Classification of Raster Maps for **Automatic Feature Extraction**

Yao-Yi Chiang and Craig A. Knoblock University of Southern California

Motivation

- ▶ Raster map is a bitmap image of a map
- ▶ Raster maps are easily accessible
 - ▶ Contain information that is difficult to find elsewhere
 - Contain historical data

USGS topographic map of St. Louis, MO

Can we use meta-data to determine a map profile?

- Meta-data such as map source, is not always available
- Maps from the same source can be very different
 - ▶ Two USGS topographic maps covering two different cities

7

Content-based Image Retrieval (CBIR)

- ▶ CBIR is the technique to find images with similar 'content'
 - ▶ Content similarity defined by the comparison features
- In our case, similar content means two raster maps shared the same map profile for extracting their foreground pixels
 - ▶ Comparison feature Luminance-Boundary Histogram
 - Classifier Nearest-Neighbor Classifier

Luminance or Color

- Luminance is chosen instead of using one or all of the Red, Green, and Blue components
 - ▶ One-dimensional features is more computational efficient
 - Luminance is the most representative component by design

Luminance-Boundary Histogram (LBH)

- ▶ LBH captures the spatial relationships between neighboring luminance levels in the map
- ▶ The two example maps have similar spatial relationship between their luminance levels

High/Low Luminance-Boundary Histogram

A set of LBH contain a High Luminance-Boundary Histogram (HLBH) and a Low Luminance-Boundary Histogram (LLBH)

How to generate the HLBH and LLBH?

highlighted level

Nearest-Neighbor Classification

Use L1 Distance to compare two sets of LBH

$$L_1 = \sum_{i=0}^{255} |HLBH1_i - HLBH2_i| + |LLBH1_i - LLBH2_i|$$

A smaller distance indicates that the spatial relationships between luminance levels in one map are similar to the ones in the other map

Experiments

- ▶ Compare luminance-boundary histogram with
 - ► Color Histogram (CH):
 - ▶ Record the number of pixels of each color in a given color space
 - ▶ Color Moments (CM):
 - Based on statistical analysis of CH, i.e., average, standard deviation, and skewness
 - ▶ Color-Coherence Vectors (CCV):
 - Similar to CH, and further incorporates sizes of color regions into CH
- ▶ Two types of experiment:
 - Image retrieval queries
 - ▶ Evaluate the robustness of test features
 - Map classification tasks
 - Simulate a map classification component in a map feature extraction system

13

Test Data

- ▶ 60 test maps from 11 different sources
- Manually separated test maps into 12 class based on their luminance usage
- Insert the test maps to a map repository contained 1,495 raster maps

Map Source	Map	Map Counts	Intensity Interval
_	Type	Counts	mervai
Google Maps	Digital	5	0-230
Live Maps	Digital	5	0-225
Yahoo Maps	Digital	5	0-200
MapQuest Maps	Digital	5	0-220
USGS topographic maps	Scanned	5	0–36
USGS topographic maps	Scanned	5	0-184
Rand McNally	Digital	5	0–190
Map24	Digital	5	0-215
TIGER/Line	Digital	5	0–110
OpenStreetMap	Digital	5	0-238
Streetmap.co.uk	Digital	5	0–175
ViaMichelin	Digital	5	0-234

Map Profiles

Experiments on Image Retrieval

▶ Test on Robustness

- Remove a test class from the repository, such as a class of five test maps from Google Maps, namely G1, G2, G3, G4, and G5.
- Insert one test map, say GI, into the repository (there is only one correct answer for each query in the repository)
- Use G2 as the query image
- Record the rank of GI in the returned query results
- Next, we used G3, G4, and G5 in turn as the query image
- Remove GI from the repository, insert G2, and repeat the experiments

Feature	Average Ranks	σ
LBH	5.95	24.15
Color-Coherence Vectors	15	52.14
Color Histogram	28.17	116.85
Color Moments	232.87	239.52

Experiments on Simulating Map Classification

- Simulate a real map classification task
- Example:
 - Remove one test map, such as GI, to query the repository (i.e., GI represents a new input map and there are 4 correct answers)
 - If the first returned map was G2, G3, G4, or G5, then we had a correct classification
 - The accuracy is defined as the number of successful classifications divided by the total number of tested classifications

Feature	Accuracy
Luminance-Boundary Histogram	95%
Color-Coherence Vectors	86.67%
Color Histogram	88.33%
Color Moments	13.33%

17

Computation time on feature generation

- We implemented our experiments using Microsoft .Net running on a Microsoft Windows 2003 Server powered by a 3.2 GHz Intel Pentium 4 CPU with 4GB RAM
- Compare the top two features in the experiments
 - ▶ With 1,949 images
 - ▶ 428 seconds to generate the luminance-boundary histograms
 - ▶ 805 seconds to generate color-coherence vectors
 - ➤ The smallest test image in pixels is 130-by-350 and the largest image is 3000-by-2422

Related Work

- Map Classification using Meta-data (Gelernter, 09)
 - Answer queries such as finding the historical raster maps of a specific region for a specific year
- Image Comparison Features
 - **▶ Shape**:
 - Histogram of oriented gradient HoG (Dalal and Triggs, 05) for human detection
 - Texture:
 - Tamura texture features (Tamura et al., 78), Gabor wavelet transform features (Manjunath and Ma, 96)
 - ▶ Represent the overall texture of an image does not fit our goal
 - ▶ Color:
 - Color Histogram and Color Moments (Stricker and Orengo, 95) do not generate robust results
 - ▶ Color-Coherence Vectors (Pass et al., 96) requires threshold tuning

Discussion and Future Work

- ▶ Achieve 95% accuracy on map classification task
- ► Make it possible to extract geographic features (e.g., roads and text) automatically on new input maps
- ▶ LBH generation is efficient
- Future Work
 - Test with modern classifiers (e.g., SVM) or off-the-shelf content-based image retrieval (CBIR) systems
 - Integrate with our current system of map feature extraction