
CZFExp), thus fulfilling our obligation to establish point 4 in the comparison
between constructive toposes and constructive set theories of the introduction.
But statement 2 goes further than this. It says that every (small) constructive
topos with countable sums can itself be viewed as a category of sets compatible
with the theory CZFAExp. For this result, it seems essential to permit atoms
in the theory and to allow the collection of atoms to form a class. That is, our
proof does not go through if one adds the axiom Sx.¬S(x) to CZFAExp, or
equivalently the requirement that At be a small object of C.

The one minor discrepancy between Theorem 4.6 and the result one would
ideally like is the restriction to small constructive toposes in statement 2. This
is a feature of our proof which involves constructing sheaf categories over E . It
can be circumvented, in the usual way, by using sheaves valued in an enlarged
set-theoretic universe to cope with non-small E .

5. Countable ideals

This entire section is devoted to the proof of statement 2 of Theorem 4.6
which is the main technical contribution of the paper. All categories in this
section with the exception of Set will be assumed as small.

Our proof will be an adaptation of the proof in [6] that every construc-
tive topos appears up to equivalence as the small part of a basic well-founded
class structure satisfying axiom (E). We have to show that every constructive
topos with countable sums appears up to equivalence as the small part of a
countably-constructive well-founded class structure, i.e., a basic well-founded

numbers object, which is parameterized due to the stability, hence distributivity, of countable
coproducts.
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class structure satisfying axioms (E) and (Iω). But for this purpose we have to
recall some notions and results from [6].

First we recall Grothendieck’s notion of representable morphism which will
provide an appropriate notion of small map in various categories of interest.

Definition 5.1. Let C be a small category and y : C - Ĉ = SetC
op

the
Yoneda embedding. A map f : Y → X in the presheaf topos Ĉ is called
representable iff for all g : y(A)→ X there exist a pullback diagram

y(B) - Y

y(A)

y(u)
?

g
- X

f
?

where u : B → A is a map in C.

If one thinks of “small” as “representable”, as first suggested by Bénabou
(private communication), then representable morphisms are those families of
types all of whose components are small.

Definition 5.2. A presheaf X ∈ Ĉ = SetC
op

is called separated iff the diagonal
map δX = 〈idX , idX〉 : X- - X ×X is representable, i.e., iff for x, y ∈ X(A)
the sieve {u : B → A | x·u = y·u} is representable.

The following proposition from [6] ensures that every constructive topos is
equivalent to the small part of some basic well-founded class structure satisfying
axiom (E).

Proposition 5.3. Let E be a constructive topos and Sh(E) the topos of sheaves
over E w.r.t. the finite cover topology.4 Let Idl(E) be the full subcategory of Sh(E)
of separated objects. Then Idl(E) is a Heyting category with disjoint finite sums
inheriting this structure from Sh(E) and the class SE of representable morphisms
in Idl(E) gives rise to a basic well-founded class structure on Idl(E) satisfying
axiom (E).

The sum AtE =
∐

A∈Ob(E)
y(A) in Ĉ is an object of Idl(E). In Idl(E) there exists

an initial algebra UE of the endofunctor AtE + Ps(−) on Idl(E).

We recall that by Yoneda the small power object Ps(X) in Idl(E) is given by

Ps(X)(A) ∼= {R- - X × y(A) | R representable}

since a relation r : R- - X × y(A) is small iff π2 ◦ r : R→ y(A) is in SE iff R
is representable.

For later reference we also recall the following characterisation of separated
objects in Sh(E) from [5, 6] originally suggested by A. Joyal.

4which is generated by finite jointly epic families in E, see [17] where it is called “coherent”
topology
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Proposition 5.4. For X ∈ Sh(E) the following conditions are equivalent

(1) X ∈ Idl(E)

(2) for every f : y(A) - X its image in Sh(E) is representable

(3) X arises as colimit in Ê = SetE
op

of some directed diagram D : I - Sh(E)
where all D(i) are representable and all D(i ≤ j) are monic.

Directed colimits of monos of representables are called ideal colimits. It
follows from Proposition 5.4 that Idl(E) is closed under ideal colimits and those

are computed as in Ê .
This finishes our recap of the relevant results from [6] and we now turn to

the main goal of this section.

Let E be a constructive topos with countable sums. We consider E as en-
dowed with the countable cover topology where a sieve S covers I if S contains
a countable jointly epic family of morphisms. This is a Grothendieck topology
because countable sums are stable. We write Sh∞(E) for the category of sheaves
on E w.r.t. the countable cover topology. Since any coherent cover is in partic-
ular a countable cover the category Sh∞(E) is a full subcategory of Sh(E) and
the inclusion has a finite limit preserving left adjoint a called associated sheaf
functor.

Obviously all representable objects are sheaves w.r.t. the countable cover
topology and thus a fortiori w.r.t. the finite cover topology. Notice that the
Yoneda functor y : E - Sh∞(E) preserves countable sums because for a count-
able family (Ai) in E its colimiting cone (ini : Ai →

∐
Ai) generates a count-

able cover. Thus, in particular, for N =
∐
n∈ω

1E we have y(N) ∼=
∐
n∈ω

y(1E) ∼=∐
n∈ω

1Sh∞(E) and, accordingly, y(N) is a natural numbers object in Sh∞(E).

Next we show that Sh∞(E) is closed under a particular kind of colimit in Ê .,
which we call “∞-ideal colimits”.

Definition 5.5. A poset I is ω1-directed iff every countable subset of I has an
upper bound in I. An ∞-ideal diagram in a category C is a mono preserving
functor D : I - C for some ω1-directed poset I considered as a category. An
∞-ideal colimit is a colimit of an ∞-ideal diagram.

The following basic fact will turn out as crucial.

Proposition 5.6. The category Sh∞(E) is closed under ∞-ideal colimits taken

in Ê.

Proof. Suppose D : I - Sh∞(E) is an ∞-ideal diagram in Ê and let D∞ be

its colimit in Ê . Notice that all maps of the colimiting cone (ini : Di
- D∞)

are monic and that every element in a fibre of D∞ appears already in the image
of some ini. For sake of simplicity, we may pretend that all ini are inclusions in
the sense that all their components are subset incluions.

We have to show that D∞ is a sheaf w.r.t. the countable cover topology. For
this purpose suppose (fα : Aα - A)α∈I is a countable jointly epic family
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in E and (dα) is a compatible family of elements of D∞(Aα). Thus, by the
considerations in the previous paragraph and since I is ω1-directed there exists
an i ∈ I s.t. all dα show up already in the image of ini. Since Di is a sheaf
w.r.t. the countable cover topology there exists a unique d ∈ Di(A) with dα =
Di(fα)(d) for all α ∈ I. Thus, by the considerations in the previous paragraph
this d (considered as an element of D∞) is the unique one satisfying dα =
D∞(fα)(d) for all α ∈ I.

Moreover, in analogy with Prop. 5.4 we have the following characterisation
of separated objects in Sh∞(E).

Proposition 5.7. For X ∈ Sh∞(E) the following conditions are equivalent

(1) X ∈ Idl(E), i.e. is separated

(2) for every f : y(A) - X its image in Sh∞(E) is representable

(3) X arises as an ∞-ideal colimit of representable objects in Ê.

Proof. For showing that (1) implies (2) suppose X is separated and f : y(A)→
X. By Proposition 5.4 the image of f in Sh(E) is representable. Since the
associated sheaf functor a : Sh(E) → Sh∞(E) preserves monos, (regular) epis
and representable objects the image of f : y(A)→ X in Sh∞(E) coincides with
its image in Sh(E) (which can be seen by applying a to the epi-mono factorisation
of f in Sh(E). Thus, the image of f in Sh∞(E) is representable.

For showing that (2) implies (3) suppose that for every f : y(A) - X

its image in Sh∞(E) is representable. Thus, in Ê the object X is the colimit
of its representable subobjects in Sh∞(E). Since the associated sheaf functor
a : Sh(E) - Sh∞(E) preserves monos, (regular) epis, (countable) sums and
representable objects and the latter are closed under countable sums in Sh∞(E)

the subobjects of X in Sh∞(E) give rise to an ∞-ideal diagram in Ê . Thus X

is an ∞-ideal colimit of representable objects in Ê .
That (3) implies (1) follows from the respective implication in Proposition 5.4

since ∞-ideal colimits are in particular also ideal colimits.

For constructing appropriate models of CZFExp from E we consider the
following subcategory of Sh∞(E).

Definition 5.8. A countable ideal in E is a separated object of Sh∞(E). We
write Idl∞(E) for the full subcategory of Sh∞(E) on countable ideals in E .

From Proposition 5.7 it follows that Idl∞(E) = Sh∞(E) ∩ Idl(E).

Proposition 5.9. The category Idl∞(E) is closed under ∞-ideal colimits taken

in Ê.

Proof. The category Idl(E) is closed under ideal colimits taken in Ê . Since ∞-
ideal diagrams are in particular also ideal diagrams the category Idl(E) is closed

under ∞-ideal colimits taken in Ê . From this together with Proposition 5.6 it
follows that Idl∞(E) = Sh∞(E) ∩ Idl(E) is closed under ∞-ideal colimits taken

in Ê .
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The following lemma will be crucial for verifying that the class of rep-
resentable morphisms in Idl∞(E) gives rise to a countably-constructive well-
founded class structure.

Lemma 5.10. The adjunction a a i : Sh(E) ⊂ - Sh∞(E) restricts to an ad-
junction a a i : Idl(E) ⊂ - Idl∞(E) which is a localisation, i.e. the left adjoint
preserves finite limits. The category Idl∞(E) is regular and an object A ∈ Idl(E)
is in Idl∞(E) iff Idl(E)(m,A) is a bijection for all monos m in Idl(E) that are
mapped to isomorphisms by a.

Proof. The associated sheaf functor a a i : Sh∞(E) ⊂ - Sh(E) preserves
colimits, finite limits and representable objects. Thus, it also preserves sep-
arated objects and, accordingly, the functor a restricts to a functor from Idl(E)
to Idl∞(E) left adjoint to the inclusion i : Idl∞(E) ⊂ - Idl(E). The func-
tor a : Idl(E) - Sh∞(E) preserves finite limits since Idl(E) and Idl∞(E) in-
herit finite limits from Sh(E) and Sh∞(E), respectively. Thus, the adjunction
a a i : Idl(E) ⊂ - Idl∞(E) is a localisation. Thus, since Idl(E) is regular and
regular categories are closed under localisation the category Idl∞(E) is also reg-
ular. It follows from Proposition 5.6.4 of vol.1 of [13] that an object A ∈ Idl(E)
is in Idl∞(E) iff Idl(E)(m,A) is a bijection for all monos m in Idl(E) that are
inverted by a.

Proposition 5.11. Idl∞(E) is a Heyting category with stable and disjoint sums.

Proof. Idl∞(E) is a Heyting category since by Proposition 5.3 Idl(E) is a Heyting
category and this property is stable under localisation.

Notice that in Ê separated objects are closed under small sums. Thus, since
a : Ê - Sh∞(E) is a left adjoint preserving finite limits and representable
objects it follows that separated objects in Sh∞(E) are closed under small sums
in Sh∞(E) which are stable and disjoint since Sh∞(E) is a Grothendieck topos
and the initial object of Sh∞(E) is separated.

Proposition 5.12. The class SE of representable morphisms in Idl∞(E) is a
class of small maps, i.e. validates the axioms (S1)-(S6).

Proof. Since a : Sh(E) - Sh∞(E) is a left adjoint preserving finite limits and
representable objects it preserves representable morphism. By Lemma 5.10 the
functor a sends also Idl(E) to Idl∞(E). Thus a sends representable morphisms
in Idl(E) to SE . W.l.o.g. we may assume that a is the identity on Sh∞(E). It
is now easy to verify that SE is a class of small maps in Idl∞(E). We give the
arguments for (S2) and (S6) and leave the routine verification of the remaining
conditions to the reader.

For (S2) suppose f : Y - X is in SE and g : Z - X is in Idl∞(E).
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Now consider the pullback

U
q- Y

Z

g∗f
?

f
- X

f
?

in Sh∞(E) which is inherited from Ê . Thus, since representable morphisms are

stable under pullbacks in Ê it follows that g∗f is representable and thus in SE .
In order to verify condition (S6) suppose Y - X is in SE and Z -- Y

is a regular epi in Idl∞(E). Using collection in Set we can fit these two maps
into a quasi-pullback diagram

V - Z -- Y

U
?

-- X
?

in Ê where U - X is a regular epi and V - U is representable. Then
applying the associated sheaf functor a to it we obtain a quasi-pullback

a(V ) - Z -- Y

a(U)
?

-- X
?

in Sh∞(E) whose left side is representable.

Using Proposition 5.7 and results from [6] one can show that

Proposition 5.13. The functor Ps : Idl(E) - Idl(E) preserves ideal and
∞-ideal colimits. Moreover, it preserves Idl∞(E) and thus restricts to a functor
Ps : Idl∞(E) - Idl∞(E) which preserves ∞-ideal colimits.

Proof. From [6] it follows that Ps commutes with ideal colimits and thus with
∞-ideal colimits and that Ps preserves separatedness. Thus it suffices to show
that Ps(A) ∈ Sh∞(E) for every A ∈ E .

For this purpose suppose (un : In - I) is a countable cover of I and
(
Sn ∈

Ps(A)(In)
)

is a family compatible in the sense that whenever unv = umw for
some arrows v and w with source J then (v×A)∗Sn ∼= (w×A)∗Sm as subobjects
of J×A. Then, due to the assumptions on E the subobject S =

∨
(un×A)[Sn]

of I×A is the unique S ∈ Ps(A)(I) with S·un ∼= Sn for all n.

Proposition 5.14. Representable morphisms in Idl∞(E) validate axiom (E).

Proof. In Proposition 4.26 of [6] it has been shown that Idl(E) validates axiom
(E). Since Idl∞(E) appears as localisation of Idl(E) property (E) is preserved
because by a standard argument the inclusion of Idl∞(E) into Idl(E) preserves
dependent products.
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Proposition 5.15. Representable morphisms in Idl∞(E) validate axiom (Iω).

Proof. Suppose (fi : Yi - X)i∈I is a countable family of representable mor-
phisms in Idl∞(E). Let f :

∐
i∈I

Yi → X be the source tupling of the fi. Suppose

g : y(A) - X and y(hi) = g∗fi : y(Bi) - y(A) for i ∈ I. Then g∗f
is isomorphic to the source tupling h :

∐
i∈I

y(Bi) → y(A) of the hi. But since

y preserves countable sums the source of g∗f is isomorphic to y(
∐
i∈I Bi), i.e.

representable. Thus f is a representable morphism as desired.

Summarising these results we observe that

Theorem 5.16. The representable morphisms give rise to a basic well-founded
class structure on Idl∞(E) validating axioms (E) and (Iω).

Proof. Immediate from Propositions 5.11, 5.12, 5.13, 5.14 and 5.15.

Now we turn to the construction of universes.

Proposition 5.17. For every object A of Idl∞(E) the functor A+Ps(−) has a
initial algebra UA ∼= A+ Ps(UA).

Proof. In [6] it has been shown that Ps preserves monos and thus the functor
FA = A+Ps(−) also preserves monos. Since A+ (−) preserves univers directed
colimits it follows from Proposition 5.13 that FA preserves ∞-ideal colimits.

Consider now the∞-ideal diagram
(
FαA(0)

)
α<ω1

in Idl∞(E) where Fα+1
A (0) =

FA(FαA(0)) and FλA(0) = a (colimα<λF
α
A(0)) for limit ordinals λ < ω1. By Propo-

sition 5.9 the ∞-ideal colimit UA = colimα<ω1
FαA(0) exists in Idl∞(E). Since

by Proposition 5.13 the functor FA preserves ∞-ideal colimits in Idl∞(E) it is
straightforward and well-known that UA = colimα<λF

α
A(0) carries the structure

of an initial FA-algebra in Idl∞(E).

Due to Proposition 5.11 the sum AtE =
∐

A∈Ob(E)
y(A) exists in Idl∞(E). Thus,

by Proposition 5.17 there exists an initial fixpoint UE ∼= AtE + Ps(UE).
Theorem 5.18. Let CE be the full subcategory of Idl∞(E) on subobjects of UE
and SE the class of representable morphisms in CE . Then (CE ,SE , UE) is a
countably-constructive well-founded class structure whose small part is equiva-
lent to E.

Proof. It is easy to straightforward to check that Propositions 5.11, 5.12, 5.13,
5.14, 5.15 and 5.17 restrict to CE . Thus (CE ,SE , UE) is a countably-constructive
well-founded class structure.

Since for every object A of E we have y(A)- - AtE- - UE the small part
of CE ,SE , UE) is equivalent to E .

Thus we have finally proved statement 2 of Theorem 4.6. Notice that
the object AtE in Idl∞(E) cannot be small as otherwise one could derive an
analogue of Russell’s paradox. However, we need such a big object AtE for
obtaining a countably-constructive well-founded class structure whose small part
is equivalent to E .
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6. Properties of the model

Throughout this section, let E be a small constructive topos with countable
sums. We investigate properties of the model Idl∞(E) of CZFAExp.

6.1. The axioms U = Uω1
and V = Vω1

In this subsection, we show that our model Idl∞(E) validates the axiom
U = Uω1

(and hence V = Vω1
), meaning roughly that U is constructed by ω1

iterations of the powerclass operation. Although this property is rather blatantly
built into the consruction of the universe as an ω1-colimit in Idl∞(E), from a
set-theoretic perspective, U = Uω1

is a surprising and somewhat pathological
axiom. Moreover, there are subtleties in formulating this axiom in CZFAExp.
As we shall see, there are two candidates for the ordinal ω1.

Working in CZFAExp, we stratify the universe U according to an index a
indicating the current level in the universe, using the construction in the proof
of Theorem 2.1. Specifically, we define sublasses Ua of U satisfying the recursive
specification

Ua =
⋃
b∈a

{x | ∀y ∈ x. y ∈ Ub} .

Note that Ua is thus defined as a set-indexed union of classes. In the case that
a is an atom of ∅, we have that Ua is empty. However, when a is an inhabited
set, ∅ belongs to Ua, as does every atom in the universe. The construction can
be adapted to stratify V by

Va =
⋃
b∈a

{x | S(x) ∧ ∀y ∈ x. y ∈ Vb} = V ∩ Ua .

By simple applications of Set Induction, one has:

U =
⋃
a

Ua V =
⋃
a

Va .

We also extend the indices to classes A, defining

UA =
⋃
a∈A

Ua VA =
⋃
a∈A

Va .

We remark on one feature that distinguishes the above constructions from their
analogues in classical set theory. In CZFAExp, the “second level” V{∅,{∅}} is
a set if and only if the Powerset axiom holds. Thus, in general, Va may be a
proper class, even for a = {∅, {∅}}.

Although we have thus far allowed the indices to be arbitrary, in the cases
of interest to us, the indices will be ordinal classes. As usual, a transitive class
is a class A for which y ∈ x ∈ A implies y ∈ A. An ordinal class is a transitive
class all of whose elements are transitive sets. An ordinal is an ordinal class
that is a set. Note that, although a general transitive class may contain atoms,
an ordinal class cannot. Indeed, every element of an ordinal class is an ordinal.
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For an ordinal α and ordinal class β we write α < β to mean α ∈ β. Also,
for two ordinal classes α, β, we write α ≤ β to mean α ⊆ β.

Next, we define ordinal classes corresponding to the first uncountable ordinal
ω1 in classical set theory. We give two definitions. The first is the natural one.
Define ω]1 to be the smallest class that: contains ∅, is closed under ordinal
successor x 7→ x ∪ {x}, and is closed under N-indexed unions. (This can be
coded up using Theorem 2.1, using an inductive definition, Φ, containing the
pairs: (∅, ∅); ({x}, x ∪ {x}), for every set x; and ({f(n) | n ∈ N},

⋃
n∈N f(n)),

for every function f : N → {x | S(x)}.) Since the class of ordinals is closed

under the specified operations, the class ω]1 consists of ordinals. Moreover, the

subclass of ω]1 consisting of those elements whose transitive closures are subsets

of ω]1 is also closed under the operations. Therefore, this subclass is the whole

of ω]1. That is, ω]1 is transitive. Thus ω]1 is indeed an ordinal class.
The second definition is indirect. We first define Brouwer’s second number

class, W1, as the absolutely free algebra generated by: one constant, 0; one
unary operation, s; and one N-ary operation, l. (Again, this can be obtained
from using Theorem 2.1, using the inductive definition, Φ, containing the pairs:
(∅, (0, ∅)); ({x}, (s, x)), for every x ∈ U ; ({f(n) | n ∈ N}, (l, f)), for every
f : N→ U ; where 0, s, l are three chosen distinct elements of U .) Interpreting 0
as ∅, the operation s as x 7→ x ∪ {x}, and the operation l as countable union,
the class of ordinals is an algebra for the signature. Therefore there is a unique
algebra homomorphism h from W1 to the class of ordinals. Define ω[1 to be the
image of h. Consider the subclass of W1 consisting of those elements t for which
the transitive closure of h(t) is a subset of ω[1. This subclass contains 0 and is
easily shown to be closed under s and l, hence is the whole of W1. Thus ω[1 is

transitive, whence an ordinal class. Also, ω[1 ≤ ω]1, because the image of the

homomorphism restricts to ω]1, since this too is closed under the operations. If

countable choice is assumed then it is easy to show that ω[1 = ω]1, but it does
not seem possible to prove this in CZFAExp. (It would be interesting to have
a countermodel.)

Theorem 6.1. Idl∞(E) |= U = Uω[1 , hence Idl∞(E) |= V = Vω[1 .

Because ω[1 ≤ ω]1, we have Uω[1 ⊆ Uω]1
, and so also Idl∞(E) |= U = Uω]1

, and

similarly Idl∞(E) |= V = Vω]1
. The theorem is stated for the ordinal class ω[1

because this is the stronger property.

Proof. As in the proof of Theorem 4.2, the internalization in E of the set-
theoretic definition of the stratification Ua of U defines an object

{(x, a) | x ∈ Ua}- - UE × UE
π2- UE (3)

of the slice category E/UE . Let W1 in E be the initial algebra, easily given
by Theorem 4.3, for one constant 0, one unary operation s, and one N-ary
operation l. Let h : W1

- UE be the homomorphism given by the initial
algebra property with respect to the algebra structure on UE that interprets
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0 as ∅, the operation s as x 7→ x ∪ {x}, and l as countable union (as above).
Pulling back (3) along h, we obtain:

{(x, t) | x ∈ Uh(t)}- - UE ×W1
π2- W1 . (4)

By definition

Uω[1 =
⋃
t∈W1

Uh(t) .

Next, we unwind the characterising properties of Ua and h in E to calculate,
for a global element t of W1, properties of Uh(t) as a subobject of UE . For
convenience, we adopt set-theoretic notation, with obvious interpretations in E .
For 0 ∈W1, trivially

Uh(0) = ∅ . (5)

For a successor element:

Uh(s(t)) =
⋃

b∈h(s(t))

{x | ∀y ∈ x. y ∈ Ub}

=
⋃

b∈h(t)∪{h(t)}

{x | ∀y ∈ x. y ∈ Ub}

= (
⋃

b∈h(t)

{x | ∀y ∈ x. y ∈ Ub}) ∪ {x | ∀y ∈ x. y ∈ Uh(t)}

= Uh(t) ∪ {x | ∀y ∈ x. y ∈ Uh(t)}

= {x | ∀y ∈ x. y ∈ Uh(t)} (6)

= {x | ¬S(x)} ∪ Ps(Uh(t))

∼= At + Ps(Uh(t)) , (7)

where equality (6) holds because every Ua (in particular Uh(t)) is transitive,
hence Uh(t) ⊆ {x | ∀y ∈ x. y ∈ Uh(t)}. Finally, for a “limit” element l((tn)n∈N)5

Uh(l((tn)n∈N)) =
⋃

b∈h(l((tn)n∈N))

{x | ∀y ∈ x. y ∈ Ub}

=
⋃
n∈N

⋃
b∈h(tn)

{x | ∀y ∈ x. y ∈ Ub}

=
⋃
n∈N

Uh(tn) . (8)

5Because N is a countable copower, global elements of (W1)N are in one-to-one correspon-
dence with external sequences (tn)n∈N of global elements of W1.
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Using the Axiom of Choice, we choose cofinal approximating sequences for limit
ordinals to build a transfinite sequence (tα)α<ω1 of global elements of W1 by:

t0 = 0

tα+1 = s(tα)

tλ = l((tαn)n∈N) λ < ω1 a limit ordinal, αn < λ, (αn)n∈N cofinal in λ .

Using the characterisations of the various Uh(t) as subobjects of UE above, and
the definition of Uω[1 as a subobject of UE , one has, by external transfinite
induction on α, β < ω1, that

α ≤ β =⇒ Uh(tα) ⊆ Uh(tβ) ⊆ Uω[1 (9)

and these inclusions coincide with the ones constructed in the proof of Proposi-
tion 5.17 for the case where A is AtE . By (9), inclusions to the object Uω[1 form a
cocone, hence the colimiting property of UE gives a morphism, commuting with
inclusions, c : UE - Uω[1 . By the colimiting property of UE , the composite of
c followed by the inclusion Uω[1 ⊆ UE is the identity on UE . Thus the inclusion
Uω[1 ⊆ UE is a regular epi, hence an isomorphism. That is, Uω[1 = UE .

Corollary 6.2. Idl∞(E) |= “ω[1 is not a set”.

Proof. By set induction on the index a, one proves easily that a 6∈ Ua holds for
all a ∈ U . Were ω[1 a set, we would get a contradiction by ω[1 ∈ U = Uω[1 .

The same argument shows that no superclass of ω[1 is a set, in particular, ω]1 is
not a set.

Corollary 6.3. Idl∞(E) |= “W1 is not a set”.

Proof. Were W1 a set then, by Replacement, its image under h would also be a
set, but this is ω[1.

Aczel’s Regular Extension Axiom (REA), [2], is an axiom that can be added
to CZFAExp in order to ensure that inductive definitions which are bounded by
a set (roughly, this corresponds to having a set of generators) give rise to induc-
tively defined classes which are themselves sets. A straightforward consequence
of REA is that W1 is a set. Thus we have:

Corollary 6.4. Idl∞(E) |= ¬REA.

6.2. Failure of full Separation

A further consequence of Theorem 6.1 is that the full separation schema is
never validated in Idl∞(E).

Theorem 6.5. Idl∞(E) 6|= Sep.
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Proof. We show that, in CZFAExp + Separation, it holds that W1 is a set. The
result then follows from Corollary 6.3.

Working in CZFAExp, we carve out an isomorphic copy of W1 as a subclass

of NNN

. Consider the algebra structure for 0, s, l over NNN

given by:

0 = λf. 0

s(F ) = λf.


1 if f(0) = 0

F (λn.f(n+1)) if f(0) = 1

0 otherwise

l((Fn)n∈N) = λf.

{
2 if f(0) = 0

Ff(0)−1(λn.f(n+1)) otherwise

By the initiality of W1, there is a unique algebra homomorphism g from W1 to

NNN

. Consider the subclass of W1 consisting of those t satisfying: for all t′ ∈W1,
if g(t′) = g(t) then t′ = t. It is routine to prove that this is a subalgebra of
W1, hence it is the whole of W1. In other words, g is an injective function. The

image of g is thus a subclass of the set NNN

that is isomorphic to W1.
Finally, assuming Separation, subclasses of sets are sets. In particular, the

image of g is a set, whence W1 is a set.

6.3. The Powerset axiom

As is well that, in the presence of the Exponentiation axiom, the Powerset
axiom is equivalent to the class of subsets of {∅} forming a set.

Proposition 6.6. Idl∞(E) |= Pow if and only if E is an elementary topos.

Proof. The object Ps(1) in Idl∞(E) is given by the presheaf SubE sending an
object A of E to the lattice of subobjects of A in E and whose morphism part
is given by pulling back subobjects along morphisms in E . Thus Ps(1) is a set
iff SubE is representable iff E has a subobject classifier iff E is a topos.

By Theorem 6.5 and Proposition 6.6, any small constructive topos with
countable sums that is not a topos provides, via Idl∞(E), a model for CZFAExp

in which both Separation and Powerset fail. Quite a few, mathematically nat-
ural, examples have been discussed at the end of Section 3.

6.4. Fullness

Aczel’s set theory CZF differs from the theory CZFExp considered here by
having, instead of the Exponentiation axiom, a schema called Subset Collection.
This is strictly stronger than Exponentiation, [21], and strictly weaker than
Powerset. In the presence of the other axioms, Subset Collection is equivalent
to an Axiom called Fullness:

for any two sets X,Y , there is a set Z of total relations between X
and Y , such that any total relation contains one in Z.
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In this subsection, we give sufficient conditions for Fullness to hold in Idl∞(E).
First we review a condition (F) on class structure corresponding to Fullness,

introduced by van den Berg and Moerdijk in [7, 9, 8]. For morphisms a :
A - X and b : B - X, in a regular category C, let MX(a, b) denote
the external poset of those relations r : R- - A ×X B in C/X for which
π1 ◦ r : R - A is a regular epi. In other words MX(a, b) is the poset of total
relations (also known as many-valued relations) between a and b in C/X. Since
such spans are preserved by pullbacks every morphism f : Y → X induces
a monotone map f∗ : MX(a, b) → MY (f∗a, f∗b). In this paper, we consider
van den Berg and Moerdijk’s axiom in the setting of a category C with basic
well-founded class structure S.

(F) For any two small maps a : A - X and b : B - X there ex-
ist a regular epi p : Y -- X, a small map c : C - Y and an
R ∈ MC(c∗p∗a, c∗p∗b) such that, for every d : D - Y and S ∈
MD(d∗p∗a, d∗p∗b), there exists a regular epi q : E -- D and a map
f : E - C with d ◦ q = c ◦ f and f∗R ≤ q∗S.

As remarked in [9], although complicated, (F) arises naturally as the Kripke-
Joyal translation of the set-theoretic Fullness property formulated above. As
in [8, Proposition 7.2(4)], a category C with basic well-founded class structure
satisfies (F) if and only if the set-theoretic Fullness axiom holds in the interpre-
tation of the first-order language in C.

We now give a corresponding Fullness axiom on a constructive topos E .
When E has countable sums, this axiom will ensure that Idl∞(E) satisfies con-
dition (F).

Definition 6.7. A pretopos E enjoys type-theoretic fullness if for all a : A - X
and b : B - X in E there exist a cover p : Y -- X, a morphism
c : C - Y and R ∈ MC(c∗p∗X, c∗p∗B) such that for every d : D - Y
and S ∈ MD(d∗p∗A, d∗p∗B) there exists a cover q : E -- D and a map
f : E - C with d ◦ q = c ◦ f and f∗R ⊆ q∗S.

Note that this is just condition (F) with smallness assumptions dropped. (All
maps in E are to be thought of as small.)

Proposition 6.8. If E is a constructive topos with countable sums satisfy-
ing type-theoretic smallness then Idl∞(E) satisfies (F), hence validates the set-
theoretic Fullness axiom.

Proof. Using the Kripke-Joyal interpretation it is straightforward, but tedious
to show that type theoretic fullness for E guarantees that the class SE of repre-
sentable morphisms in Idl∞(E) validates axiom (F).

By interpreting the first-order language over VE (rather than over UE), it fol-
lows that type-theoretic fullness suffices for a constructive topos E with count-
able sums to model full CZF.
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7. Discussion

We have argued that locally cartesian closed pretoposes provide a good no-
tion of constructive topos. And we have shown that any constructive topos with
sufficient coproducts can be viewed as the category of sets within a model of
CZFAExp; in particular, it provides a model of the set theory CZFExp. This
fact is analogous, for constructive toposes, to Fourman and Hayashi’s result that
elementary toposes with small coproducts model IZF [14, 16].

In this paper, sufficient coproducts means countable coproducts. But this
leads to models of CZFExp with pathological properties (V = Vω1

, the incom-
patibility with full Separation and with REA). It would be interesting to see
if constructive toposes with all small coproducts give rise to less pathological
models of CZFExp.

A weakness in our presentation is that we have used ZFC as the metathe-
ory to analyse Idl∞(E). This means that our claim, in Section 1, that the
theory CZFExp is justified as being of interest through its wide range of natu-
ral mathematical models (constructive toposes with countable sums) is not yet
as philosophically neutral as it should be. We believe that this is not a funda-
mental issue. With sufficient care, our dependency on classical properties of the
ordinal ω1 should be eliminable in favour of constructively acceptable proofs.

A tempting way to approach such a weakening of the meta-theory would
be to avoid the use of algebraic set theory altogether, and instead to give a
direct forcing-style interpretation of the language of set theory in a constructive
topos with countable sums. The first author has outlined one possible such
interpretation in talks on this work, but the details have not been verified. A
further benefit of adopting a forcing-style approach would be that it avoids any
need for assuming that the constructive topos E is small.
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