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’ INTRODUCTION

Scoring functions play a critical role in structure-based virtual
screening.1,2 An ideal scoring function can guide docking pro-
grams to generate and identify native-like docking poses. On the
basis of the correct docking models, an ideal scoring function can
also predict the binding affinity and correctly rank all compounds
in the virtual screening library. Still, despite extensive research
over many years, the accuracy of scoring functions remains a
major bottleneck in structure-based virtual screening.3,4

The binding affinity is defined by the free energy of the
protein�ligand binding. Direct calculation of free energy re-
quires extensive sampling in the conformational space, which is
generally infeasible except in a few special cases. Given the
computational inefficiency of conformational sampling, certain
approximations or assumptions are often made to estimate the
binding free energy using physical force field models that some-
time also account for implicit solvation.5,6With the improvement
of the underlying force fields and increased computational power
of modern computers, the performance of binding affinity
calculations using physical methods is expected to improve
gradually. On the other hand, there are alternative approaches
that take advantage of the rapidly growing data on the

experimental binding affinity of many compounds. These experi-
mental databases are used to derive empirical scoring functions
or statistical models to predict the binding affinity.7,8 Such
knowledge-based scoring functions may capture certain factors
that are often ignored or difficult to describe explicitly using
physical force field-based scoring functions such as entropic con-
tribution, pi-stacking, or environment-dependent polarization.

To improve the outcome of structure-based drug discovery,
there is a great need for an unbiased comprehensive test set to
compare different scoring functions and identify their respective
strengths and limitations, whichmay lead to novel ways to further
improve the accuracy of binding affinity prediction. The recently
established Community Structural�Activity Resources (CSAR)-
National Research Council of Canada (NRC) high quality
benchmark set9 (abbreviated as CSAR-NRC in the following
sections) provides excellent opportunities to develop and bench-
mark different scoring functions. This benchmark set contains
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ABSTRACT: The curated CSAR-NRC benchmark sets pro-
vide valuable opportunity for testing or comparing the perfor-
mance of both existing and novel scoring functions. We apply
two different scoring functions, both independently and in
combination, to predict the binding affinity of ligands in the
CSAR-NRC data sets. One reported here for the first time
employs multiple chemical�geometrical descriptors of the
protein�ligand interface to develop Quantitative Structure
Binding Affinity Relationships (QSBAR)models. Thesemodels
are then used to predict binding affinity of ligands in the external
data set. Second is a physical force field-based scoring function, MedusaScore. We show that both individual scoring functions
achieve statistically significant prediction accuracies with the squared correlation coefficient (R2) between the actual and predicted
binding affinity of 0.44/0.53 (Set1/Set2) with QSBAR models and 0.34/0.47 (Set1/Set2) with MedusaScore. Importantly, we find
that the combination of QSBAR models and MedusaScore into consensus scoring function affords higher prediction accuracy than
any of the contributing methods achieving R2 values of 0.45/0.58 (Set1/Set2). Furthermore, we identify several chemical features
and noncovalent interactions that may be responsible for the inaccurate prediction of binding affinity for several ligands by the
scoring functions employed in this study.
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two diverse subsets (Set1 and Set2) of protein�ligand com-
plexes whose experimental binding affinity as well as high-
resolution X-ray structures are available.

In this study, we employ the CSAR-NRC benchmark set to
test two scoring functions of very different natures. One is
MedusaScore,6 which is a force field-based scoring function de-
rived from the Medusa force field10 and originally designed for
protein folding simulations. To ensure the best transferability of
MedusaScore, its parameters are based on physicochemical pro-
perties, and no protein�ligand complex data are used for train-
ing. The second is based on the quantitative structure binding
affinity relationship (QSBAR) modeling,11 an approach that
correlates special descriptors of the protein�ligand interface to
ligand binding affinity using statistical modeling approaches. In
the previous study, QSBAR models were constructed from 264
X-ray protein�ligand complexes with known binding affinity
using protein�ligand interfacial descriptors derived from the
Pauling electronegativity. Herein, we develop novel descriptors
by incorporating conceptual DFT atomic properties12 into the
generation of protein�ligand interfacial descriptors and use
high-quality CSAR-NRC sets to construct and validate QSBAR
models that are used to predict the binding affinity of ligands in
external data sets. These empirical QSBAR models may be able
to capture implicitly some subtle interactions that are difficult to
calculate and that may be ignored by physical force fields.

We find that both scoring functions, i.e., MedusaScore and
QSBAR models, afford reasonably good performance in binding
affinity prediction for CSAR-NRC ligands. Moreover, when
combining the two scoring functions together, we find that the
consensus scoring function improves the prediction accuracy
compared to each individual scoring function. We attribute this
observation to the complementarity of the two types of scor-
ing functions that employ completely different principles to
capturing and representing protein�ligand interactions as well as
to higher accuracy of consensus prediction versus individual

components. More specifically, we find that sets of prediction
outliers from each scoring function do not completely overlap.
Also, by analyzing the prediction outliers for each scoring
function on the basis of their protein family membership and
their chemical features, we identify several distinct chemical
features and specific noncovalent interactions, which are asso-
ciated with wrong predictions. Some of these traits are specific to
outliers when using MedusaScore, while others are characteristic
of the QSBAR model. Such analysis not only provides insights
into the complementarity between these two types of scoring
functions but also gives possible clues for future improvement of
their accuracy.

’METHODS

Data Set. The CSAR-NRC high quality (CSAR-NRC HiQ)
sets are downloaded from the CSAR Web site.9 The two sets,
Set1 and Set2, included in the package contain 176 and 167
complexes, respectively. The descriptive analysis of the two data
sets, based on the binding affinity of complexes and the protein
family, is shown in Table 1. For each of the downloaded
complexes, the original Sybyl MOL2 format is converted to the
PDB format using Openbabel 2.2.0.13 Because of the current
limitations of the MedusaScore program, we also removed all
capping residues from the protein structures using a Perl script.
MedusaScore. MedusaScore6 is a physical force field-based

scoring function that describes the major physical interactions
between proteins and ligands, including the van der Waals
interaction, hydrogen bonding, and solvation. It is calculated as
a linear combination of various energy terms as

E ¼ Wvdw_attrEvdw_attr þ Wvdw_repEvdw_rep
þ WsolvEsolv þ Wbb_hbondEbb_hbond
þ Wsc_hbondEsc_hbond þ Wbb_sc_hbondEbb_sc_hbond ð1Þ

where Evdw_attr and Evdw_rep are the attractive and repulsive part
of the van der Waals (VDW) interaction; Esolv is the solvation
energy; Ebb_hbond, Esc_hbond, and Ebb_sc_hbond are the hydrogen
bond energies formed between backbone atoms, between side
chains, and between backbone and side chains, respectively. The
design of the force field is similar to that of the Rosetta force
field,14 which has also been widely used in protein folding and
design. The VDW interaction model and parameters are adapted
from CHARMM19.15 The solvation model is the EEF1 implicit
solvent model proposed by Lazaridis and Karplus.16 We use the
hydrogen bonding model proposed by Kortemme and Baker.17

When evaluating the nonbonded interactions, we use a cutoff
distance of 9.0 Å. The van der Waals repulsion (VDWR)
potentials are implemented with linear extrapolation to dampen
the fast increase of the potential as

Evdwrep ¼
∑
i, j > i

4εij½ σij=rij
� �12 � σij=rij

� �6�,Rcutoffσij < rij e σij

Ksloperij þ 4εij Rcutoff
�12 � Rcutoff

�6
� �� RcutoffKslopeσij, rij e Rcutoffσij

Here,Rcutoff ¼ 0:92;Kslope ¼ � 24εij 2Rcutoff
�13 � Rcutoff

�7
� �

=σij

εij ¼ ffiffiffiffiffiffiffi
εiεj

p
; σij ¼ σi þ σj

8>>>><
>>>>:

Here, rij is the distance between two atoms i and j. The
energy parameters ε and σ are taken from the CHARM-
M19 force field of united atoms.15 Because the energy
terms originate from different sources, a set of weighting

parameters is assigned in order to balance their respective
contributions.
MedusaScore is an extension of the Medusa force field,10

which was developed originally to describe physical interactions

Table 1. Descriptive Analysis of Data Sets Based on
Protein�ligand Binding pKd Values and Protein Families

data set

parameter Set1 Set2

pKd values count 176 167

mean 6.23 6.07

median 6.25 6.19

standard deviation 2.31 2.18

range/lowest/highest 13.15/�0.15/13 10.7/1.4/12.1

sequence # of families/# of singletons

(90% sequence similarity)

121/80 106/68
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within proteins. The original weighing factors of the Medusa
force field were trained on 34 high-resolution protein crystal
structures with diverse sequences. Notably there were no protein�
ligand data used in the development of MedusaScore, but it still
exhibits remarkable accuracy in both docking pose discrimina-
tion and binding affinity prediction.6 Thus, by default Medusa-
Score is expected to be transferable and applicable to virtual
screening of a variety of chemical compounds. During the
pose rescoring by MedusaScore, we turn off the VDWR term
because it was shown to be sensitive to small deviation in ligand
poses.6 It is safe to remove the term in this case because all steric
clashes have already been considered during the generation of
docking poses.
Quantitative Structure Binding Affinity Relationships

(QSBAR) Models. The QSBAR models derived from either
Set1 or Set2 using novel descriptors of the protein�ligand
interface are applied to predict either Set2 or Set1, respectively.
The protein�ligand interfacial descriptors used in the QSBAR
modeling are the combination of newly developed PL/MCT-
Tess descriptors and the published EnTess descriptors.11 The
PL/MCT-Tess descriptors are methodologically similar to the
EnTess descriptors but are theoretically distinctive. The EnTess
descriptors are obtained by using Pauling electronegativity (En)
as the atomic property and Delaunay Tessellation (Tess) to
characterize the protein ligand interface as follows (Figure 1).
When applied to protein�ligand complexes represented at the
atomic resolution level, Delaunay tessellation partitions the
protein ligand interface into an aggregate of space-filling, irregular
tetrahedra where both protein and ligand atoms are vertices.
Each Delaunay quadruplet is characterized by its unique four-
atom composition, which defines the descriptor type (certainly,
the same four-body compositions may occur in different or even
the same protein�ligand interfaces). Furthermore, for each
quadruplet, we calculate the sum of En values of the composing
atom-vertices, which produces the descriptor value.
In the implementation of PL/MCT-Tess descriptors, the new

descriptors employ pairwise atomic potentials for the protein�
ligand complexes (PL) based on maximal charge transfer

(MCT)12 in place of Pauling electronegativities; thus, we call
them PL/MCT-Tess. The values of PL/MCT-Tess descriptors
are calculated from the following equation

PL=MCT-Tessm ¼ ∑
n

k¼ 1
∑

1 ∼ 3

p
∑

1 ∼ 3

l
ðMCTp �MCTl=dplÞk

ð2Þ

where PL/MCT-Tessm is the potential of the m-th tetrahedron
type defined by its four-atom composition (i.e., individual
descriptor type); n is the number of occurrences of this tetra-
hedron type in a given protein�ligand complex; p is the index of
protein vertex-atoms, l is the index of ligand vertex-atoms, and dpl
is the distance between a pair of protein and ligand atoms found
in the same Delaunay tetrahedron.
Because the Pauling En and MCT values used in two distinct

sets of descriptors represent chemical properties based on
distinctive but related theories, it is sensible to test the modeling
performance using the combined descriptor set. We have found
that when employing models built by the combined descriptor
set (PL/MCT-Tess + ENTess descriptors), the prediction
accuracy is much better than when using models built by any
single descriptor set (data not shown). The combined descriptor
set is constructed by concatenating the ENTess and PL/MCT-
Tess descriptor sets. We remove descriptors in the combined
descriptor set that have low variance (all or all but one value is
constant) and high correlation (if pairwise square correlation
coefficient is greater than 0.99, one of the pair, chosen randomly,
is removed). The remaining descriptors are range scaled (0 to 1).
This combined descriptor set is applied to Set1 or Set2 to

construct QSBAR models, where absolute binding affinity is
represented as a function of the protein�ligand interfacial
descriptors. We use the kNN algorithm with our standard model
development and validation workflow reviewed recently.18 In
brief, an n-fold external validation protocol is employed when the
entire data set is randomly divided into n nearly equal parts and
then n� 1 parts are systematically used for model development,

Figure 1. Illustration of the method to derive PL/MCT-Tess descriptors using the tesselated protein�ligand complex (3ERT, the ER/antagonists
benchmarking data set). The atom types for protein and ligand are treated differently. For instance, for the tetrahedron at the left corner, Cp and Op are
carbon and oxygen atoms from the protein, while Ol and Nl are oxygen and nitrogen atoms from the ligand.
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and the remaining fraction of compounds is used for model
evaluation. In this study, 10-fold protocol was used for Set1 and
9-fold protocol was used for Set2 because of its smaller size. The
sphere exclusion protocol implemented in our laboratory19,20 is
used to rationally divide the remaining subset of compounds (the
modeling set) into multiple training and test sets that are used for
model development and validation, respectively. The model
acceptability thresholds are characterized by the lowest accep-
table value of the leave-one-out cross validated R2 (q2) for the
training set and by conventional R2 for the test set; our default
values are 0.5 for q2 and 0.6 for R2. All validatedmodels are finally
assesses in an ensemble using the external evaluation set. The
resulting models based on Set1 (Set2) are then used to predict
the binding affinity of Set2 (Set1) complexes.
Consensus Protocol. The multiple linear regression method

is applied to combine predictions from QSBAR models and
MedusaScore. The equation is as follows

Y c ¼ b1 þ b2 � YMedusaScore þ b3 � YQSBAR ð3Þ

where Yc is the consensus predicted affinity of a ligand, YMedusaScore

is the raw prediction of MedusaScore, which in theory is
supposed to be in linear relationship with the experimental
binding affinity, and YQSBAR is the affinity of the same ligand
predicted by QSBAR model. The coefficients (b1, b2, and b3) in
the equation are optimized by training on the basis of the pre-
dictions from Set1 (Set2) of protein�ligand complexes. The
equation with optimized coefficients is then applied to predict
the binding affinity of Set2 (Set1) complexes, respectively.
Comparison Metrics. We report the squared correlation

coefficient (R2) and two rank correlation coefficients, Spearman
rho and Kendall tau, to measure the performance of a scoring
function in terms of the correlation between the predicted score
and the experimental binding affinity. In addition, because the
QSBARmodels report the absolute predicted binding affinity, we
could also calculate the coefficient of determination when
the regression line is forced to go through the origin (i.e., the
R0

2 value) as well as the corresponding root-mean-square error
(RMSE0) and root median square error (RMDSE0) values,
where the median of residuals is used instead.
Outlier Analysis.We define the prediction outlier of a scoring

function as the protein�ligand complex whose predicted score is
one standard deviation (σ) of residuals larger or smaller than its
fitted value from the regression line. The remaining complexes
are categorized as normal. Furthermore, we subdivide prediction
outliers of each scoring function into two groups, overpredicted
and under-predicted. For each group, we analyze its distribution
among protein families on the basis of a 90% sequence similarity
threshold. We also identify chemical features specific for the
ligands in the outlier complexes. To this end, we generate struc-
tural fragments and analyze their distribution between outlier
and normal groups. The fragments (sequences of atoms and
bonds from 2 to 6 atoms in length, ∼1000 unique substructures
in total) are generated by the ISIDA Fragmentor21 program,
which we chose for its efficiency and availability (free of charge to
academic investigators); but the same analysis is possible with
other fragment-generating software. Same as for PL/MCT-Tess
and EnTess descriptors, we remove highly intercorrelated and
low-occurrence fragments. The statistical analysis of fragment
distribution is done by permutation test inMatlab 7.7.0. Only the
fragments that show significantly higher frequency of occurrence
(Z-score > 2) in outliers are kept for further analysis.

’RESULTS

The complete performance statistics of each scoring function
against either Set1 or Set2 is reported in Table 2. The correlation
plot of each scoring function and distribution of predictions are
shown in Figures 2 and 3. The IDs of complexes with their
predicted scores (or absolute pKd values) are reported in Table
S1 of the Supporting Information, and the IDs of complexes
whose binding affinities are under-predicted or over-predicted
are reported in Tables S2 and S3 of the Supporting Information
for each scoring function. We will explain the performance of
each scoring function in the following section and discuss the
chemical moieties and protein families that tend to point to
the complexes that are being under-predicted or over-predicted
(Table 4).
MedusaScore.We calculated MedusaScore for both Set1 and

Set2. We used the VDWR-excluded protocol with no additional
parameter adjustment. There are four complexes that contain
ligand atom types that are not yet parametrized by MedusaScore
(trimethylsulfonium groups in complex #183 in Set1, and #249
and #74 in Set2, as well as the phosphoramide group in complex
#18 in Set2). The R2 values are 0.34 and 0.47 for Set1 and Set2,
respectively. We also test the effect of adding the VDWR term in
MedusaScore. The R2 values are slightly decreased to 0.30 and
0.44 for Set1 and Set2, respectively. The slight decrease in
accuracy is consistent with the previous observation6 that the
VDWR term is more sensitive to small deviations in the complex
structure, causing uncertainty for binding energy estimation. The
observation that accuracy only slightly decreases after including
the VDWR term for prediction also verifies that the CSAR data
sets are of high quality and only minimal steric clashes exist in the
structure of the complexes. The largest VDWR interaction energy
is found to be 29.7 kcal/mol for complex #154 in Set1. There are
other three complexes in Set2 (complex #225, #222, and #92)
that also have the VDWR term larger than 20 kcal/mol. These
complexes are found to be under-predicted by MedusaScore.
In total, there are 31.3% of Set1 complexes and 34.7% of Set2

complexes considered as outliers on the basis of the definition

Table 2. Statistics (R2, R0
2, MAE, RMSE0,

a and RMDSE0
b as

well as number of complexes predicted) for Predicting Set1
and Set2 with Respective QSBAR Models, MedusaScore, and
Consensus Approachc

Set1 predictions

parameter

method R2 R0
2 Spearman Kendal RMSE0 RMDSE0

no. of

complexes

QSBAR 0.44 0.44 0.50 0.68 1.75 1.09 176

MedusaScore 0.34 NA �0.42 �0.59 NA NA 175

Consensus 0.45 0.45 0.51 0.69 1.72 1.07 175

Set2 predictions

QSBAR 0.53 0.53 0.55 0.75 1.50 1.02 167

MedusaScore 0.47 NA �0.48 �0.67 NA NA 164

Consensus 0.58 0.57 0.57 0.77 1.43 0.97 164
aRMSE0 is root mean square deviation. bRMDSE0: Root median square
deviation. cDescriptions of the metrics can be found in the Methods
section.
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described in the Methods section. A majority of complexes
belonging to the glutamate-related family (glutamate receptor
1, 2, 3, 4, 6) are under-predicted by MedusaScore. Closely
inspecting the protein�ligand interactions in those complexes,
we find that salt-bridge interactions, ignored in the current
version of MedusaScore, are dominant. Moreover, both of the
two complexes in the family of ADAM17 are under-predicted.
This might be due to the ignoring of metal-mediated interactions
(the catalytic zinc) in the binding pocket, where metals directly
contribute to ligand binding.
We have also analyzed the structural fragments on the basis of

their tendency to occur in outliers in comparison with the normal
group. We find that the combination of thiolane/thiophene
moiety and the sulfonamide (or amide) group tends to con-
tribute to the under-prediction of certain complexes (Table 4).
For example, the four protease complexes (1:158, 1:159, 1:160,
and 1:161) and three coagulation factor X complexes (1:52, 1:141,
and 1:196) are under-predicted by MedusaScore. The most in-
teresting chemical scaffold is the thiazole group, which seems to
be strongly associated with the under-prediction of the binding
affinity. The thiazole group can be found in the four protease
complexes (vide supra) and two carbonic anhydrase-related
complexes (1:206 and 1:222). Moreover, MedusaScore tends
to over-predict complexes that contain phosphate groups con-
nected to a sugar moiety (usually in a nucleoside ligand).
QSBAR Models. After removing descriptors with high inter-

correlation and low variance, there are 422 and 377 descriptors
(out of 1108 descriptors) used in modeling the building and
validation of Set1 and Set2, respectively. The results of external
n-fold cross validation fromCSAR data set modeling are reported

in Table 3. The average external n-fold cross validation R2 is 0.45
for Set1 and 0.53 for Set2. Because each fold has a rather small
size (around 17 complexes), R2 values could have large fluctua-
tions due to the random distribution of prediction outliers
among folds. Therefore, we also take MAE and RMSE values
into account in the evaluation of prediction accuracy. We analyze
the outliers in the fold(s) with the worst MAE and RMSE values
(i.e., fold #2 in Set1 and fold #1 in Set2).We find that some of the
outliers have special moieties and thus could be viewed as
structural outliers; for example, the N5-[(R)-amino(sulfoamino)-
phosphoryl] group (2:18), the hydroxy(oxo)phosphoniumolate
group (1:25), or the whole family (Lipocalin) of complexes
(1:207 and 1:208) may not be present in the modeling set. On
the other hand, in spite of having close neighbors in the des-
criptor space, some complexes are still predicted poorly, e.g.,
2:126, suggesting that further improvement of protein�ligand
interfacial descriptors is needed.
The validated Set1 (Set2) models are applied to predict Set2

(Set1). The results are reported in Table 2. The prediction
accuracy of Set2 using Set1 models is higher than the prediction
accuracy of Set1 using Set2 models (i.e., R2 value is 0.44 vs 0.53,
respectively). This is an expected outcome because QSAR-based
models have difficulty extrapolating data points under-repre-
sented in the training set, and indeed, Set1 has more data points
at the extremes of the binding affinity distribution.
We analyze the prediction outliers as described in theMethods

section. About 29.5% of Set1 complexes and 23.3% of Set2
complexes are considered ill-behaved (i.e., outliers) by QSBAR
models. Around 1000 ISIDA fragments are generated for Set1
and Set2. After removing fragments with low variance or high

Figure 2. Distribution of predicted values for Set1 (or Set2) by QSBAR models, MedusaScore, or the combined scoring function. The x-axis is the
predicted binding affinity (QSBARmodels and the combined scoring function) or theMedusaScore. The y-axis is the experimental binding affinity. The
black line is the linear regression line, and the yellow line is the regression line forced through the origin. The red lines are parallel to the black regression
line and stand one standard deviation of the residuals away from it. The points beyond or below the red lines are considered as outliers.
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correlation, around 600 fragments in either Set1 or Set2 remain
for the permutation test. Upon analysis, we find that the ligands,
which contain the flavan moiety or the combination of thiolane/
thiophene moiety and the amide group, tend to be under-pre-
dicted by QSBARmodels (Table 4). The flavan moiety occurs in
the ligand complexes of particular protein families. For example,
the complexes belong to the estrogen receptor-β (1:42, 1:43)
and estrogen receptor (1:33) family. Coincidentally, the features
of thiolane/thiophene and the sulfonamide group are also found

to contribute to the under-prediction by MedusaScore (vide
supra). On the other hand, the ligands with naphthalene moiety
tend to be over-predicted only by QSBAR models (e.g., 2:19,
2:23, 2:44, and 2:77). Moreover, the carboxyalkyl phosphate
scaffold (with or without metal coordination) is found to be
associated with over- or under-prediction. We find that com-
plexes whose ligands contain large hydrophobic moieties (e.g.,
flavan and naphthalene) in a hydrophobic environment tend to
be mispredicted; this points to the underlying assumption for
PL/MCT-Tess descriptors that protein�ligand binding is driven
mostly by charge�transfer interactions. Moreover, the hybridi-
zation of carbon is not taken into account in the current
implementation of PL/MCT-Tess and EnTess descriptors.
These factors may contribute to the low accuracy of prediction
for compounds containing large hydrophobic moieties.
Comparing prediction outliers fromQSBARmodels and from

the MedusaScore scoring function, we find that these groups
do not completely overlap (Figure S1 of the Supporting In-
formation), and the corresponding structural features associated
withQSBAR outliers are distinct from the ones forMedusaScore.
This outcome is not unexpected because these two types of
scoring functions employ completely different principles toward
representing protein�ligand interactions. This also implies the
possibility of improving overall prediction accuracy by combin-
ing the two scoring functions.
Distribution of Chemical Fragments of Ligands in the CSAR

Data Set. We also analyze the distribution of ligand chemical
features (represented by ISIDA fragments) in the entire CSAR
data set. Figure 4 shows the occurrence of each chemical
fragment (in percent to that of the CSAR data set) in Set1 and
Set2 ligands. The fragments are sorted by predominance of

Figure 3. Residual distribution plot. The x-axis is the x-error relative to the fitting line (i.e., residual) and the y-axis is the number of complexes. The red
dotted lines represent the values which are( one standard deviation of the residuals. The region between two red lines shows the density of complexes
that have “normal” prediction errors.

Table 3. Statistics (R2, MAE, and RMSE) for External n-Fold
Validation Sets Using QSBAR Models Built from Set1 and
Set2

Set1 data set modeling

fold

parameter #1 #2 #3 #4 #5 #6 #7 #8 #9 #10

R2 0.2 0.21 0.68 0.54 0.57 0.4 0.56 0.65 0.63 0.42

MAE 1.25 1.56 1.16 1.57 1.21 1.34 1.19 1.09 1.21 1.36

RMSE 1.58 1.85 1.48 1.84 1.53 2.01 1.5 1.36 1.49 1.71

Set2 data set modeling

fold

parameter #1 #2 #3 #4 #5 #6 #7 #8 #9 NA

R2 0.27 0.55 0.73 0.64 0.53 0.64 0.72 0.52 0.36 NA

MAE 1.63 0.89 1.18 1.11 1.11 1.04 0.9 1.51 1.4 NA

RMSE 2.18 1.15 1.46 1.21 1.34 1.23 1.2 2.04 1.73 NA
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occurring in Set1. Overall, Set1 is chemically more diverse than
Set2. Approximately 70% of chemical fragments are more
prominent in Set1 than in Set2, and around 4% are unique for
Set1. On the other hand, all of the fragments predominant in
Set2, though under-represented, can still be found in Set1. The
fragments marked by circles or squares (Figure 4) are associated
with previously identified prediction outliers (e.g., flavan, thio-
lane/thiophene, and sulfonamide ligand features). As expected,
these chemical fragments are not represented equally in Set1 and
Set2. This analysis suggests that the predictive power of Set2
models can be improved by extending the Set2 data set.
Interpretation of Descriptors Selected by QSBAR Models.We

analyzed the descriptors selected by either Set1 or Set2 models
(q2 g 0.5 and R2 g 0.6) on the basis of their frequency of
occurrence in the respective models. For each descriptor, we

calculate the Z-score based on the frequency distribution of all
selected descriptors in Set1 (Set2) models. Figure 5 shows
descriptors sorted by the difference of their Z-scores in Set1
and Set2. We find that the descriptors whose tetrahedral type
includes a metal are frequent in Set1 models (i.e., high Z-score)
but not in Set2 models. This can explain some mispredictions of
Set1 by Set2 models because metal interactions are under-
represented in Set2 data set. Moreover, those descriptors whose
tetrahedral type is related to the under-predicted outliers of Set1
(see scaffolds in Figure 5) are selected less frequently by Set2
models. Therefore, we expect that by expanding Set2 the
prediction accuracy of the corresponding QSBARmodels should
improve .
Consensus Scoring Function.We optimize the b1, b2, and b3

parameters of the combined scoring equation (see Methods,

Table 4. Some Chemical Features Associated with the Under-Predicted or Over-Predicted Complexes

**Number of complexes in the under-predicted (or over-predicted) group with the feature/# of total complexes with the feature. *** Example shows a
fragment (solid lines) mapped onto the actual molecular scaffold (dashed lines).
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eq 3) using Set1 predictions by QSBAR models and by Medusa-
Score. The R2 value between the fitted combined score and the
experimental binding affinity is 0.45, and the respective param-
eters (b1, b2, and b3) are 0.58, �0.03, and 0.82. Applying the
trained scoring function to Set2 gives and R2 value of 0.58, which
is higher than the R2 value when using QSBAR models and
significantly higher than the values when using MedusaScore
alone (p < 0.05 by permutation test, N = 10,000)). This suggests
the complementarity of these two types of scoring functions. Con-
sequently, we apply the same procedure to optimize the com-
bined scoring equation using Set2 predicted scores. The resulting
R2 value is 0.58 and b1, b2, and b3 parameters are�0.003,�0.03,
and 0.87, respectively. Applying the trained scoring function to
Set1 gives a R2 value of 0.45, which is slightly higher than the R2

value using QSBAR and significantly higher than the value using
MedusaScore alone (p < 0.05). The relatively limited improve-
ment over the individual QSBAR model might be due to the
poorer performance on Set1 by each of the individual scoring
functions.
We also analyze the prediction outliers of the combined

scoring function. There are about 27.2% of Set1 complexes
and 33.5% of Set2 complexes considered as prediction outliers.

The percentage of outliers in Set2 for the combined scoring
function is not as low as in the case of QSBARmodels despite the
fact that the overall performance of the combined scoring
function for Set2 is better. By analyzing chemical features of
outliers, we find characteristic moieties that correspond to those
obtained for QSBAR models. For example, the thiolane/thio-
phene moiety with the sulfonamide group and flavan-related
scaffolds are found in the ligands of under-predicted complexes
and the naphthalene moiety is in over-predicted complexes.

’CONCLUSIONS

We found that applying QSBAR models or MedusaScore
individually can only afford predictions with relatively modest
accuracy for the CSAR-NRC set. Interestingly, after combining
the results from QSBAR models and MedusaScore, we found
that the accuracy of the binding affinity prediction improves
(especially, for Set2), suggesting the complementary nature of
the two types of scoring functions. By analyzing prediction
outliers for each scoring function, we have identified distinct
chemical features associated with mispredictions. Some of these
features lead only to MedusaScore errors, while several others
were indicative of mispredictions solely by QSBAR models. This
analysis not only highlights the complementarity between these
two types of scoring functions but also suggests further directions
for improvement, such as the parametrization of metals and salt-
bridge interactions for MedusaScore and the application of
extended data sets for training QSBAR models.
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