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THE USE OF APL IN EXPOSITION

The following pages illustrate the use of APL for

exposition in the teaching of various topics. The first
section presents the characteristics of the language, and
each of the succeeding sections illustrates its use in the

presentation of material in some one discipline.

A reader who wishes to study these examples thoroughly
must either know the meaning of the APL notation used or be

prepared to obtain this knowledge in some way, perhaps by
inferring it from the examples, by consulting an APL manual,
by experimenting on an APL terminal, or by asking a few

questions of a native speaker of APL.

The treatment of each topic is self-contained, and so
brief that it can only suggest the convenience provided by
APL in more extended discussion. A perusal of several topics
will illustrate the fact that the convenience of APL is not
confined to any particular field. More extended use of the
language is illustrated by some of the 1items in the
bibliography.

This paper arose from material developed for a series
of talks given at various locations over the past year or
so. lts form betrays this origin; each page Is relatively
self-contained and is suitable for use as a transparency on
an overhead projector. The following topics are treated:
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APL\360

IS LIKE HIGH SCHOOL ALGEBRA:

3.6+4,4
8

3,6x4,4
15.84

3+

0,75

3*y
81

3|8
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38
8

3<8
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8<3
0

(8+3)x(8-3)
55

(378)+(3<8)
9

In expressing familiar arithmetic
functions.

in using the same form to express
less familiar functions.

3 to the power 4,
The remainder on dividing 3 into 8.

The maximum of 3 and 8.

The truth (1) or falsity (0) of a
relation.

In using parentheses to indicate the
sequence in which par ts of an
expression are to be executed.



BUT DIFFERS FROM ALGEBRA
EXTEND ITS APPLICABILITY:
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4y

X+3+4
Y5
XxY

LENGTH+S

WIDTH+U4
AREA<LENGTH=xWIDTH
AREA

PRICE«S
QUANTITY+h4
PRICExQUANTITY
PRICE<S 8 12 3 7
QUANTITY«H4 1 0 2 2
PRICExQUANTITY

0 6 14
NEWPRICE«6 7 12 4 8
PRICE | NEWPRICE
12 3 7
+/QUANTITY
4+1+0+2+2

TOTAL«+/PRICEXQUANTITY
TOTAL

[ /QUANTITY

yfifofal2

4+5x6

4x5+6

IN RESPECTS WHICH BOTH SIMPLIFY IT AND

A value 1is assighed to a name
(variable) by the assign symbol <«
rather than by the equal sign.
This avoids the multiple uses of
equal encountered in algebra.

The multiplication sign (x) cannot
be omitted. This allows the use of
long names (e.g., AREA is a name
and does not mean AxRxExA).

Expressions apply to lists of items
(vectors) as well as to single
quantities (scalars).

Any function can be applied to all
elements of a list. In algebra
this can be done for addition by
using the sigma notation.

There are no rules such as
"multiplication is done before
addi tion'; all

functions are
treated alike by one rule:
evaluate from right to left,

subject to parentheses.



APL
FUN
INC
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NEVER
|.E
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CONTAINS A RICH SET OF PRIMITIVE (1.E., BUILT=-IN)

CTIONS WHICH MAKE IT APPLICABLE OVER A WIDE AREA.
LUDES, FOR EXAMPLE:

A1l common arithmetic functions, including
remainder, integer part, and power.

Other mathematical functions such as trigonometric
and hyperbolic functions (and their inverses), the
gamma function, matrix inverse, and generalized
matrix products.

Simple but powerful selection functions which
select parts of 1lists or tables. These include
indexing in which the indices may themselves be
lists or tables. Since 1lists and tables of
characters are treated in the same way as lists
and tables of numbers, these functions make APL
easy to use in textual and other non-numeric work.

A complete set of relations and other logical
functions.

IT

THELESS, APL IS EASY TO LEARN BECAUSE IT IS SEPARABLE,

x4

Iin attacking a given problem area only the
necessary primitives must be 1learned and the rest
may be ignored.

When one adds new functions to his vocabulary in
order to attack new areas, the same familiar rules
apply to these new functions.



APL IS CONVENIENT TO USE IN ANY APPLICATION AREA BECAUSE THE FUNCTIONS
NEEDED TO TREAT THAT AREA CAN BE DEFINED AND THEN USED AS
CONVENIENTLY AS PRIMITIVES, FOR EXAMPLE:

VZ<+«RATE FOR YEARS The function FOR deflned to
[11] Z+| .5+41000%x(1+4+,01xRATE)*YEARSV the left applies to any rate
(in percent) and any number
6 FOR 1 of years and yields the
1060 rounded return in dollars
6 FOR 2 for each 1000 dollars of
1124 initial capital.
6 FOR 3
1191
6 FOR 1 2 3 4 It applies for any list of
1060 1124% 1191 1262 years at a given rate,
6 7 8 9 FOR &4 It applies for any list of
1262 1311 1360 1412 rates for a given number of
years.
6 7 8 9 FOR 1 2 3 4 Or to any 1list of corres-
1060 1145 1260 1412 ponding rates and years.
VZ<«RATE FORTABLE YEARS A slight modification of the

1] Z«L0.5+1000x(1+0,01xRATE) o, *YEARSV expression used in defining
FOR yields a function which

6 7 8 9 FORTABLE 1 2 3 4 produces a table which
1060 1124 1191 1262 includes the result for
1070 1145 1225 1311 every combination of rates
1080 1166 1260 1360 and years.

1090 1188 1295 1412



FURTHER DETAILS OF APL NEEDED TO READ THE REST OF THIS PAPER

ARE

SUMMAR1 ZED

ON THIS PAGE AND

IN THE TWO

TABLES (WHICH DEFINE ALL THE PRIMITIVE FUNCTIONS):

Functions apply to arrays

in four distinct ways,

below by examples using the following arrays:

V=W MxM
L 6 6 L 1 4 9
2xW 16 25 36
8 6 L 2 49 64 81
Outer-Product (A1l Pairs)
Vo,<W Vo .xW
1111 L 3 2 1
1110 8 6 4 2
1100 12 9 6 3
1000 16 12 8 L
Reduction
+/V +/[1]M
10 12 15 18
x/V x/[11M
24 28 80 162
Lnner_Product
M+, xM M+, <M
30 36 y2 3 3 3
66 81 96 1 2 2
102 126 150 0 0 1

(Ordinary Matrix

Product)

(M+.xN)[I;J]

Character arrays are specified
behave 1like
in the domain

marks and
are not
functions:

A«*'DIGIT!'
AlL1 2 3]

DIG
A=tT"
o 1 o 1

0

by
numeric arrays
of addition and other

1
n
7

2
5
8

M

SUCCEEDI NG
defined
3
6
9
M*x?2
1 L 9
16 25 36
49 64 81
Vo .+W
5 4 3 2
6 5 4 3
7 6 5 L
8 7 6 5
+/021M
6 15 24
+/M
6 15 24
M+.x1 4 7
30 66 102
M+.xM[ ;1]
30 66 102

is equivalent to +/M[I;IxM[;J]

the use of quotation
except that they

arithmetic



Monadic form f£B f Dyadic form AfB
Definition Name Name Definition
or example or example
+B «+ 0+B Plus + { Plus 243.2 «+» 5.2
-B ++ 0-B Negative - | Minus 2-3,2 «+ 1.2
xB «+ (B>0)=(B<0) Signum x | Times 2x3,2 +> b.4
tB ++ 1iB Reciprocal + | Divide 2+3.2 ++ 0.625
B | ra] Ls Ceiling [ | Maximum 3[7 <> 7
3,14 &
T3.14|73 |74 Floor L | Minimum 37 «+ 3
*B «+ (2.71828..)*B|Exponential | » | Power 2%3 +«> 8
@xN «+> N «> xoN Natural e | Logarithm AeB «+ Log B base 4
logarithm A®B «-»> (@®B):94
]73.14 <> 3,14 Magnitude | | Residue Case | AlB
A=z0 B-([A)xLB:|A
A=0,B=20}B
A=0,B<0|Domain error
10 «»> 1 Factorial ! | Binomial A'B <+ (!B):+(1A4)x!B-4
!B <> Bx!B-1 coefficient |2!'5 «+ 10 3!5 «> 10
or !B +»> Gamma(B+1)
?B ++ Random choice|Roll ? | Deal A Mixed Function (See
from B Table 2)
OB +» Bx3.14159... |Pi times o | Circular See Table at left
~1 «> 0 ~0 +>1 Not ~
A | Ana A|BlarB|avBlanB|4avB
(-4)0B A AOB v | Or 010 O 0 1 1
(1-Bx2)%,5 |[0] (1-B*2)*,5 ~ | Nand 01 0 1 1 0
Arcsin B {1 | Sine B v | Nor 110} O 1 1 0
Arccos B |2 | Cosine B 1)11] 1 1 0 0
Arctan B |3 | Tangent B
(T14+B*2)x.5 4| (1+4B*2)%.5 < | Less Relations
Arcsinh B (5| Sinh B < | Not greater Result is 1 if the
Arccosh B |6 ] Cosh B = | Equal relation holds, ©
Arctanh B |7 Tanh B 2 | Not less if it does not:
> | Greater 3<7 «+» 1
Table of Dyadic o Functions =z | Not Equal 7<3 «> 0
TABLE 1. PRIMITIVE SCALAR FUNCTIONS




Name Sign! | Definition or example?
Size pA pP «+ 4 pEF <« 3 4 p5 «> 10
Reshape VpA Reshape A to dimension V 3 4p112 <+ E
12pF +» 112 0pE «» 10
Ravel yA A €+ (x/pA)pA W E «+112 P,5 «> 1
Catenate V,V P,12 <> 2 35 7 1 2 fTYLYHIS!' «» '"THIS!
vial PL2] «»3 P[4 3 2 1] +»7 5 3 2
Index34 MLA;A] E[1 3;3 2 1] <+ 3 2 1
11 10 9
AlA;. E[1;] «» 1 2 3 4 ABCD
341 E[;1] <> 1 5 9 "ABCDEFGHIJKL'[E] «» EFGH
IJKL
Index 1S First S integers 14 «+ 1 2 3 4
generator? 10 «» an empty vector
Index of3 V14 Least index of 4 P13 «»2 5125
in V, or 1+pV PiE «+ 3 5 4 5
4 4i4 «> 1 5 555
Take V44 Take or drop IV[I] first 2 3tX «»> ABC
(VLI1l1=20) or last (VL[I]<0) EFG
Drop V+A elements of coordinate I 24P «> 5 7
Grade up35 [i4 The permutation which A3 5 32 «> 41 3 2
would order 4 (ascend-
Grade down33|y4 ing or descending) 3 5 3 2 «> 2 1 3 4
1 3
Compress?® V/A 101 0/P «>25 101 0/E «»5 7
9 11
10 1/01]E <+ 1 2 3 4 «> 1 0 1/E
9 10 11 12
A BCD
Expand?3 v\ 4 10 1\12 <> 1 0 2 1011 1\X <> E FGH
I JKL
DCBA IJKL
Reversed $4 $X «+ HGFE $L1]X «> ©X <> EFGH
LKJT ¢P «> 7 5 3 2 ABCD
BCDA
Rotate?® 464 3P «> 7 2 3 5 «» 1P 1 0 T16X <> EFGH
LIJK
AET
VR4 Coordinate I of 4 2 18X «»> BFJ
becomes coordinate CGK
Transpose VLI] of result 1 18F +«» 1 6 11 DHL
®A Transpose last two coordinates RE «> 2 18QF
0110
Membership |4e4 pWeY «> plW EeP «+- 1 0 1 0
Peil4 =+ 1 1 0 O 0 0 0 0
Decode 129% 1011 7 7 6 <+ 1776 24 60 6011 2 3 <> 3723
Encode VTs 24 60 6073723 «+ 1 2 3 60 60173723 «» 2 3
Deal3 S?S W?Y «> Random deal of ¥ elements from 1Y
TABLE 2, PRIMITIVE MIXED FUNCTIONS (see notes on next page)

8




Restrictions on argument ranks are indicated by: S for

scalar, vV for vector, ¥ for matrix, A for Any. Except as

the first argument of S14 or S[4], a scalar may be used

instead of a vector. A one-element array may replace any

scalar.

Arrays used 1 2 3 u ABCD

in examples: P ++ 2 357 FE <> 5 6 7 8 X <+ EFGH
9 10 11 12 IJKL

Function depends on index origin.
Elision of any index selects all along that coordinate.

The function 1is applied along the last coordinate; the
symbols #, %, and e are equivalent to /, \, and o,
respectively, except that the function is applied along the
first coordinate. 1If [S] appears after any of the symbols,
the relevant coordinate is determined by the scalar S.

Notes to Table 2




ELEMENTARY ALGEBRA

THE CONVENIENT USE OF ARRAYS IN APL MAKES IT EASY TO
DISPLAY AND MANI PULATE MATHEMATICALLY MEANINGFUL
PATTERNS. FOR EXAMPLE:

2%2 3 4 5 This pattern can be extended to
4 8 16 32 the right by noting that each
2%«2 3 4 5 6 7 element is obtained by multi-

4 8 16 32 64 128 plying its predecessor by 2.
2«2 1.0 1 2 3 The pattern can be extended to
0.25 0.5 t 2 y4 8 the 1left by noting that each
element is obtained by dividing
its successor by 2. This gives

a graphic picture of how meaning
is assigned to zero and negative

powers.
4x1 2 3 4 5 The same notions can be used to
4 16 64 256 1024 introduce fractional arguments.

4x«1 1,5 2 2.5 3
4 8 16 32 64

2%*1 1.5 2 2.5 3
2 2,83 4 5,686 8



FUNCTION TABLES (E.G., ADDITION TABLES, MULTI PL1CATION
TABLES, AND SUBTRACTION TABLES) CAN BE USED TO GIVE
GRAPHIC PICTURES OF THE BEHAVIOR OF COMMON FUNCTIONS OF
TWO ARGUMENTS:

S«1 2 3 4 56 7

So,.+S5 So.,x8
2 3 i 5 6 7 8 1 2 3 N 5 6 7
3 i 5 6 7 8 9 2 i 6 8 10 12 1u
i 5 6 7 8 3 10 3 6 9 12 15 18 21
5 6 7 8 g 10 11 4 8 12 16 20 24 28
6 7 8 g 10 11 12 5 10 15 20 25 30 35
7 8 g 10 11 12 13 & 12 18 24 30 36 42
8 g 10 11 12 13 14 7 14 21 28 35 42 49
Se. 8 So.28
1 2 3 4 5 65 7 1 000000
2 2 3 4 5 6 7 1100000
3 3 3 4 5 & 7 1110000
4 4 4 4 5 6 7 1111000
5 5 5 5 5 6 7 1111100
6 6 6 6 6 6 7 1111110
7 7 7 7 7 7 7 1111111
Seo, -8 So, <8
071 "2 73 "4 75 7s 0111111
1 0 1 72 73 "4 s 0011111
2 1 0 "1 72 73 T4 0001111
3 2 1 0 "1 "2 73 0000111
4 3 2 1 0 "1 "2 00000 11
5 4 3 2 1 0 1 000000 1
& S 4 3 2 1 o0 00 0O0O0O0O0



CERTAIN PROPERTIES OF FUNCTIONS (SUCH AS COMMUTATIVITY) CAN BE
RELATED TO THE PATTERNS OBSERVED IN THEIR FUNCTION TABLES:

So. -5 ®So.,-S The transpose of a
C "1 72 T3 "4 "5 Ts 0 1 2 3 4 5 8 function table is the
1 0 "1 72 T3 T4 s 4 0 1 2 3 4 5 table of the same
2 1 0 "1 72 T3 Ty 271 0 1 2 3 4 function with the
3 2 1 0 "1 "2 73 3 7271 0 1 2 3 arguments commuted.
4 3 2 1 0 "1 2 4 T3 T2 7100 1 2 Since the two tables
5 4 3 2 1 0 "1 5 T4 T3 T2 71 0 1 do not agree, the
6 5 4 3 2 1 0 "6 75 Ty T3 T2 T1 0 subtraction function
is not commutative.
So . xS ®S5oe, xS
1 2 3 4 5 6 7 1 2 3 4 5 6 7 The transpose
2 4 6 8 10 12 1y 2 4 6 B8 10 12 14 of a table for a
3 6 9 12 15 18 21 3 6 9 12 15 18 21 commutative function
4 8 12 16 20 24 28 4 8 12 16 20 24 28 agrees with the
5 10 15 20 25 30 35 5 10 15 20 25 30 35 original function.
6 12 18 24 30 36 42 6 12 18 24 30 36 42
7 1% 21 28 35 42 49 7 14 21 28 35 42 49

7«5 -4
T
3 T2 "1 0 1 2 3
To,xT
3 6 3 0 3 76 "9 The function table for
6 4 2 0 2 "4 "8 multiplication applied to
3 2 1 0 71 "2 73 both negative and positive
o 0 0 0 0 0 O arguments can be used to
3 7271 0 1 2 3 give some insight into the
6 T4 T2 0 2 4 6 rules for the sign of a
"9 6 73 0 3 6 9 product.



THE FUNCTION TABLE FOR EQUALS (=)
FUNCTION AND AN APPROPRIATE SET OF VALUES FROM THE RANGE OF

SO OO OOO OO

THE FUNCT!ION YIELDS AN

GRAPHS AND BAR CHARTS:

VZ<F X

Z2+(X-3)x(X-5)V

S«1 2 3 4 56 7

R«8 7 6 5 4 3 2

OO OO OO0 OO0
ORLr OO0 O0O00O OO0
P OO OCOO0OOO OO o
O OO OO OOOC OO I

e}
9]

*'[1+FRo.,

SO OO OO O OO
OO OO OO OO O

=F §]

[ I T N =

* % % %

*

* %

* x
* *x

10 1

=

[l R e R e e el el
[ el eNeleNeoNeNe Nl
PO OOOOOO OO o
Sl eleNeNeNeoNoNe Ne NN

*'[1+Ro.,

* % % %

*

* %

* %
* x

* ok ok ok ok ok

* % Kk Kk Kk kK

UNUSUAL

APPLYED TO THE VALUES OF A

INSIGHT INTO THE MEANING OF

The function F is a parabola
with zeros at 2 and s.

F 5 yields the values of the
parabola for the argument 5.

R is the vrange of values
occurring in F S.

F S
0 1
0 1
0 1
0 1 The 1s represent a
0 1 graph and a bar chart
11 of F.
11
11
11
11
<F S]]

13

The asterisks repre-
sent a graph and a
bar chart of #.



THE USE OF VECTORS PERMITS A CLEAR AND SIMPLE TREATMENT
OF POLYNOMIALS:

[
(Sl
[es)

W
(&)
(393

1296

C+3 1 4 2
X<5

<0 1 2 3

(Ix X B
100 250

+/OxX*E

+/ﬁ'><)f*_1+1p(7

<1 4 6 4 1
+/CxX*x 1+10C

V< oL X
Zet/0xE* 1+10CV

3 1 4% 2 POL 5

1 4 6 4 1 POL 2

Vector of coefficients.
Assigned argument value.

Vector of exponents.

Vector of powers of x.

Terms of the polynomial.

Sum of terms.

Exponents appropriate to the

coefficient vector (.

General expression for any
coefficient vector (.

Definition of a polynomial
function.

1h -



THE COMPUTATION GOF THE PRODUCT OF TWO POLYNOMIALS (!.E., THE
COEFFICIENTS OF A POLYNOMIAL WHICH IS EQUIVALENT TO THE PRODUCT
OF THE POLYNOMIALS) CAN BE STATED CLEARLY IN TERMS OF THE
VECTORS OF COEFFICIENTS:

C+3 1 & 2
D«2 0 5 1 3
(o, xD
6 0 _15 3 9 This multiplication table
2:::0::/5’//1::j3 contains the products of
8 0 20//’4 12 all pairs of coefficients.
4010~ 27 &6
l//f,//f///”//j;/// A simple argument shows
67 24237 127 30 17 14 8 that they should be summed

diagonally as indicated by
the lines.

E+6 2 23 12 30 17 14 6
E POL 3
30432

(C POL 3)x(D POL 3)
30432

- 15 -



ALL STEPS OF A PROCESS CAN BE SHOWN CLEARLY IN APL. FOR
EXAMPLE, THE SUMMATION OF THE COEFFICIENTS IN THE POLYNOMIAL
PRODUCT (SHOWN INFORMALLY ON THE PRECEDING PAGE) CAN BE
COMPLETED AS FOLLOWS:

C«3 1 4 2
D«<2 0 5 1 3
D,0x1+(C Append zeros to D so as to
2 0 5 1 3 0 0 0 append zero columns to the
Co.xD,0x14C multiplication table.
6 0 15 3 9 0 0 0
2 0 5 1 3 0 0 0
8 0 20 yoo12 0 0 0
i 0 10 2 6 0 0 0
1-1pC
o "1 T2 T3
(1-1pC)OCe.xD,0x1+C Skew the table (by rotating
6 0 15 3 9 0 0 0 the rows) so as to align in
0 2 0 5 1 3 0 0 columns the coefficients to
0 0 8 0 20 b 12 0 be added.
0 0 0 i 0 10 2 6
+/011(1-10C)dCe. xD, Ox1+C Sum the columns to obtain
6 2 23 12 30 17 14 6 the final result.
VZ+C PROD D Define a polynomial product

[11] Z«+/[1](1-1pC)dCo.xD,0x1+(V function.

¢ PROD D
6 2 23 12 30 17 14% B



TABLES CAN ALSO BE WUSED TO |LLUMINATE NOTIONS NOT DIRECTLY
RELATED TO THE TABLE OF A FUNCTION. FOR EXAMPLE, THE PRIME
NUMBERS OR THE '"PRIMENESS" OF A NUMBER CAN BE TREATED IN
SEVERAL INTERESTING WAYS:

S The primeness of each element of 5 s
1 2 3 4 5 6 7 indicated by the number 1 (for prime) or o
o 1 1 0o 1 o0 1 (for not prime) appearing below it.

An expression for the primeness vector can be developed as
follows:

Se. |8

0 0 0 0 0 0 0

i1 0 1 0 1 0 1 Make a remainder table for a
1 2 0 1 2 0 1 set of consecutive integers
i 2 3 0 1 2 3 beginning with 1.

1 2 3 4 0 1 2

1 2 3 4 5 0 1

1 2 3 4 5 6 0

0=S5°.1]8

11111 11

0101010

0010010 Compare the remainder table with 0

0001000 to obtain a "divisibility" table.

00 00100

00 00010

00 00 001

Sum the columns of the divisibility table
+/01]0=8¢.158 to obtain the number of divisors of each
1 2 2 3 2 4 2 element of S.
Compare the sums with 2 to determine
2=+/[110=5¢, |8 primeness (since a prime has exactly two
o 1 1 0 1 0 1 distinct divisors),.

- 17 -



0 1

2 3
11

2 3

n

6

8

10

12

14

16

0 0

1 1

2 3

U«2=+/[110=80, |8

U The logical vector which

1 ¢ 1 o0 1
urss

5 7

VZ<PR N;S

Z«(2=+/[110=50.18)/S«<1NV

PR 25
5 7 211 13 17 19 23

S«2 3 4 56 7 8
So,xS
6 8 10 12 14 16
g 12 15 18 21 24
12 16 20 24 28 32
15 20 25 30 35 40
18 24 30 36 42 48
21 28 35 42 49 56
24 32 40 48 56 64

SeSo.xS

1 0 1 0 1
~SeSo.x8

0 1 0 1 0
(~SeSo.x5)/5
5 7

determines primeness

can be used to select the primes.

Define a function
to determine the primes
up to N.

Alternatively, form a
multiplication table (not
including 1) and determine

primeness by finding if the
number does not occur In
the table.



COORDINATE GEOMETRY AND STATICS

7 J P
//1
P<5 7 Each point in a plane P
Q<2 3 can be represented by a 5 7 :4
R<7 2 two-element vector of / i
its coordinates. /’ I
. 3 Q —_—
D+P-Q Displacement between P “~ 3 -
D and @. 2 ol
3 4
2 5 7
(+/D*2)*.5 Distance between P and g.
5
M<3 2pP,Q,R A set of N points (representing a
M triangle or other polygon) can be
s 7 represented by an ¥ by 2 matrix.
2 3
7 2
16011M The same points '"circulated."
2 3
7 2
5 7
D«M-1¢[ 1M The displacements between each pair of
D points.
_3 [
5 1
2 5
L+«(+/D*x2)%.5 The distances between each pair (i.e.,
L the Tlengths of the sides of the
5 5.099 5.385 triangle).
S<.5%x+/L The semi-perimeter of the triangle.
S
Te742
(x/3,5-L)*.5 The area of the triangle by Hero's
11,5 formula.



IN A SPACE OF THREE DIMENSIONS THE EXPRESSIONS FOR
DISPLACEMENT, DISTANCE, ETC., ARE IDENTICAL WiTH THOSE FOR
2-SPACE:

P+«5 7 2
@+2 3 14
R«4.25 6 5

D«P-Q
D Displacement.
3 4 12
(+/D*2)%.5 Distance.
13
M<3 3pP,Q,R A triangle in 3-space.
M
5 . 7 2
2 3 14
4,25 6 5
16011M
2 3 14
4,25 6 5
5 7 2
D+«M-1¢o[11M A1l displacements.
D
3 Y T12
72,25 “3 9
T0.75 “1 3
L+<(+/D%x2)* .5 A1l lengths.
L
13 89,75 3.25
S+.5x+/L Semi -perimeter.
S
13
(x/8,5-L)*.5 An area of zero Iimplies that
0 the three points are collinear.

- 20 -



THE NOTIONS OF

GRAVITY OF A SET OF POINT MASSES ARE

THE CENTER

A FIGURE AND THE CENTER
EASILY EXPRESSED

OF
IN

OF

TERMS OF THE MATRI1X OF COORDINATES:

M«3 2p5 7 2
M
S 7
2 3
7 2
+/[11M
1y 12
(+/011M)+3
4,667 u
W«2 3 5
W+.xM
51 33
(W+.xM):+/W
5.1 3.3
(W2+/W)+.xM
5.1 3.3
Wi+ /W
0.2 0.3 0.5
+/(Ws+/W)
1

3 7 2

A triangle in 2-space.

The "sum'" of the points.

The average (i.e., center) of the
points.

The weights of masses at the

three points.

The total "moment" of the points.

The moment per unit weight, i.e.,
the location of a single mass of
the same total weight to produce
the same moment. This is the

An equivalent statement of center
of gravity, based on an obvious

mathematical identity.

W++/W is a normalized mass, i.e,,
it has a total mass of 1.

The same expressions apply to
3-space and to any number of
points.

- 21 -



DETERMINANTS IN THE COMPUTATION OF AREAS:

M A triangle in 2-space
5 7
2 3
7 2
1,M bordered by a column of 1s
1 5 7
1 2 3
1 7 2
DET 1,M yields a matrix whose determinant
23 is twice the (signed) area of the
triangle. (See Felix Klein,
Elementary mathematics from an
advanced standpoint: Geometry.)
MI[1 3 23] The sign of the area is positive if
5 7 the vertices occur in counter-
7 2 clockwise order, and negative
2 3 otherwise.
DET 1,M[1 3 23]
23
N If the area is zero, the peoints are
S 7 collinear. If the area 1is not
2 3 zero, the sign tells whether the
4,25 6 points are in clockwise order, and
hence tells whether one point lies
DET 1,N above or below the line joining the
0 other two.

The definition of the determinant function itself can be
briefly stated: the function SDET shows the essential
scheme and PE7 contains some extra steps to take care of
the occurrence of a zero in the upper left corner of the
matrix.

VE<SOET M
[1] ZeM[ 1314
[2] >0x1v/1=pM
[3] JEXSDET 1 1VM-M[ 1] xM[151+M[ 21311V

Va<DET MK

[1] HMLK, 15 1M1, K<k T /7K<|ML 5105 ]
[2] (18 9<IMI 1510 ) <ML 131 1x " 1xK=1
[3] FOx1V/(1=pM),0=2

[ 4] T«IZxpRT 1 A3M-ML310o,xML231+M[ 1511V



THE SAME EXPRESSIONS APPLY TO THE VOLUME OF A TETRAHEDRON IN
AND HENCE TO QUESTIONS OF THE POSITION OF A PO!INT

3-SPACE,
RELATIVE
POINTS.

M
4 8 3
2 4 9
6 4 5
6 9 4

1,M
1 4 8
1 2 4
1 6 4
1 6 9

DET
64

DET
“6u

N
100
010
00 1
000

DET

TO THE PLANE

F oo w

1,M

1,M[2 1 3 43

DETERMINED BY THE THREE OTHER

A tetrahedron in 3-space.

Six times the signhed volume of
the tetrahedron. If the points
are plotted in a right-handed
coordinate system, then the sign
is positive if the order of the
first three points is counter-
clockwise when viewed from the
fourth point.
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SOME USEFUL FUNCT!ONS AND THE COMPUTATION OF Ppr:

VZ<D M The distance between
(1] Z+« 14 (+/(M-10[21IM)*x2) % .57V adjacent points of M.
M
1 4
1 4 Example to show how the
7 6 function D works.
g9 8
5 1
DM

0 6,325 2,828 8.062

A function to compute the altitude of a point on the unit
circle whose first coordinate is X:

CIRCALT X

VZ<«CIRCALT X T
[1] Z+(1-X*2)x.5V

CIRCALT .5 .6 ,7 1
0.866 0.8 00,7141 0

X

VZ<«GRID N A function to generate a set of

[1] Z<0,(1N)sNV points from 0 to 1 separated by

an interval of 1:p.
GRID 5
0 0.2 0.4 0.6 0.8 1

A function to approximate PI by twice the 1length of the
sides of a portion of a polygon inscribed in the first
quadrant of a circle:

VZ<«PI N
[1] z«2x+/D (GRID N),L1.5]1 CIRCALT GRID NV

PI 5
3.115105951

PI 1000
3.141583356

(GRID 5),[1.5] CIRCALT GRID 5

B, O OO0OOOo
® O FEN
o
)

[€o]
i
(o)
«



FINITE DIFFERENCES AND THE CALCULUS

VZ«DIF V
[11] Z«(14V)-"14VV

X<0,16
VeX*2
14

0 1 4 9 16 25 36
1+ V

1 4 9 16 25 36
T4V

0 1 4 9 16 25

DIF VvV
1 3 S5 7 9 11

DIF DIF V
2 2 2 2 2

VeX*3
|4
0 1 8 27 6u 125 216

DIF V
17 19 37 61 91
DIF DIF V
6 12 18 24 30

DIF DIF DIF V
6 6 6 b6

DIF DIF DIF DIF Xx*h
24 24 24

First di fference of the square

function.

Second difference of
square function.

First difference of the
function.

Second difference of the
function.

Third difference of the
function.

Fourth difference of
quartic function.
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cubic
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THE

SLOPE
POINTS Xx,F X

FUNCTION GIVING

THE SLOPE OF THE SECANT THROUGH

AND (x+S),F Xx+S YIELDS AN APPROXIMATION TO THE

SLOPE OF THE TANGENT TO F AT THE POINT X, X FOR 5 SMALL:

(X+8),F X+S ~> {
8 J
Vi<«F X
[1] Z+X%x2V
6 4
VZ<S SLOPE X
(1] Z«((F X+5)-F X)+5V
u4 2
1 SLOPE 2 N
5 X,F X
.5 SLOPE 2 5 ]
4,5
.1 SLOPE 2
L,1 1 2 3 4
: \J LI L] L g
.1 .01 .001 .0001 SLOPE 2 The slope appears to
4,1 4,01 4.001 4.0001 approach a limit for
small values of the
spacing S.
S«.000001 The same 1imit is
(5,-S) SLOPE 2 approached for a
4,000001 3.999999001 negative value of 5.
S SLOPE X<«1 2 3 4 The slope at a set of
2,000001 4,000001 6,000001 8.000001 points X is also a
function (i.e., 2xXx).
2xX
2 4 6 8
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EXPERIMENTATION WITH THE SLOPE FUNCTION

FUNCTIONS CAN LEAD TO CONJE

APPLIED
CTURES

SLOPE (I.E,, DERIVATIVE) FOR VARIOUS FUNCTIONS:

Vi<F X

[1] 2« X% 3V
S SLOPE X

3.000003 12,000006 27.000009
IxX %2

3 12 27 48
Vi<F X

[11] Z+X*x4V
S SLOPE X

4,000008 32,000024 108.00005
4xXx3

4 32 108 256
VZi<F X

[11 Z«C POLY XV [11
C«3 1 2 4
S SLOPE X

17.000014 57.,000026 121.0000
(1+C0x"1+1pC) POLY X

17 57 121 209
T1+1pC

0] 1 2 3
Cx"1+1pC

0 1 L 12
1+Cx"1+1pC

1 4 12

48.000012

256.0001

VZ<C POQY X
Xe(Xo,*x 1+1pC)+.xCV

4  209.00005

A polynomial
derivative of the original
polynomial.

Determination of the

coefficients of the derived
polynomial.

27 -

TO VAR!OUS
CONCERNING THE TANGENT

equivalent to the






IF DIFFERENCING IS REPRESENTED AS A LINEAR FUNCTION THEN THE
EFFECT OF REPEATED D!FFERENCING CAN EASILY BE SHOWN I[N
TERMS OF THE ORIGINAL ARGUMENT AND APPEARS AS ALTERNATING
BINOMIAL COEFFICIENTS:

v
1 4 9 16 25
D
1 0 0 0 0
1 1 0 0o o0
01 1 0 o
0 ¢ 1 1 o0
0 0 0 "1 1
Dt.xV First difference.

1 3 5 7 9

D+.x(D+.,xV) Second difference.
1 2 2 2 2

(D+.xD)+.xV An equivalent statement for
1 2 2 2 2 second differences.
D+, xD The matrix which vyields second
1 0 0 0 O differences.
2 1 0 o o©
172 1 0 o0
0 172 1 o
0 0 172 1
D+ .%xD+.%xD The matrix for third differences.
1 0 0 0 0
31 0 0o O
373 1 0 O
"1 373 1 o0
071 373 1
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THE SLOPE FUNCTION CAN BE TREATED SIMILARLY (AS A LINEAR
FUNCTI ON) TO EXHIBIT THE INVERSE RELATIONSHIP BETWEEN
DIFFERENTIATION AND INTEGRATION:

S«,1 D

X<3+5%x1 2 3 4 5 1 0 0 0 0

X 11 0 0 o0
3.1 3.2 3.3 3.4 3.5 071 1 0 o0

V<X*2 0 0 "1 1 o0

1% 0 0 0 "1 1
9.61 10,24 10.89 11.56 12,25

D+.xV First difference of V.
9.61 0.63 0.65 0.67 0.69

(D+.xV)=sS The slopes between

96.1 6.3 6.5 6.7 6.9 points of V.

(D:8)+.xV An equivalent expression

96.1 6.3 6.5 6.7 6.9 for slope.

R«(DzS)+.,xV Points of the slope
function.
(EBD+S)+.%R The inverse function

9.61 10.24 10.89 11,56 12.25 applied to the slope

|4 function R yields the

9.61 10.24 10.89 11.56 12.25 original values V.

ED BD=+S SxED

1 0 0 0 0 0.1 0.0 0.0 0.0 0.0 0.1 0.0 0.0 0.0 0.0

11 0 0 0 0.1 0.1 0.0 0.0 0.0 0.1 0.1 0.0 0.0 0.0

111 00 0.1 0.1 0.1 0.0 0.0 0.1 0.1 0.1 0.0 0.0

11110 0,1 0.1 0.1 0.1 0.0 0.1 0.1 0.1 0.1 0.0

11111 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1

Sx(HED)+, xRk This form of the inverse is

9.61 10.24 10.89 11.56 12.25 clearly equivalent to inte-
gration by the rectangular

rule (i.e., the xth row of p

sums over the first K

points, and the multiplica-

tion by & accounts for the

30
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LOGIC CONCERNS PROPOSITIONS.

WHICH MAY BE JUDGED TRUE OR FALSE,
FUNCTION WITH A RANGE OF TWO ELEMENTS.
IN A VARIETY OF WAYS,

REPRESENTED

LOGIC

A PROPOSITION 1S ANY STATEMENT
I.E., A PROPOSITION IS A
THESE ELEMENTS MAY BE
USUALLY BY THE WORDS TRUE

AND FALSE OR BY THE NUMBERS 1 AND o:

- 31

X<3 Propositions read as:
X<5 X is less than 5
1 true
X>5 X is greater than 5
0 false
0=31x X is divisible by 3
1 true
(X>5)A0=3]|X% X is greater than 5 and X is divisible by 3
0 false
X«1 2 3 4 56 7 8 9 10 A proposition applied to a
X<5 vector yields a logical vector.
1111000000 This logical vector s, in
X>5 effect, the <characteristic
0000011111 vector (with respect to the
0=3]X universe X) of the set of
0010010010 elements which satisfy the
(X>5)A0=3]X proposition, i.e., for which
00 00010010 the proposition is true,
(X<5)/X
12 3 4 The result of the proposition
(X>5)/X applied to X can therefore be
8 7 8 9 10 used to select that subset of x
(0=31X)/X defined by the proposition,
3 6 9
((X>5)A0=3[X)/X
6 9



THE PROPOSITION (Xx>5)A0=3|X IS SAID TO BE COMPOUND BECAUSE
IT IS FORMED AS A FUNCTION (A) OF SIMPLER PROPOSITIONS
(Xx>5) AND (0=3]|X). A FUNCTION SUCH AS A (PRONOUNCED AND)
WHICH 1S DEFINED ONLY ON THE ARGUMENTS 0 AND 1 IS CALLED A
LOGICAL OR BOOLEAN FUNCTION. THE COMPLETE BEHAVIOR OF A

LOGICAL FUNCTION CAN BE EXHIBITED AS A 2-BY-2 FUNCTION
TABLE AS FOLLOWS:

L<0 1
Lo AL

(el o]
= O

THERE S ONE FURTHER FAMILIAR LOGICAL FUNCTION v (QR) AND
TWO LESS FAMILIAR FUNCTIONS ~ (NOT-AND) AND » (NOT-OR):
Lo.VvL Lo ,~L Lo, ,¥»L
0 1 11 10
11 10 00

WHEN APPLIED ONLY TO LOGICAL ARGUMENTS (o OR 1), THE
RELATIONS (< <€ = 2z > z) ARE IN EFFECT LOGICAL FUNCTIONS
(SINCE THEIR RANGE IS ALSO 0 1) AND ARE OFTEN GIVEN
SPECI AL NAMES WHEN USED IN THIS WAY., FOR EXAMPLE:

Exclusive-0r Material Implication Identity
Lo.z2[L Lo.,<L Loe,=L

0 1 11 1 0

1 0 0 1 0 1
X

1 2 3 4 5 6 7 8 9 10 11 12 X is divisible by 2

and X is divisible

((0=2]X)A0=3|X)<0=6]X by 3 implies that X

i 1 1 1 1 1 1 1 1 1 1 1 is divisible by s6.
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A THEOREM S A PROPOSITION WHICH IS CLAIMED TO BE
UNIVERSALLY TRUE, I.E., TO HAVE THE VALUE 2 WHEN
APPLIED TO ANY ELEMENT [N THE UNIVERSE OF DI!SCOURSE.
FOR EXAMPLE, THE PROPOSITION

((0=2}X)A(0=3]X))<0=6|X

IS A THEOREM WHICH MAY BE VERBALIZED [N A VARIETY OF
WAYS :

X is divisible by 2 and X is divisible by 3
implies that X is divisible by 6.

Any number divisible by both 2 and 3 is also
divisible by 6.

If X is divisible by both 2 and 3 then X Is
divisible by 6.

Divisibility by 2 and 3 implies divisibility
by 6.

PROPOSITIONS ARE ALSO USED IN THE DEFINITION OF SETS,
AND EXAMPLES MAY BE FOUND IN THE ACCOMPANYING

DISCUSSION QF SETS.
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SINCE A LOGICAL FUNCTION APPLIES TO TWO ARGUMENTS EACH
CHOSEN FROM THE DOMAIN 0 1, THE SET OF ALL POSSIBLE
ARGUMENTS CAN BE LISTED AS THE ROWS OF A u4 BY 2 MATRIX AS
FOLLOWS:

[l e e}
P OBRPr O

THIS MATRIX (AND ANALOGOUS MATRICES OF DIMENSION 2xy BY N)
CAN BE PRODUCED BY THE FOLLOWING "TRUTH TABLE" FUNCTION:

VZ<«T N
[1] Z+QL(Np2)T 1+12%NV

T 2 T 3
0 0 0 0 o
0o 1 0o 0 1
1 0 0 1 0
1 1 o 1 1
1 0 0
1 0 1
1 1 0
101 1
QT 2
0o 0 1 1
0 1 0 1
&T 3
0o 0 0 0 1 1 1 1
0o 0 1 1 0 0 1 1
01 0 1 0 1 0 1
QT 4
6o 0 0 0o 0O 0 0 0 1 1 1 1 1 1 1 1
o 0o 0 o 1 1 1 12 0 0 0 0 1 1 1 1
o o 1 1 0 0 1 1 0 O 1 1 0 0 1 1
0o 1 0 12 0 1 0 1 0 1 o0 1 0 1 0 1

..3(4_



EACH OF THE LOGICAL FUNCTIONS (A, v, =, ETC.) CAN BE APPLIED
TO ROWS OF THE TABLE 7 2 TO YIELD THE VECTOR OF ALL
POSSIBLE VALUES OF THE FUNCTION:

T2

==, OO
P, ORr o

EACH OF THESE VECTORS IS CALLED THE CHARACTERISTIC VECTOR OF
THE CORRESPONDING FUNCT!ON. TABLES OF THESE FUNCTIONS CAN
THEREFORE BE PRODUCED BY APPENDING THEIR CHARACTERISTIC

VECTORS AS COLUMNS TO THE MATRIX T 2:
(CT 2),A/T 2),V/T 2),2/T 2
0 o
0o 1
o 1
1 1

[ENE oo}

(
|
|
|

, ORRr O
O, P o>

SINCE ANY FOUR-ELEMENT LOGICAL VECTOR IS A CHARACTERISTIC
VECTOR OF SOME LOGICAL FUNCTION, THERE ARE IN ALL 2xu
LOGICAL FUNCTIONS, AND THEY ALL OCCUR AS COLUMNS IN THE
FOLLOWING MATRIX:

&T 4
0o 0 0 0 0 o0 0 0 1 1 1 1 1 1 1 1
o o o 0o 1 1 1 1 0o o0 0 0 1 1 1 1
o o 1 1 0 0 1 1 0o 0 1 1 o0 0 1 1
o1 0 1 0 1 0 1 0 1 0 1 0 1 o0 1

THE CHARACTERISTIC VECTORS OF THE FUNCTIONS A, v, AND = CAN
BE SEEN TO OCCUR AS COLUMNS 2, 8, AND 7 OF THE FOREGOING
TABLE.
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THE FUNCTION TABLE FOR ALL POSSIBLE LOGICAL FUNCTIONS OF TWO
ARGUMENTS CAN THEREFORE BE EXH!BITED AS FOLLOWS:

(SN =N e Na]
O OO0 F
B, R OO
[e Nl o)
P, OR O
oOr Rk O
PR RO
oo oR
R OoOOoOR
oL OoORr
R ROk
O Ok R
PO R
oORr Rk R
B R R R

THE TABLE OF ARGUMENTS FOR (l.E., THE DOMAIN OF) ALL LOGICAL
FUNCTIONS OF THREE ARGUMENTS IS GIVEN BY THE FOLLOWING
MATR1X:

3

BP0 0O0
PR, OORREL, OO
P ORFRPRORLROPFPOwW

THE TABLE OF ALL CHARACTERISTIC VECTORS FOR 3 ARGUMENTS WOULD
THEREFORE BE GIVEN BY &T 8 AND WOULD CONTAIN 2x8 COLUMNS,
A PORT!ION OF THE FUNCTION TABLE FOR 3  ARGUMENTS
(REPRESENTING THE FIRST 17 FUNCTIONS) CAN THEREFORE BE
DISPLAYED AS FOLLOWS:

(T 3),8 174QT 8
0o 0 0|l 0O 0 0O O O 0O O 0 0 0O O 0O 0O 0 0 0 O
o o 110 0 O 0O O O O O O O O O O 0 o 0 O
o1 o{o0o o o0 o0 O O O O O O O O O O 0 0 O
o ¢+t 1210 0 o0 0O 0 O O O O O O O o0 0 o0 0 1
i 0 oJo o o o0 o0 o0 O O 1 1 1 1 1 1 1 1 o0
i 0 1]0 o0 o0 0 t 1 1 1 0 0 0 0 1 1 1 1 0
114 0|0 0 1 1 o0 o 1 1 0o 0 1 1 0 0 1 1 o0
i1 1 1}0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0
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SETS

A«2 3 5 7 11 A finite set can be represented

B«6 2 8 4 by a list of its elements.

3ed Membership is the fundamental
function defined on a set.

3eB

(3ed)A3eB Does 3 belong to 4 and to B.

(3e€A)V3eB Does 3 belong to 4 or to B,

(3€A)A~3¢eB Does 3 belong to A and not to B.

U«112 The universe of discourse is

U the set of all possible

4 5 6 7 8 9 10 11 12 elements under consideration.

Ael

11 1 Every element of any set in

Bel the universe belongs to U.

1 1

UeA The logical vector that shows

0101000710 which elements of U belong to

UeB A is called the characteristic

101010000 vector of A (with respect to

the universe U).

(UeA)/U Compression of U by the characteristic

5 7 11 vector of A yields 4.

(UeA)AUeB The characteristic vector of the

0000 O0O0O0O0O0 set of elements which belong to

((UeA)AUeB)Y /U both 4 and B.



ANY PROPOSITION (I.E.,
DEFINES A SET:

ANY

VZ+P X
Z<+(X23)A(X<11)V

6 7 8 9 10 11 12

v =SR]

111100

5
U
1
- uy/u

1
(P

think,

P
P
6 7 8 9 10

Vi+Q X

Z+0=2] XV

QU
101010101
5Q«(Q U)/U

5Q

8 10 12

(P UYANG U
101010100
(P UYAQ U)/U

10

(CP U)ve U)/U
5 6 7 8 9 10 12

(P U)a~Q U
010101000
((P U)ya~Q UY/U

3 5 79

FUNCTION WHOSE RANGE
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IS THE SET 0 1)

The proposition P applied to
the universe U vyilelds the
characteristic vector of the

set of all elements of U which

satisfy the proposition. The
expression (P U)/U therefore
yields the set of all such
elements.

Proposition defining the set
of all even integers.

The characteristic vector and
the set of all elements which
belong to both SP and 5@,
i.e., the intersection of 5P
and 54@.

The characteristic vector and
the set of all elements which
belong to SP and not to 5¢Q.



IF P 1S A PROPOSITION AND sp IS THE SET IT DEFINES WITH
RESPECT TO THE UNIVERSE U, THEN THE MEMBERSHIP OF ANY
ELEMENT X CAN BE DETERMINED EITHER BY THE EXPRESSION P x
OR BY THE EXPRESSION XeSP:

VZ<«P X
(1] Z+(X23)A(X<11)V

v
1 2 3 4% 5 6 7 8 9 10 11 12

SP«(P U) /U
SP

2¢SP
X+1 2 3 4 5

(P X)=XeSP
1 1 1 1 1
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AN INFINITE SET (SUCH AS THE SET OF ALL POSITIVE EVEN
INTEGERS) CANNOT BE REPRESENTED BY A LIST OF ITS ELEMENTS,

BUT CAN STILL BE REPRESENTED BY A PROPOSITION. IT IS NOT
POSSIBLE TO APPLY THE PROPOSITION TO THE ENTIRE INFINITE
UN! VERSE, BUT MEMBERSH!P OF ANY ELEMENT OR FINITE

COLLECTION OF ELEMENTS CAN BE DETERMINED BY APPLYING THE
PROPOSITION TO THEM:

VZ«PET X A proposition which defines the
1] Z«(X>0)A0=2]XV set of positive even integers.
PEI 4
1
PEI "u
¢}
PEFI 2.4

X<0 1 2 3 4 5

PEI X
6 o0 1 o0 1 O

(PEI X)/X
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FUNCTIONS FOR INTERSECTION, DIFFERENCE, UNION AND SET EQUALITY
CAN EASILY BE DEFINED:

VZi«A I B
[11] Z+(AeB) /AV

VZ«A D B
(1] Z«(~AeB)/AV

VZ«A U B
(11 Z+«A,B D AV

VZ+A EQ B
(11 Z+«A/(AeB),BeAV

A<l 2 3 4 5
8

B+2 4 6
AIB
2 4
B I A
2 y
A EQ B
o]
(A I B) EQ (B I 4)
1
A DB
1 3 5
A U B
1 2 3 i 5 6 8

These functions apply equally to sets of characters:

E<'ABCDE!
F<'BDFH!
EIF
BD
EUF
ABCDEFH
EDF
ACE
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AL

[1

L

THI'S MATRIX

2xN SUBSETS
REPRESENTED BY THE MATRIX OF THEIR CHARACTERISTIC VECTORS.

CAN ALSO BE CONCEIVED
INTEGERS FROM 0 TO “1+2=W,

OF

A SET OF ¥

REPRESENTATIONS OF THE
THEREFORE BE PRODUCED BY THE FOLLOWING FUNCTION:

1

[«

o

o

VZ<T N

Z<(Np2)T 1+12%NV

1
1

0
1
1

S« 'ABC
Z2«T pS

R+2 3
R+ .%x2
3 8

Rx, %7

1

5

2

2

(o]

o

(e}

o

10

[

[N

i0

[y

[y

30

ELEMENTS CAN BE NEATLY
AS THE ~-DIGIT BINARY
AND CAN

The characteristic vector of
the fourth subset, and the set
itself.

The sums over all subsets of

the set R.

The products over all subsets
of the set R. (These are the
symmetric products occurring
in Newton's identities for the
coefficients of a polynomial
in terms of its roots R.)



PROPOSI TIONS

DEFINING

VARI10US

OF NUMBERS (SUCH AS

PRIMES AND PERFECT SQUARES) CAN BE CONVENIENTLY STATED AND
USED:

(1]

6 7
0 1
7 11
(1]

0 0
9

1]

1

0

VZ+PP S
Z2«2=+/0130=(1[/S)e.|SV

S«5+19
S

8 9
PP S
0 0 0 1 0 1 0
(PP 5)/S

13

10 11 12 13 14

VZ+PSQ S
Z«(Sx.5)=LS*,5V

pP5qQ 5

0o 1 0 0 0 0 0
(Psq S5)/8

VZ<PPOL L
Z+A/Li<.5x+/LV

PPOL 5 2 4
PPOL 5 2 2
PPOL 3 1 7 4

PPOL 3 1 8 4

43

A proposition for the
primes.

A proposition for

squares.

A proposition to
determine whether a
given vector represents
possible lengths for
the sides of a polygon.



ELECTRIC CIRCUITS

ARRAYS ARE USEFUL IN THE TREATMENT OF ELECTRICAL CIRCUITS

1,

FOR SEVERAL REASONS:

of elements whose
scribed by a vector

A circuit is composed of a set
characteristics can therefore be de
or other array, e.g.:

R<10 20 30 40 50 60

might describe a set of six resistors having resistances
of 10, 20, 30, 40, 50, and 60 ohms.

The topology of the circuit (i.e., the connections of
the circuit elements (branches) with the nodes) can be
described by various arrays. For example, the topology

of the accompanying circuit (formed from R) can be

whose 7th column shows the nodes from and to which the
Ith element is connected. (A direction is specified
even though it is immaterial for bilateral elements such
as resistors.)

Most <circuits are (approximately) linear (that s,
voltages are linear functions of currents, and vice
versa) and relations among them are easily represented

as matrix products.



SIMPLE SERIES AND PARALLEL CIRCUITS

R<10 20 30 40 Values for u4 resistors (in ohms).

+/R Resistance of a series circuit.
100

iR Conductances.
0.1 0.05 0.0333 0.025

+/3R Conductance of a parallel circuit.
0.208

++/ 3R Resistance of a parallel circuit.
4.8

I+1 2 3 4 Four inductances.

A«100 Angular velocity (2 pl times

frequency).

AxL {nductive reactance.
100 200 300 400

-3AXL _ Inductive susceptance.
0,01 0.005 70.00333 0.0025

C+5 6 7 8 Four capacitors.

AxC Capacitive susceptance.
5000 6000 7000 8000

M<3 4p(3R,L),C Description of four elements
M each comprising resistance,
0.1000 0,0500 0,0333 0.0250 capacitance, and Inductance.

1.0000 10,5000 0.3333 0.2500
5.0000 6.,0000 7.,0000 8.0000

Q<2 3p1 0 0 0,(-%4),4 Determination of a complex

Q admittance matrix for the
1,00 0.00 0.00 four elements at velocity 4
0.00 ~0.01 100,00 with the parts of each

element in parallel.

Q+.xM
0.100 0.050 0.033 0.025
499,990 599,995 699.997 799,997



BECAUSE THE RELATION BETWEEN VOLTAGES AND CURRENTS IS
LI NEAR, THE NODE CURRENTS I IN A CIRCUIT CAN BE DETERMINED
FROM THE NODE VOLTAGES v BY (INNER PRODUCT) MULT!PLICATION
BY A SUITABLE ADMITTANCE MATRIX Y AND THE VOLTAGES CAN BE
OBTAINED AS V<«Z+.xI, WHERE Z IS A SUITABLE |IMPEDANCE
MATRIX. FOR EXAMPLE:

Y
0,150 ~0.100 ~0.050
T0.100 0.125 T0.025
“0,050 ~0.025 0.075
10 ohms
Z 1 2
14,286 11.429 0.000
11,429 17.143 0.000 20 40
0.000 0,000 0,000 ohms ohms

V<4 5 0

I<Y+.xV

I 3
0.1 0.225 70.325

Z+oxI
4 5 0



SIMILARLY:

Y
0.1367 ~0.1000
T0,1000 0.1750
T0.0167 ~0.0500
T0.0200 T0.0250

Z
17.9700 12.9784
12,9784 16.0399
9,4841 10.1830
0.0000 0.0000

Vel 2 3 0
T«Y+.xV
I

0,113 0,1 0.183
Z+oxT

1 2 3 0

0.0167 ~0.0200
0.0500 ~0,0250
0.1000 ~0.0333
0.0333 10,0783

9. 4841
10,1830
16,6722

0.0000
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THE ADMITTANCE MATRIX Y CAN EASILY BE DETERMINED FROM THE
COMPONENT ADM! TTANCE MATRIX CAM (WHOSE D! AGONAL CONTAINS THE
ADMITTANCE OF THE COMPONENTS) AND THE INCIDENCE MATRIX E
WHOSE JTH ROW SHOWS CONNECTIONS FROM (DENOTED BY 1) AND TO
(DENOTED BY "1) EACH OF THE BRANCHES (I!.E., COMPONENTS)
ASSOCIATED WITH THE VARIOUS COLUMNS. FOR EXAMPLE:

CAM
0.100 0.000 0.000 0.000 0,000 0,000
0.000 0.050 0.000 0.000 0.000 O0.0O00
0.000 0,000 0,033 0.000 0.000 0,000
0.000 0.000 0.000 0.025 0.000 0.000
0,000 0,000 0,000 0.000 0,020 0,000
0,000 0.000 0.000 0,000 0.000 0.017

Y+«E+.xCAM+.xQF
Y E

0.137 ~0.100 0,017 ~0.020 1 0 0 o0 1 1
70,100 0,175 ~0.050 ~0.025 1 1 0 "1 0 o0
0,017 T0.050 0.100 ~0,033 01 1 0 o0 "1
T0.020 ~0.025 T0.033 0.078 0 01 1 1 0
Since the admittance matrix is singular, the impedance matrix

is obtained as the (bordered) inverse of a submatrix of Y:

Z<(pY)+B( "1+pY) 1Y

Z
17.970 12.978 9,484 0.000
12,978 16,040 10.183 0.000
9.484 10,183 16.672 0.000
0.000 0.000 0.000 0.000



FUNCTIONS RELATING THE TWO IMPORTANT REPRESENTATIONS OF THE
TOPOLOGY OF A CIRCUIT (THE BRANCH CONNECTION MATRIX BC AND
THE INCIDENCE MATRIX E) ARE EASILY DEFINED:

VE<F BC
[1] E<-/(1[/,BC)o,=8BCV

VBC<G E
[13 BC+(1 10,=8E)+.x11+tpEV

E«F BC

E
1 0 0 0 "1 1
11 0 "1 0 O
071 1 0 0 "1
0O 0 "1 1 1 o0

G E
1 2 3 4 4 1
2 3 4 2 1 3
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THE BRANCH CURRENTS AND VOLTAGES BI AND BV ARE EASILY SEEN
TO BE RELATED TO THE NODE CURRENTS AND VOLTAGES I AND v BY
THE INCIDENCE MATRIX E AS FOLLOWS:

0,100 0.000 0,000 0.000 0.000 0.000
0.000 0,050 0,000 0.000 0,000 0.000
6.000 0.000 0.033 0.000 0,000 0.000
0.000 ©0.000 0,000 0.025 0.000 0.000
0,000 0.000 0,000 0,000 0,020 ©0.000
0.000 0,000 0.000 0,000 0,000 ©0.017

E v
i 0 0 0 "1 1 1 2 3 o0
"t 1 0 "1 0o o0
071 1 0o 0 "1
0 0 "1 1 1 o0
BV<V+.xE Kirchhoff's Voltage Law
BV
171 3 T2 T1 T2
BI«CAM+.xBV Kirchhoff's Current Law
IT<E+.xBT
I

“0,1133 0.1 0.1833 ~0.17

The branch voltages can also be obtained from the equivalent
expression

BV<(QE)+.xV

Collecting these results yields:
I+E+.xCAM+ . x(QE)+.xV

From this it is clear why
Y<«E+,xCAM+ . xQE

yields an admittance matrix Y such that

I+Y+,xV
A1l preceding results apply to a component admittance

matrix with non-zero off-diagonal elements and hence can
treat circuits with active elements represented as

"voltage-controlled current sources."



THE COMPUTER: A DEVICE FOR THE AUTOMAT!C EXECUTION OF
ALGOR I THMS

It is best to approach the study of the internal
structure of any device with previous knowledge of the
function of the device, that is, of how to use it and of
what it does as opposed to how it does it. The function of
a computer (s to execute algorithms presented to it in a
manner familiar to anyone who knows how to write and enter
programs.

For example, if the following characters are entered:

X<1
Z«(X+2)x(X+u)
Z

the computer will act to assign the value 1 to the name X,
the value 15 to Z, and to print the number 15. The computer
can therefore be conceived as a function which produces
these results when applied to the argument P, where P is the
following matrix of characters:

P«3 13p'X+«1 Z+{(X+2)x(X+4)2Z !
P

X+1

Z<(X+2)x(X+4)

V/

The computer can therefore be represented by the
following function:

vcomp P
[1] IC+1 Instruction counter set to 1.
[2] IR«PLIC; ] Instruction fetched into instruction
register,
[3] TR Instruction in IR executed.
[u] TC«IC+1 Instruction counter incremented.
[5] +(ICe11+pP)/2V Repeat for next instruction if any
remain.
coMp p Use of the computer,
15
X
1



VCOMP P The function COMP displays the sequence

(1] IC+1 (instruction fetch, instruction
[21] IR<«P[IC;] execution, updating of instruction
[3] ¢IR counter) which is fundamental to any
[4] ICc«IC+1 computer. |t displays this clearly by
£5] +>(ICer114pP)/2V subordinating (through the use of the

execution function &) the details of
the execution of individual instructions. These details can

then be brought out in a sequence of simple steps so as to
make clear the complete structure of the computer.

However, the simple function coMP does not handle all
programs, and we will first il1lustrate how its capability can
be extended by showing a modification necessary to handle
branching:

vV COMP2 P P2 A program which
[11] IC+1 X<1 employs branching.
[21] ITR<«PLIC;] Z+(X+2)x(X+4)
[3] >(ITR(11='>")/8 Z
f4] IR X<X+1
£s5] IC«IC+1 >2xX<y
[61 +(ICe114pP) /2
[71] +0
[8] IC«21+IR Lines 8 and 9 are executed to respecify
[9] >69 Ic (that is, branch) if the first
character of the instruction is -,
COMP2 P
15
COMP2 P2
15
24
35
48



AN IMPORTANT STEP

S THE

IN
COMP!I LATION OF

EXPOSING THE
A COMPOUND

DETAILS OF EXECUTION
EXPRESSION SUCH AS

(A+D)-(+A)+((B+G)xD)+G+10G

SIMPLE EXPRESSIONS.

INTO AN
THIS WILL

EQUIVALENT SEQUENCE OF
BE SHOWN AS A SEQUENCE OF

THREE TRANSFORMATIONS:

S3«'(A+D)-(24)+((B+G)*xD)+G+10G"

D3+PARSE S3
D3

P3«POLISH D3
P3

~-+AD++ A+x+BGD+GO1G

C3«(COMPILE P3

c3

Z+10G

A«G+Z

B«B+G

C«BxD

D+C:4

Ee 4

E<E+D

G+A+D

(]
Iy

G+1+D+«1+B+«1+A«1

A,B,D,G
1 2 3 4

COMP 1 26p53
T2.550078271

COMP (3
T2.550078271

\ /N

/A A diagramming or parse
*Q of the expression in
/ D which the result is a

character matrix (in
this case 19 by 11)
which exhibits the
sequence of execution

+ in the form of a tree.
/B The 1ines drawn in the
+ copy of D3 on the right
Ne show this structure

x more clearly.

The parenthesis-free or Pplish form of
the expression represents a dyadic
function such as AxB by xAB, and a
monadic function such as 4 analogously
with a blank space for the non-existent
left argument, that is, + A.

This final sequence of simple
statements employs names for each of
the partial results. (The use of
underscored names avoids conflict with
the names in the original expression.)

The assignment of values to the
variables 4, B, D, and G permits both
the original expression S$3 and the
compiled form (C3 to be executed by the
computer COMP. (The expression S3 must
be reformed to a 1-row matrix to be
acceptable as an argument for COMP,)
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THE TREATMENT OF AN EXPRESSION WHICH INCLUDES ASS|GNMENTS
(«) {S SHOWN BELOW:

Su
Z+XxY<G+D

PARSE S4

POLISH PARSE Sh
«ZxX<Y+GD

COMPILE POLISH PARSE Sh4
U«<G+D
Y«y
WeXxY
YAS

X+«1+G«1+D+«1

D,G,X
1 2 3

Y
VALUE ERROR

Y

A

Z
VALUE ERROR

Z

A

COMP COMPILE POLISH PARSE Sh
Y

Z

YERASE Y Z

COMP 1 9pSh4
Y

Z



THE PARSE FUNCTION EMPLOYS THREE MAJOR FUNCTIONS ¢, L, AND R
WHICH RESPECT!{VELY SELECT THE CENTRAL FUNCTION (t.E., THE
OVERALL FUNCTION WHICH 1S TO BE EXECUTED LAST) OF THE
EXPRESSION, THE PART TO THE LEFT OF THE CENTRAL FUNCTION,
AND THE PART TO THE RIGHT:

V Z«(C FE S$3
(1] Z<E[ CENTRALFN E] (A+D)-(24)+((B+CG)xD)+G+10G
v ¢ S3
V Z«L FE -
[1] Z<("1+CENTRALFN E)+E L S3
v (A+D)
Vv Z«R E R 53
(1] Z<(CENTRALFN E)VE (2A)+((B+G)YxD):G+10G
v L R S3
(+4)

THESE FUNCTIONS IN TURN EMPLOY THE FUNCTIONS CENTRALFN
(WHICH DETERMINES THE |INDEX OF THE CENTRAL FUNCTION),
DEPTH (WHICH DETERMINES THE DEPTH IN PARENTHESES OF EACH
PART OF AN EXPRESSION), AND FUNCTIONS (WHICH DETERMINES
WHICH CHARACTERS IN AN EXPRESSION REPRESENT FUNCTIONS):

V Z<«CENTRALFN E E«<L R R 83
1] Z«((FUNCTIONS E)AO=DEPTH E)11 E

v ((B+G)xD)

V Z<DEPTH E D«DEPTH E
[11 Z+\(E="(1)-0, 214E=")" D

v 122 2 22 111

V Z<FUNCTIONS E '012'[1+0]
[1] Z<~Eel «+t-x+<<=2>2VAZep~++10*@[ LLT|" 122222111

v FUNCTIONS E

00021200100

THE PARSE  FUNCTION EMPLOYS TW0O FURTHER FUNCTIONS STRIP
(WHICH STRIPS OFF QUTER PARENTHESES), AND ON (WHICH STACKS
THE ROWS OF ONE TABLE ON TOP OF THE ROWS OF ANOTHER):

V Z<PARSE E

[1] >0x1A/~FUNCTIONS Z<STRIP E

21 Z«(' ',V Y PARSE L Z) ONCC Z) ON ' ',' ' ,PARSE R 7
v

VY Z«S5TRIP E
[11] >0x11=2| /DEPTH Z+E
vV Z2<4 ON B [21 2«STRIP 14 1VE
[11 A«( 7241 1,04)p4 v
[2] B«(~241 1,pB)pB
[3] Z«(((pA)TO 1xpB)4A),[11((pB)[0 1xpA)+B

v

O«F«STRIP E
(B+G)xD
O«A<PARSE L F
B A ON B (r v,t ', A) ON C F
+ B B
G + -
0«B<~PARSE R F G G
D D x




THE POLISH FUNCTION FIRST STRIPS ALL BLANK COLUMNS FROM THE
PARSED MATRIX M, AND THEN APPLIES THE FUNCTIONS LT, CT, AND
RT TO SELECT THE LEFT, CENTER, AND RIGHT PARTS OF THE
ARGUMENT, THE CENTER BEING DETERMINED AGAIN AS THE OVERALL
FUNCTION:

V Z«POLISH M E
[1] Z+CT M<(v/[1]M=' ')/M ((B+G)YxD)
[2] +0x11214pM O«M«PARSE E
3] Z2«Z2,(POLISH LT M),POLISH RT M B
v +
G
V Z«CT M x
[11] Z<,1 14("' '"#FIRSTCOL M)/[11M D
v LT M
B
V Z«RT M +
[1] Z<(v\ 10" "2FIRSTCOL M)/[11M G
v cT M
x
V Z«LT M RT M
[1] Z+(~v\'" '"2FITRSTCOL M)/[11M D
v
O«I«POLISH LT M
+BG
O«Jd«CT M
x
O«X«POLISH RT M
D
J,I,K
x+BGD
POLISH M
x+BGD

THE FUNCTION FIRSTCOL SELECTS THE FIRST COLUMN OF ITS
ARGUMENT:

V Z«FIRSTCOL M

[11] Z«,((14pM),1)+M
v
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THE COMPILE FUNCTION ALSO EMPLOYS LEFT, RIGHT, AND CENTER
FUNCTIONS (LE, RE, AND CFE), THE CENTER BEING DETERM!NED AS
THE RIGHTMOST FUNCTION IN THE POLISH STRING AND THE TWO
CHARACTERS FOLLOWING 1T, I.E., THE SUBEXPRESSION WHICH IS TO
BE EXECUTED ELRST:

V Z<CENTER FE F
[1] Z«(LOCCENTER E)/E (B+G)xD
v P+POLISH PARSE F
V Z<«LEFT E P
[13 Z«(~v\LOCCENTER E)/E x+BGD
v
V Z+«RIGHT E O«LE<«LEFT P
[1] Z«LOCCENTER E x
[2] Z+«(~ZVA\~Z)/E O«CE«CENTER P
v +BG
V Z«LOCCENTER E O«RE<«RIGHT P
[1] Z<(1pE)e0 1 2+(FUNCTIONS E)[.x1pE D
v LOCCENTER P

g 1 1 1 0

THE COMPILE FUNCTION RE-ORDERS THE CENTER TO PRODUCE A NORMAL
DYADIC EXPRESSION AND PREFIXES |IT BY AN ITERMEDIATE NAME
(CHOSEN FROM ~NAMES) AND AN ASSIGNMENT ARROW, BUT ONLY |F THE
CENTER NEITHER CONTAINS AN ASSIGNMENT ARROW [ITSELF NOR
EXHAUSTS THE EXPRESSION:

NAMES

vV Z«COMPILE E;CE
(1] CE<CENTER E
[21] Z«((('«'eCE)®»32pE)/NAMESL1],'«"),CE[2 1 3]
[3] NAMES+<1bNAMES
(4] »>0x132pF
[5] Z<Z ON COMPILE(LEFT E),Z[1]1,RIGHT F

CE
+BG
CE[2 1 3]
B+&
Z<NAMES[1],'«',CE[2 1 3]
Z
A<B+G
LE,Z2[1]1,RE
x4AD
COMPILE LE,Z[1],RE
AxD
72 ON COMPILE LE,Z[11,FE
A«B+G
AxD
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A COMPUTER MAY ALSO BE TREATED AT A LEVEL OF DETA!L WHICH
MAKES EXPLICIT THE BINARY REPRESENTATION OF NUMBERS AND
INSTRUCTIONS. FOR EXAMPLE, A COMPUTER WITH THE FOLLOWING
STRUCTURE AND INSTRUCTIONS CAN BE REPRESENTED BY THE
FUNCTION MACHINE SHOWN BELOW:

Code lInstructions A[ | | | | [ |1<..

010 Encer rc (TTT T 1~ o«

011 Print ‘
182 ég:stant to 4 TR I T ’ l I L,I |<¥_

110 Terminate Code Address
111 Branch if A=M[31;]

A: Accumulator

IC: Instruction Counter

IR: Instruction Register

M: Memory of 32 8-bit words

VMACHINE

[1] IC«0 0 0 0 0O

[21 IR<«M[21IC;1 Fetch instruction.
—~ [ 3] IC«(5p2)T1+2LIC Increment IC.
— [ 4] >542134+TR — Branch to execute
L [5] +2,A«M[ 2L 3+IR ;] L instruction indicated
- [ 6] 2, M[ 21 34IR; 1«4 1S by code in first three
—[7] +>2,M[2134IR;]«(8p2)70 [ E positions of IR.
—[8]  +2,0«21M[2134IR;] -~ P
—[9] +2,A«A PLUS M[213+IR;]|—| A
—[(10] >2,A«0 0 0,3+IR - C
|-[111 -0 T

(121 (A/A=M[31:;])/2 ~— B
t—[13] >2,IC<3VIRV

VZ«X PLUS Y Addition function

[1] Z<(8p2)T(21LX)+2.LYV (detailed later).

(0-origin indexing is used in these functions, that is,
the rows of M are indexed by the values 0, 1, 2, ...,31.)



IF

OFRPO0OO0OO0OO0OOR,R OO0 OO

[1
[2
£3
[y
s

THE FOLLOWING PROGRAM IS STORED [N THE COMPUTER (1.E.,
THE MEMORY 1S INITIALLY SET TO THE IND!CATED VALUE) THEN
THE MACHINE (!.E., THE FUNCTION MACHINE) WILL COMPUTE AND
PRINT THE SEQUENCE OF FIBONACCI NUMBERS, WHICH BEGINS WITH
1 1 AND CONTINUES WITH EACH NUMBER BEING THE SUM OF THE
TWO PRECEDING 1T. THE TABLE P AT THE RIGHT DISPLAYS THE
MEANING OF EACH OF THE INSTRUCTION CODES IN THE MEMORY:

M P
01 00001 Constant 1 to A4 c 1
00111111 Store 4 in 31 SV
0111110 Store A in 30 S X
0111101 Store 4 in 29 S Y
0011110 Load 4 from 30 L X
0011101 Add from 29 A Y
0111100 Store A in 28 S z
1111110 Print from 30 P X
0011101 Load A from 29 LY
0111110 Store 4 in 30 S X
0011100 Load A from 28 L Z
01111012 Store A in 29 S Y
1100100 Branch to 4 B 4
00 0O0O0O0O0 This row and

succeeding rows are immaterial
except that the last row shouid
be all zero.
V MACHINE
] IC« 0 0 0 0 ©

] IR«M[21IC;]

] IC+(502)T1+21IC
] +5+213+IR

] 2, A«M[ 213%IR;]

(6] >2,M[213+IR;]+A

L7
L8
[9
[1
L1
{1
[1

] +2,M[2134IR;3«(8p2)TD
] +>2,0«21ML213%IR;]

] +2,A«A PLUS ML213+IR;]
01 ~+2,4« 0 0 0 ,34IR

1] =0

2] +2x1A/A=M[31;]

3] »2,IC<«3+4IR



THE FOLLOWING TRACE OF THE EXECUTION OF THE FUNCTION MACHINE
SHOWS THE DETAILED EXECUTION OF A PORTION OF THE PROGRAM
STORED IN THE MEMORY M:

YORIGIN O
WAS 1
TAMACHINE+113

MACHINE
MACHINE[1] 0 0 0 O O
MACHINE[(2] 14 0o 1 0 0 0 0 1
MACHINE[3] 0 0 0 0 1
MACHINE[ 4] 10
MACHINE[10] 2 0 o0 O O 0 O 0 1

MACHINE[(2] 0 0o 1 1 1 1 1 1
MACHINE[L3] 0 O O 1 ©

MACHINE[ 4] 6

MACHINE[8] 2 O 0O O O 0O o0 0 1
MACHINE(2] 0o o0 1 1 1 1 1 0
MACHINEL3] 0 O O 1 1

MACHINE[ 4] 6

MACHINE[G6] 2 0 O O O O O 0 1
MACHINEL2] 0 0o 1 1 1 1 o0 1
MACHINE(3] 0 O 1 0 O

MACHINE[ 4] 6

MACHINELB] 2 0 O O 0 0 O o0 1
MACHINEL21 0 0 O 1 1 1 1 o0
MACHINE[L3] 0 0 1 o0 1

MACHINECU4] S

MACHINE(S] 2 o 0o o0 0 o0 O 0 1
MACHINE[2] 14 0o 0 1 1 1 0 1
MACEINE[3] 0 O 1 1 0

MACHINECL 4] 9

MACHINE[S] 2 0 0 O O O O 1 ©
MACHINEC2] 0 0o 1 1 1 1 o0 ©
MACHINE[(3] 0 0 1 1 1

MACHINE[ 4] 6

MACHINE(S8] 2 0O O O O 0 O 1 ©
MACHINE[{2] 0 1 1 1 1 1 1 0
MACHINE[3] 0 1 0 0 ©

MACHINE[ 4] 8

1

MACHINEL8] 2 1

MACHEINEE2] O 0 O 12 1 1 0 1
MACHINE[3] 0 1 0 0 1

MACHINE[L 4] 5

MACHINE[{S] 2 0O O O O 0 O 0 1
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JORIGIN 1

WAS O

M+«ASSEMBLE P

A Dy B D D B Dy
Linnnhr It Ry wm

1 01 00001

0011

¢ 01111012

00011110

10011101

001112100
011112110

00012121101

00111110

NN
SEVN:

00011100
00111101
11100100
00000000

O O

(o e}

[eNe)

(e =)

(o]

[o N e}

[eNe)

000 0O0O0CODO
0 000O0O0CQCO
000 0O0O0O0O0

000000 O0O0

00000000

00 0O0O0O0GCOCO
00 00O0O0O0O0
0 0000000
0 000 O0O0O0OO

0 000 O0O0O0O0

00 00O0O0O0O
000 0O0O0O0O0

0 00 O0O0O0O0O0

0 00 O0O0O0O0O0

0 000O0O0OO0OO

0 00 0O0O0O0O0

JORIGIN O

WAS 1

MACHINE

N M ©
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29

THE ASSEMBLY PROGRAM 1S SHOWN BELOW:

[1]
[2]
[3]
(4]
[5]
(6]
[7]
[8]
[9]
[10]
[11]

[1]

L1]

{1]
[2]
[3]

[1]

11

VZ<«ASSEMBLE P

7+32 8p0

ST+0 6p ' !

I+«0

»0x1(14pP)<I<«I+1
INST«PLI;1]]

ARG«P[I;3]

ZLI;1«(CODE INST),BINARY NUMERIC ARG
>4x1INSTe'B(!

ST«ST WITH ARG
Z[I;3+15]1«ST ADDRESS ARG
>4V

VZ«CODE X
2«2 2 27 1+'LSEPACTB'1XV

VZ«BINARY X
Z+(5p2)TXV

VZ<NUMERIC X
Z+«71+10123456789 ' 1 XV

VZ<+ST WITH NEW

2+ST

>0x1V/NEW=ST[ ;1]

Z+ST,[11NEW,CHAR BINARY 31-(pST)[11]V

VZ<ST ADDRESS X
Z<NUMERIC 1+STLST[3111X;1V

VZ<CHAR X
2+%0123456789'[1+X]V

Initialize symbol table.

Assemble Ith instruction.

Add any new argument to symbol table.
Replace address part from symbol table if
neither branch nor constant.

Encode symbols I, S, etc.

X in 5 digit binary.

Numeric equivalent of character vector.

Add NEW to symbol table if not already in it.
Assign next address (in decreasing sequence).

Address associated with name in symbol table.

Character equivalent of numeric vector.



NUMBERS

NUMBERS WILL NEVER STOP.

A MORE SATISFACTORY PROGRAM WHICH ACCEPTS AN ENTRY FROM
NUMBER OF FIBONACCI
IS SHOWN BELOW:

THE KEYBOARD TO DETERMINE THE

THE PROGRAM GIVEN FOR THE FIBONACC!
TO BE PRINTED

YORIGIN 1

WAS 0

M«ASSEMBLE P2

P2

O 1O A O
OO OO
O A 1O
OO A
O A O A
TA O A A
QO A OO0
HO O OO

OB @Dy
LMLy

O =
O - O

- O -

B I ]

o
(=]
I
o
«
O H O

OO HO

00011101

111101

o

— O
- O
(o o
-
~ -
O«

o O

-
o
O -
(o o
(@38 o]
O

[e N o]

OO OOOO

00011110

[elele]
— v O
- O O
O O
O - O
- OO

o

—

DI N MDY EHRDN QO
HTnhAinmnhunLg MmN

YORIGIN 0

MACHINE

MACHINE
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The function PLUS wused in conjunction with the
function MACHINE adds two numbers which are represented in
binary and yields their sum also represented in binary:

VZ«X PLUS Y
[1] Z+(8p2)T(2LX)+2LYV

This function does not show any of the detail
necessary for designing a mechanical adder which would have
to act on the individual digits of the representation. The
design of such an adder can be approached by first treating
a familiar representation (base 10), then the base 2
representation using addition of single digits, then the
base 2 representation using only logical functions:

VZ<X DPLUS Y Decimal plus.
[1] Z+X Sum (or addend) to result.
[2] +(A/0=Y)/0 Stop if augend is zero.
[3] X+10|2+Y Sum without carry.
[4] Y«1410<Z+Y New carry.
[5] >1V Repeat.

TADPLUS+1 3 4
19 9 DPLUS 0 0 1

DPLUS[11 1 9 9 A trace of the function DPLUS
DPLUS[L3]1 1 9 © shows its execution in detail.
DPLUS[4] © 1 o]

DPLUS[1] 1 9 ©

DPLUS[3] 1 0 ¢}

DPLUS[4] 1 O 0

DPLUS[1] 1 0 ©

DPLUS[3] 2 0 0

DPLUS[u4] 0 0 0

DPLUSFl] 2 0 0

2 0 0



THE FIRST FUNCTION FOR BINARY ADDITION (BPLUS) S IDENTICAL TO
THE FUNCTION FOR DECIMAL ADDITION EXCEPT THAT REMAINDERS AND
CARRIES ARE TAKEN WITH RESPECT TO 2 RATHER THAN 10. THE
SECOND FUNCTION (LPLUS) REPLACES THE RADIX 2 REMAINDERS AND
CARRIES BY EQUIVALENT LOGICAL FUNCTIONS:

VZ<«X DPLUS Y VZ<X BPLUS Y VZ<«X LPLUS Y
[1] Z<X £11] Z<X [1] Z+«X
f21 +(A/0=Y)/0 [2] +(A/0=Y)/0 [2] +(A/0=Y)/0
[ 3] X<10|2+Y [3] X<2|2+Y [3] X<Z=2Y
(4] Y«1410<Z+Y Cul Y«1$2<2+Y [ul Y<10ZAY
[51] +1V 5] +1V [5] +1V

X<(Bp2)T199
Y<«(8p2)T1
X
0 0 0 1 1 i
Y
0 0 0 0 0 0 0 1
1 9 9 DPLUS 0 0 1
0
1041 9 9 DPLUS 0 O 1
200
X BPLUS Y

11 0 0o 1 0o 0 O
21X BPLUS Y

200

21X LPLUS Y
200

TABPLUS<+1 3 u

X BPLUS Y
BPLUS{11 2 1 0 0 0 1 1 1
BPLYS{3] 2 1 o 0 O 1 1 0O
BPLUS[4] 0 0o 0 O O 0 1 O
BPLUS[1] 1 1 0o 0 0 1 1 ©
BPLUS{3]1 1 1 0o O 0 1 0 O
BPLUST4#] 0 0 O O O 1 o0 O
BPLUS[1] 1 12 0 O 0 1 0 O
BPLUS[3] 1 1 0 O 0 O 0 O
BPLUS[4] 0 0o 0 O 1 0 O O
BPLUS[C11 1 1 0 0 0 O 0 O
BPLUS[3]1 1 1 0 0 1 0 0 O
BPLUS[(4#] 0 0 O 0O O O 0 O
BPLUS[1] 1 1 0 O 1 0o 0 O
1 1 0 0 1 0 0 O
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