
Evolving the Optimal Racing Line in a High-End Racing Game

Matteo Botta, Vincenzo Gautieri, Daniele Loiacono, and Pier Luca Lanzi

Abstract— Finding a racing line that allows to achieve a
competitive lap-time is a key problem in real-world car racing
as well as in the development of non-player characters for a
commercial racing game. Unfortunately, solving this problem
generally requires a domain expert and a trial-and-error
process. In this work, we show how evolutionary computation
can be successfully applied to solve this task in a high-end
racing game. To this purpose, we introduce a novel encoding
for the racing lines based on a set of connected Bézier curves.
In addition, we compare two different methods to evaluate
the evolved racing lines: a simulation-based fitness and an
estimation-based fitness; the former does not require any
previous knowledge but is rather expensive; the latter is much
less expensive but requires few domain knowledge and is not
completely accurate. Finally, we test our approach using The
Open Racing Car Simulator (TORCS), a state-of-the-art open
source simulator, as a testbed.

I. INTRODUCTION

The optimal racing line is defined as the line to follow

to achieve the best lap-time possible on a given track with

a given car. In general, finding the optimal racing line is

a common problem in real-world car racing [6] as well

as in the development of commercial racing games [12].

Unfortunately, finding an optimal racing line is not an easy

task as it depends on several factors [6], [3] ranging from

the shape of the track, the grip, the car aerodynamics, the

power of the car engine, etc. Thus, racing lines are usually

drawn by domain experts [12] and then tested and tuned

by game developers through actual game-play. Accordingly,

evolutionary computation might be a promising technique to

support the design of optimal racing lines and to speed-up

the game development process.

In a recent work [4], we applied genetic algorithms to

search for the best trade-off between two given racing lines.

In this paper, we extend our previous work by applying

genetic algorithms to evolve the optimal racing lines from

scratch. To this purpose, we introduced a new encoding for

a racing lines consisting of a set of connected Bézier curves,

such that each gene defines a small portion of the racing

line. Therefore, while in [4] we simply evolve the mixing

between two racing lines, here the evolution is responsible

of the entire design of the racing line. In addition, in this

paper we compare two different methods to evaluate the

evolved racing line; the first one is based on testing the

evolved racing lines in a racing simulator as done in [4];

the second one consists of estimating the performance of a

racing line through a computational model.

Matteo Botta (matteo.botta@mail.polimi.it), Vincenzo Gautieri (vin-
cenzo.gautieri@mail.polimi.it), Daniele Loiacono (loiacono@elet.polimi.it),
and Pier Luca Lanzi are with the Dipartimento di Elettronica e Informazione,
Politecnico di Milano, Milano, Italy.

In this work, we used The Open Racing Car Simulator

(TORCS) as a testbed and applied our approach to four

different tracks. Our results show that our approach is able

to evolve competitive racing lines using both the evaluation

methods, although the simulation-based evaluation provide

significantly better results.

II. BACKGROUND

In this section we provide some useful background for

the remainder of the paper. First, we introduce the problem

of finding an optimal racing line; then, we give some

useful definitions about the Bézier curves used in this work;

finally, we briefly describe The Open Racing Car Simulator

(TORCS)

A. Optimal Racing Line

The optimal racing line is the path that a driver should

follow to complete a lap on a given track in the smallest

amount of time possible. As the lap-time depends both on

the distance raced and on the average racing speed, finding

the optimal racing involves two different sub-problems [3]:

(i) racing the shortest distance possible and (ii) racing as fast

as possible along the track.

Racing the shortest distance. It requires to find the shortest

path along the track, i.e., the racing line within the track

borders with the shortest length. In practice, racing line might

be represented with different methods in a racing games

(e.g., a set of waypoints [3], a sequence of parametrized

curves [12], [16], etc.). Accordingly, the search space of

the shortest path along the track is typically limited by the

method used to represent the racing lines. Depending on

the size of such a search space and on the representation

constraints, computing analytically the shortest path might

be either computationally unfeasible or too expensive for the

development process needs.

Racing fast. The highest speed a driver can keep along a

given racing line without loosing the control of the car de-

pends on several factors and can be computed as follows [3]:

vmax =

√

µ

κ

(

g +
Fa

m

)

, (1)

where vmax is the highest speed allowed, m is the mass of the

car, µ is the tire-road friction coefficient, Fa the aerodynam-

ics downforce, κ is the curvature of the given racing line, i.e.,

the inverse of the curvature radius. Accordingly, the smallest

is the curvature of the racing line followed by the car, the

highest would be the allowed speed (disregarding the mass

of the car, the friction parameters, and the car aerodynamics).

As in the previous problem, the method used to represent the

978-1-4673-1194-6/12/$31.00 ©2012 IEEE 108

racing line defines the search space and, thus, the complexity

of this optimization problem.

Both the problems discussed so far, i.e., racing the shortest

distance and racing fast, only depends on the track shape

and, thus, can be solved without any knowledge of the

racing car dynamics (e.g., the acceleration profile, the braking

capabilities, the aerodynamics model, etc.). Unfortunately,

these problems cannot be solved independently as they have

conflicting objectives: the shortest path is not usually the

fastest one and vice versa. Accordingly, finding the optimal

racing line requires to search for the optimal trade-off be-

tween racing the shortest distance and racing fast [3]. Of

course, such an optimal trade-off also depends on the racing

car dynamics, i.e., it is different for different car models,

and on the sequence of the track segments (e.g., the ideal

line through the same turn might change if it is followed by

a straight or a tight turn).

B. Bézier Curves

Bézier curves are a family of parametrized curves widely

used in computer graphics and in related fields. They have

been first introduced and studied in 1959 by the mathe-

matician Paul de Casteljau and became popular when, in

1962, the engineer Pierre Bézier employed them to design

cars. Nowadays, Bézier curves are frequently used in vector

graphics to model smooth paths, as they offer a compact and

convenient representation.

A Bézier curve is defined by a set of control points,

{P0, P1, · · · , Pn}, where n is the order of the curve. The first

and the last control points, i.e., P0 and Pn, are respectively

the beginning and the end of the curve, while the intermediate

control points do not usually lie on the curve.

Figure 1 shows an example of Bézier curve defined by

a set of 9 control points. Given a set of control points

{P0, P1, · · · , Pn}, the resulting Bézier curve is defined as

follows [8]:

B(t) =
n
∑

i=0

(

n

i

)

(1− t)n−itiPi, (2)

where t ∈ [0, 1] is a control variable to move along the line,

such that B(0) = P0 and B(1) = Pn.

C. The Open Racing Car Simulator

The Open Racing Car Simulator (TORCS) [7] is a state-

of-the-art open source car racing simulator which provides

a sophisticated physics engine, full 3D visualization, several

tracks, several models of cars, and various game modes (e.g.,

practice, quick race, championship, etc.). The car dynamics

is accurately simulated and the physics engine takes into

account many aspects of racing cars such as traction, aero-

dynamics, fuel consumption, etc.

Each car is controlled by an automated driver or bot. At

each control step (game tick), a bot can access the current

game state, which includes several information about the

car and the track, as well as the information about the

other cars on the track; a bot can control the car using the

Fig. 1. An example of Bézier curve: black points are the control point
of the curve; blue lines simply connect with straight segments the control
points; red line is the resulting Bézier curve.

gas/brake pedals, the gear stick, and steering wheel. The

game distribution includes many programmed bots which can

be easily customized or extended to build new bots.

III. RELATED WORK

In general, commercial racing games typically rely on

human-designed racing lines designed by domain experts

[12] with few notable exceptions as Colin McRae Rally1

(Codemasters), where the racing line is learned by imitation

using a neural network [11], and as Forza Motorsport2 series

(Microsoft), where evolutionary computation is applied to

optimize their racing lines [16].

Instead, open-source racing games typically combines

good practices with heuristics to generate a racing line for

any given track automatically. The most successful exam-

ples of such approaches include the K1999 algorithm [5],

which was developed by Remi Coulom and exploits gradient

descent; Simplix [2], developed by Wolf-Dieter Beelitz for

The Open Car Racing Simulator (TORCS)[7], based on a

simple heuristic; the bot by Jussi Pajala for the Robot Auto

Racing Simulator (RARS) [1] applies A∗; the DougE1 bot

for RARS by Doug Elenveld applies a genetic algorithm.

Then, in the context of real-world car racing, Casanova [6]

showed that to find the best racing line several aspects of the

car dynamics must be taken into account, e.g., the braking

points over the track, the acceleration capabilities of the car,

the changes of direction, etc. Although theoretically well

grounded, the approach in [6] requires a complete and very

detailed formal model of the vehicles and of its interactions

with the racing environment, which is typically unavailable

in racing games.

More recently, Braghin et al. [3] suggested that racing

lines can be computed by solving the trade-off between

minimizing the distance raced on the track and minimizing

the curvature of the racing line followed. In particular,

Braghin et al. [3] defined the problem of finding the best

optimal racing line as a quadratic programming problem.

1http://en.wikipedia.org/wiki/Colin_McRae_Rally
2http://en.wikipedia.org/wiki/Forza_Motorsport

2012 IEEE Conference on Computational Intelligence and Games (CIG’12) 109

Finally, in a recent work [4], inspired by the work of

Braghin et al., we applied genetic algorithms to evolve

the optimal racing line by searching for the best trade-off

between the shortest path along the track and the racing

line with the minimum curvature possible. This work differs

from our previous one in several respects: (i) here we applied

genetic algorithm to evolve a racing line from scratch, while

in [4] we applied it only to evolve the optimal mixing

between two given racing lines; (ii) in this work we proposed

a novel method to encode a racing line based on a connected

set of Bézier curves; (iii) here we investigated the application

of an approximated fitness function that does not involve any

simulation, while in [4] fitness function is computed only

through simulation.

IV. EVOLVING RACING LINES

In this section we briefly describe how the racing lines are

encoded in order to be evolved using a genetic algorithm and

how they are evaluated.

A. Racing Line Encoding

While a single Bézier curve could be in principle used

to represent a racing line along the whole track, this might

easily result in a racing lines which lies outside the track

borders; moreover, small changes to a control point of such a

Bézier curve might have a large impact on the whole racing

line, making difficult to design effective genetic operators.

Accordingly, we represent racing lines using a sequence of

connected Bézier curves. Each Bézier curve is defined only

by a limited number of control points (in all the experiments

reported in this paper, we used 20 as the limit for the number

of control points used to define Bézier curves) and covers

only a segment of the track. In addition, to have an efficient

and compact representation of the racing lines, every control

point is allowed to move only along an orthogonal section

of the track. As illustrated in Figure 2, control points are

distributed uniformly with respect to the curvature of the

track: the higher the curvature the more frequent will be the

control points, i.e., a racing line through a tight turn would

require much more control points than a racing line which

cover a straight. As a result, the encoding of the racing lines

is an array of real values, such that each value defines the

position of a control point along a corresponding orthogonal

section of the track. The i-th gene is encoded with a real

value αi ∈ [−0.1; 1.1] which defines the position of a control

point as follows:

Pi = (1 − αi)Qi + αiRi,

where Pi is the i-th control point, Qi and Ri are respectively

the left and the right border of the track section the control

point belongs to; please notice that when αi is greater than 1
or smaller than 0, the control point would fall slightly outside

the track border.

B. Racing Line Evaluation

In this paper, we study two different methods to evaluate

the evolved racing lines, i.e., two different methods to

Fig. 2. Control points used to represent a racing line in a segment of track
with a Bézier curve; black lines are the border of the track; blue dashed lines
are the orthogonal sections of the track where control points are allowed to
move; red points are the control point of the curve.

compute the fitness function of the candidate solutions. The

first method involves the full simulation of a complete lap

on the track, while the second is based on an estimate of the

performance of the racing line using a computational model.

While the first approach is very accurate approach and does

not require any previous knowledge, the second one might

be computationally less expensive.

Simulation-based evaluation. Computing the fitness func-

tion of the racing lines with this approach is straightforward.

It involves a simulation of a complete lap following the rac-

ing line to evaluate. To this purpose, we modified Simplix [2],

one of the best performing controller available for TORCS, to

follow a given racing line. Therefore, the evaluation process

consists of two simple steps: (i) the racing line to evaluate

is loaded by the controller and (ii) the controller completes

two laps following the target racing line. Accordingly, the

fitness function is computed as the lap-time achieved during

the second lap with a negative sign, i.e., the smallest is the

lap-time the largest is the value of the fitness function. While

this approach provide an exact evaluation of the racing lines

(i.e., the fitness function is actually the real performance3

that can be achieved following the racing line in the actual

game), it is also rather expensive in computational terms as

it requires a full simulation. In addition, this approach does

not require any previous domain knowledge as the fitness is

the result of a simulation.

Estimation-based evaluation. This method relies on a com-

putational model which provides an estimate of the lap-time

that could be achieved following the racing line to evaluate.

Such a model typically involves also the knowledge of the

3Please, notice that the achieved performance and the optimal racing
lines evolved depend on the controller used in the simulator to evaluate the
solutions. Accordingly, using a different controller for the fitness evaluations
might lead to different evolved racing lines as well to different performances.

2012 IEEE Conference on Computational Intelligence and Games (CIG’12) 110

car dynamics and of the track grip in order to estimate the

speed that can be reached in each point of the racing line. As

soon as an estimate of the lap-time is available, the fitness

function is computed as in the simulation-based method, i.e.,

the fitness function of a racing line is the estimated lap-

time following it with a negative sign. Although this method

requires previous domain knowledge and the accuracy of the

fitness function computed depends on the model itself, it

is generally significantly less expensive than the simulation-

based evaluation. In fact, with this method, the evaluation of

the racing line does not require any simulation but involves

only some computations. In particular, in this work we

exploited the lap-time estimator built in Simplix [2]: using

our modified version of Simplix we load the target racing

line to evaluate and let the controller analyze it and estimate

the associated lap-time.

V. EXPERIMENTAL RESULTS

In this section, we first describe the experimental setup

and then report the results obtained with our approach using

simulation-based and the estimation-based evaluations.

A. Experimental Design

In this work we used TORCS, an open-source racing

simulator (see Section II-C), as testbed. In particular, we

used a slightly modified implementation of TORCS (ver.

1.3.1) similar to the one used for the Simulated Car Racing

Competitions [14], [13]. Such a modified implementation,

offers some additional features like the possibility of running

batch simulation without graphical output.

Table I shows the four tracks used for the experimen-

tal analysis in this work: A-Speedway, CG Speedway 1,

Ruudskogen, and Alpine 2. They are all provided with the

standard distribution of TORCS and offers different degree of

challenges: A-Speedway is a fast oval track, which requires

few control points; CG Speedway 1 is a short and rather fast

track, which requires a quite small number of control points;

Ruudskogen alternates quite fast sections to challenging turns

and require an even higher number of control points; finally,

Alpine 2, is the most challenging tracks and requires many

more control points.

B. Experiments with Simulation-Based Evaluation

In the first set of experiments, we applied genetic al-

gorithms to search for the optimal racing line on a target

track using the simulation-based evaluation. To this purpose

we used the C++ Genetic Algorithm Toolbox [15] with the

following parameters setting: the population size was set to

300; tournament selection without replacement was used and

the tournament size was set to 2; one point crossover is

applied with probability pχ = 0.9 and each gene is mutated

using a Gaussian mutation with probability pm = 0.1. For

each one of the four tracks considered in this paper (Table I),

we performed 5 runs and each run was stopped as soon as

300 generations were reached.

Figure 3 shows the performance of the evolved racing lines

on the four target tracks and compares it to the performance

TABLE I

TRACKS USED IN THE EXPERIMENTAL ANALYSIS.

Alpine 2 A-Speedway
Length: 3775.57 m Length: 1908.32 m

Control Points: 234 Control Points: 75

CG Speedway Ruudskogen
Length: 2057.56 m Length: 3274.20 m

Control Points: 100 Control Points: 159

achieved by the Simplix controller [2] on the same track.

For the evolved racing line, we report both the average

performance of the population (line with empty boxes in

Figure 3) and the performance of the best individual evolved

over the generations (line with filled boxes in Figure 3). The

results show that on all the four tracks, the best individual

evolved is finally able to outperform the Simplix controller.

As expected the results also show that the most complex is

the track, the highest is the number of generations necessary

to reach the performance of Simplix.

C. Experiments with Estimation-Based Evaluation

In the second set of experiments, we investigate the

estimation-based approach to evaluate the evolved racing

line. Accordingly, we repeated exactly the same set of

experiments described previously with the only exception

that the estimation-based evaluation was used instead of the

simulation-based one. As in the previous set of experiments,

we performed 5 evolutionary runs for each track.

Figure 4 compares, for each target track, the estimated

performance of the evolved racing lines to the performance of

the Simplix controller. That is, both the average performance

of the population (lines with empty boxes in Figure 4) and

the performance of the best individual (lines with empty

boxes in Figure 4) are estimates provided by the evaluation

model used to compute the fitness of the individuals. While

the results show that the genetic algorithms are still able to

improve the performances over the the generations, in this

second set of experiments the final performance achieved

on the more complex tracks (i.e., Ruudskogen and Alpine 2)

appears to be rather distant from the performance of Simplix.

Finally, we validated the performance achieved using the

estimation-based evaluation methods as follows. For each

run, we re-evaluated the best 30 racing lines evolved through

simulation in TORCS. Table II shows the results of such val-

2012 IEEE Conference on Computational Intelligence and Games (CIG’12) 111

 20

 25

 30

 35

 40

 0 50 100 150 200 250 300

L
A

P
-T

IM
E

GENERATIONS

Average Lap-Time
Best Lap-Time

Simplix Lap-Time

 30

 35

 40

 45

 50

 0 50 100 150 200 250 300

L
A

P
-T

IM
E

GENERATIONS

Average Lap-Time
Best Lap-Time

Simplix Lap-Time

(a) (b)

 60

 65

 70

 75

 80

 0 50 100 150 200 250 300

L
A

P
-T

IM
E

GENERATIONS

Average Lap-Time
Best Lap-Time

Simplix Lap-Time

 90

 95

 100

 105

 110

 0 50 100 150 200 250 300

L
A

P
-T

IM
E

GENERATIONS

Average Lap-Time
Best Lap-Time

Simplix Lap-Time

(c) (d)

Fig. 3. Evolution of the optimal racing line on four tracks of TORCS, using simulation-based evaluation: (a) A-Speedway, (b) CG Speedway 1, (c)
Ruudskogen, and (d) Alpine 2. The figure shows the average lap-time of the evolved population (empty boxes) and the best lap-time (filled boxes). Curves
are averages of 5 runs.

idation process; the column labeled as Estimated reports

the computed by the estimation-based evaluation model;

instead, the column labeled as Real, reports the actual

performance of the evolved racing lines when used in the

simulator; finally, as comparison, the table reports also the

performance of the Simplix controller on the same tracks.

Data show that the real performance achieved using the

estimation-based evaluation is better than the performance of

Simplix only in the A-Speedway track. On the other hand, we

wish to stress that the performances using an approximated

fitness function are very close to the performance of Simplix

on all the tracks except for the Alpine 2 track. It is also inter-

esting to note that the accuracy of the estimates seem rather

uncorrelated both with the complexity of the track; in fact,

estimated performance appears to be almost equally accurate

on the more complex track considered, i.e., Alpine 2, as well

as on the most simple one, i.e., A-Speedway.

Concerning the computational cost, evolutionary runs us-

ing simulation-based evaluations required 90000 simulations

(i.e., 300 individuals for 300 generations) which take ap-

proximately from 12 to 36 hours depending on the track. In

contrast, using estimation-based evaluation, each run required

approximately between slightly more than 3 hours and 5

hours. As expected, the estimation-based evaluation is much

TABLE II

PERFORMANCE OF THE BEST RACING LINES EVOLVED FOR EACH TRACK

USING THE ESTIMATION-BASED EVALUATION. STATISTICS ARE

COMPUTED OVER 5 RUNS.

Track Lap-Time (s)
Estimated Real Simplix

A-Speedway 24.75 ± 0.04 24.89 ± 0.00 27.56

CG Speedway 1 39.07 ± 0.18 40.38± 0.08 40.12

Ruudskogen 65.12 ± 0.13 63.52 ± 0.01 63.20

Alpine 2 96.38 ± 0.12 96.56 ± 0.10 94.33

more cheap than the simulation-based one. In addition, the

implementation of the estimation-based evaluation might be

still improved as it is currently based on a module of Simplix

and currently involves expensive and useless operations that

could be removed such as loading the 3D model of the track

and the controller module.

VI. ANALYSIS OF THE RESULTS

In this section, we first provide an insight about the

structure of the problem of searching the optimal racing line.

Then, we briefly compares the performance of our approach

to others previously introduced in the literature.

2012 IEEE Conference on Computational Intelligence and Games (CIG’12) 112

 20

 25

 30

 35

 40

 0 50 100 150 200 250 300

L
A

P
-T

IM
E

GENERATIONS

Average Lap-Time
Best Lap-Time

Simplix Lap-Time

 30

 35

 40

 45

 50

 0 50 100 150 200 250 300

L
A

P
-T

IM
E

GENERATIONS

Average Lap-Time
Best Lap-Time

Simplix Lap-Time

(a) (b)

 60

 65

 70

 75

 80

 0 50 100 150 200 250 300

L
A

P
-T

IM
E

GENERATIONS

Average Lap-Time
Best Lap-Time

Simplix Lap-Time

 90

 95

 100

 105

 110

 0 50 100 150 200 250 300

L
A

P
-T

IM
E

GENERATIONS

Average Lap-Time
Best Lap-Time

Simplix Lap-Time

(c) (d)

Fig. 4. Evolution of the optimal racing line on four tracks of TORCS, using estimation-based evaluation: (a) A-Speedway, (b) CG Speedway 1, (c)
Ruudskogen, and (d) Alpine 2. The figure shows the average lap-time of the evolved population (empty boxes) and the best lap-time (filled boxes). Curves
are averages of 5 runs.

A. Analysis of the Problem Structure

Understanding the underlying problem space is the key to

design a better encoding which is compact but, at the same

time, does not introduce any bias in the search process [10].

Therefore, we performed an analysis of the experiments

reported in the previous section to discover the building

blocks of the evolved solutions. To this purpose, we measured

convergence speed of each gene during the evolutionary

process as follows. For each gene, we computed the standard

deviation of the values it assumed in the population. Thus, we

defined the convergence speed of each gene as the number

of generations taken to reach a standard deviation equal

or below a given threshold (in our analysis we used as a

threshold the 20% of expected standard deviation according

to the prior distribution).

Figure 5 shows the convergence speed of each gene

represented as a colored point on the track: the position of

the point corresponds to the position of the control point

associated to the gene, the color of the point represents the

convergence speed; to improve the readability of the results

we discretized the convergence speed in 5 intervals and la-

beled them as Very Fast, Fast, Normal, Slow, and Very Slow.

Data in Figure 5 has been computed for the experiments

performed using the simulation-based evaluation described

in Section V-B. However, we repeated the same analysis

(not reported here) also for the experiments involving the

estimation-based evaluation and obtained similar results.

This analysis provide several interesting insights about the

problem. First of all, most of the points converges very

slowly or does not converge at all (dark blue points in

Figure 5), suggesting that relatively a small number of points

have a major impact on the final outcome. Second, the most

important control points, i.e., the ones associated to genes

which converge fast or very fast (dark red points in Figure 5),

are typically distributed either in the middle or at the end of a

turn. This can be easily explained by noting that these control

points define the apex of the line and affects the speed of

the car when it exit from the turn. In contrast, the points

which lie on a straight appears much less important as the

position of the car on a straight does not affect too much the

performance; an interesting exception to this consideration is

represented by the control points within the short straights

of A-Speedway (see Figure 5); however, those points should

be actually considered within a curve as they are exactly

between two very fast turns and heavily affect the racing

line through them.

2012 IEEE Conference on Computational Intelligence and Games (CIG’12) 113

Very Fast

Fast

Normal

Slow

Very Slow

Very Fast

Fast

Normal

Slow

Very Slow

(a) (b)

Very Fast

Fast

Normal

Slow

Very Slow

Very Fast

Fast

Normal

Slow

Very Slow

(c) (d)

Fig. 5. Convergence speed of all the genes associated to the control points of the racing line on the four test tracks. Statics are computed as averages of
the 5 runs described in Section V-B.

TABLE III

COMPARISON OF THE BEST PERFORMANCE ACHIEVED WITH (I) Simplix CONTROLLER, (II) APPROACH PRESENTED IN [4], (III) OUR APPROACH WITH

SIMULATION-BASED EVALUATION, AND (IV) OUR APPROACH WITH ESTIMATION-BASED EVALUATION.

Track Simplix Cardamone et al. [4] Simulation-Based Estimation-Based

Evaluation Evaluation

A-Speedway 27.56 24.70 ± 0.00 24.76 ± 0.04 24.89 ± 0.00

CG Speedway 1 40.12 39.37 ± 0.00 39.55 ± 0.13 40.38 ± 0.08

Ruudskogen 63.20 62.73 ± 0.00 62.85 ± 0.10 63.52 ± 0.01

Alpine 2 94.33 92.53 ± 0.01 94.16 ± 0.09 96.56 ± 0.10

2012 IEEE Conference on Computational Intelligence and Games (CIG’12) 114

B. Performance Analysis

Table III compares the best performances achieved with

the approach presented in this paper, both using the

simulation-based and the estimation-based evaluation, to the

performance achieved with the Simplix controller and to the

approach presented by Cardamone et al. in [4]. The data

shows that the results obtained in [4] are slightly better than

the ones achieved by the approach presented in this paper

when the simulation-based evaluation is used. However, both

these evolutionary approaches are able to outperform Simplix

in all the four tracks. In contrast, using the estimation-based

evaluation leads to performances notably worse than the ones

achieved using the simulation-based evaluation and slightly

worse of the performance achieved by Simplix controller.

To investigate whether the differences reported in Table III

are statistical significant, we performed a statistical analysis

using the Wilcoxon Signed Rank non parametric est [9]. Our

analysis suggests that the differences between the approach

presented here (with the simulation-based evaluation) and

the approach introduced by Cardamone et al. in [4] are not

statistically significant except for the Alpine 2 track where

our approach performs significantly worse (with a confidence

level of 99%). When comparing our approach (with the

simulation-based evaluation) to Simplix, the statistical anal-

ysis shows that the differences are statistically significant in

all the tracks (with a confidence level of 99%) except for the

Alpine 2 track. Finally, the differences the simulation-based

and the estimation-based evaluation resulted statistically sig-

nificant on all the tracks considered.

Overall, our results suggest that, despite involving a rather

larger search space, evolutionary computation can be applied

to evolve from scratch an optimal racing line optimizing

the position of its control points. However, the performance

achieved on the most complex track, i.e., Alpine 2, also

suggests that our approach might not scale up as well as

the the one previously introduced in [4]. Finally, the results

also suggest that evaluating the performance of the evolved

racing lines without using a simulation-based approach might

easily lead to significantly worse performances.

VII. CONCLUSIONS

In this paper, we proposed an approach to evolve an

optimal racing line to support the development of a modern

racing games. To this purpose, we proposed to encode the

racing lines using a set of connected Bézier curves and com-

pared two different evaluation methods to compute the fitness

function: a simulation-based evaluation and an estimation-

based evaluation. The former relies on a simulation of the

evolved racing lines to compute its fitness, while the latter

computes the fitness on the basis of an analysis of the

racing line with a computational model. Then, we tested our

approach applying it to four tracks of The Open Car Racing

Simulator (TORCS), an open source racing simulator.

The results obtained using the simulation-based evaluation

showed that our approach is able to outperform Simplix

one of the best controller available for TORCS and to

achieve performances similar to the ones achieved with a

different evolutionary approach introduced in [4]. However,

both the performance achieved on the most complex track,

i.e., Alpine 2 track, and the analysis of the evolutionary

runs suggested that our approach might benefit from a more

compact encoding.

When the estimation-based evaluation was used, our ap-

proach was not able to achieve the same performances

of the Simplix controller. Such a result suggests that the

computational model used to estimate the fitness of the racing

line is not able to capture completely the underlying problem.

Accordingly, despite being much less expensive in terms of

computational resource, the application of the estimation-

based evaluation requires further investigation in order to be

successfully applied to evolve optimal racing lines.

REFERENCES

[1] Robot auto racing simulator. http://rars.sourceforge.

net/.
[2] Wolf-Dieter Beelitz. The SIMPLy mIXed best practice TORCS

robot. http://www.wdbee.gotdns.org:8086/SIMPLIX/

SimplixDefault.aspx.
[3] F. Braghin, F. Cheli, S. Melzi, and E. Sabbioni. Race driver model.

Comput. Struct., 86(13-14):1503–1516, 2008.
[4] L. Cardamone, D. Loiacono, P.L. Lanzi, and A.P. Bardelli. Searching

for the optimal racing line using genetic algorithms. In Computational

Intelligence and Games (CIG), 2010 IEEE Symposium on, pages 388
–394, aug. 2010.

[5] Rémi Coulom. Reinforcement Learning Using Neural Networks,
with Applications to Motor Control. PhD thesis, Institut National
Polytechnique de Grenoble, 2002.

[6] R.S. Sharp D. Casanova. On minimum time vehicle manoeuvring: the
theoretical optimal time. PhD thesis, Cranfield University, 2000.

[7] Eric Espié, Christophe Guionneau, Bernhard Wymann, Christos Dimi-
trakakis, Rémi Coulom, and Andrew Sumner. TORCS, the open racing
car simulator. http://www.torcs.org, 2005.

[8] G.E. Farin. Curves and surfaces for computer-aided geometric design:

a practical guide. Number v. 1 in Computer science and scientific
computing. Academic Press, 1997.

[9] J. D. Gibbons. Nonparametric Statistical Inference. Marcel Dekker,
1985.

[10] David E. Goldberg. The Design of Innovation: Lessons from and

for Competent Genetic Algorithms. Kluwer Academic Publishers,
Norwell, MA, USA, 2002.

[11] Jeff Hannan. Interview to jeff hannan, 2001.
http://www.generation5.org/content/2001/hannan.asp.

[12] Stefano Lecchi. Artificial intelligence in racing games. In CIG’09:

Proceedings of the 5th international conference on Computational

Intelligence and Games, pages 1–1, Piscataway, NJ, USA, 2009. IEEE
Press.

[13] D. Loiacono, P.L. Lanzi, J. Togelius, E. Onieva, D.A. Pelta, M.V.
Butz, T.D. Lonneker, L. Cardamone, D. Perez, Y. Saez, M. Preuss,
and J. Quadflieg. The 2009 simulated car racing championship.
Computational Intelligence and AI in Games, IEEE Transactions on,
2(2):131 –147, jun. 2010.

[14] D. Loiacono, J. Togelius, P.L. Lanzi, L. Kinnaird-Heether, S.M. Lucas,
M. Simmerson, D. Perez, R.G. Reynolds, and Y. Saez. The wcci 2008
simulated car racing competition. In Computational Intelligence and

Games, 2008. CIG ’08. IEEE Symposium On, pages 119–126, Dec.
2008.

[15] K. Sastry. Single and multiobjective genetic algorithm toolbox for
matlab in c++. Technical Report 2007017, Illinois Genetic Algo-
rithms Laboratory, University of Illinois at Urbana-Champaign, 117
Transportation Building, 104 S. Mathews Avenue Urbana, 2007.

[16] David Stern and Joaquin Qui nonero Candela. Playing machines:
Machine learning applications in computer games. In CIG’09:

Proceedings of the 5th international conference on Computational

Intelligence and Games, pages 1–1, Piscataway, NJ, USA, 2009. IEEE
Press.

2012 IEEE Conference on Computational Intelligence and Games (CIG’12) 115

