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Abstract. As the amount of Linked Open Data on the web increases, so does the amount of data with an inherent spatial context.
Without spatial reasoning, however, the value of this spatial context is limited. Over the past decade there have been several
vocabularies and query languages that attempt to exploit this knowledge and enable spatial reasoning. These attempts provide
varying levels of support for fundamental geospatial concepts. GeoSPARQL, a forthcoming OGC standard, attempts to unify
data access for the geospatial Semantic Web. As authors of the Parliament triple store and contributors to the GeoSPARQL spec-
ification, we are particularly interested in the issues of geospatial data access and indexing. In this paper, we look at the overall
state of geospatial data in the Semantic Web, with a focus on GeoSPARQL. We first describe the motivation for GeoSPARQL,
then the current state of the art in industry and research, followed by an example use case, and finally our implementation of
GeoSPARQL in the Parliament triple store.
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1. Introduction

Geospatial data is increasingly being made avail-
able on the Web in the form of datasets described us-
ing the Resource Description Framework (RDF). The
principles of Linked Open Data, detailed in [5], en-
courage a set of best practices for publishing and con-
necting structured data on the Web. Linked Open Data
promotes the use of the SPARQL Protocol and RDF
Query Language (SPARQL) and RDF to query and
model data. While this is useful for querying for re-
lationships that are explicitly represented in data, im-
plicit relationships, such as geospatial relationships,
cannot easily be queried. For instance, datasets may
exist that describe monuments and parks, but being
able to link these datasets based on their undeclared
relationships is difficult. The ability to answer a mean-

ingful query, like "What parks are within 3km of the
Washington Monument?", depends on how the data is
represented, whether all of the resources are related to
the Washington Monument, and if that relationship is
explicit.

In this paper, we discuss an emerging standard, Geo-
SPARQL [24] from the Open Geospatial Consortium
(OGC)1. This standard aims to address the issues of
geospatial data representation and access. It provides
a common representation of geospatial data described
using RDF, and the ability to query and filter on the
relationships between geospatial entities. First, we in-

1Dave Kolas is a co-chair for the GeoSPARQL Standards Work-
ing Group, and Robert Battle has worked on the Parliament imple-
mentation and provided feedback to the development of the stan-
dard.
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troduce some geospatial concepts that are critical to
understanding some of the design choices for Geo-
SPARQL. We then describe topological relationships
that are important to understand when designing a lan-
guage for querying between spatial entities. Next, we
describe the motivation for GeoSPARQL, the current
state of the art in modeling and querying geospatial
data in the Semantic Web, and we introduce Geo-
SPARQL. As authors of the Parliament2 triple store,
we are particularly interested in the capabilities that
GeoSPARQL provides. We describe an implementa-
tion of a GeoSPARQL spatial index using Parliament
and a use-case that illustrates a simple example of data
integration with GeoSPARQL.

2. Geospatial Concepts

Some basic understanding of geospatial concepts is
required for discussion of GeoSPARQL. The follow-
ing sections define some of the terms used throughout
the rest of this paper.

2.1. Features and Geometries

Features and geometries are two fundamental con-
cepts of geospatial science. A feature is simply any en-
tity in the real world with some spatial location. This
could be a park, an airport, a monument, a restaurant,
etc. A feature can have a spatial location that cannot
be precisely defined, such as a swamp or a mountain
range. A geometry is any geometric shape, such as a
point, polygon, or line, and is used as a representation
of a feature’s spatial location. For instance, Reagan
National Airport is a geospatial feature because it is an
entity that has a specific location in the world. It has a
geometry that is a point with coordinates 38.852222, -
77.037778 (in the WGS843 datum). Geometries can be
measured at varying resolutions, from a simple point
in the center of a feature to a complex, precise mea-
surement of a feature’s entire border. Spatial data typi-
cally separates features from geometries, although that
is not always the case.

2http://parliament.semwebcentral.org
3http://en.wikipedia.org/wiki/World_

Geodetic_System

2.2. Coordinate Reference Systems

An important part of the metadata associated with a
geometry is its coordinate reference system (CRS) (al-
ternatively known as its spatial reference system). The
elements of a coordinate reference system provide con-
text for the coordinates that define a geometry in order
to accurately describe their position and establish rela-
tionships between sets of coordinates. There are four
parts that make up a CRS: a coordinate system, an el-
lipsoid, a datum, and a projection.

A coordinate system describes a location relative to
some center. A geocentric coordinate system places the
center at the center of the Earth and uses standard X,
Y, Z ordinates. A geographic (or geodetic) coordinate
system uses a spherical surface to determine locations.
In such a system, a point is defined by angles measured
from the center of the Earth to a point on the surface.
These are also known as latitudes (horizontal) and lon-
gitudes (vertical). A Cartesian coordinate system is a
flat coordinate system on the surface. It enables quick
and accurate measurements over small distances and is
useful for applications such as surveying.

An ellipsoid defines an approximation for the center
and shape of the Earth. A datum defines the position
of an ellipsoid relative to the center of the earth. This
provides a frame of reference for measuring locations
and, for local datums, allows for accurate locations to
be defined for the valid area of the datum. WGS84 is a
datum that is widely used by GPS devices that approxi-
mates the entire world. Geographic coordinate systems
use an Earth based datum that transforms an ellipsoid
into a representation of the Earth.

In order to create a map of the Earth, it must be pro-
jected from a curved surface onto the plane. This pro-
jection will distort the surface in some fashion which
will mean that the coordinates for some locations are
more accurate than those in another. Some projections
will preserve area, so the size of all objects is relative,
while others preserve angles, and others try to do both.
A coordinate system projected onto a plane enables
faster performance, as Cartesian calculations require
fewer resources than Spherical calculations. Computa-
tions across the plane, however, are inaccurate when
they deal with large areas as the curvature of the Earth
is not taken into account.

The combination of these elements defines a CRS.
One common source of well defined coordinate refer-
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ence systems is the European Petroleum Survey Group
(EPSG)4.

2.3. Topological Relationships

All spatial entities are inherently related to some
other spatial entity. Whether two entities intersect
somehow or are thousands of miles apart, the relation-
ship that they share can be described and evaluated.

In [28], Randell et al. describe an interval logic for
reasoning about space using a simple ontology that de-
fines functions and relations for expressing and rea-
soning over spatial regions. This logic is referred to as
Region Connection Calculus (RCC). A subset of RCC,
RCC8, defines eight mutually exhaustive pairwise dis-
joint relations which can be used to imply the rest of
the relations in RCC. These eight base relations are:

1. DC(x, y) (x is disconnected from y)
2. x = y (x is identical with y)
3. PO(x,y) (x partially overlaps y)
4. EC(x,y) (x is externally connected with y)
5. TPP(x,y) (x is a tangential proper part of y)
6. NTPP(x,y) (x is a non-tangential proper part of

y)
7. TPPi(x,y) (y is a tangential proper part of x)
8. NTPPi(x,y) (y is a non-tangential proper part of

x)

The same set of eight geospatial topological rela-
tions is described with different names by Egenhofer in
[8], and includes the capacity to describe the relation-
ship between different dimensioned geometries. This
model was later generalized in the Nine Intersection
Model [11]. The Open Geospatial Consortium Sim-
ple Feature Access Common Architecture specifica-
tion [25] uses the Nine Intersection Model introduced
by Egenhofer to describe spatial relations for use in ge-
ographic access systems. Table 1 illustrates the equiv-
alence between all of these spatial relations.

3. Motivation for GeoSPARQL

The Open Geospatial Consortium is a non-profit
standards organization focused on geospatial data. The
OGC is composed of members of industry, academic
institutions, and government organizations. By stan-
dardizing GeoSPARQL within the OGC, we seek to
leverage the experience of its members to ensure that

4http://www.epsg-registry.org

Table 1
Simple Features, Egenhofer and RCC8 relations equivalence

Simple Features Egenhofer RCC8

equals equal EQ
disjoint disjoint DC
intersects ¬disjoint ¬DC
touches meet EC
within inside + coveredBy NTPP + TPP
contains contains + covers NTPPi + TPPi
overlaps overlap PO

geospatial Semantic Web data is represented in a con-
sistent logical way. With the input and acceptance of
all of both knowledge base vendors and data produc-
ers and consumers, GeoSPARQL has the potential to
unify geospatial RDF data access.

Geospatial reasoning is critical in a large number
of application domains (emergency response, trans-
portation planning, hydrology, land use, etc.). Users in
these domains have long utilized relational databases
with spatial extensions [9]. These spatially extended
databases have given the combination of efficient, sta-
ble storage and retrieval of data with geospatial calcu-
lation and indexing. This allows questions like "Which
students live within 2km of the school they attend?" to
be answered efficiently.

Within the last decade, RDF storage solutions have
become increasingly popular. These knowledge bases,
sometimes called triple stores, are capable of better
handling several types of problems at which relational
databases struggle or are not intended to perform:
queries with many joins across entities [32], queries
with variable properties [32], and ontological inference
on datasets. These features lend themselves towards
problems that involve data exploration, linkage across
datasets, and abstraction from low level data.

Because of RDF stores’ ability to do inference and
easily link data sets, they have been of growing inter-
est to the geospatial data community. Often geospa-
tial domains have complicated type hierarchies which
cannot be fully expressed in current geospatial infor-
mation systems. For instance, a river is both a water-
way and a transportation route. Also, geospatial do-
main problems often require marrying multiple data
sources together to solve a particular problem. In emer-
gency response scenarios, population data, transporta-
tion data, and even realtime police and fire data must
be combined to deliver a timely result. Combining data
sources on the web is useful to consumers as well;
geospatial data about points of interest combined with
hotel information and travel route information could
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lead to significantly more sophisticated travel planning
than currently exists.

As such, it was inevitable that those people inter-
ested in expressing geospatial data on the Semantic
Web would want to combine the spatial indexing and
calculation of spatial databases with the inferential
power and data linkage of RDF triple stores [16]. This
has been done by many groups in varying ways for
varying purposes, as will be discussed later.

To provide geospatial reasoning and querying in
a triple store, the implementors must define both an
ontology for representing spatial objects and query
predicates for retrieving these spatial objects. How-
ever, each organization that has attempted this task
has approached it in a slightly different way. As a re-
sult, spatial RDF data that would be properly indexed
and queryable in one implementation would simply be
treated as plain RDF data in another implementation.

This is the primary problem which the standard-
ization of GeoSPARQL attempts to solve. The Geo-
SPARQL language defines both a small ontology for
representing features and geometries and a number of
SPARQL query predicates and functions. All of these
are derived from other OGC standards so that they are
well grounded and understood. Using the new standard
should ensure two things: (1) if a data provider uses
the spatial ontology in combination with an ontology
of their domain, that data can be properly indexed and
queried in spatial RDF stores; and (2) compliant RDF
triple stores should be able to properly process the ma-
jority of spatial RDF data.

Aside from providing the ability to perform spa-
tial queries, the small ontology portion of the Geo-
SPARQL specification is intended to provide an in-
terchange format for geospatial data in a wide variety
of use cases. The ontology is meant to be attached to
other ontologies for various domains, providing only
the bare spatial aspects. It is intended to be simple
enough to cover the most light-weight uses, and scale
in complexity for complex use cases. GeoSPARQL
goes a long way to solving one of the research issues
posed by Egenhofer in [10], namely that "we need a
plausible canonical form in which to pose geospatial
data queries".

GeoSPARQL is intended to inter-operate with both
quantitative and qualitative spatial reasoning systems.
A quantitative spatial reasoning system involves con-
crete geometries for features. With these concrete ge-
ometries present, distances and topological relations
can be explicitly calculated. Qualitative geospatial rea-
soning systems allow RCC type topological inferences

for features where the geometries are either unknown
or cannot be made concrete [13]. For example, if there
are assertions that a monument is inside a park, and
the park is inside a city, a qualitative reasoning sys-
tem should be able to infer that the monument is in
the city through transitivity. Hybrid versions of these
systems are also possible, where some features have
concrete geometries and others have abstract geome-
tries. By sharing a set of terms for topological rela-
tions, GeoSPARQL allows conclusions from quantita-
tive applications to be used by qualitative systems and
a single query language for both types of reasoning.

4. Geospatial RDF: State of the Art and Related
Work

Over the past decade, there have been many dif-
ferent attempts to create a geospatial RDF standard.
Several different organizations, including the W3C, re-
search groups, and triple store vendors have created
their own ontologies and strategies for representing
and querying geospatial data.

In 2003, a W3C Semantic Web Interest Group cre-
ated the Basic Geo Vocabulary [31] which provided
a way to represent WGS84 points in RDF. This work
was extended from 2005 through 2007 by the W3C
Geospatial Incubator Group [21] to follow the GeoRSS
[23] feature model to allow for the description of
points, lines, rectangles, and polygon geometries and
their associated features. This group produced the
GeoOWL ontology5 which provides a detailed and
flexible model for representing geospatial concepts.
These ontologies were produced as products from their
respective groups within the W3C as the result of col-
laborations across university and industry partners.

There are published datasets that use the W3C vo-
cabularies [3] and a variety of triple stores that support
data represented by these ontologies [17,22]. However,
the associated working groups never moved beyond
the incubator state and the respective ontologies never
became official W3C recommendations. These ontolo-
gies also only work with data in the WGS84 datum.
In order to be valid, data in any other CRS must be
projected which can lead to inaccuracy in the data.

Support for spatial data in triple stores is mixed.
Several vendors support spatial data, but not all ven-

5http://www.w3.org/2005/Incubator/geo/
XGR-geo-20071023/W3C_XGR_Geo_files/geo_2007.
owl
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dors support the same representation of data or share
the same support for relational queries. Some triple
stores use the aforementioned W3C ontologies, while
others have invented their own.

Parliament, the high performance [18] triple store
from Raytheon BBN Technologies, provided the first
geospatial index for semantic web data in 2007 [16,
17]. This index supports data in the GeoOWL ontology
and introduces ontologies for querying spatial data via
RDF properties that correspond to the RCC spatial re-
lations and OGC Simple Features relations. However,
data in the W3C Basic Geo vocabulary is unsupported.

Ontotext’s OWLIM-SE6 triple store can index point
data represented in the W3C Basic Geo Vocabulary
[22]. The only spatial relationship that can be queried
is whether a point is contained within a circle or poly-
gon. The ability to query for relationships between
higher order geometries such as lines and polygons is
not supported.

OpenLink Virtuoso7 also has support for the W3C
Basic Geo Vocabulary. A SPARQL function is pro-
vided to convert a pair of latitude and longitude prop-
erty values into a point geometry. A special literal
datatype, virtrdf:Geometry, is also provided for
indexing point literals. Support for testing intersection
and containment relationships is provided via property
functions. Through a combination of these relations
and their negations, most of the Egenhofer relations
can be tested. However, some relations, such as testing
for overlap, cannot be supported in Virtuoso.

Other triple stores take a completely different ap-
proach. As described in [12], Franz AllegroGraph8 de-
fines a custom datatype to represent geospatial data
and map it to a "strip" of space in the index that con-
tains the data. A modified SPARQL syntax provides a
new GEO operator where the geospatial aspect of the
query is defined.

OpenSahara9 provides a service for adding exter-
nal indexing and geospatial querying capabilities to
any triple store with a Sesame10 Sail layer. The im-
plentation is a wrapper for the PostgreSQL11 database
with PostGIS spatial extensions12 and as such, Open-
Sahara supports all of the geometries and relations de-

6http://www.ontotext.com/owlim/editions
7http://www.openlinksw.com
8http://www.franz.com/agraph/allegrograph
9http://www.opensahara.com
10http://www.openrdf.org
11http://www.postgresql.org
12http://postgis.refractions.net

fined in the OGC Simple Features Access [25]. Lit-
eral datatypes are introduced for Well-Known Text
(WKT), Well Known-Binary (WKB), and their com-
pressed forms while the spatial relations that PostGIS
supports are implemented as SPARQL filter functions.

In addition to vendor supported options, there has
been significant community and research interest in-
representing and querying geospatial data in the last
few years. Perry proposed an extension to SPARQL,
SPARQL-ST in [26]. This introduces a modified
SPARQL syntax for posing spatial queries to data that
is modeled in an upper ontology based on GeoRSS. A
focus on describing data and metadata such as the CRS
for geometries allows SPARQL-ST to operate with
data of different systems which is something that is
lacking from many vocabularies such as GeoOWL and
the Basic Geo vocabulary. This increased flexibility
with data is hindered, however, by the proposed query
syntax which deviates from the standard SPARQL lan-
guage. Any data that is in the SPARQL-ST format can
only be accessed by a SPARQL-ST system.

Taking a simpler approach, Zhai et al., in [34] and
[33], discuss the need for adding topological predicates
to SPARQL. The OGC Simple Features relations and a
subset of geometries are used as the basis for their on-
tologies. Unfortunately, the relations have to be specif-
ically encoded in RDF and the data cannot support
multiple coordinate reference systems.

Another approach described by Koubarakis and
Kyzirakos in [19] is based on research from the con-
straint database community. Constraint databases are
a promising technology for integrating spatial data
[4]. The authors propose to enrich the Semantic Web
with spatial and temporal data by extending RDF and
SPARQL with constraints. The proposed extension to
RDF, stRDF, uses typed literals to describe a semi-
linear point set. The query language, stSPARQL, ex-
tends SPARQL to includes additional operators for
querying RCC relationships and introduces a new syn-
tax for specifying spatial variables. Support for mul-
tiple coordinate reference systems is not discussed.
Compatibility with existing data is also a problem as
not all data is represented as a semi-linear point set.
stSPARQL is intentionally not compatible with OGC
standards as the authors believe that the semi-linear
point set can be used to describe different geometries
without forcing a hierarchy of datatypes on users. In
[20], stSPARQL and stRDF are described with an ad-
ditional context of GIS applications. The authors con-
trast stRDF and stSPARQL with prior work (such as
GeoOWL) and note that it is hard to find information
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about geometries when you do not know what type of
geometries will be in the answer set and what prop-
erties to ask about. This is a problem with represen-
tations like GeoOWL where different geometries have
different properties. The semi-linear point set avoids
this by encapsulating the representation into a single
datatype.

The NeoGeo Vocabulary [29] is a vocabulary that
arose from the NeoGeo community13, the Linked Data
community, and several universities. They recognized
the need for a well formed standard representation
for geospatial data and provided one that is based on
the Geography Markup Language (GML) Simple Fea-
tures Profile14. To describe spatial relations, an ontol-
ogy based on RCC8 is also provided. A limitation of
the NeoGeo approach is the need to represent each co-
ordinate as a resource. In particular, polygons and lines
are represented with an RDF collection of Basic Geo
points. While this does allow points to be shared across
geometries, it significantly increases the verbosity of
the data. Unfortunately, this extra verbosity does not
result in particular gains in expressive power, since
each point in a polygon provides little value in isola-
tion and RDF list contents are difficult to query for in
SPARQL 1.0. Moreover this prevents geometry liter-
als from being compared easily in SPARQL filter func-
tions. The ability to use content negotiation to retrieve
other formats for geometries mitigates these issues for
some applications. A nice thing about this approach is
that it does not require any complex literals to parse,
and thus may be attractive to Semantic Web practition-
ers not familiar with geospatial data formats.

In [15], Hu and Du compose a three level hierar-
chical spatiotemporal model: a meta level for abstract
space-time knowledge, a schema level for well-known
models in spatial and temporal reasoning (e.g., RCC,
Allen time[1]), and an instantiations level that pro-
vides mappings and formal descriptions of the various
ground spatiotemporal statements in the Linked Data
clouds. This meta approach provides a convenient way
to abstract out spatial knowledge from its underlying
representation. Mappings, however, have to be defined
for each dataset at the instantiations level.

A complete implementation of integrating spatial
data and queries into an RDF triple store is described
by Brodt et al. in [7]. By typing WKT string repre-
sentations of geometry literals with a spatial datatype,

13http://sites.google.com/site/neogswvocs/
14http://www.ogcnetwork.net/gml-sf

the triple store is able to efficiently store and query
data. Once again, the OGC Simple Features relations
are used as the basis for posing queries for the spatial
relation. These relations are mapped to SPARQL filter
functions which allow for direct comparison between
spatial literals. This implementation is similar to the
approach taken by Parliament and OpenSahara in the
way that the SPARQL language itself does not need to
be modified in order to query for the spatial relations
between entities.

5. Introduction to GeoSPARQL

As illustrated above, many groups have created on-
tologies and query predicates to make indexing and
query of geospatial data possible. However, since there
are many of these and they all differ slightly, data that
can be spatially queried in one knowledge base may
not be able to be spatially queried in another. Geo-
SPARQL provides a standard for geospatial RDF data
insertion and query, which covers the use cases of the
other previous approaches.

The GeoSPARQL specification attempts to enable a
wide range of geospatial query use cases, from sim-
ple points of interest knowledge bases to detailed au-
thoritative geospatial data sources for transportation.
Moreover, use of GeoSPARQL for both of these types
of data should enable the data sets to be easily used
together. In order to achieve this goal, different con-
formance classes are provided. This means that a sim-
ple knowledge base implementation intended for sim-
ple use cases need not implement all of the more ad-
vanced reasoning capabilities of GeoSPARQL, such as
quantitative reasoning or query rewriting.

There are also several sets of terminology for the
topological relationships between geometries. Rather
than mandate that all implementations use the same
set of terminology, each implementation can choose
which sets of terms to support. This is discussed fur-
ther in the section on GeoSPARQL relationships.

GeoSPARQL attempts to address the problems with
the disparate and incompatible implementations for
representing and querying spatial data. It achieves this
by defining an ontology that closely follows the exist-
ing standards work from the OGC with regard to spa-
tial indexing in relational databases.

The GeoSPARQL specification contains three main
components:

1. The definition of a vocabulary to represent fea-
tures, geometries, and their relationships.
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2. A set of domain-specific, spatial functions for
use in SPARQL queries.

3. A set of query transformation rules.

5.1. GeoSPARQL Ontology

The ontology for representing features and geome-
tries is fundamental to being able to build and query
spatial data. The ontology is based on the OGC’s Sim-
ple Features model, with some adaptations for RDF.
Note that prefix definitions are omitted from exam-
ples for clarity; a definition of all of the prefixes used
is at the end of the paper in listing 1515. The ontol-
ogy includes a class geo:SpatialObject, with
two primary subclasses, geo:Feature and geo:
Geometry. These classes are meant to be connected
to an ontology representing a domain of interest. Fea-
tures can connect to their geometries via the geo:
hasGeometry property.

For example, an airport is a geo:Feature. It is
a conceptual thing that exists in the real world in a
particular place. In the real world, it has a location
that corresponds to the coordinates of all of the infi-
nite points along the border of the airport area. This
real-world location has to be measured and estimated
in some way. It is possible to do this measurement at
various resolutions, each of which may serve well for
different purposes. A representation of the real world
location which has been measured becomes a geo:
Geometry. Thus the airport may have several geo:
Geometrys, ranging from a single point in the cen-
ter of the airport to an extremely detailed polygon that
closely follows the airport’s outside border. A geome-
try that will function for most purposes within a dataset
can be specified as the geo:defaultGeometry.

GeoSPARQL includes two different ways to repre-
sent geometry literals and their associated type hier-
archies: WKT and GML. An implementor of a spa-
tial triple store may choose to support either or both
of these representations. GeoSPARQL provides differ-
ent OWL classes for the geometry hierarchies associ-
ated with both of these geometry representations. This
provides classes for many different geometry types

15In order to be more relevent to the forthcoming finalized Geo-
SPARQL standard, this paper makes use of an updated OGC internal
draft of GeoSPARQL. While the functionality is the same as the pub-
lic draft, the uniform resource identifiers (URIs) for GeoSPARQL
predicates and classes have been updated. We have chosen to use the
newer URIs in this document in order to be more consistent with the
standard once it is released.

such as point, polygon, curve, arc, and multicurve. The
geo:asWKT and geo:asGML properties link the ge-
ometry entities to the geometry literal representations.
Values for these properties use the sf:wktLiteral
and gml:gmlLiteral data types respectively.

5.2. GeoSPARQL Relationships

GeoSPARQL also includes a standard way to ask for
topological relationships, such as overlaps, between
spatial entities. These come in the form of binary prop-
erties between the entities and geospatial filter func-
tions.

The topological binary properties can be used in
SPARQL query triple patterns like a normal prop-
erty. Primarily they are used between objects of the
geo:Geometry type. However, they can also be
used between geo:Features, or between geo:
Features and geo:Geometrys, if GeoSPARQL’s
query rewrite rules are supported (discussed in the
next section). The properties can be expressed using
three distinct vocabularies: the OGC’s Simple Fea-
tures, Egenhofer’s 9-intersection model, and RCC8.
Which of these vocabularies is supported can be de-
pendent on the triple store implementation, though it is
likely that implementations will support all three. The
Simple Features topological relations include equals,
disjoint, intersects, touches, within, contains, overlaps,
and crosses.

The filter functions provide two different types
of functionality. First, there are operator functions
which take multiple geometries as predicates and pro-
duce either a new geometry or another datatype as
a result. An example of this is the function ogcf:
intersection. This function takes two geometries
and returns a geometry that is their spatial intersec-
tion. Other functions like ogcf:distance produce
an xsd:double as a result. The second type of func-
tionality is boolean topological tests of geometries.
These come in the same three vocabulary sets as the
topological binary properties: simple features topo-
logical relations, Egenhofer relations, and RCC8 re-
lations. These functions are partially redundant with
the topological binary properties; however, the topol-
ogy functions take the geometry literals as parameters,
while the binary properties relate geo:Geometry
and geo:Feature entities. This means that quanti-
tative and qualitative applications can both make use
of the binary properties, but only quantitative applica-
tions can make use of the topology functions. Also,
comparisons to concrete geometries provided in the
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query can only be made via the functions. An example
of the topological functions is ogcf:intersects,
which returns true if two geometries intersect.

5.3. Query Transformation Rules

The query rewrite rules allow for an additional layer
of abstraction in SPARQL queries. While only con-
crete geometry entities can be quantitatively com-
pared, it nonetheless sometimes makes sense to discuss
whether two features have a particular topological re-
lationship. This is represented in the natural language
question, "Is Reagan National Airport within Washing-
ton, DC?". Although Reagan National is referred to as
a Washington DC airport, it is actually across the Po-
tomac river in Virginia. In GeoSPARQL, feature to fea-
ture and feature to geometry topological relations are
achieved by the combination of the use of the geo:
defaultGeometry property and the query rewrite
rules. If a geo:Feature is used as the subject or ob-
ject of a topological relation, the query is automatically
rewritten to compare the geo:Geometry linked as a
default, thus removing the abstraction for processing.
Listing 1 shows a query with a relationship between
geo:Feature objects before and after rewrite.

Listing 1: Query Rewrite Example

#Before
ASK {

ex:DCA a geo:Feature;
geo:sfWithin ex:WashingtonDC .

ex:WashingtonDC a geo:Feature .
}

#After
ASK {

ex:DCA a geo:Feature;
geo:defaultGeometry ?g1 .

ex:WashingtonDC a geo:Feature ;
geo:defaultGeometry ?g2 .

?g1 geo:sfWithin ?g2 .
}

The goal of this feature is to provide a more intu-
itive approach to geospatial querying for use cases that
do not require many different geometries, while still
maintaining a concrete definition of this intuitive un-
derstanding. Compliant GeoSPARQL triple stores are
not required to implement this feature.

Listing 2: Example Ontology

ex:Restaurant a owl:Class;
rdfs:subClassOf ex:Service .

ex:Park a owl:Class;
rdfs:subClassOf ex:Attraction .

ex:Museum a owl:Class;
rdfs:subClassOf ex:Attraction .

ex:Monument a owl:Class;
rdfs:subClassOf ex:Attraction .

ex:Service a owl:Class;
rdfs:subClassOf ex:

PointOfInterest .
ex:Attraction a owl:Class;

rdfs:subClassOf ex:
PointOfInterest .

ex:PointOfInterest a owl:Class;
rdfs:subClassOf geo:Feature .

Listing 3: Washington Monument

ex:WashingtonMonument a ex:Monument;
rdfs:label "Washington Monument";
geo:hasGeometry ex:WMPoint .

ex:WMPoint a geo:Point;
geo:asWKT "POINT(-77.03524

38.889468)"^^sf:wktLiteral.

6. Using GeoSPARQL

Consider an example using a points of interest ontol-
ogy in listing 2. We seek to represent points of interest
of various types (Monuments, Parks, Restaurants, Mu-
seums, etc.). These types of landmarks are represented
in a class hierarchy with a ex:PointOfInterest
class at the top. These classes of course may include
many non-spatial attributes, but only a label is included
here. All that is required to link this ontology with
GeoSPARQL, and thus give its classes a geospatial ref-
erence, is to make ex:PointOfInterest a sub-
class of geo:Feature. This may of course result in
the class having two parent classes, but this is compat-
ible with RDFS and OWL reasoning.

If compliance with WKT is chosen, and latitudes
and longitudes are expressed in WGS84 datum in a
longitude latitude order (CRS:84), a record for the
Washington Monument would look like listing 3. If a
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coordinate reference system other than CRS:84 is de-
sired, that can be included within the literal. Listing 4
expresses the same point in WGS84 with latitude lon-
gitude order.

Listing 4: Point in WGS84 datum

"<http://www.opengis.net/def/crs/
EPSG/0/4326> POINT(38.889468
-77.03524)^^"sf:wktLiteral

While this representation may seem verbose, and the
literal string is no longer standard WKT, it has the ad-
vantage of encoding the CRS information directly into
the literal. This is all of the data needed to define a
geo:Geometry; without the CRS, another property
would need to be added onto the geo:Geometry in-
stance, and that property would need to be read and
passed into filter functions as well. While an argument
can be made that it produces a "cleaner" model if the
CRS was associated with a geometry via a separate
predicate, GeoSPARQL focused on producing a com-
pact representations that could contain the entire de-
scription of a geometry within a single literal. For the
case of WKT, this necessitates adding the CRS specifi-
cation to the WKT literal string. For the GML confor-
mance class, the CRS information is already encoded
in the GML string so no changes are required.

Now we will look at a few example GeoSPARQL
queries using this data. One potential query over this
dataset would be, "Which monuments are contained
within a park?" This query requires a topological com-
parison between the geometries of the monuments and
the geometries of parks. We show it in listing 5 using
the binary topology property geo:within. The two
entities have type statements, geo:hasGeometry
properties to tie them to their geometries, and then the
geo:within function to tie them together.

If the knowledge base being used supported the
query rewriting rules, and the data set included de-
fault geometries, the first query could be rewritten even
more simply using a feature-to-feature topological re-
lationship. This method is demonstrated in listing 6.

Spatial user interfaces often need to look for entities
of a particular type that fall within an explicit bounding
box. Consider the query, "What attractions are within
the bounding box defined by (-77.089005, 38.913574)
and (-77.029953, 38.886321)?" Because we need to
specify an explicit geometry in the query, we need to
compare to it using the topological filter functions as
opposed to the binary properties. We have the attrac-

Listing 5: Example Query 1

SELECT ?m ?p
WHERE {

?m a ex:Monument ;
geo:hasGeometry ?mgeo .

?p a ex:Park ;
geo:hasGeometry ?pgeo .

?mgeo geo:within ?pgeo .
}

Listing 6: Example Query 2

SELECT ?m ?p
WHERE {

?p a ex:Park .
?m a ex:Monument ;

geo:within ?p .
}

Listing 7: Example Query 3

SELECT ?a
WHERE {

?a a ex:Attraction;
geo:hasGeometry ?ageo .

FILTER(geof:within(?ageo,
"POLYGON((

-77.089005 38.913574,
-77.029953 38.913574,
-77.029953 38.886321,
-77.089005 38.886321,
-77.089005 38.913574
))"^^sf:wktLiteral))
}

tion entity and its attached geometry, and the geometry
is compared with the filter function geof:within.
This query is shown in listing 7. Note that the bound-
ing box is expressed as a polygon.

Queries looking for entities within a particular dis-
tance of either other entities or a current location are
extremely useful as well. "Which parks are within
3km of the Washington Monument?" can be easily ex-
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Listing 8: Example Query 4

SELECT ?p
WHERE {
?p a ex:Park ;
geo:hasGeometry ?pgeo .
?pgeo geo:asWKT ?pwkt .

ex:WashingtonMonument
geo:hasGeometry ?wgeo .
?wgeo geo:asWKT ?wwkt .

FILTER(geof:distance(?pwkt, ?wwkt,
units:m) < 3000)

}

pressed in GeoSPARQL. We assume the same URI for
the Washington Monument in the data example above.
We need to retrieve the two geometries and use the
function geof:distance to calculate the distance
between them. A standard SPARQL less than func-
tion is then applied. This query is shown in listing 8.
These example queries require relatively little in terms
of non-spatial constraints, but serve to illustrate some
basic functionality with GeoSPARQL. With a more
complex ontology, queries could include more compli-
cated thematic elements as well.

6.1. Exploiting Geospatial Data

Storing geospatial data just as RDF triples does not
allow for the spatial exploitation of that data. In order
to be able to efficiently query for the relationships be-
tween spatial entities, the data must be indexed. This
allows only those resources that match the spatial com-
ponent of a query to be retrieved, rather than spatially
filtering all bindings that match a given query. The rel-
ative performance advantages of using a spatial index
versus spatially filtering a result set is discussed by
Brodt et al. in [7].

6.2. Parliament and GeoSPARQL

In order to take advantage of data represented in
GeoSPARQL, a SPARQL endpoint needs to under-
stand the GeoSPARQL ontology and provide support
for one (or more) of the conformance classes. The Par-
liament triple store provides one such implementation
(based on a draft version of the specification) that al-

lows GeoSPARQL data to be indexed and provides a
query engine that supports GeoSPARQL queries.

Parliament has a modular architecture that enables
indexes to be built on top of the storage engine. One of
these indexes is a spatial index based on a standard R-
tree implementation [14]. In a similar approach to [7],
the spatial index is integrated in a way that provides na-
tive support for spatial relational queries and efficient
storage of the data. The general goal for this index is to
split SPARQL queries with geospatial information into
multiple parts, allowing for an optimized query plan
between the spatial components of the query and the
components with non-spatial triples to be executed.

Before the emergence of GeoSPARQL, Parliament
indexed data represented in GeoOWL and allowed
RCC8 and OGC Simple Features relations to be
queried [16,17]. We are currently implementing Geo-
SPARQL based on the public candidate draft standard,
and we describe this implementation in the following
section.

6.2.1. Index Specification
The index interfaces in the Parliament API include

methods for building a record from data, adding and
removing records, finding a record by URI, and finding
records by value. Existing indexes include the afore-
mentioned GeoOWL spatial index, a temporal index
(for indexing OWL Time16), and a basic numeric in-
dex (for optimizing range queries on numeric property
values).

The Parliament triple store is built with support for
Jena’s RDF Application Programming Interface (API)
and ARQ SPARQL query engine17. An implementa-
tion of Jena’s graph interface18 provides access to the
base graph store with support for adding, removing,
and finding triples. By attaching a listener19 to the
graph, the addition and removal of triples can be de-
tected and forwarded to any associated indexes. Parlia-
ment’s GeoSPARQL index listens for triples that con-
tain the geo:asWKT or geo:asGML predicates. Any
triple that is added to the graph is checked to see if it
matches. At this point, the index can create a record
for the geometry that is represented in the object of the
triple and insert it into the index. For instance, when
adding the triples in listing 3 to Parliament, the index

16http://www.w3.org/TR/owl-time/
17http://www.openjena.org
18http://openjena.org/javadoc/com/hp/hpl/

jena/graph/Graph.html
19http://openjena.org/javadoc/com/hp/hpl/

jena/graph/GraphListener.html
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Listing 9: Property Function Query

SELECT ?x
WHERE {

?x apf:concat( "Hello", " ", "
World") .

}

will generate a single record that contains a reference
to the resource ex:WMPoint and its WKT value.

In order to query for data in an index, we have
extended the ARQ query engine to support property
functions that can access indexes. When ARQ parses
a SPARQL query, it detects the different operators in
the query. A particularly useful feature of ARQ is the
support for property functions. Instead of matching a
triple in a graph, property functions can execute cus-
tom code in the context of the SPARQL query. Con-
sider the query in listing 9. It will yield a result set
with a single binding for ?x by concatenating all of the
arguments together to form the literal "Hello World"
instead of attempting to match the triple pattern. Par-
liament implements the GeoSPARQL spatial relations,
such as geo:intersects, as property functions.

6.3. Optimizing Query Execution

By using an index, a query can be optimized such
that the most selective part is executed first. Con-
sider the query in listing 10. This query is asking for
all monuments within the National Mall. Parliament’s
query optimizer splits the query into blocks for execu-
tion based on how the variables in the query are used
and what special operations occur in the query. In this
instance, since the predicate, geo:within, is an in-
dex property function, the triple containing the predi-
cate is considered as one query block. The rest of the
query is a simple basic graph pattern containing two
triples describing ?m. The basic graph pattern is ana-
lyzed and partitioned so that no variable crosses par-
titions. For this query, this generates two partitions.
When the query is executed, the Parliament query op-
timizer has two choices: (1) it can execute the spatial
part first and then match to the graph pattern, or (2)
it can execute the graph pattern first, then execute the
spatial operation. The optimizer will decide what to
do based on which path estimates it will provide the
fewest result bindings.

Listing 10: Optimization Example Query

SELECT ?m
WHERE {
?m a ex:Monument ;

geo:hasGeometry ?mgeo .
?mgeo geo:within ex:

NationalMallGeometry .
}

In this example, there are two sub patterns: the in-
dex property function, and the basic graph pattern for
?m. Each sub pattern estimates how many results that
it will be able to provide. For operations within the
spatial index, a bounding box query can be performed
to estimate how many results will be returned. In this
example, the index will look up the bounding box for
ex:NationalMallGeometry and calculate how
many items it contains. For basic graph patterns, Par-
liament keeps statistics on the triples it contains and
can quickly estimate how many matches are in the
store for a given triple pattern. Sub patterns containing
basic graph patterns use these statistics to estimate how
many triples will be bound by the pattern. After each
sub pattern has an estimate, they are ordered in ascend-
ing order executed accordingly. In this case, if there
were 500 monuments with geometries, but only 100
geometries within the bounding box, the index prop-
erty function would be executed first. If, however, there
were 500 geometries within the bounding box, but only
10 monuments exist in the triple store, the basic graph
pattern would execute first and the spatial relationship
would be tested for each of the 10 results.

In addition to optimizing pattern order, optimiz-
ing spatial operations can provide significant per-
formance benefits. Consider the query in listing 11.
This query is deceptive in that it appears to be ask-
ing a simple geospatial question: "What are all the
geometries within 10km of the feature described by
<http://sws.geonames.org/4212826/>?".
However, there is no way for Parliament’s query op-
timizer to know a priori what the distances between
geometries are. While some implementations of Geo-
SPARQL may be optimized to handle cases like this, in
Parliament this query would not use the spatial index
at all; the geometries for all parks would be found be-
fore checking their distance. Table 2 shows that there
are nine features matching this query. Listing 12 shows
a more version of this query that is Parliament can op-
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Listing 11: Example Query 5

SELECT ?x
WHERE {
GRAPH <http://www.geonames.org> {
<http://sws.geonames.org/4212826/>

geo:hasGeometry ?geo1 .
?geo1 geo:asWKT ?wkt1 .
?x geo:hasGeometry ?geo2 .
?geo2 geo:asWKT ?wkt2 .

BIND (geof:distance(?wkt1, ?wkt2,
units:m) as ?distance) .

FILTER (?distance < 10000)
}

}

Table 2
Example Query 5 Results

x

http://sws.geonames.org/4199542/
http://sws.geonames.org/7242246/
http://sws.geonames.org/4183291/
http://sws.geonames.org/4201877/
http://sws.geonames.org/4224307/
http://sws.geonames.org/4192596/
http://sws.geonames.org/4212826/
http://sws.geonames.org/4192776/
http://sws.geonames.org/4194405/

timize. This version buffers the geometry for the for
<http://sws.geonames.org/4212826/> by
10000 meters and then uses that buffer to test the
geo:sfContains relationship. Parliament can take
this query and run the spatial component against the
spatial index in order to reduce the amount of re-
sults that need to match the rest of the query. Run-
ning the un-optimized query on our Parliament Geo-
SPARQL endpoint (described in the next section) takes
6.967 seconds. The optimized version, however, runs
in 0.047 seconds. A future version of the Parliament
query optimizer will be able to optimize queries like
listing 11 automatically.

6.4. GeoSPARQL and Linked Data

As the Semantic Web materializes on the internet in
the form of Linked Data, there is an increasing amount
of structured data available with some sort of geospa-

Listing 12: Example Query 5 - Optimized

SELECT ?x
WHERE {
GRAPH <http://www.geonames.org> {
<http://sws.geonames.org/4212826/>

geo:hasGeometry ?geo1 .
?geo1 geo:asWKT ?wkt1 .
BIND (geof:buffer(?wkt1, 10000,

units:m) as ?buff) .
?x geo:hasGeometry ?geo2 .
[ a geo:Geometry ;
geo:asWKT ?buff ] geo:sfContains

?geo2 .
}

}

tial context attached. However, the vast majority of this
geospatial context cannot be utilized for spatial queries
because the hosting SPARQL endpoints cannot per-
form them. In the following section, we discuss four
datasets that are representative of the disparate types
of data that can be integrated together via there spatial
context. We then demonstrate this integration on two
datasets using Parliament.

6.4.1. Geospatial Data Sets
GeoNames20 provides information for over eight

million geospatial features. The data is exposed via an
RDF webservice21 that exposes information on a per
resource basis. The geospatial aspect is represented us-
ing the W3C Basic Geo vocabulary. There is no abil-
ity, however, to perform any type of SPARQL query to
retrieve data.

Another significant source of geospatial data is DB-
pedia22. As described in [6], data from Wikipedia23

is extracted into RDF. Many of these extracted enti-
ties are geospatial in nature (cities, counties, countries,
landmarks, etc. . . ) and many of these entities already
contain some geospatial location information. The data
also contains owl:sameAs links between the DBpe-
dia and GeoNames resources. However, without any
spatial computation predicates, this geospatial infor-
mation can only be retrieved "as is." A query like

20http://www.geonames.org
21http://www.geonames.org/ontology/

documentation.html
22http://www.dbpedia.org
23http://www.wikipedia.org
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"Show all cities within 50 miles of Arlington, VA with
a population of at least 100,000 people in which at
least one famous person was born" is not possible, even
though the data exists to support it.

The linked data community has released the Linked-
GeoData data set [2]. This data set is a spatial knowl-
edge base, derived from Open Street Map24 and is
linked to DBpedia and GeoNames resources. It con-
tains over 200 million triples describing the nodes and
paths from OpenStreetMap. The data set is accessible
via SPARQL endpoints running on the OpenLink Vir-
tuoso platform. A REST interface to LinkedGeoData
is also provided.

Another source of geospatial data is the United
States Geological Survey (USGS). The USGS has re-
leased a SPARQL endpoint25 for triple data derived
from The National Map[30], a collaborative effort to
deliver usable topographic information for the United
States. This dataset is much more specific and special-
ized than the data that is provided by DBpedia and
GeoNames. It includes geographic names, hydrogra-
phy, boundaries, transportation, structures, and land
cover. The group has attempted to follow the forthcom-
ing GeoSPARQL specification, though some aspects
of GeoSPARQL have changed slightly since the data
has been published. Due to a lack of available Geo-
SPARQL triple stores, the published dataset includes
a pre-computation of all of the topological relation-
ships between entities. A query such as "Show all rail
lines that cross rivers" is in fact possible to answer by
looking at the current precomputed data. However, this
means that if a new entity is added, the knowledge base
needs to compute everything that the entity is related
to and update those entities as well. If this data was not
precomputed, the only way to answer the query would
be via indexing the data and querying the relations with
a relationship predicate.

6.4.2. Integration in Parliament via GeoSPARQL
GeoSPARQL provides the means to link geospa-

tial datasets together, resulting in the possibility of
new, meaningful entailments. As it is simply not pos-
sible to pre-compute all of the relations between all of
the available geospatial datasets, enriching the existing
datasets with GeoSPARQL representations, and creat-
ing indexes for the data is one way that data providers

24http://www.openstreetmap.org
25http://usgs-ybother.srv.mst.edu:8890/

sparql

can share data while providing access to geospatial se-
mantics.

For the following examples, we have processed a
subset of the GeoNames RDF dataset26 and the USGS
GeoSPARQL data for Atlanta, GA. This data is acces-
sible via a Parliament SPARQL endpoint with a Geo-
SPARQL spatial index27. The queries in listings 11,
12, and 14 can be executed against this data. The in-
dex supports indexing data conforming to WKT and
GML serialization and GeoSPARQL queries including
those with Simple Features, Egenhofer, and RCC8 re-
lations, the non-topological query functions and com-
mon topological query functions. Query rewriting is
not supported at this time.

As so much data is represented as individual lat-
itude and longitude data using the W3C Basic Geo
vocabulary, including that provided by GeoNames, it
is desirable to be able to convert it easily into Geo-
SPARQL. It is trivial to provide functions that take
a latitude and longitude pair and convert them into
a GeoSPARQL point. Parliament provides SPARQL
property functions, spatial:toWKTPoint and
spatial:toGMLPoint which take a latitude, lon-
gitude, and optional spatial reference system identi-
fier as arguments and return a sf:wktLiteral or
gml:gmlLiteral representation of a point. This
makes it possible to load and index existing spatial data
sets without having to regenerate existing RDF. Af-
ter loading the GeoNames data into Parliament, it was
aligned with GeoSPARQL using the query in listing
13. This query explicitly assigns GeoNames features to
be GeoSPARQL features, creates a new geo:Point
resource containing the point information, and links
the feature to the geometry.

The USGS provides their RDF data in a format
that is similar to GeoSPARQL. The geospatial data
from The National Map contains polygon, polyline,
and point data. The data conforms to an earlier revision
of the GeoSPARQL standard and contains features
and geometries, but lacks typed literals for the geo:
asWKT and geo:asGML property values. For this
data, the constructor functions for the GeoSPARQL lit-
eral datatypes can be used to create correctly typed val-
ues at query time. The existing spatial relations state-
ments in the dataset were ignored when processing the
data.

26http://download.geonames.org/
all-geonames-rdf.zip

27http://geosparql.bbn.com
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Listing 13: GeoNames Conversion Query

CONSTRUCT {
?feature a geo:Feature ;
geo:hasGeometry [
a geo:Point ;
geo:asWKT ?wkt

] .
}
WHERE {
?feature a gn:Feature ;
wgs84_pos:lat ?lat ;
wgs84_pos:long ?long .
BIND (spatial:toWKTPoint(?lat, ?

long) as ?wkt) .
}

6.4.3. GeoSPARQL Data Query
Once GeoSPARQL data exists for both GeoNames

and the USGS and is loaded into a GeoSPARQL ca-
pable knowledge base, such as Parliament, interest-
ing geospatial questions can be posed. Consider the
following query: "What are all the schools near At-
lanta, GA that are within 100 meters of a railway?"
GeoNames provides point data for buildings, includ-
ing schools, while the USGS data contains polyline
data for rail lines as well as polygons for differ-
ent regions. Listing 14 shows the GeoSPARQL for-
mulation for this question. This query takes advan-
tage of several features of the language. First, the
geo:sfWithin predicate is used to determine what
schools exist within a boundary for Atlanta (as defined
by a polygon in the query). Each school geometry is
then buffered by 100 meters using the geof:buffer
function. The rail features are retrieved and checked to
see if they fall within this buffer. Finally, for all rail line
segments that intersect the buffer, the actual distance to
the school is calculated using the geof:distance
function. Table 3 displays the school resources and the
distance to the nearest rail line segment. This query,
however, could be made more effective if there was an
equivalent to the ST_DWithin from OGC Simple Fea-
tures Specification [25].

While the sample query assumes everything is con-
tained in a single graph, it is not unusual for the data to
exist in several different graphs or endpoints. In fact, it
would be ideal to not have to replicate data and to be
able to query it remotely through the dataset provider.
Until the means for query federation, such as the mech-

Listing 14: Atlanta Schools Near Rail Lines Query

SELECT DISTINCT ?school ?distance
WHERE {
GRAPH <http://example.org/data> {
# approximate rectangle of Atlanta
BIND ("POLYGON((-84.445 33.7991,

-84.445 33.7069,-84.331
33.7069,-84.331
33.7991,-84.445 33.7991))"^^sf
:wktLiteral AS ?place) .

?school a gn:Feature ;
geo:hasGeometry ?school_geo ;
gn:featureCode gn:S.SCH .

?school_geo geo:sfWithin [ a geo:
Geometry; geo:asWKT ?place ] ;

geo:asWKT ?school_wkt .

# buffer schools 100m
BIND (geof:buffer(?school_wkt,

100, units:m) AS ?s_buff) .

# find rail links within buffer
?rail a trans:railFeature ;
geo:hasGeometry ?rail_geo .

# only get railroads within
Atlanta

?rail_geo geo:sfWithin [ a geo:
Geometry; geo:asWKT ?place ] ;

geo:asWKT ?rail_wkt_s .

# convert string to WKT literal
BIND (sf:wktLiteral(?rail_wkt_s)

AS ?rail_wkt) .
FILTER (geof:sfIntersects(?

rail_wkt,?s_buff)) .
BIND (geof:distance(?school_wkt,?

rail_wkt,units:m) AS ?distance
) .

}
}
ORDER BY ASC(?distance)
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Table 3
Atlanta Schools Near Rail Lines Results

school distance

http://sws.geonames.org/4183400/ 44.09248276546987
http://sws.geonames.org/7242795/ 80.33873752510539
http://sws.geonames.org/7242287/ 91.9176767544314

anism discussed in [27], are widely supported, query-
ing across remote linked datasets will be difficult. Geo-
SPARQL queries should be compatible with query fed-
eration, though there will likely be performance im-
plications. In lieu of query federation, querying across
graphs is possible. The sample data for the above ex-
amples is actually contained in two different graphs. A
union graph that virtually combines both graphs, how-
ever, enables a shorter and simpler query.

7. Conclusion

GeoSPARQL is the genesis of a significant amount
of previous work on combining RDF and OWL with
geospatial data. Its creation means that geospatial data
interchange within the Semantic Web can take place
with an expectation of efficient geospatial queries.
This, by extension, should lead to users’ ability to fi-
nally utilize the significant amount of geospatial con-
text available in RDF datasets.

Many triple stores, though they do not yet support
GeoSPARQL, support similar functionality or a subset
thereof. This is an indicator of how important geospa-
tial applications are. Hopefully when the GeoSPARQL
standard is released, the relevant vendors will move to
unify their implementations, allowing users to consis-
tently exchange and process geospatial data.

We have worked to update our open source triple
store Parliament to support GeoSPARQL. In order to
truly realize the geospatial Semantic Web, technolo-
gies such as GeoSPARQL and implementations like
Parliament are necessary. We hope that others will find
it useful both for working on geospatial Semantic Web
applications and understanding the specification.
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Listing 15: RDF Prefixes

apf: <http://jena.hpl.hp.com/ARQ/
property#>

ex: <http://example.org/
PointOfInterest#>

gn: <http://www.geonames.org/
ontology#>

gu: <http://cegis.usgs.gov/rdf/gu/
featureID#>

geo: <http://www.opengis.net/def/
geosparql/>

geof: <http://www.opengis.net/def/
geosparql/function/>

sf: <http://www.opengis.net/def/sf/>
gml: <http://www.opengis.net/def/gml

/>
os: <http://rdf.opensahara.com/

search#>
ose: <http://www.example.org/

opensahara#>
osg: <http://rdf.opensahara.com/type

/geo/>
owl: <http://www.w3.org/2002/07/owl

#>
rdfs: <http://www.w3.org/2000/01/rdf

-schema#>
spatial: <http://parliament.

semwebcentral.org/ontology/
spatialrelations/>

time: <http://www.w3.org/2006/time#>
trans: <http://cegis.usgs.gov/rdf/

trans#>
units: <http://www.opengis.net/def/

uom/OGC/1.0/>
wgs84_pos: <www.w3.org/2003/01/geo/

wgs84_pos#>
xsd: <http://www.w3.org/2001/

XMLSchema#>
virtrdf: <http://www.openlinksw.com/

schemas/virtrdf#>
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