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THE USE OF APL IN EXPOSITION 

The following pages illustrate the use of APL for 
exposition in the teaching of various topics. The first 
section presents the characteristics of the language, and 
each of the succeeding sections illustrates its use in the 
presentation of material in some one discipline. 

A reader who wishes to study these examples thoroughly 
must either know the meaning of the APL notation used or be 
prepared to obtain this knowledge in some way, perhaps by 
inferring it from the examples, by consulting an APL manual, 
by experimenting on an APL terminal, or by asking a few 
questions of a native speaker of APL. 

The treatment of each topic is self-contained, and so 
brief that it can only suggest the convenience provided by 
APL in more extended discussion. A perusal of several topics 
wi 11 i 11 ustrate the fact that the conven i ence of APL is not 
confined to any particular field. More extended use of the 
language is i 11 ustrated by some of the items in the 
bi bl iography. 

This paper arose from material developed for a series 
of talks given at various locations over the past year or 
so. Its form betrays this origin; each page is relatively 
self-contained and is suitable for use as a transparency on 
an overhead projector. The following topics are treated: 

APL 360 ••••••••••••••• 2 

ELEMENTARY ALGEBRA . 10 

COORDINATE GEOMETRY AND STATICS. .. . 19 

FIN I TED IFF ERE NCES AN D TH E CA L CU LUS.. • 25 

LOG Ie. . 31 

SETS ... 37 

ELECTR Ie CI RCU ITS .•.•..••.•.•. 44 

THE COMPUTER 51 

BIBLIOGRAPHY •• 66 

am greatly indebted to my colleagues at the 
Philadelphia Scientific Center, particularly to Messrs. 
Berry and Falkoff for suggestions on the treatment of 
com put e r 5 , and toM r. E. E• Me Don nell for a c r i tic a 1 rea din g 
of the manuscript. 



APL\360 

IS LIKE HIGH SCHOOL ALGEBRA:
 

8 

15.84 

0.75 

81 

2 

8 

1 

0 

55 

9 

3.6+4.4 

3f4 

3*4 

3 I 8 

3r 8 

3~8 

8~ 3 

(8+3)x(8-3) 

(3r8)+(3~8) 

In expressing familiar arithmetic 
functions. 

In using the same fQ(m to express 
less familiar functions. 

3 to the power 4. 

The remainder on dividing 3 into 8. 

The maximum of 3 and 8. 

The truth (1) or falsity (0) of a 
relation. 

In using parentheses to indicate the 
sequence in which parts of an 
expression are to be executed. 

- 2 ­



BUT DIFFERS FROM ALGEBRA IN RESPECTS WHICH BOTH SIMPLIFY IT AND 
EXTEND ITS APPLICABILITY: 

X+3+4 A value is assigned to a name 
Y+5 
Xxy 

(variable) 
rather than 

by the assign symbol + 

by the equal sign. 
35 This 

equal 
avoids the 
encountered 

multiple uses 
in algebra. 

of 

LENGTH+5 The multiplication sign (x) cannot 
WIDTH+4 be omitted. This allows the use of 
AREA+LENGTHxWIDTH 
AREA 

long names (e.g., 
and does not mean 

AREA is 
AxRxExA). 

a Q~~~ 

20 

PRICE+5 Expressions apply to lists of items 
QUANTITY+-4 (vectors) as well as to single 
PRICExQUANTITY Quantities (scalars). 

20 
PRICE+5 8 12 3 7 
QUANTITY+-4 1 a 2 2 
PRICExQUANTITY 

20 8 a 6 14 

NEWPRICE+-6 7 12 4 8 
PRICE L NEWPRICE 

5 7 12 3 7 

9 
+/QUANTITY Any function 

elements of 
can be 
a list. 

applied to all 
In algebra 

4+1+0+2+2 this can be done for addition by 
9 using the sigma notation. 

TOTAL++/PRICExQUANTITY 
TOTAL 

48 
r /QUANTITY 

4 
4rlror2r2 

4 

4+5x6 There are no rules such as 
34 "multiplication is done before 

4x5+6 addition ll 
; all functions are 

44 treated alike by one rule: 
evaluate from right to 1ef t, 
subject to parentheses. 
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APL CONTAINS A RICH SET OF PRIMITIVE (I.E., BUILT-IN) 
FUNCTIONS WHICH MAKE IT APPLICABLE OVER A WIDE AREA. IT 
INCLUDES, FOR EXAMPLE: 

*	 All common arithmetic functions, including 
remainder, integer part, and power. 

*	 Other mathematical functions such as trigonometric 
and hyperbolic functions (and their inverses), the 
&~mma function, matrix inverse, and generalized 
matrix products. 

*	 Simple but powerful selection functions which 
5elect parts of lists or tables. These include 
indexing in which the indices may themselves be 
lists or tables. Since lists and tables of 
characters are treated in the same way as lists 
and tables of numbers, these functions make APL 
easy to use in textual and other non-numeric work. 

*	 A complete set of relations and other logical 
functions. 

NEVERTHELESS, APL IS EASY TO LEARN BECAUSE IT IS ~~EhB~~1~, 
I • E. , 

*	 In attacking a given problem area only the 
necessary primitives must be learned and the rest 
may be ignored. 

*	 When one adds new functions to his vocabulary In 
order to attack new areas, the same faml liar rules 
apply to these new functions. 
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APL IS CONVENIENT TO USE IN ANY APPLICATION AREA BECAUSE THE FUNCTIONS 
NEEDED TO TREAT THAT AREA CAN BE DEFINED AND THEN USED AS 
CONVENIENTLY AS PRIMITIVES. FOR EXAMPLE: 

~Z+RATE FOR YEARS The function FOR defIned to 
[1J Z+L.5+1000x(1+.01xRATE)*YEARS~ the left applies to any rate 

(in percent) and any number 
6 FOR 1 of years and yields the 

1060 rounded return in dollars 
6 FOR 2 for each 1000 dollars of 

1124 initial capital. 
6 FOR 3 

1191 

6 FOR 1 2 3 4 It applies for any list of 
1060 1124 1191 1262 years at a given rate. 

6 7 8 9 FOR 4 It applies for any list of 
1262 1311 1360 1412 rates for a given number of 

years. 

6 7 8 9 FOR 1 2 3 4 Or to any list of corres­
1060 1145 1260 1412 ponding rates and years. 

VZ+RATE FORTABLE YEARS A slight modification of the 
[lJ Z+LO.5+1000x(1+0.01xRATE)o.*YEARS~ expression used in defining 

FOR yields a function which 
6 7 8 9 PORTABLE 1 2 3 4 produces a table which 

1060 1124 1191 1262 includes the result for 
1070 1145 1225 1311 every combination of rates 
1080 1166 1260 1360 and years. 
1090 1188 1295 1412 
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FURTHER DETAI LS OF APL NEEDED TO READ THE REST OF THIS PAPER 
ARE SUMMARIZED ON THIS PAGE AND IN THE TWO SUCCEEDING 
TABLES (WHICH DEFINE ALL THE PRIMITIVE FUNCTIONS): 

Functions apply to arrays in four distinct ways, defined 
below by examples using the following arrays: 

V M 
1 2 3 4 123 

W 4 5 6 
4 3 2 1 789 

gl~mgnl=Q~=~l~m§nl 

VxW MxM M*2 
4 6 6 4 1 4 9 1 4 9 

2xW 16 25 36 16 25 36 
8 6 4 2 49 64 81 49 64 81 

VO.'5.W Vo. xW Vo.+W 
1 1 1 1 432 1 5 4 3 2 
111 0 864 2 6 5 4 3 
1 1 0 0 12 9 6 3 7 6 5 4 
1 000 16 12 8 4 8 7 6 5 

+/V +/[l]M +/[2]M 
10 12 15 18 6 15 24 

x/V x/[l]M +/M 
24 28 80 162 6 15 24 

M+. xM M+. $M M+.xl 4 7 
30 36 42 3 3 3 30 66 102 
66 81 96 1 2 2 M+.xM[ ;lJ 

102 126 150 0 0 1 30 66 102 
(Ordinary Matrix 
Product) 

(M+.xN)[I;J] is equivalent to +/M[Ii]xM[ ;J] 

Character arrays are specified by the use of Quotation 
marks and behave 1 ike numeric arrays except that they 
are not in the domain of addition and other arithmetic 
functions: 

A+'DIGIT' 
A[ 1 2 3J 

DIG 
A =' II
 

010 1 0
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Dyadic form AfBfMonadic form fB 

Definition 
or example 

Name Name Definition 
or example 

+B +-+ O+B Plus + Plus 2+3 0 2 ++ 5.2 

-B ++ O-B Negative Minus 2-3.2 +-+ 
- 1.2 

xB +-+ (B>O)-(B<O) Signum x Times 2x3.2 +-+ 6.4 

fB +-+ 1 +B Reciprocal Divide 2+3.2 +-+ 0.625 

B 
3.14 - 3.14 

rB LB 
4 3-­3 4 

Ceiling 

Floor 

r 

l 

Maximum 

Minimum 3L7 +-+ 3 

*B ++ (2.71828 . . )*B Exponential * Power 2*3 +-+ 8 

Natural 
logarithm 

• Logarithm AeB 
A$B 

+-+ 

+-+ 

Log B base A 
(eB) -i-_A 

'-3 0 14 +-+ 3.14 Magnitude I Residue Case 
A~O 

A=O,B~O 

A=O,B<O 

AlB 
B-( IA)xLB-i-!A 
B 
Domain error 

!O 

!B 
or 

+-+ 

++ 

!B 

1 

Bx !B-l 
+-+ Gamma(B+l) 

Factorial ! Binomial 
coefficient 

A!B 
2!5 

+-+ 

++ 
(!B)f(!A)x!B-A 
10 3!5 +-+ 10 

?B +-+ Random choice 
from 1B 

Roll ? Deal A Mixed Function 
Table 2) 

(See 

oB ++ Bx3.14159. o. Pi times o Circular See Table at left 

..... 1 ++ 0 ...... 0 +-+1 Not 

And A B A/\B AvB A'1vB A¥B 
( -A ) oB A AoE Or 000 0 1 1 

(1-B*2)* .. 5 0 (l-B*2)*05 Nand o 1 0 1 1 0 

Arcsin B 1 Sine B Nor 1 0 0 1 1 0 

Arccos B 2 Cosine B 1 1 1 1 0 0 

Arctan B 3 Tangent B 
(-1+B*2)*05 4 (1+B*2)*05 Less Relations 

Arcsinh B 5 Sinh B Not greater Result is 1 if the 
Arccosh B 6 Cosh B Equal relation holds, 0 

Arctanh B 7 Tanh B Not less if it does not: 
Greater 3~7 +-+ 1 

Table of Dyadic 0 Functions Not Equal 7~3 +-+ 0 

TABLE 1. PRIMITIVE SCALAR FUNCTIONS 
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Sign l Definition or example2Name 

pP ++ 4 p E +-+ 3 4 pS ++ topASize 

Reshape VpA Reshape A to dimension V 3 4pt12 +-+ E 
12pE +-+ \12 OpE +-+ to 

Ravel ,A , A +-+ (x I p A ) pA , E -+- -+ t 1 2 p,5 ++ 1 

P t2 +-+ 2 3 5 7 1 2 'T' .'HIS' ++ 'THIS'V V Catenate 
V[AJ 

M[A .A ] 

A [A ; •• 

Index34 

•• ;A ] 

Index tS 
generator! 

Index of! VtA 

P[2] +-+3 P[4 3 2 1J +-+7 5 3 2 

E[l 3;3 2 1] +-+ 3 2 1 
11 10 9 

E[l;J +-+ 1 2 3 4 ABeD 
E[;lJ +--+ 1 5 9 'ABCDEFGHIJKLt[EJ +-+ EFGH 

IJKL 
First S integers	 14 +-+ 1 2 3 4 

10 +~ an empty vector 

Least index of A P13 +-+2 512 5 
in V, or 1+pV PtE +-+ 3 5 4 5 

4 41,4 +-+ 1 5 5 5 5 
Take VtA Take or drop IVCI] first 2 3 tX +-+ ABC 

(V[IJ~O) or last (V[I]<O) EFG}Drop V~A elements of coordinate I - 2tP +-+ 5 7 
Grade up! 5 ~A 

Grade down35 VA 

cornpress 5 VIA 

V\AExpand 5 

Reverse5 cPA 

Rotate5 A¢A 

V~A 

Transpose 

~A 

Membership AEA 

Decode V.1 V 

Encode VrS 
Deal3 S?S 

The permutat~on which ~3 5 3 2 +-+ 4 1 3 2 

would order A (ascend­
ing or descending) V3 5 3 2 +-+ 2 1 3 4 

1 3 
1 0 1 OIP +-+ 2 5 1 0 1 OlE ++ 5 7 

9 11 
1 0 1/[1]E +-+ 1 2 3 4 +-+ 1 0 lfE 

9 10 11 12 
A BCD 

1 a 1\t2 +-+ 1 0 2 1 0 1 1 l\X +-+ E FGH 
I JKL 

DCBA IJKL 
<!>x +-+ HGPE 4>[lJX +-+ eX -+-+ EFGE 

LKJI 4>P +-+ 7 5 3 2 ABeD 
ECDA 

3¢>P +-+ 7 2 3 5 +-+ -l4>P 1 0 -l4>X +-+ EFGH 
LIJK 

AEI 
Coordinate I of A 2 l~X +-+ BFJ 
becomes coordinate CGX 
V[I] of result 1 l~E ++ 1 6 11 DHL 

Transpose last two coordinates ~E ++ 2 l~E 
0 1 1 0 

p WEY + .... pW EEF +-+ 1 0 1 0 
PE'l4 +-+ 1 1 0 a 0 0 0 0 
10.11 7 7 6 + ........ 1776 24 60 6011 2 3 +-+ 3723
 

24 60 60T3723 +-+ 1 2 3 60 60T3723 +-+ 2 3 
W?Y ++ Random deal of W elements from tY 

TABLE 2. PRIMITIVE MIXED FUNCTIONS (see notes on next page) 
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1.	 Restrictions on argument ranks are indicated by: S for 
scalar, V for vector, M for matrix, A for Any. Except as 
the first argument of SlA or SeA], a scalar may be used 
instead of a vector. A one-element array may replace any 
scalar. 

2.	 Arrays used 1 2 3 4 ABeD 
in	 examples: P 2 3 5 7 E +-+ 5 6 7 8 X +-+ EPGH 

9 10 11 12 IJKL 
3.	 Function depends on index origin. 

4.	 Eli sian of any index selects all along that coordinate. 

5.	 The function is applied along the last coordinate; the 
symbols I, ~, and e are equivalent to I, \, and ¢, 
respectively, except that the function is applied along the 
first coordinate. If [5] appears after any of the symbols, 
the relevant ·coordinate is determined by the scalar S. 

Notes to Table 2 
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ELEMENTARY ALGEBRA
 

THE CONVENIENT USE OF ARRAYS IN APL MAKES IT EASY TO 
DISPLAY AND MANIPULATE MATHEMATICALLY MEANINGFUL 
PATTERNS. FOR EXAMPLE: 

2*2 3	 4 5 This pattern can be extended to 
4 8	 16 32 the right by noting that each 

2*2 3 4 5 6 7 element is obtained by multi ­
4 8	 16 32 64 128 plying its predecessor by 2. 

2*-2 1 0 1 2 3 The pattern can be extended to 
o• 25 O. 5 1 2 4 8 the left by noting that each 

element is obtained by dividing 
its successor by 2. This gives 
a graphic picture of how meaning 
is assigned to zero and negative 
powers. 

4*1 2 3 4 5 The same notions can be used to 
4 16 6 l~ 2S6 1024 introduce fractional arguments. 

4*1 1. 5 2 2 .. 5 3 
4 8 16 32 64 

2*1 1. 5 2 2 .. 5 3 
2 2 .. 83 4 5.66 8 
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FUNCTION TABLES (E.G., ADDITION TABLES, MULTIPLICATION 
TABLES, AND SUBTRACTION TABLES) CAN BE USED TO GIVE 
GRAPHI C PICTURES OF THE BEHAVIOR OF COMMON FUNCTIONS OF 
TWO ARGUMENTS: 

5+1 2 3 4 5 6 7 
So. +S So. xS 

2 3 4 5 6 7 8 1 2 3 4 5 6 7 
3 4 5 6 7 8 9 2 4 6 8 10 12 14 
4 5 6 7 8 9 10 3 6 9 12 15 18 21 
5 6 7 8 9 10 11 4 8 12 16 20 24 28 

6 7 8 9 10 11 12 5 10 15 20 25 30 35 
7 8 9 10 11 12 13 6 12 18 24 30 36 42 
8 9 10 11 12 13 14 7 14 21 28 35 42 49 

So. r 5 So. ?s 
1 2 3 4 5 6 7 1 0 0 0 0 0 0 
2 2 3 4 5 6 7 1 1 0 0 0 0 0 

3 3 3 4 5 6 7 1 1 1 0 0 0 0 
4 4 4 4 5 6 7 1 1 1 1 0 0 0 
5 5 5 5 5 6 7 1 1 1 1 1 0 0 
6 6 6 6 6 6 7 1 1 1 1 1 1 0 
7 7 7 7 7 7 7 1 1 1 1 1 1 1 

So. -s 
- - So. <S 

0 1 2 3 4 5 6 0 1 1 1 1 1 1 
1 0 1 2 3 4 5 0 0 1 1 1 1 1 
2 1 0 1 2 3 4 0 0 0 1 1 1 1 
3 2 1 0 1 2 3 0 0 0 0 1 1 1 
4 3 2 1 0 1 2 0 0 0 0 0 1 1 

5 4 3 2 1 0 1 0 0 0 0 0 0 1 

6 5 4 3 2 1 0 0 0 0 0 0 0 0 
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CERTAIN PROPERTIES OF FUNCTIONS (SUCH AS COMMUTATIVITY) CAN BE 
RELATED TO THE PATTERNS OBSERVED IN THEIR FUNCTION TABLES: 

0 

50. -5 
1 

-
2 - 3 4 5 6 0 

Q5 o • -5 
1 2 3 4 5 6 

The transpose 
function table 

of a 
is the 

1 0 1 2 3 4 5 1 0 1 2 3 4 5 table of the same 
2 1 0 1 2 3 4 2 1 0 1 2 3 4 function wi th the 
3 2 1 0 1 2 3 3 2 1 0 1 2 3 arguments commuted. 
4 3 2 1 0 1 2 4 3 2 1 0 1 2 Since the two tables 
5 4 3 2 1 0 1 5 4 3 2 1 0 1 do not agree, the 
6 5 4 3 2 1 0 6 5 4 3 2 1 0 subtraction function 

is not commutative. 

So. x5 Q.So. xS 
1 2 3 4 5 6 7 1 2 3 4 5 6 7 The transpose 
2 4 6 8 10 12 14 2 4 6 8 10 12 14 of a table for a 
3 6 9 12 15 18 21 3 6 9 12 15 18 21 commutative function 
4 8 12 16 20 24 28 4 8 12 16 20 24 28 agrees wi th the 
5 10 15 20 25 30 35 5 10 15 20 25 30 35 original function. 
6 12 18 24 30 36 42 6 12 18 24 30 36 42 

7 14 21 28 35 42 49 7 14 21 28 35 42 49 

T+-S - 4 
T 

3 2 1 a 1 2 3 
To. xT 

9 6 3 0 3 6 9 The function table for 
6 4 2 0 2 4 6 multiplication applied to 
3 2 1 0 1 2 3 both negative and po sit i ve 
0 0 0 0 0 0 0 arguments can be used to 
3 2 1 0 1 2 3 give some insight into the 
6 4 2 0 2 4 6 rules for the sign of a 
9 6 3 0 3 6 9 product. 

- 12 ­



THE FUNCTiON TABLE FOR EQUALS (=) APPLIED TO THE VALUES OF A 
FUNCTION AND AN APPROPRIATE SET OF VALUES FROM THE RANGE OF 
THE FUNCTION YIELDS AN UNUSUAL INSIGHT INTO THE MEANING OF 
GRAPHS AND BAR CHARTS: 

VZ~F X	 The function F is a parabola 
[ 1 ] Z~(X-3)x(X-5)V	 with zeros at 3 and 5. 

S~l 2 3 4 5 6 7 

F 5 F 5 yields the values of the 
830 1038 parabola for the argument s. 

R~8 7 6 5 4 3 2 1 0 1	 R is the range of values 
occurring in F S. 

R ° . =F 5 Ro. s.F 5 
1 0 0 0 0 0 1 1 0 0 0 0 0 1 
0 0 0 0 0 0 0 1 0 0 0 0 0 1 
0 0 0 0 0 0 0 1 0 0 0 0 0 1 
0 0 0 a a 0 0 1 0 0 a 0 0 1 The is represent a 
0 0 0 0 0 0 0 1 0 0 0 0 0 1 graph and a bar chart 
0 1 0 0 0 1 0 1 1 0 0 0 1 1 of F. 
0 0 0 0 0 0 0 1 1 0 0 0 1 1 
0 0 0 0 0 0 0 1 1 0 0 0 1 1 
0 0 1 0 1 0 0 1 1 1 0 1 1 1 
0 0 0 1 0 0 0 1 1 1 1 1 1 1 

, *'[l+Ro.=F S] 1 *'[l+Ro.5:.F S] 

* 
* * The asterisks repre­

sent a graph and a 

* *	 * 

* * 
*	 bar chart of F.* 
* * 
** ** 
** ** 
** ** 

* * 

*** **** * 
******** 
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THE USE OF VECTORS PERMITS A CLEAR AND SIMPLE TREATMENT 
OF POLYNOMIALS: 

c....-3 1 4 2 Vector of coefficients. 

Assigned argument value. 

E'....--O 1 2 3 Vector of exponents. 

Vector of powers of x. 
1 125 

(7xX*E Terms of the polynomial. 
3 100 250 

Sum of terms. 
352 

1+10(7 Exponents appropriate to the 
o 1 2 3 coefficient vector C. 

General expression for any 
358 coefficient vector C. 

C+1 4 6 4 1 
+/CXX*-1+1PC 

12 ~16 

v~~--c POL X Definition of a polynomial 
[ 1 J Z++/CXX*-1+1PC'V function. 

::3 1 1+ ) PO L 5 

JSB 

1 4 6 II 1 1)0 L 2 
8 1 
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THE COMPUTATION OF THE PRODUCT OF TWO POLYNOMIALS (I.E., THE 
COEFFICIENTS OF A POLYNOMIAL WHlCH IS EQUIVALENT TO THE PRODUCT 
OF THE POLYNOMIALS) CAN BE STATED CLEARLY IN TERMS OF THE 
VECTORS OF COEFFICIENTS: 

C+3 1 1+ 2 
V+2 0 5 1 3 

This multiplication table 
contains the products of 
all pai rs of coefficients. 

A simple argument shows 
6	 that they should be summed 

diagonally as indicated by 
the 1 i nes. 

E+6 2 23 12 30 17 14 6 

E POL 3 
30432 

(C POL 3)x(D POL 3) 
30432 

- 15 ­



ALL STEPS OF A PROCESS CAN BE SHOWN CLEARLY IN APL. FOR 
EXAMPLE, THE SUMMATION OF THE COEFFICIENTS IN THE POLYNOMIAL 
PRODUCT (SHOWN INFORMALLY ON THE PRECEDING PAGE) CAN BE 
COMPLETED AS FOLLOWS: 

C+3 1 4 2 
D-+-2 0 5 1 3 
D,OX1-t-C Append zeros to D so as to 

2 0 5 1 300 a append zero columns to the 
Co. xD, 0 x 1 -t C multiplication table.
 

6 0 15 3 9 a o o
 
205 1 3 0 o o
 
8 0 20 4 12 0 o o
 
4 0 10 2 6 0 o o
 

1- 1 pC 
a 1 -2 3 

(1-1pC)¢Co.xD,oxl-.tC Skew the table (by rotating 
6 0 15 3 9 0 0 o the rows) so as to al ign in 
a 2 0 5 1 ~ 0 o columns the coefficients to 
o 0 8 0 20 4 12 o be added. 
o 0 0 4 0 10 2 6 

+/[lJ( l-lpC)¢Co. xD, Oxite Sum the columns to obtain 
6 2 23 12 30 17 14 6 the final result. 

'VZ+C PROD D Define a po 1ynomi a 1 product 
[ 1 ] Z++/[lJ(1-1pC)~Co.xD,oxl-.tCV function. 

C PROD D 
6 2 23 12 30 17 14 6 
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TABLES CAN ALSO BE USED TO ILLUMINATE NOTIONS NOT DIRECTLY 
RELATED TO THE TABLE OF A FUNCTION. FOR EXAMPLE, THE PRIME 
NUMBERS OR THE "PRIMENESS" OF A NUMBER CAN BE TREATED IN 
SEVERAL INTERESTING WAYS: 

5 The primeness of each element of 5 is 
1 2 345 6 7 indicated by the number 1 (for prime) or 0 
011 010 1 (for not prime) appearing below it. 

An expression for the primeness vector can be developed as 
follows: 

50. 15 
0 a a 0 0 0 0 
1 0 1 0 1 0 1 Make a remainder table fo r a 
1 
1 

2 
2 

0 
3 

1 
0 

2 
1 

a 
2 

1 
3 

set 
begin

of consecutive 
ning with 1 . 

integers 

1 2 3 4 0 1 2 
1 2 3 4 5 0 1 
1 2 3 4 5 6 a 

0=5 0 Is• 

1 1 1 1 1 1 1 
o 1 0 1 0 1 0 
001 001 0 Compare the remainder table with 0 
0001000 to obtain a udivisibil ity" table. 
o 0 0 0 1 a 0 
o a 0 0 0 1 0 
o 0 0 0 0 0 1 

Sum the columns of the divisibil ity table 
+/[lJO=5 o .\5 to obtain the number of divisors of each 

1 2 2 3 2 4 2 element of s. 

Compare the sums with 2 to determine 
2=+/[lJO=5°.15 primeness <since a prime has exactly two 

0110101 distinct divisors). 
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V-+-2 = +I [ 1 ] 0 =8 o. Is 
u The logical vector which 

011 0 1 0 1 determines primeness 
VIS 

235 7 can be used to select the primes. 

'YZ+PR N;S Define a function 
[lJ Z+( 2=+/[ lJO=5o. IS) jS+1N'V to determine the primes 

up to N. 
PH 25 

2 3 5 7 11 13 17 19 23 

5+2 3 4 5 6 7 8 
So. xS 

4 6 8 10 12 14 16 Alternatively, form a 
6 9 12 15 18 21 24 multiplication table (not 
8 12 16 20 24 28 32 including 1) and determine 

10 15 20 25 30 35 40 primeness by finding if the 
12 18 24 30 36 42 48 number does not occur in 
14 21 28 35 42 49 56 the table. 
16 24 32 40 48 56 64 

SESo.XS 
0 0 1 0 1 0 1 

--SESO.XS 
1 1 0 1 0 1 0 

('""'SESo.xS)15 
2 3 5 7 
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COORDINATE GEOMETRY AND STATICS
 

7 

P+-5 7 Each point in a plane 
Q+-2 3 can be represented by a 
R+-7 2 two-element vector of 

its coordinates. 

D+-P-Q Displacement between P 3 

D and Q. 2 

3 4 

(+/D*2)*.5 Distance between 
5 

P~ 
/ I 

/ 
5 / I 4 

/ I 
/ I 

/ I 
Q'----.J

3 

2 5 

P and Q. 

M+3 2pP,Q,R A set of N points (representing a 
M triangle or other polygon) can be 

5 7 represented by an N by 2 matrix. 
2 3 
7 2 

lq>[lJM The same points " c i rculated4o"
 
2 3
 
7 2
 
5 7
 

D+M-l¢[ 1 JM The displacements between each pair of 
D points ..
 

3 4
 
5 1
 
2 5
 

L+-(+/D*2)*.5 The distances between each pair (i.e., 
L the lengths of the sides of the 

5 5. 099 5. 385 triangle). 

S+405x+/L The semi-perimeter of the triangle. 
S 

7.742 

(x/S,S-L)*.5 The area of the triangle by Hero's 
11 • 5 formula. 

- 19 ­
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IN A SPACE OF THREE DIMENSIONS THE EXPRESSIONS FOR 
DISPLACEMENT, DISTANCE, ETC., ARE IDENTICAL WrTH THOSE FOR 
2-SPACE: 

P+5 7 2 
Q+2 3 14 
R+4.25 6 5 

3 4 

D+P-Q 
D 
12 

Displacement. 

13 
(+/D*2)*.5 Distance. 

M+3 
M 

5 
2 
4.25 

3pP,Q,R 

7 
3 
6 

2 
14 

5 

A triangle in 3-space. 

lep[ lJM 
2 
4.25 
5 

3 
6 
7 

14 
5 
2 

D+M -lep[ 1 JM 
D 

3 4 
2.25 3 
0.75 1 

12 
9 

3 

All displacements. 

13 

L+(+/D*2)*.5 
L 

9.75 3.25 

All lengths. 

13 

S+.5x+/L 
S 

Semi-perimeter. 

a 
( x / S , S -L ) * . 5 An area of zero 

the three points 
implies that 

are collinear. 
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THE NOTIONS OF THE CENTER OF A FIGURE AND THE CENTER OF 
GRAVITY OF A SET OF POINT MASSES ARE EASILY EXPRESSED IN 
TERMS OF THE MATRIX OF COORDINATES: 

M+3 2pS 7 2 3 7 2	 A triangle in 2-space. 
M 

5 7 
2 3
 
7 2
 

+/[lJM The II sum" of the points. 
14 12 

(+/[l]M)f3 The average (i .e., center) of the 
4.667 4	 po i nt s. 

W+-2 3 5	 The weights of masses at the 
three points. 

W+. xM The total "moment" of the points. 
51 33 

( W+. xM) .;- +/ W	 The moment per uni t wei ght, i.e., 
5.1	 3.3 the location of a single mass of 

the same total weight to produce 
the same moment. This is the 
f~n!~I Qf gr~Yl!l· 

(W.;-+/W)+.xM	 An equivalent statement of center 
5.1	 3.3 of gravity, based on an obvious 

mathematical identity. 

Wt+/W	 Wt+/W is a normal i zed mass, i. e., 
0.2 0.3 0.5	 it has a total mass of 1. 

+/(W.;-+/W) 
1 

The same expressions apply to 
3-space and to any number of 
points. 
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DETERMINANTS IN THE COMPUTATION OF AREAS:
 

M A triangle in 2-space 
5 7 
2 3 
7 2 

1,M bordered by a column of 1S 
1 5 7 
1 2 3 
1 7 2 

DET 1,M yields a matrix whose determinant 
23	 is twice the (signed) area of the 

triangle. (See Fel ix Klein, 
Elementary mathematics from an 
advanced standpoint: Geometry.) 

M[l 3 2;J The sign of the area is positive if 
5 7 the vertices occur in counter­
7 2 clockwise order, and negative 
2 3 otherwise. 

DET 1,M[1 3 2;J 
23 

N If the area is zero, the points are 
5 7 collinear. If the area is not 
2 3 zero, the sign tells whether the 
4. 25 6 points are in clockwise order, and 

hence tells whether one point lies 
DET 1,N above or below the line joining the 

o othe r two. 

The definition of the determinant function itself can be 
briefly stated: the function SDET shows the essential 
scheme and DE't conta i ns some extra steps to take care of 
the occurrence of a zero in the upper left corner of the 
matrix. 

VZ~--SDET M 
[ 1 ] Z ";'/l] [ 1 ; 1 J 
[2J --+Oxlv/l=pM 
[ 3 ] ~ ~-. '2 x S DET 1 1 +M - M[ ; 1 J 0 x M[ 1 ; ] -i- M[ 1 ; 1 ] 'V• 

\] Z-(,--- D E T l"1; K 

[ 1 J /,1 [ K, 1 ; J -(,---M[ 1 , K -(,--- K 1 I / K -(,--- IM[ ; 1] ; ] 
[2J ~-(,---(lE-9<IM[1;lJ)xM[1;lJX-l*K~1 

[ 3 J -~ (J x 1 V / ( 1 =p i~I) , 0 =z 
[Li-] ;~~Zx[)F:T 1 li-M-ML;l]o.xM[l;]-i-M[l;lJ'V 
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THE SAME EXPRESSIONS APPLY TO THE VOLUME OF A TETRAHEDRON IN 
3-SPACE, AND HENCE TO QUESTIONS OF THE POStTION OF A POINT 
RELATIVE TO THE PLANE DETERMINED BY THE THREE OTHER 
POINTS. 

M A tetrahedron in 3-space. 
4 8 3 
2 4 9 
6 4 5 

6 9 4 

1,M 
1 4 8 3 
1 2 4 9 
1 6 4 5 
1 6 9 4 

DET 1,M Six times the signed volume of 
64 the tetrahedron. If the points 

DET 1,M[2 1 3 4;J are plotted in a right-handed 
64 coordinate system, then the sign 

is positive if the order of the 
N first three points is counter­

1 0 0 clockwise when viewed from the 
0 1 0 fourth point. 
0 0 1 
0 0 0 

DET 1,N 
1 
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SOME USEFUL FUNCTIONS AND THE COMPUTATION OF PI: 

VZ+D M The distance between 
[lJ Z+-li(+/(M-1¢[lJM)*2)*.5V adjacent points of M. 

M 
1 4 
1 4 Example to show how the 
7 6 function D works. 
9 8 
5 1 

D M 
o 6.325 2.828 8.062 

A function to compute the altitude of a point on the unit 
circle whose first coordinate is X: 

CIRCALT X------. 
VZ+CIRCALT X ----a. 

[ 1J Z+(1-X*2)*.5V 

CIRCALT • 5 • 6 .7 1 
0.866 0.8 0.7141 0 

x 

VZ+GRID N A function to generate a set of 
[lJ Z+O,(lN)~NV points from a to 1 separated by 

an interval of l~N. 

GRID 5 
0 0.2 0.4 0.6 O. 8 1 

A function to approximate PI by twice the length of the 
sides of a portion of a polygon inscribed in the first 
quadrant of a circle: 

VZ+PI N 
[lJ Z+2 x +/D (GRID N),[1.5] CIRCALT GRID NV 

PI 5 
3.115105951 

PI 1000 
3.141583356 

(GRID 5),[1.5J CIRCALT GRID 5
 
a 1
 
0.2 0.9798 
0.4 0.9165 
0.6 0.8 
o• 8, o. 6
 
1 a
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FINITE DIFFERENCES 

fJZ+DIF V 
[ 1] Z+(l-1-V)- - 1-1- VV 

X+O,16 
V+X*2 
V 

0 1 4- 9 16 25 36 
1-1- V 

1 4 9 16 25 36 
l-1-V 

0 1 4 9 16 25 

DIP V 
1 3 5 7 9 11 

DIP DIP V 
2 2 2 2 2 

V+X*3
 
V
 

0 1 8 27 64 125 216 

DIF V 
1 7 19 37 61 91 

DIF DIF V 
6 12 18 24 30 

DIP DIP DIP V 
6 6 6 6 

DIP DIP DIP DIP X*4 
24- 24 24 

AND THE CALCULUS
 

First difference of the square 
function. 

Second 
square 

difference 
function. 

of the 

First difference of the cubic 
function. 

Second difference of the cubic 
function. 

Third difference of the cubic 
function. 

Fourth difference of the 
quartic function. 
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THE SLOPE FUNCTION GIVING THE SLOPE OF THE SECANT THROUGH 
POINTS X~F X AND (X+S),F X+S YIELDS AN APPROXIMATION TO THE 
SLOPE OF THE TANGENT TO F AT THE POINT X,F X FOR S SMALL: 

8 
VZ+F X 

[ 1 ] Z+X*2V 

6 
'iJZ+S SLOPE X 

[lJ Z+((F X+S)-F X) fSV 

4 
1 SLOPE 2 

5 
SLOPE 2• 5 2 

4. 5 
SLOPE 2• 1 1 2 3 44.1 

4.1 
• 1 .01 .001 

4.01 4.001 
.0001 SLOPE 
4.0001 

2 The slope appears to 
approach a limit for 
sma 11 va 1ues of the 
spacing s. 

5+.000001 
(5,-5) SLOPE 2 

4.000001 3.999999001 

The same limit is 
approached for a 
negative value of s. 

S SLOPE X+1 2 
2.000001 4.000001 

2xX 

3 4 
6.000001 8.000001 

The slope at a set of 
points X is also a 
function (i.e., 2xX). 

246 8 
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EXPERIMENTATION WITH THE SLOPE FUNCTION APPLIED TO VARIOUS 
FUNCTIONS CAN LEAD TO CONJECTURES CONCERNING THE TANGENT 
SLOPE (I.E., DERIVATIVE) FOR VARIOUS FUNCTIONS: 

VZ+F X 
[lJ Z+X*3V 

S SLOPE X 
3.000003 12.000006 27.000009 48.000012 

3xX*2 
3 12 27 48 

S SLOPE X 
4 • 0,000 06 32 • 0 aa0 2 4 108 . 000 a 5 2 56 • 000 1 

4xX*3 
4 32 108 256 

VZ~F X 'VZ+C POLY X 
[1J Z+-C POLY XV [lJ X+(XO.*-1+1pC)+.XCV 

C+3 1 2 4 

S SLOPE X 
17.000014 57.0,00026 121.00004 209. 00005 

( 1+ Cx - 1+1pC) POLY x A polynomial equivalent to the 
17 57 121 209 derivative of the original 

po 1ynom i a 1 . 

1+1 P C Determination of the 
0 1 2 3 coefficients of the derived -ex 1+1 pC po 1ynom i a 1• 
0 1 4 12 

it-ex 1+ 1 P C 
1 4 12 
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(APPROXIMATE) INTEGRATION BY THE RECTANGULAR RULE CAN BE 
REPRESENTED AS A LINEAR FUNCTION (MATRIX PRODUCT) WHOSE 
INVERSE IS SEEN TO BE A DIFFERENCING OF THE RESULT: 

25 

X+1 2 3 4 5
 
V+X*2
 
V 

1 4 9 16 25 
A 

1 0 000
 
1 1 0 0 0
 
1 1 1 0 0
 
1 1 1 1 0
 
1 1 1 1 1
 

4 6 

R+A+. xV Multiplication by the "accumulator" 
R matrix A yields the approximate 

1 5 14 30 55 integrals over 1, 2, 3, 4, and 5 
intervals. 

(GlA) +. xR Multipl ication of the result by the 
1 4 9 16 25 inverse matrix [1JA yields the original 

values. 

D+[1JA
 
D
 

1 0 0 0 0 The matrix [1JA is seen to be a 
1 1 0 0 0 "difference" matrix whose application 
a 1 1 0 0 is equivalent to differencing (except 
0 0 1 1 0 that it includes in the result the 
0 0 0 1 1 first element of the argument). 

'JZ+DIF X 
[1] Z+( HX)- HXIJ 

DIF R 
4 9 16 25 

l"D+.xR Differencing and integration are 
4 9 16 25 inverse and may be applied in either 

D+.xV order. 
1 3 5 7 9 

A+.xD+.xV 
1 4 9 16 25 

A+.xV 
1 5 14 30 55 

D+. xA+. xV 
1 4 9 16 25 
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IF DIFFERENCING IS REPRESENTED AS A LINEAR FUNCTION THEN THE 
EFFECT OF REPEATED DIFFERENCING CAN EASILY BE SHOWN IN 
TERMS OF THE ORIGINAL ARGUMENT AND APPEARS AS ALTERNATING 
BINOMIAL COEFFICIENTS: 

V 
1 4 9 16 25 

D 
1 0 0 0 a 
1 1 a 0 0 
0 1 1 0 0 
0 0 1 1 0 
a 0 0 1 1 

D+.xV First difference. 
1 3 5 7 9 

D+. x,( D+. x v) Second difference. 
1 2 2 2 2 

(D+.xD)+.xV An equivalent statement for 
1 2 2 2 2 second differences. 

D+.xD The matrix which yields second 
1 0 0 0 a differences. 
2 1 0 0 0 
1 2 1 a 0 
0 1 2 1 a 
0 0 1 2 1 

D+.xD+.xD The matrix for third differences. 
1 0 0 0 0 

3 1 0 a a 
3 3 1 0 0 
1 3 3 1 0 

0 1 3 3 1 
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THE SLOPE FUNCTION CAN BE TREATED SIMI LARLY (AS A LINEAR 
FUNCTION) TO EXHIBIT THE INVERSE RELATIONSHIP BETWEEN 
DIFFERENTIATION AND INTEGRATION: 

S+.l
 
X+3+Sxl 2 3 4 5
 
X
 

3. 1 3.2 3. 3 3.4 3. 5 
V+X*2 
V 

9.61 10.24 10.89 11.56 12.25 

D+.xV 
9.61 O. 63 0.65 0.67 0.69 

(Dt.xV)+S 
96. 1 6.3 6 .5 6.7 6.9 

(D+S)t.xV 
96. 1 6. 3 6.5, 6. 7 6.9 

R+(D~S)t.xV 

(~D+S)t.xR 

9 • 61 10 • 2,4 10 • 89 11 • 5 6 1 2 • 2 5 
V 

9. 61 10 • 24 10 • 89 11 • 56 1 2 • 2 5 

fED IElDfS 
1 0 0 0 0 O. 1 O. 0 O. 0 0.0 0.0 
1 1 0 0 0 0.1 0.1 0.0 0.0 O. 0 
1 1 1 a a 0.1 0.1 O. 1 o. a o. a 
1 1 1 1 a O. 1 O. 1 0.1 0.1 o. a 
1 1 1 1 1 0.1 0.1 0.1 0.1 0.1 

D 
1 0 0 0 0 
1 1 0 a a 
o 110 0 
o a 110 
00011 

First difference of V. 

The slopes between 
po i nt s of V. 

An equivalent expression 
for slope. 

Points of the slope 
function. 

The inverse function 
applied to the slope 
function R yields the 
or i gina 1 va 1ues V. 

sxli]D 
0.1 0.0 0.0 0.0 O. 0 
0.1 O. 1 0.0 O. a 0.0 
0.1 0.1 0.1 0.0 0.0 
0.1 0.1 O. 1 0.1 0.0 
O. 1 0.1 0.1 0.1 0.1 

9.61 
Sx([]D)t.xR 
10.24 10.89 11.56 12.25 

This form of the inverse is 
clearly equivalent to inte­
gration by the rectangular 
r u 1e (i. e., the K t h row 0 f D 
sums over the first K 
points, and the multipl ica­
tion by s accounts for the 
grid size. 
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LOGIC
 

LOGIC CONCERNS PROPOSITIONS. A PROPOSITION IS ANY STATEMENT 
WHICH MAY BE JUDGEO-TRUE-OR FALSE, I.E., A PROPOSITION IS A 
FUNCTION WITH A RANGE OF TWO ELEMENTS. THESE ELEMENTS MAY BE 
REPRESENTED IN A VARIETY OF WAYS, USUALLY BY THE WORDS TRUE 
AND E81~£ OR BY THE NUMBERS 1 AND 0: --- ­

X+3 Propositions read as: 

1 
X<5 x is 

true 
less than 5 

o 
X>5 x is greater 

false 
than 5 

1 
0=31 X x is 

true 
divisible by 3 

a 
(X>5)1\0=3Ix x is greater 

false 
than 5 and X is divisible by 3 

X+1 2 3 4 5 6 7 8 9 10 A proposition appl ied to a 
X<5 vector yields a logical vector. 

1 1 1 1 0 0 0 0 0 0 This logical vector is, in 
X>5 effect, the characteristic 

0 0 0 0 0 1 1 1 1 1 vector (with respect to the 
0=31X universe x) of the set of 

0 0 1 0 0 1 0 0 1 0 elements which ~~!l~f~ the 
(X>5)I\O=3!X proposition, i.e., for which 

0 0 0 0 0 1 0 0 1 0 the proposition is true. 
(X<5)/X 

1 2 3 4 The result of the proposition 
(X>5)/X appl ied to X can therefore be 

6 7 8 9 10 used to select that subset of X 
(0=3\X)/X defined by the proposition. 

369 
( ( X> 5) 1\ 0 =3 I X) / x 

6 9 
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THE PROPOSITION (X>5)AO=3Ix IS SAID TO BE CQMEQUNQ BECAUSE 
IT IS FORMED AS A FUNCTION (A) OF SIMPLER PROPOSITIONS 
(X>5) AND (O=3jX). A FUNCTION SUCH AS A (PRONOUNCED AND) 
WHICH IS DEFINED ONLY ON THE ARGUMENTS 0 AND 1 IS CALLED-A 
LOGICAL OR BOOLEAN FUNCTION. THE COMPLETE BEHAVIOR OF A
LOGICAL FUNCTION-CAN BE EXHIBITED AS A 2-BY-2 FUNCTION 
TABLE AS FOLLOWS: 

L+-O 1 
Lo. AL ~lQ_1 

o 0 010 a 
o 1 110 1 

THERE IS ONE FURTHER FAMI LIAR LOGICAL FUNCTION v (OR) AND 
TWO LESS FAMI LIAR FUNCTIONS ~ (~QI-8~Q) AND ¥ (~QI:QB): 

o 1 1 1 1 0 
1 1 1 0 o 0 

WHEN APPLI ED ONLY TO LOGI CAL ARGUMENTS (0 OR 1), THE 
RELATIONS « ~ = ~ >~) ARE IN EFFECT LOGICAL FUNCTIONS 
(SINCE THEIR RANGE IS ALSO 0 1) AND ARE OFTEN GIVEN 
SPECIAL NAMES WHEN USED IN THIS WAY. FOR EXAMPLE: 

Exclusive-Or Material Implication Identity 
Lo.~L £ o. ~L Lo.=£ 

o 1 1 1 1 0 
1 0 o 1 o 1 

X 
1 2 3 4 5 6 7 8 9 10 11 12 X is divisible by 2 

and X is divisible 
((o=2IX)Ao=3IX)~o=61x by 3 ImQll§.§. that X 

1 1 1 1 1 1 1 1 1 1 1 1 is divisible by 6. 
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A THEOREM IS A PROPOSITION WHICH IS CLAIMED TO BE 
UNI VERSALLY TRUE, I. E., TO HAVE THE VALUE 1 WHEN 
APPLIED TO ANY ELEMENT IN THE UNIVERSE OF DISCOURSE. 
FOR EXAMPLE, THE PROPOSITION 

«(o=2IX)A(O=3IX))~O=6Ix 

IS A THEOREM WHICH MAY BE VERBALIZED IN A VARIETY OF 
WAYS: 

X is divisible by 2 and X is divisible by 3 
implies that X is divisible by 6. 

Any number divisible by both 2 and 3 is also 
divisible by 6. 

If X is divisible by both 2 and 3 then X is 
divisible by 6. 

Divisibil ity by 2 and 3 impl ies divisibil ity 
by 6. 

PROPOSITIONS ARE ALSO USED IN THE DEFINITION OF SETS, 
AND EXAMPLES MAY BE FOUND IN THE ACCOMPANYING 
DISCUSSION OF SETS. 
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SINCE A LOGICAL FUNCTION APPLIES TO TWO ARGUMENTS EACH 
CHOSEN FROM THE DOMAIN a 1, TH~ SET OF ALL POSSIBLE 
ARGUMENTS CAN BE LISTED AS THE ROWS OF A 4 BY 2 MATRIX AS 
FO LLOWS: 

o a 
o 1 
1 0 
1 1 

THIS MATRIX (AND ANALOGOUS MATRICES OF DIMENSION 2*N BY N) 
CAN BE PRODUCED BY THE FOLLOWING "TRUTH TABLE" FUNCTION: 

VZ+T N 
[lJ Z+~L(Np2)T-l+12*NV 

T 2 T 3 
0 0 0 0 0 
0 1 0 0 1 
1 0 0 1 0 
1 1 0 1 1 

1 0 0 
1 0 1 
1 1 0 

1 1 1 

~T 2 
0 0 1 1 
0 1 0 1 

tsJT 3 
0 0 0 0 1 1 1 1 
0 0 1 1 0 0 1 1 
0 1 0 1 0 1 0 1 

~T 4 
0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 
0 0 0 0 1 1 1 1 0 0 0 0 1 1 1 1 
0 0 1 1 0 0 1 1 0 a 1 1 0 0 1 1 
0 1 0 1 0 1 0 1 0 1 a 1 a 1 0 J. 
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EACH OF THE LOGICAL FUNCTIONS (A, V, ~, ETC.> CAN BE APPLIED 
TO ROWS OF THE TABLE T 2 TO YIELD THE VECTOR OF ALL 
POSSIBLE VALUES OF THE FUNCTION: 

T 2 
0 0 
0 1 
1 0 
1 1 

A/T 2 v /T 2 ~/T 2 
0 0 0 1 a 1 1 1 a 1 1 0 

EACH OF THESE VECTORS IS CALLED THE ~tl8B8~IgBl§Il~ Yf~IQB OF 
THE CORRESPONDING FUNCTION. TABLES OF THESE FUNCTIONS CAN 
THEREFORE BE PRODUCED BY APPENDING THEIR CHARACTERISTIC 
VECTORS AS COLUMNS TO THE MATRIX T 2: 

(((T 2),A/T 2),v/T 2),~/T 2 
00100 0 
o 1 101 1 
1 0 I 0 1 1 
111 1 1 a 

SINCE ANY FOUR-ELEMENT LOGICAL VECTOR IS A CHARACTERISTIC 
VECTOR OF SOME LOGICAL FUNCTION, THERE ARE IN ALL 2*4 
LOGICAL FUNCTIONS, AND THEY ALL OCCUR AS COLUMNS IN THE 
FOLLOWING MATRIX: 

~T 4 
0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 
0 a 0 0 1 1 1 1 0 0 a a 1 1 1 1 
0 0 1 1 0 0 1 1 0 0 1 1 0 0 1 1 
0 1 0 1 0 1 0 1 0 1 0 1 a 1 0 1 

THE CHARACTERISTIC VECTORS OF THE FUNCTIONS A., v, AND ;to CAN 
BE SEEN TO OCCUR AS CO LUMNS 2, 8, AND 7 OF THE FOREGOlNG 
TAB LE. 
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THE FUNCTION TABLE FOR ALL POSSIBLE LOGICAL FUNCTIONS OF TWO 
ARGUMENTS CAN THEREFORE BE EXHIBITED AS FOLLOWS: 

(T 2), ~T 4 
0 0 I 0 0 0 0 0 a 0 0 1 1 1 1 1 1 1 1 
0 1 I 0 0 0 0 1 1 1 1 0 0 0 a 1 1 1 1 
1 0 I 0 0 1 1 0 a 1 1 0 0 1 1 a 0 1 1 
1 1 I 0 1 a 1 0 1 0 1 a 1 0 1 0 1 0 1 

THE TAB LE OF ARGUMENTS FOR (I. E. , THE DOMAIN OF) ALL LOGICAL 
FUNCTIONS OF THREE ARGUMENTS IS GIVEN BY THE FOLLOWI NG 
MATRIX: 

T 3 
0 0 0 
a 0 1 
0 1 0 
0 1 1 
1 0 0 
1 0 1 
1 1 0 
1 1 1 

THE TABLE OF ALL CHARACTERISTIC VECTORS FOR 3 ARGUMENTS WOULD 
THEREFORE BE GIVEN BY ~T 8 AND WOULD CONTAIN 2*8 CO LUMNS. 
A PORTION OF THE FUNCTION TAB LE FOR 3 ARGUMENTS 
(REPRESENTING THE FIRST 17 FUNCTIONS) CAN THEREFORE BE 
DISPLAYED AS FOLLOWS: 

(T 3),8 17+~T 8 
0 a 0 I a 0 0 a a 0 0 0 0 0 a 0 a 0 a 0 a 
0 0 1 I 0 0 a 0 0 0 0 0 0 0 0 0 0 0 a a 0 
0 1 0 I 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
0 1 1 I 0 0 0 0 0 0 0 0 a 0 0 0 0 0 a a 1 
1 0 0 I 0 0 0 0 0 0 0 a 1 1 1 1 1 1 1 1 0 
1 0 1 I 0 0 0 0 1 1 1 1 a 0 a 0 1 1 .1­ 1 a 
1 1 0 I 0 0 1 1 0 0 1 1 0 0 1 1 0 0 1 1 a 
1 1 1 I 0 1 a 1 0 1 0 1 a 1 a 1 0 1 0 1 0 
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SETS 

A+-2 3 5 7 11 A finite set can be represented 
B+6 2 8 4 by a list of its elements. 

3EA MembeL~hlQ is the fundamental 
1 function defined on a set. 

3EB 
0 

(3EA)A3EB Does 3 belong to A and to B .. 
0 

(3EA)v3EB Does 3 belong to A or to B. 
1 

(3EA)A"'3EB Does 3 belong to A and not to B. 
1 

U+l12 The u.nlYers.e of dls.cQu.r:~e. is 
U the set of all possible 

1 2 3 4 5 6 7 8 9 10 11 12 elements under consideration. 

AEU 
1 1 1 1 1 Every element of any set in 

BEU the universe belongs to U. 
1 1 1 1 

UEA The logical vector that shows 
0 1 1 0 1 0 1 0 0 0 1 0 which elements of U belong to 

VEE A is called the ~b~rQc1eLls!1~ 
0 1 0 1 0 1 0 1 0 0 0 0 ~e~tQr of A <with respect to 

the universe U). 

(UEA)/U Compression of U by the characteristic 
2 3 5 7 11 vector of A yields A. 

(UEA)AUEB The characteristic vector of the 
o	 1 000 0 0 0 0 0 0 0 set of elements which belong to 

«UEA)AUEB)/U both A and B. 
2 
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ANY PROPOSITION (I.E., ANY FUNCTION WHOSE RANGE IS THE SET 01) 
DEFINES A SET: 

[lJ 
'iJz+p 
Z+(X~

X 
3)A(X<11)'iJ 

The 
the 

proposition P 
universe U 

applied to 
yields the 

characteristic vector of the 
U set of all elements of U which 

1 2 3 4 5 6 7 8 9 10 11 12 satisfy the proposition. The 
P U expression (P U)/U therefore 

0 o 1 1 1 1 
SP+(P 

1 1 
U)/U 

1 1 o 0 yields the 
elements. 

set of all such 

SP 
345 6 7 8 9 10 

'iJZ+Q X Proposition defining the set 
[lJ Z+O=2jXV of all even integers. 

Q U 
o 1 0	 101 0 1 0 1 0 1 

SQ+(Q U)/U 
SQ 

2 4 6	 8 10 12 

(P U)AQ U	 The characteristic vector and 
o	 0 0 1 010 101 0 0 the set of all elements which 

«P U)AQ U)/U belong to both SP and SQ, 
4	 6 8 10 i.e., the InlgL~g~11Qn of SF 

and SQ. 

«p U)vQ U)/U The YDIQD of SP and SQ. 
2 3 4 5 6 7 8 9 10 12 

(P U) A"'Q U The characteristic vector and 
00101010100 a the set of all el ements wh i ch 

«P U)AfOoJQ U)/U belong to SP and not to SQ. 
3 5 7 9 
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IF P IS A PROPOSITION AND SF IS THE SET IT DEFINES WITH 
RESPECT TO THE UNIVERSE U, THEN THE MEMBERSHIP OF ANY 
ELEMENT X CAN BE DETERMINED EITHER BY THE EXPRESSION p X 
OR BY THE EXPRESSION XESP: 

'i/Z-+-P X 
[1J Z+-(X~3)A(X<11)'V 

u 
1 2 3 4 5 6 7 8 9 10 11 12 

SP+(P U)/U 
SP 

3 4 5 6 7 8 9 10 

X+5 
P X 

1 

XESP 
1 

P 2 
0 

2ESP 
a 

X+1 2 3 4 5 

(p X) =XESP 
1 1 1 1 1 



AN INFINITE SET (SUCH AS THE SET OF ALL POSITIVE EVEN 
INTEGERS) CANNOT BE REPRESENTED BY A LIST OF ITS ELEMENTS, 
BUT CAN STilL BE REPRESENTED BY A PROPOSITION. IT IS NOT 
POSSIBLE TO APPLY THE PROPOSITION TO THE ENTIRE INFINITE 
UNIVERSE, BUT MEMBERSHIP OF ANY ELEMENT OR FINITE 
COLLECTION OF ELEMENTS CAN BE DETERMINED BY APPLYING THE 
PROPOSITION TO THEM: 

VZ+PEI X A proposition which defines the 
[1J Z+(X>O)I\O=2!XV set of positive even integers. 

PEI 4 
1 

PEI 4 
0 

PEI 2.4 
0 

X+O 1 2 3 4 5 

PEI X 
0 0 1 0 1 0 

(PEI X)/X 
2 4 
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FUNCTIONS FOR INTERSECTION, DIFFERENCE, UNION AND SET EQUALITY 
CAN EASILY BE DEFINED: 

VZ+A I B 
[1] Z+(A€B)/AV 

VZ+A D B 
[lJ Z+(""AEB)/AV 

'ilZ+A U B 
[lJ Z+A.B D AV 

VZ+A EQ B 
[1J Z+A/(A€B),BEAV 

A+1 2 345
 
B+2 4 6 8
 

A I B 
2 4 

B I A 
2 4 

A EQ B 
0 

(A I B) EQ (B I A) 
1 

A D B 
135 

A U B 
1 2 3 4 5 6 8 

These functions apply equally to sets of characters: 

E+' ABCDE'
 
F+'BDFH'
 

E I F 
ED 

E U F 
ABCDEFH 

E D F 
ACE 
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ALL 2*N SUBSETS OF A SET OF N ELEMENTS CAN BE NEATLY 
REPRESENTED BY THE MATRIX OF THEIR CHARACTERISTIC VECTORS. 
THIS MATRIX CAN ALSO BE CONCEIVED AS THE N-DIGIT BINARY 
REPRESENTATIONS OF THE INTEGERS FROM 0 TO -1+2*N, AND CAN 
THEREFORE BE PRODUCED BY THE FOLLOWING FUNCTION: 

'VZ+T N -[lJ Z+(Np2)T 1+12*N'V 

T 2 
0 0 1 1 
0 1 0 1 

T 3 

0 0 a 0 1 1 1 1 
a 0 1 1 0 a 1 1 
0 1 0 1 0 1 0 1 

5+'ABC' 
Z+T pS 
Z 

0 0 0 0 1 1 1 1 
0 a 1 1 a a 1 1 
0 1 0 1 0 1 0 1 

Z[ ; 4J The characteristic vector of 
0 1 1 the fourth subset, and the set 

Be 
Z[ ;4J/5 i tsel f. 

R+2 3 5	 The sums over all subsets of 
R+.xZ	 the set R. 

0 5 3 8 2 7 5 10 

Rx. *,Z	 The products over all subsets 
1 5 3 15 2 10 6 30	 of the set R. (These are the 

symmetric products occurring 
in Newton's identities for the 
coefficients of a polynomial 
in terms of its roots R.) 
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PROPOSITIONS DEFINING VARIOUS SETS OF NUMBERS (SUCH AS 
PRIMES AND PERFECT SQUARES) CAN BE CONVENIENTLY STATED AND 
USED: 

V2+PP S A proposltion for the 
[lJ Z+2=+/[1]O=(lr/S)o.lsv primes. 

5+5+19 
S 

6 7 8 9 10 11 12 13 14 
PP S 

0 1 0 0 0 1 0 1 0 
( PP 3)/3 

7 11 13 

'VZ+PSQ S	 A proposition for 
[ 1 ]	 Z+(S*.5)::LS*.5V squares. 

PSQ S 
0 0	 0 1 0 0 0 0 0 

(PSQ S) /S 
9 

'VZ+PPOL L	 A proposition to 
[ 1 ]	 Z+A/L<.5x+ILV determine whether a 

given vector represents 
PPOL 5 2 4 possible lengths for 

1 the sides of a polygon. 
PPOL 5 2 2 

0 
PPOL 3 1 7 4 

1 
PPOL 3 1 8 4 

0 
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ELECTRIC CIRCUITS
 

ARRAYS ARE USEFUL IN THE TREATMENT OF ELECTRICAL CIRCUITS 
FOR SEVERAL REASONS: 

1.	 A circuit is composed of a set of elements whose 
characteristics can therefore be-described by a vector 
or other array, e.g.: 

R+l0 20 30 40 50 60 

might describe a set of six resistors having resistances 
of 10, 20, 30, 40, 50, and 60 ohms. 

2.	 The !QQQIQg~ of the circuit (i.e., the connections of 
the circuit elements (branches) with the nodes) can be 
described by various arrays~-- For example, the topology 
of the accompanying circuit (formed from R) can be 
described by the following Qrgn~h £Qnn~£!iQn matrix: 

1 

Be 
1 2 344 1 60 
234 2 1 3 

3 

whose Ith column shows the nodes from and!Q which the 
Ith element is connected. (A direction is specified 
even though it is immaterial for bilateral elements such 
as resistors.) 

3.	 Most circuits are (approximately) Ilnggr (that is, 
voltages are linear functions of currents, and vice 
versa) and relations among them are easily represented 
as matrix products. 
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SIMPLE SERIES AND PARALLEL CIRCUITS
 

R+10 20 30 40	 Values for 4 resistors (In ohms). 

+/R Resistance of a series circuit. 
100 

fR	 Conductances. 
0.1	 0.05 0.0333 0.025 

+/fR Conductance of a parallel circuit. 
0.208 

f+/fR Resistance of a parallel circuit. 
4.8 

L+1 2 3 4 Four inductances. 

A+l00	 Angular velocity (2 pi times 
frequency). 

AxL Inductive reactance. 
100 200 300 400 

-fA xL	 Inductive susceptance.-0.01 0.005 0.00333 0.0025 

C+5 6	 7 8 Four capacitors. 

Axe Capacitive susceptance. 
5000 6000 7000 8000 

M+-3 4p(fR,L),C	 Description of four elements 
M each comprising resistance, 

0.1000 0.0500 0.0333 0.0250 capacitance, and Inductance. 
1.0000 0.5000 0.3333 0.2500 
5.0000 6.0000 7.0000 8.0000 

Q+ 2 3 P 1 a 0 0, ( - fA) , A Determination of a complex 
Q admittance matrix for the 

1.00 0.00 0.00	 four elements at velocity A 
0.00	 0.01 100.00 with the parts of each
 

element in parallel.
 

Q+. xM 
0.100 0.050 0.033 0.025 

499.990 599.995 699.997 799.997 
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BECAUSE THE RELATION BETWEEN VOLTAGES AND CURRENTS IS 
LINEAR, THE NODE CURRENTS I IN A CIRCUIT CAN BE DETERMINED 
FROM THE NODE VOLTAGES V BY (INNER PRODUCT) MULTIPLICATION 
BY A SUITABLE ADMITTANCE MATRIX Y AND THE VOLTAGES CAN BE 
OBTAINED AS V+Z+.xI, WHERE Z IS A SUITABLE IMPEDANCE 
MATRIX. FOR EXAMPLE: 

Y 
0.150 0.100 0.050 
0.100 0.125 0.025 
0.050 0.025 0.075 

10 ohms
 
Z
 1 -_.l~~''--- 2 

14.286 11.429 o. 000 
11.429 1 7 • 143 0.000 20 

0.000 0.000 0.000 ohms 

V+4 5 0
 
I+Y+.xV
 
I 3 

O. 1 a• 2,2 5 0 • 3,2 5 
Z+. x,I 

450 

- 46 ­



SIMI LARLY: 

1 

60 

y 

0.1367 0.1000 0.0167 0.0200 
0.1000 0.1750 0.0500 0.0250 
0.0167 0.0500 0.1000 0.0333 
0.0200 0.0250 0.0333 0.0783 

Z 
17.9700 12.9784 9.4841 0.0000 
12.9784 16.0399 10.1830 0.0000 

9.4841 10.1830 16.6722 0.0000 
0.0000 0.0000 O. 0,000 0.0000 

V+1 2 3 0
 
I+Y+.xV
 
I 

O. 113 O. 1 0.183 0.17 
Z+.xI 

1 2 3 a 
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THE ADMITTANCE MATRIX Y CAN EASI LY BE DETERMINED FROM THE 
COMPONENT ADMITTANCE MATRIX CAM (WHOSE DIAGONAL CONTAINS THE 
ADMITTANCE OF THE COMPONENTS) AND THE INCIDENCE MATRIX E 
WHOSE JTH ROW SHOWS CONNECTIONS FROM (DENOTED BY 1) AND TO 
(DENOTED BY -1) EACH OF THE BRANCHES (I.E., COMPONENTS) 
ASSOCIATED WITH THE VARIOUS COLUMNS. FOR EXAMPLE: 

1 CAM 
0.100 0.000 0.000 0.000 0.000 0.000 
0.000 0.050 0.000 0.000 0.000 0.000 
0.000 0.000 0.033 0.000 0.000 0.0004 2 60 
0.000 0.000 0.000 0.025 0.000 0.000 
O.OOD 0.000 0.000 0.000 0.020 0.000 
0.000 o. 000 0.000 0.000 0.000 0.017 

Y+E+. xCAM+. xl.s/.E 
y E 

0.137 0.100 0.01 7 0.02 a 1 0 0 0 1 1 
O. 1,00 0.175 0.050 0.025 1 1 a 1 0 0 
0.01 7 0.050 0.100 0.033 a 1 1 0 0 1 
0.020 0.025 0.033 0.078 0 0 1 1 1 0 

Since the admittance matrix is singular, the impedance matrix 
is obtained as the (bordered) inverse of a submatrix of Y: 

Z+(pY)+ffiC-1+pY)tY 
Z 

17.970 12.978 9.484 0.000 
12.978 16.040 10.183 0.000 

9.484 10.183 16.672 0.000 
0.000 0.000 0.000 0.000 
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FUNCTIONS RELATING THE TWO IMPORTANT REPRESENTATIONS OF THE 
TOPOLOGY OF A CIRCUIT (THE BRANCH CONNECTION MATRIX Be AND 
THE INCIDENCE MATRIX E) ARE EASILY DEFINED: 

'VE+F Be 
[1 ] E+-/(lr/,BC)o.=~BCV 

VB C+-G E 
[lJ B C+-( 1 l o .=G;lE)+.XlltpEV 

Be 
1 2 3 4 4 1 
2 3 4 2 1 3 

E+F Be 
E 

1 0 0 0 1 1 
1 1 0 1 0 0 
0 1 1 0 0 1 
0 a 1 1 1 a 

4 

G E 
1 2 3 4 4 1 
2 3 4 2 1 3 

1 

2 60 
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THE BRANCH CURRENTS AND VOLTAGES BI AND BV ARE EASI LV SEEN 
TO BE RELATED TO THE NODE CURRENTS AND VOLTAGES I AND V BY 
THE INCIDENCE MATRIX E AS FOLLOWS: 

CAM 
0.100 0.000 0.000 0.000 0.000 0.000 
0.000 0.05 a 0.000 0.000 0.000 0.000 
0.000 0.000 0.033 0.000 0.000 0.000 
0.000 0.000 0.000 0.025 0,,000 0.00 0 
0.000 0.000 0.000 o. 000 0.020 0.000 
0.000 0.000 0.000 0.000 0.000 0.017 

E V 
100 o 1 1 1 2 3 a
 
110 1 0 o
 
011 o a 1
 
001 1 1 o
 

BV+V+.xE Kirchhoff's Voltage Law
 
BV
 

1 1 3 2 1 2
 
BI+CAM+.xBV Kirchhoff's Current Law
 
I+E+.xBI
 
I 

0.1133 0.1 0.1833 0.17 

The branch voltages can also be obtained from the equivalent 
expression 

BV+-(~E)+.xV 

Collecting these results yields: 

I+E+.xCAM+.x(~E)+.xV 

From this it is clear why 

Y+-E+. xCAM+. x?s1.E 

yields an admittance matrix Y such that 

I+-Y+.xV 

All preceding results apply to a component admittance 
matrix with non-zero off-diagonal elements and hence can 
treat circuits with active elements represented as 
"voltage-controlled current-sources." 
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THE COMPUTER:	 A DEVICE FOR THE AUTOMATIC EXECUTION OF 
ALGORITHMS 

It is best to approach the study of the internal 
structure of any device with previous knowledge of the 
fYn~tlQn of the device, that is, of how to use it and of 
~bg1 it does as opposed to bQ~ it does it. The function of 
a computer is to execute algorithms presented to it in a 
manner familiar to anyone who knows how to write and enter 
programs. 

For example, if the following characters are entered: 

X+1 
Z+(X+2)x(X+4) 
Z 

the computer will act to assign the value 1 to the name X, 
the value 15 to z, and to print the number 15. The computer 
can therefore be conceived as a function which produces 
these results when applied to the argument P, where P is the 
following matrix of characters: 

P+-3 13p 'X+-1 Z+-(X+2)x(X+4)Z 
P 

X+1 
Z+-(X+2)x(X+4) 
Z 

The computer can therefore be represented by the 
following function: 

'VCOMP P 
[ 1 ] IC+1 Instruction counter set to 1. 
[ 2 ]	 IR+-P[IC; ] Instruction fetched into instruction 

register. 
[ 3 ] iIR Instruction in IR executed. 
[ 4J IC-+-IC+l Instruction counter incremented. 
[ 5 ]	 -+(ICElltpP)j2'V Repeat for next instruction if any 

remain. 

COMP P Use of the computer. 
15 

x 
1 
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'VCOMP P 
[1J IC+1 
[2 J IR+P[IC;J 
[ 3J ~IR 

[ 4J IC+IC+l 
[5 ] -+( ICE 1 1 tp P) /2 'l 

The function COMP displays the sequence 
(instruction fetch, instruction 

execution, updating of instruction 
counter) which is fundamental to any 

computer. It displays this clearly by 
subordinating (through the use of the 

execution function ~) the details of 
the execution of individual instructions. These details can 
then be brought out in a sequence of simple steps so as to 
make clear the complete structure of the computer. 

However, the simple function COMP does not handle all 
programs, and we will first illustrate how its capability can 
be extended by showing a modification necessary to handle 
branching: 

'V COMP2 P 
[1J IC+l 
[ 2J IR+P[IC; ] 
[ 3 ] -+(IR[1J='-+')/8 
[ 4J J.IR 
[5 ] IC+IC+l 
[ 6J -+(ICE11tpP) /2 
[7J +0 
[8J IC+J.lfIR 
[9J -+6\1 

COMP2 P 
15 

COMP2 P2 
15 
24 
35 
48 

P2 A program which 
X+l employs branching. 
Z+(X+2)x(X+4) 
Z 
X+X+l 
-+2xX~4 

Lines 8 and 
Ie (that is, 
character of 

9 are executed to respecify 
branch) if the fi rst 
the instruction is +. 
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AN IMPORTANT STEP IN EXPOSING THE DEIAtLS OF EXECUTION 
ts THE COMPILATION OF A COMPOUND EXPRESSION SUCH AS 
(A+D)-(~A)+«B+G)~D)~G+l0G INTO AN EQUIVALENT SEQUENCE OF 
SIMPLE EXPRESSIONS. THIS WI LL BE SHOWN AS A SEQUENCE OF 
THREE TRANSFORMATIONS: 

S3+'(A+D)-(fA)+«B+G)xD)~G+loG' 

D3+PARSE 83
 
D3
 

A 
+ 

D 

A 
+ 

B 
+ 

G 
x 

D 
... 

G 
+ 

1 
0 

G 

A diagramming or Qar~~ 

of the expression in 
which the result is a 
character matrix (in 
this case 19 by 11) 
which exhibits the 
sequence of execution 
in the form of a tree. 
The lines drawn in-the 
copy of D3 on the right 
show this structure 
more clearly. 

P3+POLISH D3 The parenthesis-free or fQll~b form of 
P3 the expression represents a dyadic 

-+AD+f A~x+BGD+Go1G funct i on such as AxB by xAB,- and a 
monadic function such as tA analogously 

C3+COMPILE P3 with a blank space for the non-existent 
C3 1eft argument, that is, + A. 

~+1oG 

~+G+Z This final sequence of simple 
~+B+G statements employs names for each of 
Q+~xD the partial results. (The use of 
fZ+Q~4 underscored names avoids conflict with 
fl.+ ~A the names in the original expression.) 
f.+§.+I2 
Q+A+D 
Q-f. 

G+l+D+l+B+l+A+1 The assignment of values to the 
A,B,D,G variables A, B, D~ and G permits both 

1 2 3 4 the original expression S3 and the 
COMP 1 26pS3 compiled form C3 to be executed by the 

2.550078271 computer COMP. (The expression 83 must 
COMP C3 be reformed to a l-row matrix to be 

2.550078271 acceptable as an argument for COMP.) 
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THE TREATMENT OF AN EXPRESSION WHICH INCLUDES ASSIGNMENTS 
(+) IS SHOWN BELOW: 

S4
 
Z+XxY+G+D
 

PARSE S4 
Z
 

+
 

X 
x
 

y
 
+ 

G 

+ 
D 

POLISH PARSE S4
 
+ZxX+Y+GD
 

COMPILE POLISH PARSE S4
 
!l.+G+D
 
Y+!!.
 
li+Xxy
 
Z+-h! 

X+l+G+l+D+l
 
D,G,X
 

123 

y 

VALUE ERROR 
Y 
A 

Z 
VALUE ERROR 

Z 
A 

COMP COMPILE POLISH PARSE S4 
Y
 

3
 
Z 

9
 
) ERASE y Z
 

COMP 1 9pS4
 
Y
 

3 
Z 

9 
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THE PARSE FUNCTION EMPLOYS THREE MAJOR FUNCTIONS C, L, AND R 
WHICH RESPECTIVELY SELECT THE CENTRAL FUNCTION (t.E., THE 
OVERALL FUNCTION WHICH IS TO
 
EXPRESSION, THE PART TO THE
 
AND THE PART TO THE RIGHT: 

'V Z+-C E 
[1J Z+E[CENTRALFN EJ 

V 
'V Z+L E 

[1J Z+(-l+CENTRALFN E)tE 
V 
V Z+R E 

[lJ Z+(CENTRALFN E)~E 

'V 

BE EXECUTED LAST) OF THE 
LEFT OF THE CENTRAL FUNCTrON, 

33 
(A+D)-(fA)+«B+G)xD)+G+1oG 

C 83 

L 83 
(A+D) 

R 83 
(fA)+«B+G)xD)+G+loG 

L R 83 
( fA) 

THESE FUNCTIONS IN TURN EMPLOY THE FUNCTIONS CENTRALFN 
(WHICH DETERMINES THE INDEX OF THE CENTRAL FUNCTION), 
DEPTH (WHICH DETERMINES THE DEPTH IN PARENTHESES OF EACH 
PART OF AN EXPRESSION), AND FUNCTIONS (WHICH DETERMINES 
WHICH CHARACTERS IN AN EXPRESSION REPRESENT FUNCTIONS): 

v Z+-CENTRALFN E 
[lJ Z+-«FUNCTIONS E)AO=DEPTH E)11 

V 
V Z+-DEPTH E 

[lJ Z+-+\(E='(' )-0, -li-E=')' 
V 
V Z+-FUNCTIONS E 

[lJ Z+EE'++-xf<$=~>~VA?Ep~t~lo*erL~TI' 

'V 

E+L R R 53 
E 

(B+G)xD) 
D+-DEPTH E 
D 

1 2 2 2 2 2 1 1 1 
'012'[1+DJ 

122222111 
FUNCTIONS E 

000 1 0 0 100 

THE PARSE FUNCTION EMPLOYS TWO FURTHER FUNCTIONS STRIP 
(WHICH STRIPS OFF OUTER PARENTHESES), AND ON (WHICH STACKS 
THE ROWS OF ONE TABLE ON TOP OF THE ROWS OF ANOTHER): 

IJ Z+-PARSE E 
[1J ~OXlA/~FUNCTIONS Z+STRIP E 
[ 2 J Z+- (' ',' , , PAR 8 E L Z) 0 N(C Z) 0 N ' '~' PAR 5 E R Z, !t 

IJ Z+STRIP E 
[lJ +Oxl1~L/DEPTH Z+E 

V Z+A ON B [2J Z+STRIP 1+-1+E 
[1J A+(-2t1 1,pA)pA V 
[ 2] B+ ( - 2 t 1 1 ~ p B ) p B 6---. ---' 

[3J Z+«(pA)rO 1 x pB)tA),[1]«pB)rO 1 x pA)tB 
'V 

D+F+STRIP E 
(B+G)xD 

D+A+PARSE L F 
B A ON B (' " r " A) ON C F 

+ B B 
G + 

D+B+PARSE R F G G 
D D x 
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THE POLISH FUNCTION FIRST STRIPS ALL BLANK COLUMNS FROM THE 
PARSED MATRIX M, AND THEN APPLIES THE FUNCTIONS LT, CT, AND 
RT TO SELECT THE LEFT, CENTER, AND RIGHT PARTS OF THE 
ARGUMENT, THE CENTER BEING DETERMINED AGAIN AS THE -OVERALL 
FUNCTION: 

V Z+POLISH M 
[1J Z+CT M+(v/[lJM~r ')/M 
[2J +Oxl1;?:ltpM 
[3J Z+Z,(POLISH LT M),POLISH RT M 

V 

'V Z+CT M 
[1] Z+,l 1t(' '~FIRSTCOL M)/[lJM 

'V 

'V Z+RT M 
[lJ Z+(v\-l~' '~FIRSTCOL M)/[lJM 

'V 

'iJ Z+LT M 
[lJ Z+(~v\' r~FIRSTCOL M)/[lJM 

'l 

E 
«B+G)xD)
 

D+M+PARSE E
 
B
 

+ 
G 

x 

D 
LT M
 

B
 
+ 

G
 
CT M
 

x 

RT M
 
D
 

D+I+POLISH LT M 
+BG 

D+J+CT M 
x 

D+K+POLISH RT M 
D 

J,I,K 
x+BGD 

POLISH M 
x+BGD 

THE FUNCTION FIRSTCOL SELECTS THE FIRST COLUMN OF ITS 
ARGUMENT: 

'iJ Z+FIRSTCOL M 
[lJ Z+,«ltpM),l)tM 

'V 
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THE COMPILE FUNCTION ALSO EMPLOYS LEFT, RIGHT, AND CENTER 
FUNCTIONS (LE, RE, AND CE), THE CENTER BEING DETERMINED AS 
THE RIGHTMOST FUNCTION fN THE POLISH STRING AND THE TWO 
CHARACTERS FOLLOWING IT, I.E., THE SUBEXPRESSION WHICH IS TO 
BE EXECUTED E1BSI: 

'V Z+CENTER E F 
[lJ Z+( LOCCENTER E) IE (B+G)xD 

IJ P+POLISH PARSE F 
'V Z+LEFT E P 

[lJ Z+(rvv\LOCCENTER E) IE x+BGD 
'V 
'V Z+RIGHT E D+LE+LEFT P 

[ 1 ] Z+LOCCENTER E x 

[2J Z+(.-vZvA\--Z)IE D+CE+CENTER P 
V +BG 
'V Z+LOCCENTER E D+RE+RIGHT P 

[1 J Z+( lpE)EO 1 2+(FUNCTIONS E)r .. XlpE D 
'V LOCCENTER P 

0 1 1 1 0 

THE COMPILE FUNCTION RE-ORDERS THE CENTER TO PRODUCE A NORMAL 
DYADIC EXPRESSION AND PREFIXES IT BY AN ITERMEDIATE NAME 
(CHOSEN FROM NAMES) AND AN ASSIGNMENT ARROW, BUT ONLY IF THE 
CENTER NEITHER CONTAINS AN ASSIGNMENT ARROW ITSELF NOR 
EXHAUSTS THE EXPRESSION: 

NAMES 
A~QQEfQHI~KLMMQEQH~l~I~KX~ 

IJ Z+COMPILE E;CE 
[lJ CE+CENTER E 
[2J Z+«( '+'E:CE)¥3~pE)/NAMES[1J,'+'),CE[2 1 3J 
[3J NAMES+1¢NAMES 
[4J -+Ox13~pE' 

[5J Z+Z ON COMPILE(LEFT E),Z[lJ,RIGHT E 

CE 
+BG 

CE[2 1 3J 
B+C 

Z+NAMES[1J, '+',CE[2 1 3J 
z 

t!+B+G 
LE,Z[lJ,RE 

COMPILE LE,Z[lJ,RE 

Z ON COMPILE LE,Z[lJ,RE 
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A	 COMPUTER MAY ALSO BE TREATED AT A LEVEL OF DETAI L WHICH 
MAKES EXPLICIT THE BINARY REPRESENTATION OF NUMBERS AND 
INSTRUCTIONS. FOR EXAMPLE, A COMPUTER WITH THE FOLLOWING 
STRUCTURE AND INSTRUCTIONS CAN BE REPRESENTED BY THE 
FUNCTION MACHINE SHOWN BELOW: 

~Qgg !n.§!rb!f!lQn~ A DIIIIilJ
000 Load A 
001 Store A 
010 Enter MIe DIIIJ
011 Print 
100 Add Irn:J i I LD101 Constant to A 
110 Terminate Code Address 
111 Branch if A~M[31;J 

A: Accumulator 
IC: Instruction Counter 
IR: Instruction Register 

M: Memory of 32 s-bit words 

IJMACHINE
 
[ 1 J IC+-O 0 0 0 0
 
[ 2 J I R +-M [ 2 1 I C; ]
 Fetch instruction.
 
[ 3 J IC+-(5p2)Tl+21IC
 Increment Ie. 
[4 ] -+5+213tIR Branch to execute 
[ 5 ] -+2,A+-M[213+IR;J L instruction indicated 
[ 6 J ~2,M[213+IR;J+-A S by code in first three 
[ 7 J -+2,M[213+IR;J+-(Sp2)TD ~ E positions of JR. 

-	 [8J -+2, D+21M[ 213-}IR; ] =P 
[ 9 J -+2,A+-A PLUS M[2.l3+IR;J A 
[10J - T 2 , A -.(-- 0 0 0, 3 +IRe 
[ 11 J -+0 T 
[ 12 ] (A/A=M[31;J)/2 B
 
(13J -+2,IC+-3+IR'V
 

VZ+-X PLUS Y Addition function
 
Z+-(8p2)T(2.lX)+2lYV (detailed later).
 

(o-origin indexing is used in these functions, that is, 
the rows of M are indexed by the values 0, 1, 2, ... ,31.) 
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IF THE FOLLOWING PROGRAM IS STORED IN THE COMPUTER (I.E.,
THE MEMORY IS INITIALLY SET TO THE INDICATED VALUE) THEN 
THE MACHINE (I.E., THE FUNCTION MACHINE) WI LL COMPUTE AND 
PRINT THE SEQUENCE OF FIBONACCI NUMBERS, WHICH BEGINS WITH 
1 1 AND CONTINUES WITH EACH NUMBER BEING THE SUM OF THE 
TWO PRECEDING IT. THE TABLE P AT THE RIGHT DISPLAYS THE 
MEANING OF EACH OF THE INSTRUCTION CODES IN THE MEMORY: 

M P 
1 0 1 0 0 0 0 1 Constant 1 to A C 1 
0 0 1 1 1 1 1 1 Store A in 31 S V 
0 0 1 1 1 1 1 0 Store A in 30 S X 
0 a 1 1 1 1 0 1 Store A in 29 S .Y 
0 0 0 1 1 1 1 0 Load A from 30 L X 
1 0 0 1 1 1 0 1 Add from 29 A Y 
a 0 1 1 1 1 0 0 Store A in 28 S Z 
0 1 1 1 1 1 1 0 Print from 30 P X 
0 0 a 1 1 1 0 1 Load A from 29 L Y 
0 a 1 1 1 1 1 0 Store A in 30 S X 
0 0 0 1 1 1 0 0 Load A from 28 L Z 
a 0 1 1 1 1 0 1 Store A in 29 S Y 
1 1 1 0 0 1 0 0 Branch to 4 B 4 
a 0 0 0 0 0 0 0 This row and 

succeeding rows are immaterial 
except that the last row should 
be all zero. 

'V MACHINE 
[ 1 J Ie+- 0 a 0 0 0 
[2J I R+-M[ 2.1 Ie; ] 
[3J IC+(5p2)Tl+2.lIC 
[ 4J +5+2.l3tIR 
[5J -+2,A+-M[2.l3i-IR;J 
[6 ] -+2 , M[ 21 3 +I R ; ] +-A 
[7J +2,M[2.l3+IR;]+(8p2)rD 
[ 8 ] ~2,O+2~M[2.l3+IR;J 

[ 9J -+2,A+A PLUS M[2.l3+IR;] 
[10J +2,A+ 0 0 0 ,3+IR 
[11J -+0 
[12J -+2 X \A/A=M[31;] 
[13J --+2,IC+3+IR 

\l 
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THE FOLLOWING TRACE OF THE EXECUTION OF THE FUNCTION MACHINE 
SHOWS THE DETAlLED EXECUTION OF A PORTION OF THE PROGRAM 
STORED IN THE MEMORY M: 

)ORIGIN 0 
WA"S 1 

T!J.MACHINE+l13 

MACHINE 
MACHI NE[ 1 ] 0 0 0 0 0 
MACHINE[ 2J 1 0 1 0 0 0 0 1 
MACHINE[ 3J a 0 0 0 1 
MACHINE[4J 10 
MACHINE[ 10J 2 0 0 0 0 0 a a 1 
MACHINE[2J 0 0 1 1 1 1 1 1 
MACHINE[3J 0 a 0 1 a 
MACHINE[4J 6 
MACHINE[ 6J 2 0 0 a 0 0 0 0 1 
MACHINE[ 2J 0 0 1 1 1 1 1 0 
MACHI NE[ 3J 0 0 0 1 1 
MACHINE[ 4J 6 

MACHINE[ 6J 2 0 0 0 0 0 0 0 1 
MACHINE[2J a a 1 1 1 1 0 1 
MACHINE[ 3J a a 1 0 0 
MACHINE[4J 6 
MACHINE[ 6J 2 0 0 0 0 0 a 0 1 
MACHINE[2] 0 0 0 1 1 1 1 0 

MACHINE[ 3] 0 0 1 0 1 
MACHINE[4J 5 
MACHINE[ 5J 2 0 0 0 0 0 0 0 1 
MACHINE[2J 1 0 0 1 1 1 0 1 
MACHINE[ 3J 0 a 1 1 0 
MACHINE[ 4J 9 

MACHINE[ 9J 2 0 a 0 0 0 0 1 0 

MACHINE[ 2J 0 0 1 1 1 1 0 0 

MACHINE[ 3J 0 0 1 1 1 
MACHINE[ 4J 6 
MACHINE[ 6J 2 0 0 a 0 0 0 1 0 
MACHINE[ 2J 0 1 1 1 1 1 1 0 
MACHINE[ 3J 0 1 0 a 0 
MACHINE[4J 8 
1 
MACHINE[sJ 2 1 
MACHINE[2] 0 a 0 1 1 1 0 1 
MACHINE[ 3 ] 0 1 0 0 1 
MACHINE[ 4J 5 
MACHINE[sJ 2 a 0 a a 0 a a 1 
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THE MATRIX p SHOWN TO THE RIGHT OF THE PROGRAM FOR THE 
F I BONACC I NUMB ERS IS AN EQUIVALENT SYMBOLIC STATEMENT 
WHI CH IS EASIER TO WRITE. AN ASSEMBLER PROGRAM CALLED 
ASSEMBLE PRODUCES THE MATRIX M AS A-FUNCTION OF p: 

)ORIGIN 1 
WAS 0 

M+ASSEMBLE P 
M P 

1 0 1 0 0 0 0 1 C 1 
0 0 1 1 1 1 1 1 S V 
0 0 1 1 1 1 1 0 S X 
a a 1 1 1 1 a 1 S Y 
a a a 1 1 1 1 0 L X 
1 a a 1 1 1 a 1 A y
 

0 0 1 1 1 1 0 0 S Z
 
0 1 1 1 1 1 1 a x
p
 

0 0 a 1 1 1 0 1 L Y
 
0 0 1 1 1 1 1 0 S x
 
0 0 o 1 1 1 0 0 L Z
 

y
0 0 1 1 1 1 0 1 S
 
1 1 1 0 0 1 0 0 B 4
 
a 0 o a 0 a a 0
 
0 0 o a a 0 0 0
 
0 0 o 0 0 0 0 0
 
0 0 o a 0 0 0 0
 

0 0 o 0 a a 0 0
 
0 a 0 0 a 0 0 0
 
a 0 a 0 0 0 0 0
 
0 a a 0 0 0 0 0
 
a 0 o 0 0 0 0 0
 
0 0 o a 0 0 0 0
 

0 0 o a a 0 0 a
 
0 0 o 0 0 0 0 0
 

a 0 o 0 0 0 0 0
 

0 0 o 0 0 0 0 0
 
0 0 a a 0 0 0 a
 
a 0 o 0 0 0 0 0
 
0 0 o 0 0 0 0 a
 
0 0 o a 0 0 0 0
 
0 0 0 a 0 0 0 0
 

)ORIGIN 0 
WAS 1 

MACHINE 
1 

1 
2 
3 
5 

8 
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I 

THE ASSEMBLY PROGRAM IS SHOWN BELOW: 

'iJZ-+-A5SEMBLE P 
[ 1 J 2-+-32 8p 0
 
[ 2 J 5'1'+-0 6p' ,
 
[ 3J I+O
 
[ 4J -+Oxl(ltpP)<I+I+l
 
[5J INST+P[I; 1J J
 
[ 6J AR G+P[ I; 3J
 
[7 ] Z[I;J+-(CODE INS'1'),BINARY NUMERIC ARC 
[ 8J -+4x lINS'1'E' BC' 
[ 9 ] ST+5T WITH ARC 
[10J Z[I; 3+1 SJ+ST ADDRESS ARC 
[llJ +4V 

'lZ+CODE X 
O'l [ 1 ] Z+2 2 2T-1+'LSEPACTB'lX'iJ 
I"'V 

\lZ+BINARY X
 
[ 1 J Z+( 5p2)TX'V
 

'VZ-+-NUMERIC X 
[1 J Z+-1+'0123456789'lX'iJ 

IJZ+S'1' WITH NEW 
[ 1 J Z+ST 
[ 2 J -+Q x lV/NEW=ST[;l] 
[ 3 J Z+ST,[lJNEW,CHAR BINARY 31-(pST)[1]'V 

'VZ+ST ADDRESS X 
[ 1 J Z+NUMERIC 1+S'1'[5'1'[ ;lJ1X;]'iJ 

'VZ+CHAR X 
[ 1 J Z+'0123456789'[1+X]V 

Initialize symbol table. 

Assemble Ith instruction. 

Add any new argument to symbol table. 
Replace address part from symbol table if 

neither branch nor constant. 

Encode symbols L, 5, etc. 

x in 5 digit binary. 

Numeric equivalent of character vector. 

Add NEW to symbol table if not already in it. 
Assign next address (in decreasing sequence). 

Address associated with name in symbol table. 

Character equivalent of numeric vector. 



THE PROGRAM GIVEN FOR THE FIBONACCI NUMBERS WILL NEVER STOP.
 
A MORE SATISFACTORY PROGRAM WHICH 
THE KEYBOARD TO DETERMINE THE NUMBER 
TO BE PRINTED IS SHOWN BELOW: 

)ORIGIN 1 
WAS 0 

M+ASSEMBLE P2 
P2 M 

C 0 1 a 1 a 0 a a a 
S v 0 0 1 1 1 1 1 1 
E Q 0 1 o 1 1 1 1 0 
C 1 1 0 1 0 0 0 0 1 
S X a 0 1 1 1 1 0 1 
S y 0 0 1 1 1 1 0 0 
L X 0 0 o 1 1 1 0 1 
A y 1 0 o 1 1 1 0 0 
s z 0 a 1 1 1 0 1 1 
P X a 1 1 1 1 1 0 1 
L Y 0 0 a 1 1 1 0 0 
s x 0 0 1 1 1 1 a 1 
L Z 0 0 o 1 1 0 1 1 
S y 0 a 1 1 1 1 0 0 
C 1 1 0 1 0 0 0 0 1 
A V 1 0 o 1 1 1 1 1 
S V 0 0 1 1 1 1 1 1 
L Q 0 a o 1 1 1 1 0 
B 6 1 1 1 0 0 1 1 0 
T 1 1 o 1 1 0 1 0 

0 0 o a 0 0 0 a 

)ORIGIN a 
WAS 1 

MACHINE 
0: 

4 
1 
1 
2 
3 

MACHINE 
0: 

6 
1 
1 
2 
3 
5 
8 

ACCEPTS AN ENTRY FROM
 
OF FIBONACCI NUMBERS
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The function PLUS used in conjunction with the 
function MACHINE adds two numbers which are represented in 
binary and yields their sum also represented in binary: 

VZ+X PLUS Y 
[lJ Z+(8p2)T(2~X)+2~YV 

This function does not show any of the detail 
necessary for designing a mechanical adder which would have 
to act on the individual digits of the representation. The 
design of such an adder can be approached by first treating 
a familiar representation (base 10), then the base 2 
representation using addition of single digits, then the 
base 2 representation using only logical functions: 

VZ+X DPLUS Y Decimal plus. 
[1J Z+X Sum (or addend) to result. 
[ 2J 
[ 3] 
[ 4J 

-+-(A/O=Y)/O 
x+10Iz+y 
Y+lq,10~Z+Y 

Stop if augend 
Sum withou
New. carry. 

t car
is zero. 
ry. 

[5J -+-1\7 Repeat. 

Tf:JDPLUS+l 3 4 
1 9 9 DPLUS 0 0 1 

DPLUS[l] 1 9 9 A trace of the function DPLUS 
DPLUS[3] 1 9 0 shows its execution in detail. 
DPLUS[4J a 1 0 
DPLUS[l] 1 9 a 
DPLUS[3] 1 0 a 
DPLUS[4] 1 0 0 
DPLUS[l] 1 0 0 
DPLUS[3] 2 a a 
DPLUS[4] 0 a a 
DPLUS[l] 
2 0 I a 

2 0 0 

- 64 ­



THE FIRST FUNCTION FOR BINARY ADDITION (BPLUS) IS IDENTICAL TO 
THE FUNCTION FOR DECIMAL ADDITION EXCEPT THAT REMAINDERS AND 
CARRIES ARE TAKEN WITH RESPECT TO 2 RATHER THAN 10. THE 
SECOND FUNCTION (LPLUS) REPLACES THE RADIX 2 REMAINDERS AND 
CARRIES BY EQUIVALENT LOGICAL FUNCTIONS: 

VZ+X DPLUS Y VZ+X BPLUS Y VZ+X LPLUS Y 
[ 1 J Z+X [ 1 J Z+X [ 1 ] Z+X 
[ 2 ] +(A/O=Y)/O [ 2 ] -+(A/O=Y)/O [2 J +(/\/O=Y)/O 
[ 3J x+l0Iz+y [ 3] x+2Iz+y [ 3 J X+Z;;tY 
[ 4] Y+l<Pl0~Z+Y [ 4) Y+14>2$Z+Y [ 4J Y+1Q>ZAY 
[5J +lV [5J +lV [ 5 ] +1\7 

X+(8p2)T199 
Y+(8p2)Tl 
X 

1 1 0 0 0 1 1 1 
Y 

0 0 0 a 0 0 0 1 
1 9 9 DPLUS 0 o 1 

2 a 0 
10.11 9 9 DPLUS 001 

200 
X BPLUS Y 

1 1 0 0 1 a a 0 
2.tX BPLUS Y 

200 
2.iX LPLUS Y 

200 
T6BPLUS+l 3 4 
X BPLUS Y 

BPLUS[lJ 1 1 0 0 0 1 1 1 
BPLUS[ 3J 1 1 a 0 a 1 1 a 
BPLUS[4] 0 0 0 a 0 a 1 0 
BPLU8[1] 1 1 0 0 0 1 1 0 
BPLUS[3] 1 1 0 0 0 1 0 0 
BPLUS[4J 0 0 0 0 a 1 a a 
BPLUS[l] 1 1 0 0 0 1 0 0 
BPLUS[ 3J 1 1 0 0 0 a 0 0 
BPLUS[4] a 0 0 0 1 a 0 0 
BPLUS[l] 1 1 a 0 0 0 0 0 
BPLUS[3] 1 1 0 0 1 0 0 0 
BPLUS[ 4] 0 0 0 0 0 0 0 0 
BPLUS[l] 1 1 0 0 1 0 0 0 
1 1 a 0 1 0 0 a 
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