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Preface

A free and open-source calculus @

Several fundamental ideas in calculus are more than 2000 years old. As a formal subdiscipline of
mathematics, calculus was first introduced and developed in the late 1600s, with key independent
contributions from Sir Isaac Newton and Gottfried Wilhelm Leibniz. Mathematicians agree that
the subject has been understood rigorously since the work of Augustin Louis Cauchy and Karl
Weierstrass in the mid 1800s when the field of modern analysis was developed, in part to make
sense of the infinitely small quantities on which calculus rests. Hence, as a body of knowledge
calculus has been completely understood by experts for at least 150 years. The discipline is one of
our great human intellectual achievements: among many spectacular ideas, calculus models how
objects fall under the forces of gravity and wind resistance, explains how to compute areas and
volumes of interesting shapes, enables us to work rigorously with infinitely small and infinitely
large quantities, and connects the varying rates at which quantities change to the total change in
the quantities themselves.

While each author of a calculus textbook certainly offers her own creative perspective on the
subject, it is hardly the case that many of the ideas she presents are new. Indeed, the mathematics
community broadly agrees on what the main ideas of calculus are, as well as their justification
and their importance; the core parts of nearly all calculus textbooks are very similar. As such, it is
our opinion that in the 21st century — an age where the internet permits seamless and immediate
transmission of information — no one should be required to purchase a calculus text to read, to use
for a class, or to find a coherent collection of problems to solve. Calculus belongs to humankind,
not any individual author or publishing company. Thus, the main purpose of this work is to
present a new calculus text that is free. In addition, instructors who are looking for a calculus text
should have the opportunity to download the source files and make modifications that they see
tit; thus this text is open-source.

Because the text is free, any professor or student may use the electronic version of the text
for no charge. Presently, a .pdf copy of the text may be obtained by emailing Matt Boelkins at
boelkinm@gvsu.edu or by download from http://opencalculus.wordpress.com. Be-
cause the text is open-source, any instructor may acquire the full set of source files, also by request
via email to the author. In the future, our goal is to have the text and its source files hosted by a
professional organization that vets and endorses free and open source materials.
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This work is licensed under the Creative Commons Attribution-NonCommercial-ShareAlike

3.0 Unported License. The graphic

that appears throughout the text shows that the work is licensed with the Creative Commons, that
the work may be used for free by any party so long as attribution is given to the author(s), that the
work and its derivatives are used in the spirit of “share and share alike,” and that no party may
sell this work or any of its derivatives for profit. Full details may be found by visiting

http://creativecommons.org/licenses/by-nc-sa/3.0/

or sending a letter to Creative Commons, 444 Castro Street, Suite 900, Mountain View, California,
94041, USA.

Active Calculus: our goals

In Active Calculus, we endeavor to actively engage students in learning the subject through an
activity-driven approach in which the vast majority of the examples are completed by students.
Where many texts present a general theory of calculus followed by substantial collections of
worked examples, we instead pose problems or situations, consider possibilities, and then ask stu-
dents to investigate and explore. Following key activities or examples, the presentation normally
includes some overall perspective and a brief synopsis of general trends or properties, followed
by formal statements of rules or theorems. While we often offer a plausibility argument for such
results, rarely do we include formal proofs. It is not the intent of this text for the instructor or
author to demonstrate to students that the ideas of calculus are coherent and true, but rather for
students to encounter these ideas in a supportive, leading manner that enables them to begin to
understand for themselves why calculus is both coherent and true.

This approach is consistent with the following goals:

¢ To have students engage in an active, inquiry-driven approach, where learners strive to con-
struct solutions and approaches to ideas on their own, with appropriate support through
questions posed, hints, and guidance from the instructor and text.

e To build in students intuition for why the main ideas in calculus are natural and true. Often,
we do this through consideration of the instantaneous position and velocity of a moving
object, a scenario that is common and familiar.

e To challenge students to acquire deep, personal understanding of calculus through reading
the text and completing preview activities on their own, through working on activities in
small groups in class, and through doing substantial exercises outside of class time.
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¢ To strengthen students” written and oral communicating skills by having them write about
and explain aloud the key ideas of calculus.

Features of the Text

Instructors and students alike will find several consistent features in the presentation, including;:

e Motivating Questions. At the start of each section, we list 2-3 motivating questions that pro-
vide motivation for why the following material is of interest to us. One goal of each section
is to answer each of the motivating questions.

e Preview Activities. Each section of the text begins with a short introduction, followed by
a preview activity. This brief reading and the preview activity are designed to foreshadow
the upcoming ideas in the remainder of the section; both the reading and preview activity
are intended to be accessible to students in advance of class, and indeed to be completed by
students before a day on which a particular section is to be considered.

o Activities. A typical section in the text has three activities. These are designed to engage stu-
dents in an inquiry-based style that encourages them to construct solutions to key examples
on their own, working either individually in small groups.

o Exercises. There are dozens of calculus texts with (collectively) tens of thousands of ex-
ercises. Rather than repeat standard and routine exercises in this text, we recommend the
use of WeBWorK with its access to the National Problem Library and around 20,000 calcu-
lus problems. In this text, there are approximately four challenging exercises per section.
Almost every such exercise has multiple parts, requires the student to connect several key
ideas, and expects that the student will do at least a modest amount of writing to answer
the questions and explain their findings. For instructors interested in a more conventional
source of exercises, consider the freely available text by Gilbert Strang of MIT, available in
.pdf format from the MIT open courseware site via http://gvsu.edu/s/bh.

e Graphics. As much as possible, we strive to demonstrate key fundamental ideas visually,
and to encourage students to do the same. Throughout the text, we use full-color graphics
to exemplify and magnify key ideas, and to use this graphical perspective alongside both
numerical and algebraic representations of calculus.

e Links to Java Applets. Many of the ideas of calculus are best understood dynamically; java
applets offer an often ideal format for investigations and demonstrations. Relying primarily
on the work of David Austin of Grand Valley State University and Marc Renault of Ship-
pensburg University, each of whom has developed a large library of applets for calculus, we
frequently point the reader (through active links in the .pdf version of the text) to applets
that are relevant for key ideas under consideration.
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e Summary of Key Ideas. Each section concludes with a summary of the key ideas encoun-
tered in the preceding section; this summary normally reflects responses to the motivating
questions that began the section.

How to Use this Text

This text may be used as a stand-alone textbook for a standard first semester college calculus
course or as a supplement to a more traditional text. Chapters 1-4 address the typical topics for
differential calculus. (Four additional chapters for second semester integral calculus are forthcom-

ing.)

Electronically

Because students and instructors alike have access to the book in .pdf format, there are several
advantages to the text over a traditional print text. One is that the text may be projected on a
screen in the classroom (or even better, on a whiteboard) and the instructor may reference ideas in
the text directly, add comments or notation or features to graphs, and indeed write right on the text
itself. Students can do likewise, choosing to print only whatever portions of the text are needed
for them. In addition, the electronic version of the text includes live html links to java applets, so
student and instructor alike may follow those links to additional resources that lie outside the text
itself. Finally, students can have access to a copy of the text anywhere they have a computer, either
by downloading the .pdf to their local machine or by the instructor posting the text on a course
web site.

Activities Workbook

Each section of the text has a preview activity and at least three in-class activities embedded in the
discussion. As it is the expectation that students will complete all of these activities, it is ideal for
them to have room to work on them adjacent to the problem statements themselves. As a separate
document, we have compiled a workbook of activities that includes only the individual activity
prompts, along with space provided for students to write their responses. This workbook is the
one printing expense that students will almost certainly have to undertake.

There are also options in the source files for compiling the activities workbook with hints for
each activity, or even full solutions. These options can be engaged at the instructor’s discretion.

Community of Users

Because this text is free and open-source, we hope that as people use the text, they will con-
tribute corrections, suggestions, and new material. At this time, the best way to communicate
such feedback is by email to Matt Boelkins at boelkinm@gvsu.edu. We have also started the
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blog http://opencalculus.wordpress.com/, at which we will post feedback received by
email as well as other points of discussion, to which readers may post additional comments and
feedback.

Contributors

The following people have generously contributed to the development or improvement of the
text. Contributing authors have written drafts of at least one; contributing editors have offered
feedback, information about typographical errors, or other suggestions to improve the exposition.
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Chapter 1

Understanding the Derivative

1.1 How do we measure velocity?

Motivating Questions

In this section, we strive to understand the ideas generated by the following important questions:

e How is the average velocity of a moving object connected to the values of its position func-
tion?

e How do we interpret the average velocity of an object geometrically with regard to the
graph of its position function?

e How is the notion of instantaneous velocity connected to average velocity?

Introduction

Calculus can be viewed broadly as the study of change. A natural and important question to ask
about any changing quantity is “how fast is the quantity changing?” It turns out that in order to
make the answer to this question precise, substantial mathematics is required.

We begin with a familiar problem: a ball being tossed straight up in the air from an initial
height. From this elementary scenario, we will ask questions about how the ball is moving. These
questions will lead us to begin investigating ideas that will be central throughout our study of
differential calculus and that have wide-ranging consequences. In a great deal of our thinking
about calculus, we will be well-served by remembering this first example and asking ourselves
how the various (sometimes abstract) ideas we are considering are related to the simple act of
tossing a ball straight up in the air.

Preview Activity 1.1. Suppose that the height s of a ball (in feet) at time ¢ (in seconds) is given by
the formula s(t) = 64 — 16(t — 1)2.



2 1.1. HOW DO WE MEASURE VELOCITY?

(a) Construct an accurate graph of y = s(¢) on the time interval 0 < ¢ < 3. Label at least six
distinct points on the graph, including the three points that correspond to when the ball
was released, when the ball reaches its highest point, and when the ball lands.

(b) In everyday language, describe the behavior of the ball on the time interval 0 < ¢ < 1 and
on time interval 1 < ¢ < 3. What occurs at the instant ¢t = 1?

(c) Consider the expression
s(1) — s(0.5)
1-05
Compute the value of AV|y 5 ;. What does this value measure geometrically? What does
this value measure physically? In particular, what are the units on AVy 5 1;?

AVigs1) =

Position and average velocity

Any moving object has a position that can be considered a function of time. When this motion is
along a straight line, the position is given by a single variable, and we usually let this position be
denoted by s(t), which reflects the fact that position is a function of time. For example, we might
view s(t) as telling the mile marker of a car traveling on a straight highway at time ¢ in hours;
similarly, the function s described in Preview Activity 1.1 is a position function, where position is
measured vertically relative to the ground.

Not only does such a moving object have a position associated with its motion, but on any time
interval, the object has an average velocity. Think, for example, about driving from one location to
another: the vehicle travels some number of miles over a certain time interval (measured in hours),
from which we can compute the vehicle’s average velocity. In this situation, average velocity is
the number of miles traveled divided by the time elapsed, which of course is given in miles per
hour. Similarly, the calculation of Ay 5 ) in Preview Activity 1.1 found the average velocity of the
ball on the time interval [0.5, 1], measured in feet per second.

In general, we make the following definition: for an object moving in a straight line whose
position at time ¢ is given by the function s(t), the average velocity of the object on the interval from
t=atot =0, denoted A‘/[mb], is given by the formula

s(b) — s(a)
AVigp = ————.
[a.b] b—a
Note well: the units on AV, are “units of s per unit of ¢,” such as “miles per hour” or “feet per
second.”
Activity 1.1.

The following questions concern the position function given by s(t) = 64 — 16(t — 1)?, which is
the same function considered in Preview Activity 1.1.
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1.1. HOW DO WE MEASURE VELOCITY? 3

(a) Compute the average velocity of the ball on each of the following time intervals: [0.4,0.8],
[0.7,0.8], [0.79,0.8], [0.799,0.8], [0.8,1.2], [0.8,0.9], [0.8,0.81], [0.8,0.801]. Include units
for each value.

(b) On the provided graph in Figure 1.1, sketch the line that passes through the points
A =(0.4,5(0.4)) and B = (0.8, 5(0.8)). What is the meaning of the slope of this line? In
light of this meaning, what is a geometric way to interpret each of the values computed
in the preceding question?

(c) Use a graphing utility to plot the graph of s(¢) = 64— 16(¢—1)? on an interval containing
the value ¢ = 0.8. Then, zoom in repeatedly on the point (0.8, s(0.8)). What do you
observe about how the graph appears as you view it more and more closely?

(d) What do you conjecture is the velocity of the ball at the instant ¢ = 0.8? Why?

feet

sec

04 08 1.2

Figure 1.1: A partial plot of s(t) = 64 — 16(t — 1).

Instantaneous Velocity

Whether driving a car, riding a bike, or throwing a ball, we have an intuitive sense that any moving
object has a velocity at any given moment —a number that measures how fast the object is moving
right now. For instance, a car’s speedometer tells the driver what appears to be the car’s velocity at
any given instant. In fact, the posted velocity on a speedometer is really an average velocity that
is computed over a very small time interval (by computing how many revolutions the tires have
undergone to compute distance traveled), since velocity fundamentally comes from considering a
change in position divided by a change in time. But if we let the time interval over which average
velocity is computed become shorter and shorter, then we can progress from average velocity to
instantaneous velocity.
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4 1.1. HOW DO WE MEASURE VELOCITY?

Informally, we define the instantaneous velocity of a moving object at time ¢ = a to be the value
that the average velocity approaches as we take smaller and smaller intervals of time containing
t = a to compute the average velocity. We will develop a more formal definition of this momentar-
ily, one that will end up being the foundation of much of our work in first semester calculus. For
now, it is fine to think of instantaneous velocity this way: take average velocities on smaller and
smaller time intervals, and if those average velocities approach a single number, then that number
will be the instantaneous velocity at that point.

Activity 1.2.

Each of the following questions concern s(t) = 64 — 16(¢t — 1)2, the position function from
Preview Activity 1.1.

(a) Compute the average velocity of the ball on the time interval [1.5,2]. What is different
between this value and the average velocity on the interval [0, 0.5]?

(b) Use appropriate computing technology to estimate the instantaneous velocity of the
ball at t = 1.5. Likewise, estimate the instantaneous velocity of the ball at ¢ = 2. Which
value is greater?

(c) How is the sign of the instantaneous velocity of the ball related to its behavior at a
given point in time? That is, what does positive instantaneous velocity tell you the ball
is doing? Negative instantaneous velocity?

(d) Without doing any computations, what do you expect to be the instantaneous velocity
of the ball at t = 1? Why?

<

At this point we have started to see a close connection between average velocity and instanta-
neous velocity, as well as how each is connected not only to the physical behavior of the moving
object but also to the geometric behavior of the graph of the position function. In order to make
the link between average and instantaneous velocity more formal, we will introduce the notion of
limit in Section 1.2. As a preview of that concept, we look at a way to consider the limiting value
of average velocity through the introduction of a parameter. Note that if we desire to know the
instantaneous velocity at t = a of a moving object with position function s, we are interested in
computing average velocities on the interval [a, b] for smaller and smaller intervals. One way to
visualize this is to think of the value b as being b = a+h, where h is a small number that is allowed
to vary. Thus, we observe that the average velocity of the object on the interval [a, a + h] is

s(a+h) — s(a)
h Y

AV’[a,a—l—h] =

with the denominator being simply & because (a + h) — a = h. Initially, it is fine to think of
h being a small positive real number; but it is important to note that we allow h to be a small
negative number, too, as this enables us to investigate the average velocity of the moving object
on intervals prior to t = a, as well as following ¢t = a. When h < 0, AV, ,,) measures the average
velocity on the interval [a + h, a].
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1.1. HOW DO WE MEASURE VELOCITY? 5

To attempt to find the instantaneous velocity at ¢ = a, we investigate what happens as the
value of h approaches zero. We consider this further in the following example.

Example 1.1. For a falling ball whose position function is given by s(t) = 16 — 16t? (where s is
measured in feet and ¢ in seconds), find an expression for the average velocity of the ball on a
time interval of the form [0.5,0.5 + h] where —0.5 < h < 0.5 and h # 0. Use this expression to
compute the average velocity on [0.5,0.75] and [0.4, 0.5], as well as to make a conjecture about the
instantaneous velocity at ¢ = 0.5.

Solution. We make the assumptions that —0.5 < h < 0.5 and h # 0 because h cannot be zero
(otherwise there is no interval on which to compute average velocity) and because the function
only makes sense on the time interval 0 < ¢ < 1, as this is the duration of time during which the
ball is falling. Observe that we want to compute and simplify

s(0.5 4+ h) — s(0.5)
AVo5,05+0 = 05+ =05

The most unusual part of this computation is finding s(0.5 + h). To do so, we follow the rule that
defines the function s. In particular, since s(t) = 16 — 16t%, we see that
5(0.54+h) = 16 —16(0.5 + h)?
= 16 —16(0.25 + h + h?)
= 16— 4 —16h — 16h>
= 12— 16h — 16h>.

Now, returning to our computation of the average velocity, we find that

5(0.5+ h) — s(0.5)

AViososen = 05+ h) — 0.5
(12— 16h — 16h*) — (16 — 16(0.5)?)
B 05+h—0.5
12 —16h — 16h* — 12
B h
_ —16h — 16A?
= —

At this point, we note two things: first, the expression for average velocity clearly depends on £,
which it must, since as h changes the average velocity will change. Further, we note that since h
can never equal zero, we may further simplify the most recent expression. Removing the common
factor of h from the numerator and denominator, it follows that

A‘/[O.5,0.5+h} — —16 - 16h
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6 1.1. HOW DO WE MEASURE VELOCITY?

Now, for any small positive or negative value of h, we can compute the average velocity. For
instance, to obtain the average velocity on [0.5,0.75], we let h = 0.25, and the average velocity is
—16 — 16(0.25) = —20 ft/sec. To get the average velocity on [0.4,0.5], we let h = —0.1, which tells
us the average velocity is —16 — 16(—0.1) = —14.4 ft/sec. Moreover, we can even explore what
happens to AVjy 5541 as h gets closer and closer to zero. As h approaches zero, —16h will also
approach zero, and thus it appears that the instantaneous velocity of the ball at ¢ = 0.5 should be
—16 ft/sec.

Activity 1.3.

For the function given by s(t) = 64 — 16(t — 1)? from Preview Activity 1.1, find the most
simplified expression you can for the average velocity of the ball on the interval [2,2 + h].
Use your result to compute the average velocity on [1.5,2] and to estimate the instantaneous
velocity at ¢ = 2. Finally, compare your earlier work in Activity 1.1.

<

Summary

In this section, we encountered the following important ideas:

e The average velocity on [a, b] can be viewed geometrically as the slope of the line between the
points (a, s(a)) and (b, s(b)) on the graph of y = s(t), as shown in Figure 1.2.

Figure 1.2: The graph of position function s together with the line through (a, s(a)) and (b, s(b)) whose

s(b)—s

slopeism = ﬁw) The line’s slope is the average rate of change of s on the interval [a, b].

¢ Given a moving object whose position at time ¢ is given by a function s, the average velocity
of the object on the time interval [a,b] is given by AV|,; = % Viewing the interval
[a,b] as having the form [a,a + h], we equivalently compute average velocity by the formula

A‘/[a,a-l—h] _ s(a+h})tfs(a).
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1.1. HOW DO WE MEASURE VELOCITY? 7

¢ The instantaneous velocity of a moving object at a fixed time is estimated by considering aver-
age velocities on shorter and shorter time intervals that contain the instant of interest.

Exercises

1. A bungee jumper dives from a tower at time ¢ = 0. Her height h (measured in feet) at time ¢ (in
seconds) is given by the graph in Figure 1.3.

200 1
150 ¢
100 ¢

50 +
f
5 10 15 20

Figure 1.3: A bungee jumper’s height function.

In this problem, you may base your answers on estimates from the graph or use the fact that
the jumper’s height function is given by s(¢) = 100 cos(0.75t) - e~ %2t + 100.

(a) What is the change in vertical position of the bungee jumper between t = 0 and ¢t = 15?

(b) Estimate the jumper’s average velocity on each of the following time intervals: [0, 15],
[0,2], [1,6], and [8, 10]. Include units on your answers.

(c) On what time interval(s) do you think the bungee jumper achieves her greatest average
velocity? Why?

(d) Estimate the jumper’s instantaneous velocity at ¢ = 5. Show your work and explain
your reasoning, and include units on your answer.

(e) Among the average and instantaneous velocities you computed in earlier questions,
which are positive and which are negative? What does negative velocity indicate?

2. A diver leaps from a 3 meter springboard. His feet leave the board at time ¢ = 0, he reaches
his maximum height of 4.5 m at ¢ = 1.1 seconds, and enters the water at t = 2.45. Once in the
water, the diver coasts to the bottom of the pool (depth 3.5 m), touches bottom at ¢t = 7, rests
for one second, and then pushes off the bottom. From there he coasts to the surface, and takes
his first breath at t = 13.

(a) Let s(t) denote the function that gives the height of the diver’s feet (in meters) above
the water at time ¢. (Note that the “height” of the bottom of the pool is —3.5 meters.)
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8 1.1. HOW DO WE MEASURE VELOCITY?

Sketch a carefully labeled graph of s(t) on the provided axes in Figure 1.4. Include scale
and units on the vertical axis. Be as detailed as possible.

" ¢
2 4 6 8 10 12 2 4 6 8 10 12

Figure 1.4: Axes for plotting s(t) in part (a) and v(¢) in part (c) of the diver problem.

(b) Based on your graph in (a), what is the average velocity of the diver between t = 2.45
and t = 7? Is his average velocity the same on every time interval within [2.45, 7]?

(c) Let the function v(t) represent the instantaneous vertical velocity of the diver at time ¢
(i.e. the speed at which the height function s(t) is changing; note that velocity in the
upward direction is positive, while the velocity of a falling object is negative). Based
on your understanding of the diver’s behavior, as well as your graph of the position
function, sketch a carefully labeled graph of v(t) on the axes provided in Figure 1.4. In-
clude scale and units on the vertical axis. Write several sentences that explain how you
constructed your graph, discussing when you expect v(t) to be zero, positive, negative,
relatively large, and relatively small.

(d) Is there a connection between the two graphs that you can describe? What can you say
about the velocity graph when the height function is increasing? decreasing? Make as
many observations as you can.

3. According to the U.S. census, the population of the city of Grand Rapids, MI, was 181,843 in
1980; 189,126 in 1990; and 197,800 in 2000.

(a) Between 1980 and 2000, by how many people did the population of Grand Rapids
grow?

(b) In an average year between 1980 and 2000, by how many people did the population of
Grand Rapids grow?

(c) Just like we can find the average velocity of a moving body by computing change in
position over change in time, we can compute the average rate of change of any function
f. In particular, the average rate of change of a function f over an interval [a, b] is the
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1.1. HOW DO WE MEASURE VELOCITY? 9

(d)

(e)

quotient
f(b) — fla)
b—a

What does the quantity Lg(a) measure on the graph of y = f(x) over the interval

[a, b]? "

Let P(t) represent the population of Grand Rapids at time ¢, where ¢ is measured in
years from January 1, 1980. What is the average rate of change of P on the interval ¢ = 0
to t = 20? What are the units on this quantity?

If we assume the the population of Grand Rapids is growing at a rate of approximately
4% per decade, we can model the population function with the formula

P(t) = 181843(1.04)%/1,

Use this formula to compute the average rate of change of the population on the inter-
vals [5,10], [5,9], [5, 8], [5, 7], and [5, 6].

How fast do you think the population of Grand Rapids was changing on January 1,
19857 Said differently, at what rate do you think people were being added to the popu-
lation of Grand Rapids as of January 1, 1985? How many additional people should the
city have expected in the following year? Why?
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10 1.2. THE NOTION OF LIMIT

1.2 The notion of limit

Motivating Questions

In this section, we strive to understand the ideas generated by the following important questions:

What is the mathematical notion of limit and what role do limits play in the study of func-
tions?

What is the meaning of the notation ligl f(z)=1L?

How do we go about determining the value of the limit of a function at a point?

e How does the notion of limit allow us to move from average velocity to instantaneous
velocity?

Introduction

Functions are at the heart of mathematics: a function is a process or rule that associates each
individual input to exactly one corresponding output. Students learn in courses prior to calculus
that there are many different ways to represent functions, including through formulas, graphs,
tables, and even words. For example, the squaring function can be thought of in any of these
ways. In words, the squaring function takes any real number x and computes its square. The
formulaic and graphical representations go hand in hand, as y = f(z) = 22 is one of the simplest
curves to graph. Finally, we can also partially represent this function through a table of values,
essentially by listing some of the ordered pairs that lie on the curve, such as (—2,4), (—1,1), (0,0),
(1,1),and (2,4).

Functions are especially important in calculus because they often model important phenomena
— the location of a moving object at a given time, the rate at which an automobile is consuming
gasoline at a certain velocity, the reaction of a patient to the size of a dose of a drug — and calculus
can be used to study how these output quantities change in response to changes in the input
variable. Moreover, thinking about concepts like average and instantaneous velocity leads us
naturally from an initial function to a related, sometimes more complicated function. As one
example of this, think about the falling ball whose position function is given by s(t) = 64 — 16t
and the average velocity of the ball on the interval [1, z]. Observe that
s(z) —s(1) (64 —162%) — (64 —16) 16 — 1622
AV gz = = = .

r—1 r—1 r—1

Now, two things are essential to note: this average velocity depends on z (indeed, AV} ;) is a
function of x), and our most focused interest in this function occurs near x = 1, which is where the
function is not defined. Said differently, the function g(z) = 16%?5”2 tells us the average velocity
of the ball on the interval from ¢t = 1 to ¢t = z, and if we are interested in the instantaneous velocity
of the ball when ¢ = 1, we’d like to know what happens to g(z) as x gets closer and closer to 1. At
the same time, g(1) is not defined, because it leads to the quotient 0/0.
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1.2. THE NOTION OF LIMIT 11

This is where the idea of limits comes in. By using a limit, we’ll be able to allow = to get
arbitrarily close, but not equal, to 1 and fully understand the behavior of g(x) near this value.
We'll develop key language, notation, and conceptual understanding in what follows, but for now
we consider a preliminary activity that uses the graphical interpretation of a function to explore
points on a graph where interesting behavior occurs.

Preview Activity 1.2. Suppose that g is the function given by the graph below. Use the graph to
answer each of the following questions.

(a) Determine the values g(—2), g(—1), g(0), g(1), and ¢(2), if defined. If the function value is
not defined, explain what feature of the graph tells you this.

(b) For each of the values a = —1, a = 0, and a = 2, complete the following sentence: “As x
gets closer and closer (but not equal) to a, g(z) gets as close as we want to J

(c) What happens as = gets closer and closer (but not equal) to a = 1? Does the function g(z)
get as close as we would like to a single value?

> 3N

Figure 1.5: Graph of y = g(x) for Preview Activity 1.2.

The Notion of Limit

Limits can be thought of as a way to study the tendency or trend of a function as the input variable
approaches a fixed value, or even as the input variable increases or decreases without bound. We
put off the study of the latter idea until further along in the course when we will have some helpful
calculus tools for understanding the end behavior of functions. Here, we focus on what it means
to say that “a function f has limit L as = approaches a.” To begin, we think about a recent example.

In Preview Activity 1.2, you saw that for the given function g, as x gets closer and closer (but
not equal) to 0, g(z) gets as close as we want to the value 4. At first, this may feel counterintuitive,
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12 1.2. THE NOTION OF LIMIT

because the value of g(0) is 1, not 4. By their very definition, limits regard the behavior of a
function arbitrarily close to a fixed input, but the value of the function at the fixed input does not
matter. More formally!, we say the following.

Definition 1.1. Given a function f, a fixed input # = a, and a real number L, we say that f has
limit L as x approaches a, and write
lim f(z) =L

r—a

provided that we can make f(x) as close to L as we like by taking « sufficiently close (but not
equal) to a. If we cannot make f(z) as close to a single value as we would like as x approaches q,
then we say that f does not have a limit as x approaches a.

For the function g pictured in Figure 1.5, we can make the following observations:

lim g(z) =3, lim g(x) =4, and lim g(z) =1,

z——1 z—0 T—2
but g does not have a limit as + — 1. When working graphically, it suffices to ask if the function
approaches a single value from each side of the fixed input, while understanding that the function
value right at the fixed input is irrelevant. This reasoning explains the values of the first three
stated limits. In a situation such as the jump in the graph of g at z = 1, the issue is that if we
approach x = 1 from the left, the function values tend to get as close to 3 as we’d like, but if we
approach z = 1 from the right, the function values get as close to 2 as we’d like, and there is no
single number that all of these function values approach. This is why the limit of g does not exist
atx = 1.

For any function f, there are typically three ways to answer the question “does f have a limit
at x = a, and if so, what is the limit?” The first is to reason graphically as we have just done with
the example from Preview Activity 1.2. If we have a formula for f(z), there are two additional
possibilities: (1) evaluate the function at a sequence of inputs that approach a on either side,
typically using some sort of computing technology, and ask if the sequence of outputs seems to
approach a single value; (2) use the algebraic form of the function to understand the trend in its
output as the input values approach a. The first approach only produces an approximation of the
value of the limit, while the latter can often be used to determine the limit exactly. The following
example demonstrates both of these approaches, while also using the graphs of the respective
functions to help confirm our conclusions.

Example 1.2. For each of the following functions, we’d like to know whether or not the function
has a limit at the stated a-values. Use both numerical and algebraic approaches to investigate and,
if possible, estimate or determine the value of the limit. Compare the results with a careful graph
of the function on an interval containing the points of interest.

'What follows here is not what mathematicians consider the formal definition of a limit. To be completely precise,
it is necessary to quantify both what it means to say “as close to L as we like” and “sufficiently close to a.” That can be
accomplished through what is traditionally called the epsilon-delta definition of limits. The definition presented here
is sufficient for the purposes of this text.
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1.2. THE NOTION OF LIMIT 13

4 — o2
(@) f(x)= x+2,a——1,a——2
3 7T . — —
(b) g(z) = sin (;), a=3,a=0
Solution. We first construct a graph of f along with tables of values near a = —1 and a = —2.
z | fz) z | f(z)
-09 |29 -1.9 | 39
-0.99 | 2.99 -1.99 | 3.99
-0.999 | 2.999 -1.999 | 3.999
-0.9999 | 2.9999 -1.9999 | 3.9999
-1.1 | 3.1 21 | 4.1
-1.01 | 3.01 -2.01 | 4.01
-1.001 | 3.001 -2.001 | 4.001 1
-1.0001 | 3.0001 -2.0001 | 4.0001
-3 -1 1
Figure 1.6: Tables and graph for f )—4_""”2
igure 1.6: Tables and graph for f(z =T

From the left table, it appears that we can make f as close as we want to 3 by taking « suf-
ficiently close to —1, which suggests that lim1 f(z) = 3. This is also consistent with the graph
T——

of f. To see this a bit more rigorously and from an algebraic point of view, consider the formula

for f: f(x) = 43;?; . The numerator and denominator are each polynomial functions, which are
among the most well-behaved functions that exist. Formally, such functions are continuous®, which
means that the limit of the function at any point is equal to its function value. Here, it follows that
asx — —1,(4—2?) = (4—(-1)})=3,and (z +2) = (-1 +2) = 1,50 as & — —1, the numerator
of f tends to 3 and the denominator tends to 1, hence xllml f(z) = 1= 3.

The situation is more complicated when z — —2, due in part to the fact that f(—2) is not
defined. If we attempt to use a similar algebraic argument regarding the numerator and denomi-
nator, we observe thatas z — —2, (4 — 2?) — (4 — (-2)?) = 0,and (z + 2) — (=2 +2) = 0, s0 as
x — —2, the numerator of f tends to 0 and the denominator tends to 0. We call 0/0 an indeterminate
form and will revisit several important issues surrounding such quantities later in the course. For
now, we simply observe that this tells us there is somehow more work to do. From the table and
the graph, it appears that f should have a limit of 4 at x = —2. To see algebraically why this is the

2See Section 1.7 for more on the notion of continuity.
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14 1.2. THE NOTION OF LIMIT

case, let’s work directly with the form of f(x). Observe that

. 4 — x2
Jim, f(z) = lim -
2 — 2
_ i 22240
r——2 x4+ 2

At this point, it is important to observe that since we are taking the limit as + — —2, we are
considering x values that are close, but not equal, to —2. Since we never actually allow z to equal
—2, the quotient % has value 1 for every possible value of x. Thus, we can simplify the most
recent expression above, and now find that

li = lim_2— .
Ay ) = Jpn,2 e

Because 2 — z is simply a linear function, this limit is now easy to determine, and its value clearly
is 4. Thus, from several points of view we’ve seen that lilrn2 f(z) =4.
T——

Next we turn to the function g, and construct two tables and a graph.

z | g(x) r | g(x)
29 | 0.84864 20110
2.99 | 0.86428 0.01 | 0 9
2.999 | 0.86585 -0.001 | 0 g
2.9999 | 0.86601  -0.0001 | 0 B Ve
3.1 | 0.88351 010 — —1
3.01 | 0.86777 0.01 |0 \3—/[1 \ﬁ ?
3.001 | 0.86620 0.001 | 0 I
3.0001 | 0.86604 0.0001 | 0

Figure 1.7: Tables and graph for g(z) = sin (E)
x

First, as « — 3, it appears from the data (and the graph) that the function is approaching

approximately 0.866025. To be precise, we have to use the fact that 7 — %, and thus we find

that g(z) = sin(Z) — sin(%) as x — 3. The exact value of sin(%) is @, which is approximately

0.8660254038. Thus, we see that
V3
li = —.
fim g(x) = 5
As z — 0, we observe that 7 does not behave in an elementary way. When z is positive and
approaching zero, we are dividing by smaller and smaller positive values, and 7 increases without
bound. When z is negative and approaching zero, 7 decreases without bound. In this sense, as
we get close to z = 0, the inputs to the sine function are growing rapidly, and this leads to wild
oscillations in the graph of g. It is an instructive exercise to plot the function g(z) = sin (Z) with a
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1.2. THE NOTION OF LIMIT 15

graphing utility and then zoom in on = = 0. Doing so shows that the function never settles down
to a single value near the origin and suggests that g does not have a limit at = 0.

How do we reconcile this with the righthand table above, which seems to suggest that the
limit of g as « approaches 0 may in fact be 0? Here we need to recognize that the data misleads
us because of the special nature of the sequence {0.1,0.01,0.001, ...}: when we evaluate g(107*),
we get g(107%) = sin (1071k) = sin(10*7) = 0 for each positive integer value of k. But if we take a
different sequence of values approaching zero, say {0.3,0.03,0.003, ...}, then we find that

Ry ™ L 10F7 _§~
9(3-107%) = sin (73_10_k)_sm <3 >_ >~ 0.866025.

That sequence of data would suggest that the value of the limit is § Clearly the function cannot
have two different values for the limit, and this shows that g has no limit as x — 0.

An important lesson to take from Example 1.2 is that tables can be misleading when determin-
ing the value of a limit. While a table of values is useful for investigating the possible value of a
limit, we should also use other tools to confirm the value, if we think the table suggests the limit
exists.

Activity 1.4.

Estimate the value of each of the following limits by constructing appropriate tables of values.
Then determine the exact value of the limit by using algebra to simplify the function. Finally,
plot each function on an appropriate interval to check your result visually.

2
1

(@) lim =
z—1 . —1

(2+z)% -8
T

(b) lim

rz—0
. Vr+1-1
(¢ lim ———
z—0 T
<

This concludes a rather lengthy introduction to the notion of limits. It is important to remem-
ber that our primary motivation for considering limits of functions comes from our interest in
studying the rate of change of a function. To that end, we close this section by revisiting our
previous work with average and instantaneous velocity and highlighting the role that limits play.

Instantaneous Velocity

Suppose that we have a moving object whose position at time ¢ is given by a function s. We know
that the average velocity of the object on the time interval [a, b] is AV, = % We define the
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16 1.2. THE NOTION OF LIMIT

instantaneous velocity at a to be the limit of average velocity as b approaches a. Note particularly
that as b — a, the length of the time interval gets shorter and shorter (while always including a).
In Section 1.3, we will introduce a helpful shorthand notation to represent the instantaneous rate
of change. For now, we will write IV;—, for the instantaneous velocity at t = a, and thus

IViey = lim AV y = lim 20 5@,

b—a ’ b—a b—a

Equivalently, if we think of the changing value b as being of the form b = a + h, where h is some
small number, then we may instead write

s(a+ h) — s(a)
3 .
Again, the most important idea here is that to compute instantaneous velocity, we take a limit of

average velocities as the time interval shrinks. Two different activities offer the opportunity to
investigate these ideas and the role of limits further.

IViey = lim AV, oo = li
Vi= e Viea+h) P

Activity 1.5.

Consider a moving object whose position function is given by s(t) = t?, where s is measured
in meters and ¢ is measured in minutes.

(a) Determine a simplified expression for the average velocity of the object on the interval
(3,3 + Al.

(b) Determine the average velocity of the object on the interval [3,3.2]. Include units on
your answer.

(c) Determine the instantaneous velocity of the object when ¢ = 3. Include units on your
answer.

<

The closing activity of this section asks you to make some connections among average velocity,
instantaneous velocity, and slopes of certain lines.

Activity 1.6.

For the moving object whose position s at time ¢ is given by the graph below, answer each of
the following questions. Assume that s is measured in feet and ¢ is measured in seconds.

(a) Use the graph to estimate the average velocity of the object on each of the following
intervals: [0.5,1], [1.5,2.5], [0,5]. Draw each line whose slope represents the average
velocity you seek.

(b) How could you use average velocities and slopes of lines to estimate the instantaneous
velocity of the object at a fixed time?

(c) Use the graph to estimate the instantaneous velocity of the object when ¢t = 2. Should
this instantaneous velocity at ¢ = 2 be greater or less than the average velocity on
[1.5,2.5] that you computed in (a)? Why?
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1.2. THE NOTION OF LIMIT 17

Figure 1.8: Plot of the position function y = s(t) in Activity 1.6.

Summary

In this section, we encountered the following important ideas:

e Limits enable us to examine trends in function behavior near a specific point. In particular,
taking a limit at a given point asks if the function values nearby tend to approach a particular
fixed value.

e When we write liin f(xz) = L, weread this as saying “the limit of f as x approaches a is L,” and
r—a

this means that we can make the value of f(x) as close to L as we want by taking z sufficiently
close (but not equal) to a.

o If we desire to know lim f(x) for a given value of a and a known function f, we can estimate
r—a

this value from the graph of f or by generating a table of function values that result from a
sequence of z-values that are closer and closer to a. If we want the exact value of the limit,
we need to work with the function algebraically and see if we can use familiar properties of
known, basic functions to understand how different parts of the formula for f change as z — a.

e The instantaneous velocity of a moving object at a fixed time is found by taking the limit of
average velocities of the object over shorter and shorter time intervals that all contain the time
of interest.

Exercises
16 — z*
x2—4

1. Consider the function whose formula is f(z) =

(a) What is the domain of f?
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18 1.2. THE NOTION OF LIMIT

(b) Use a sequence of values of x near a = 2 to estimate the value of lim2 f(z), if you think
T—r
the limit exists. If you think the limit doesn’t exist, explain why.
(c) Use algebra to simplify the expression 13562__9”: and hence work to evaluate lim,_,s f(z)
exactly, if it exists, or to explain how your work shows the limit fails to exist. Discuss
how your findings compare to your results in (b).

(d) True or false: f(2) = —8. Why?

(e) True or false: 1:]0621”3: = —4 — 22. Why? How is this equality connected to your work

above with the function f?

(f) Based on all of your work above, construct an accurate, labeled graph of y = f(z)
on the interval [1, 3], and write a sentence that explains what you now know about
. 16— 2%
lim — .
z—2 1 — 4

|z +3
r+3°
(a) What is the domain of g?

2. Letg(z) =

(b) Use a sequence of values near a = —3 to estimate the value of lim,_,_3 g(z), if you think
the limit exists. If you think the limit doesn’t exist, explain why:.

(c) Use algebra to simplify the expression |ii§| and hence work to evaluate lim,_, 3 g(x)

exactly, if it exists, or to explain how your work shows the limit fails to exist. Discuss
how your findings compare to your results in (b). (Hint: |a| = a whenever a > 0, but
|a| = —a whenever a < 0.)

(d) True or false: g(—3) = —1. Why?

(e) True or false: — |ii§| = —1. Why? How is this equality connected to your work above

with the function ¢?

(f) Based on all of your work above, construct an accurate, labeled graph of y = g(z) on
the interval [—4, —2], and write a sentence that explains what you now know about

lm, (@)

3. For each of the following prompts, sketch a graph on the provided axes of a function that has
the stated properties.

(@) y = f(z) such that

e f(—2)=2and xlirzlzf(x) =1
e f(—1)=3and $1_i>rr_11 f(z)=3
e f(1)is not defined and i;ml flz)=0
e f(2)=1and i1_)m2 f(z) does not exist.
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1.2. THE NOTION OF LIMIT 19

(b) y = g(x) such that
b 9(72) = 3/ 9(71) = 71/ g(l) = 72/ and 9(2) =3
o Atz = —2,—1,1 and 2, g has a limit, and its limit equals the value of the function
at that point.

e ¢(0) is not defined and ig% g(x) does not exist.

Figure 1.9: Axes for plotting y = f(z) in (a) and y = g(z) in (b).
4. A bungee jumper dives from a tower at time ¢ = 0. Her height s in feet at time ¢ in seconds is
given by s(t) = 100 cos(0.75t) - =%t + 100.

(a) Write an expression for the average velocity of the bungee jumper on the interval
1,1+ h)].

(b) Use computing technology to estimate the value of the limit as h — 0 of the quantit
puung gy q Y
you found in (a).

(c) What is the meaning of the value of the limit in (b)? What are its units?
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20 1.3. THE DERIVATIVE OF A FUNCTION AT A POINT

1.3 The derivative of a function at a point

Motivating Questions

In this section, we strive to understand the ideas generated by the following important questions:

e How is the average rate of change of a function on a given interval defined, and what does
this quantity measure?

e How is the instantaneous rate of change of a function at a particular point defined? How is
the instantaneous rate of change linked to average rate of change?

e What is the derivative of a function at a given point? What does this derivative value
measure? How do we interpret the derivative value graphically?

e How are limits used formally in the computation of derivatives?

Introduction

An idea that sits at the foundations of calculus is the instantaneous rate of change of a function.
This rate of change is always considered with respect to change in the input variable, often at a
particular fixed input value. This is a generalization of the notion of instantaneous velocity and
essentially allows us to consider the question “how do we measure how fast a particular function
is changing at a given point?” When the original function represents the position of a moving
object, this instantaneous rate of change is precisely velocity, and might be measured in units such
as feet per second. But in other contexts, instantaneous rate of change could measure the number
of cells added to a bacteria culture per day, the number of additional gallons of gasoline consumed
by going one mile per additional mile per hour in a car’s velocity, or the number of dollars added
to a mortgage payment for each percentage increase in interest rate. Regardless of the presence
of a physical or practical interpretation of a function, the instantaneous rate of change may also
be interpreted geometrically in connection to the function’s graph, and this connection is also
foundational to many of the main ideas in calculus.

In what follows, we will introduce terminology and notation that makes it easier to talk about
the instantaneous rate of change of a function at a point. In addition, just as instantaneous velocity
is defined in terms of average velocity, the more general instantaneous rate of change will be
connected to the more general average rate of change. Recall that for a moving object with position
function s, its average velocity on the time interval t = a to t = a + h is given by the quotient

s(a+h) —s(a) .

A‘/[a,a—l-h] = h

In a similar way, we make the following definition for an arbitrary function y = f(x).

Definition 1.2. For a function f, the average rate of change of f on the interval [a, a + h] is given by
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the value
fla+h)— f(a)
3 .

A‘/[a,aJrh] =

Equivalently, if we want to consider the average rate of change of f on [a, b], we compute
f(b) — fla
JUN(OES (C)
—a
It is essential to understand how the average rate of change of f on an interval is connected to its
graph.
Preview Activity 1.3. Suppose that f is the function given by the graph below and that a and a+

are the input values as labeled on the z-axis. Use the graph in Figure 1.10 to answer the following
questions.

a a-+h

Figure 1.10: Plot of y = f(z) for Preview Activity 1.3.

(a) Locate and label the points (a, f(a)) and (a + h, f(a + h)) on the graph.

(b) Construct a right triangle whose hypotenuse is the line segment from (a, f(a)) to
(a+ h, f(a + h)). What are the lengths of the respective legs of this triangle?

(c) What is the slope of the line that connects the points (a, f(a)) and (a + h, f(a + h))?

(d) Write a meaningful sentence that explains how the average rate of change of the function
on a given interval and the slope of a related line are connected.

The Derivative of a Function at a Point

Just as we defined instantaneous velocity in terms of average velocity, we now define the instanta-
neous rate of change of a function at a point in terms of the average rate of change of the function
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22 1.3. THE DERIVATIVE OF A FUNCTION AT A POINT

f over related intervals. In addition, we give a special name to “the instantaneous rate of change
of f at a,” calling this quantity “the derivative of f at a,” with this value being represented by the
shorthand notation f’(a). Specifically, we make the following definition.

Definition 1.3. Let f be a function and x = a a value in the function’s domain. We define the
derivative of f with respect to x evaluated at x = a, denoted f’(a), by the formula

f/(CL) — lim f(a+ h‘) — f(a’)

h—0 h ’

provided this limit exists.

Aloud, we read the symbol f/(a) as either “ f-prime at a” or “the derivative of f evaluated at
x = a.” Much of the next several chapters will be devoted to understanding, computing, applying,
and interpreting derivatives. For now, we make the following important notes.

e The derivative of f at the value = = a is defined as the limit of the average rate of change
of f on the interval [a,a + h] as h — 0. It is possible for this limit not to exist, so not every
function has a derivative at every point.

e We say that a function that has a derivative at = a is differentiable at x = a.

e The derivative is a generalization of the instantaneous velocity of a position function: when
y = s(t) is a position function of a moving body, s'(a) tells us the instantaneous velocity of
the body at time ¢ = a.

e Because the units on w are “units of f per unit of x,” the derivative has these very
same units. For instance, if s measures position in feet and ¢t measures time in seconds, the
units on s'(a) are feet per second.

e Because the quantity w represents the slope of the line through (a, f(a)) and
(a + h, f(a+ h)), when we compute the derivative we are taking the limit of a collection of
slopes of lines, and thus the derivative itself represents the slope of a particularly important
line.

While all of the above ideas are important and we will add depth and perspective to them through
additional time and study, for now it is most essential to recognize how the derivative of a function
at a given value represents the slope of a certain line. Thus, we expand upon the last bullet item
above.

As we move from an average rate of change to an instantaneous one, we can think of one point
as “sliding towards” another. In particular, provided the function has a derivative at (a, f(a)), the
point (a + h, f(a + h)) will approach (a, f(a)) as h — 0. Because this process of taking a limit
is a dynamic one, it can be helpful to use computing technology to visualize what the limit is
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1.3. THE DERIVATIVE OF A FUNCTION AT A POINT 23

accomplishing. While there are many different options®, one of the best is a java applet in which
the user is able to control the point that is moving. See the examples referenced in the footnote
here, or consider building your own, perhaps using the fantastic free program Geogebra®.

In Figure 1.11, we provide a sequence of figures with several different lines through the points
(a, f(a)) and (a + h, f(a + h)) that are generated by different values of h. These lines (shown in
the first three figures in magenta), are often called secant lines to the curve y = f(z). A secant line
to a curve is simply a line that passes through two points that lie on the curve. For each such line,
the slope of the secant line is m = w, where the value of i depends on the location of the
point we choose. We can see in the diagram how, as h — 0, the secant lines start to approach a
single line that passes through the point (a, f(a)). In the situation where the limit of the slopes of
the secant lines exists, we say that the resulting value is the slope of the tangent line to the curve.
This tangent line (shown in the right-most figure in green) to the graph of y = f(z) at the point

(a, f(a)) is the line through (a, f(a)) whose slope is m = f/(a).

Figure 1.11: A sequence of secant lines approaching the tangent line to f at (a, f(a)).

As we will see in subsequent study, the existence of the tangent line at + = a is connected to
whether or not the function f looks like a straight line when viewed up close at (a, f(a)), which
can also be seen in Figure 1.12, where we combine the four graphs in Figure 1.11 into the single
one on the left, and then we zoom in on the box centered at (a, f(a)), with that view expanded on
the right (with two of the secant lines omitted). Note how the tangent line sits relative to the curve
y = f(x) at (a, f(a)) and how closely it resembles the curve near z = a.

At this time, it is most important to note that f’(a), the instantaneous rate of change of f with
respect to = at = a, also measures the slope of the tangent line to the curve y = f(z) at (a, f(a)).
The following example demonstrates several key ideas involving the derivative of a function.

For a helpful collection of java applets, consider the work of David Austin of Grand Valley State Univer-
sity at http://gvsu.edu/s/5r, and the particularly relevant example at http://gvsu.edu/s/5s. For ap-
plets that have been built in Geogebra, a nice example is the work of Marc Renault of Shippensburg University at
http://gvsu.edu/s/5p, with the example at http://gvsu.edu/s/5q being especially fitting for our work in
this section. There are scores of other examples posted by other authors on the internet.

4 Available for free download from http://geogebra.org.
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Figure 1.12: A sequence of secant lines approaching the tangent line to f at (a, f(a)). At right, we zoom in
on the point (a, f(a)). The slope of the tangent line (in green) to f at (a, f(a)) is given by f/(a).

Example 1.3. For the function given by f(x) = x — 22, use the limit definition of the derivative

to compute f’(2). In addition, discuss the meaning of this value and draw a labeled graph that
supports your explanation.

Solution. From the limit definition, we know that

f2+h) - 12
- :

f'(2) = lim

Now we use the rule for f, and observe that f(2) =2 —22 = —2and f(2+h) = (2+h) — (24 h)2.
Substituting these values into the limit definition, we have that

_ 2_(_—
Fo) = i CER N2

Observe that with h in the denominator and our desire to let h — 0, we have to wait to take the
limit (that is, we wait to actually let h approach 0). Thus, we do additional algebra. Expanding
and distributing in the numerator,

24+h—4—4h—h%2+42

"(2) = 1i
f2) = Jim, 7z
Combining like terms, we have
f(2) = lim —3h - I*
- h—0 h

Next, we observe that there is a common factor of h in both the numerator and denominator,
which allows us to simplify and find that

7'(2) = lim (=3~ ).
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\m = f'(2)
<—

2

Figure 1.13: The tangent line to y = = — 2 at the point (2, —2).

Finally, we are able to take the limit as 4 — 0, and thus conclude that f'(2) = —3.

Now, we know that f/(2) represents the slope of the tangent line to the curve y = = — 22 at
the point (2, —2); f/(2) is also the instantaneous rate of change of f at the point (2, —2). Graphing
both the function and the line through (2, —2) with slope m = f/(2) = —3, we indeed see that by
calculating the derivative, we have found the slope of the tangent line at this point, as shown in
Figure 1.3.

The following activities will help you explore a variety of key ideas related to derivatives.
Activity 1.7.

Consider the function f whose formula is f(z) = 3 — 2.

(a) What familiar type of function is f? What can you say about the slope of f at every
value of z?

(b) Compute the average rate of change of f on the intervals [1,4], [3,7], and [5,5 + h;
simplify each result as much as possible. What do you notice about these quantities?

(c) Use the limit definition of the derivative to compute the exact instantaneous rate of
change of f with respect to x at the value a = 1. That is, compute f’(1) using the limit
definition. Show your work. Is your result surprising?

(d) Without doing any additional computations, what are the values of f'(2), f'(7), and
f'(=v2)? Why?
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26 1.3. THE DERIVATIVE OF A FUNCTION AT A POINT

Activity 1.8.

A water balloon is tossed vertically in the air from a window. The balloon’s height in feet at
time ¢ in seconds after being launched is given by s(t) = —16t2 + 16t + 32. Use this function to
respond to each of the following questions.

(a) Sketch an accurate, labeled graph of s on the axes provided in Figure 1.14. You should
be able to do this without using computing technology.

32 1

16 +

Figure 1.14: Axes for plotting y = s(t) in Activity 1.8.

(b) Compute the average rate of change of s on the time interval [1,2]. Include units on
your answer and write one sentence to explain the meaning of the value you found.

(c) Use the limit definition to compute the instantaneous rate of change of s with respect
to time, ¢, at the instant a = 1. Show your work using proper notation, include units on
your answer, and write one sentence to explain the meaning of the value you found.

(d) On your graph in (a), sketch two lines: one whose slope represents the average rate of
change of s on [1, 2], the other whose slope represents the instantaneous rate of change
of s at the instant a = 1. Label each line clearly.

(e) For what values of a do you expect s'(a) to be positive? Why? Answer the same ques-
tions when “positive” is replaced by “negative” and “zero.”

Activity 1.9.

A rapidly growing city in Arizona has its population P at time ¢, where t is the number of
decades after the year 2010, modeled by the formula P(t) = 25000¢!/°. Use this function to
respond to the following questions.

(a) Sketch an accurate graph of P for t = 0 to t = 5 on the axes provided in Figure 1.15.
Label the scale on the axes carefully.
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Figure 1.15: Axes for plotting y = P(t) in Activity 1.9.

(b) Compute the average rate of change of P between 2030 and 2050. Include units on your
answer and write one sentence to explain the meaning (in everyday language) of the
value you found.

(c) Use the limit definition to write an expression for the instantaneous rate of change of P
with respect to time, ¢, at the instant @ = 2. Explain why this limit is difficult to evaluate
exactly.

(d) Estimate the limit in (c) for the instantaneous rate of change of P at the instant a = 2
by using several small ~ values. Once you have determined an accurate estimate of
P’(2), include units on your answer, and write one sentence (using everyday language)
to explain the meaning of the value you found.

(e) On your graph above, sketch two lines: one whose slope represents the average rate of
change of P on [2, 4], the other whose slope represents the instantaneous rate of change
of P at the instant a = 2.

(f) In a carefully-worded sentence, describe the behavior of P’(a) as a increases in value.
What does this reflect about the behavior of the given function P?

<
Summary

In this section, we encountered the following important ideas:

. The units on the

f(0) — f(a)
b

e The average rate of change of a function f on the interval [a, ] is

average rate of change are units of f per unit of z, and the numerical value of the average rate
of change represents the slope of the secant line between the points (a, f(a)) and (b, f(b)) on
the graph of y = f(x). If we view the interval as being [a, @ + h] instead of [a, b], the meaning is

fla+h) = f(a)
- :

still the same, but the average rate of change is now computed by
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e The instantaneous rate of change with respect to = of a function f at a value z = a is denoted
f'(a) (read “the derivative of f evaluated at a” or “ f-prime at a”) and is defined by the formula

) — 1 £ ) = (0

h—0 h ’

provided the limit exists. Note particularly that the instantaneous rate of change at x = a is the
limit of the average rate of change on [a,a + h] as h — 0.

e Provided the derivative f’(a) exists, its value tells us the instantaneous rate of change of f with
respect to z at © = a, which geometrically is the slope of the tangent line to the curve y = f(z) at
the point (a, f(a)). We even say that f’(a) is the slope of the curve y = f(z) at the point (a, f(a)).

e Limits are the link between average rate of change and instantaneous rate of change: they allow
us to move from the rate of change over an interval to the rate of change at a single point.

Exercises
1. Consider the graph of y = f(x) provided in Figure 1.16.
(@) On the graph of y = f(z), sketch and label the following quantities:

e the secant line to y = f(x) on the interval [—3, —1] and the secant line to y = f(x)
on the interval [0, 2].

e the tangent line to y = f(z) at x = —3 and the tangent line to y = f(z) atz = 0.

Figure 1.16: Plot of y = f(z).

(b) What is the approximate value of the average rate of change of f on [-3, —1]? On [0, 2]?
How are these values related to your work in (a)?

(c) What is the approximate value of the instantaneous rate of change of f at z = —3? At
x = 0? How are these values related to your work in (a) and (b)?
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2. For each of the following prompts, sketch a graph on the provided axes in Figure 1.17 of a
function that has the stated properties.
(@) y = f(x) such that

e the average rate of change of f on [—3,0] is —2 and the average rate of change of f
on [1,3]is 0.5, and
¢ the instantaneous rate of change of f at # = —1 is —1 and the instantaneous rate of
change of f atx = 2is 1.
(b) y = g(x) such that

. 79(3)_5‘7(_2) = 0and 79(1)_29(_1) = —1,and

e J(2)=1land ¢'(-1)=0

Figure 1.17: Axes for plotting y = f(z) in (a) and y = g(x) in (b).

3. Suppose that the population, P, of China (in billions) can be approximated by the function
P(t) = 1.15(1.014)" where t is the number of years since the start of 1993.

(@) According to the model, what was the total change in the population of China between
January 1, 1993 and January 1, 2000? What will be the average rate of change of the
population over this time period? Is this average rate of change greater or less than the
instantaneous rate of change of the population on January 1, 2000? Explain and justify,
being sure to include proper units on all your answers.

(b) According to the model, what is the average rate of change of the population of China
in the ten-year period starting on January 1, 2012?

(c) Write an expression involving limits that, if evaluated, would give the exact instanta-
neous rate of change of the population on today’s date. Then estimate the value of this
limit (discuss how you chose to do so) and explain the meaning (including units) of the
value you have found.
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(d) Find an equation for the tangent line to the function y = P(t) at the point where the
t-value is given by today’s date.

4. The goal of this problem is to compute the value of the derivative at a point for several different
functions, where for each one we do so in three different ways, and then to compare the results
to see that each produces the same value.

For each of the following functions, use the limit definition of the derivative to compute the
value of f'(a) using three different approaches: strive to use the algebraic approach first (to
compute the limit exactly), then test your result using numerical evidence (with small values
of h), and finally plot the graph of y = f(z) near (a, f(a)) along with the appropriate tangent
line to estimate the value of f/(a) visually. Compare your findings among all three approaches.
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1.4 The derivative function

Motivating Questions

In this section, we strive to understand the ideas generated by the following important questions:

How does the limit definition of the derivative of a function f lead to an entirely new (but
related) function f’?

What is the difference between writing f’(a) and f/(z)?

How is the graph of the derivative function f’(z) connected to the graph of f(z)?

What are some examples of functions f for which f’ is not defined at one or more points?

Introduction

Given a function y = f(x), we now know that if we are interested in the instantaneous rate of
change of the function at = = a, or equivalently the slope of the tangent line to y = f(z) atz = q,
we can compute the value f’(a). In all of our examples to date, we have arbitrarily identified a
particular value of a as our point of interest: a = 1, a = 3, etc. But it is not hard to imagine that
we will often be interested in the derivative value for more than just one a-value, and possibly for
many of them. In this section, we explore how we can move from computing simply f'(1) or f/(3)
to working more generally with f’(a), and indeed f’(z). Said differently, we will work toward
understanding how the so-called process of “taking the derivative” generates a new function that
is derived from the original function y = f(x). The following preview activity starts us down this
path.

Preview Activity 1.4. Consider the function f(x) = 4z — 22

(a) Use the limit definition to compute the following derivative values: f'(0), f'(1), f'(2), and
f'(3).

(b) Observe that the work to find f’(a) is the same, regardless of the value of a. Based on your
work in (a), what do you conjecture is the value of f’(4)? How about f/(5)? (Note: you
should not use the limit definition of the derivative to find either value.)

(c) Conjecture a formula for f/(a) that depends only on the value a. That is, in the same way

that we have a formula for f(z) (recall f(z) = 4z — 22), see if you can use your work above
to guess a formula for f’(a) in terms of a.

>
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How the derivative is itself a function

In your work in Preview Activity 1.4 with f(z) = 42 — 22, you may have found several patterns.
One comes from observing that f/(0) = 4, /(1) = 2, f/(2) = 0, and f’(3) = —2. That sequence
of values leads us naturally to conjecture that f’(4) = —4 and f/(5) = —6. Even more than these
individual numbers, if we consider the role of 0, 1, 2, and 3 in the process of computing the value
of the derivative through the limit definition, we observe that the particular number has very little
effect on our work. To see this more clearly, we compute f’(a), where a represents a number to be
named later. Following the now standard process of using the limit definition of the derivative,

fla+h) = f(a)

/ — 1
f(a) lim Y
_ 2 _ 2
— fim 4(a+h) = (a+h)* = (4a — a”)
h—0 h
. da+4h —a® —2ha — h?® —da + a3
= lim
h—0 h
. 4h —2ha — h?
= lim ———
h—0 h
_ lim h(4 —2a — h)
h—0 h
= lim(4—2a—h)
h—0

Here we observe that neither 4 nor 2a depend on the value of h,soas h — 0, (4—2a—h) — (4—2a).
Thus, f/'(a) = 4 — 2a.

This observation is consistent with the specific values we found above: e.g., f'(3) =4 —2(3) =
—2. And indeed, our work with a confirms that while the particular value of a at which we
evaluate the derivative affects the value of the derivative, that value has almost no bearing on
the process of computing the derivative. We note further that the letter being used is immaterial:
whether we call it a, z, or anything else, the derivative at a given value is simply given by “4
minus 2 times the value.” We choose to use x for consistency with the original function given by
y = f(x), as well as for the purpose of graphing the derivative function, and thus we have found
that for the function f(x) = 4x — 22, it follows that f'(z) = 4 — 2u.

Because the value of the derivative function is so closely linked to the graphical behavior of
the original function, it makes sense to look at both of these functions plotted on the same domain.
In Figure 1.18, on the left we show a plot of f(x) = 4z — 2? together with a selection of tangent
lines at the points we’ve considered above. On the right, we show a plot of f/(z) = 4 — 2z
with emphasis on the heights of the derivative graph at the same selection of points. Notice the
connection between colors in the left and right graph: the green tangent line on the original graph
is tied to the green point on the right graph in the following way: the slope of the tangent line at a
point on the lefthand graph is the same as the height at the corresponding point on the righthand
graph. That is, at each respective value of z, the slope of the tangent line to the original function at
that z-value is the same as the height of the derivative function at that z-value. Do note, however,
that the units on the vertical axes are different: in the left graph, the vertical units are simply the
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Figure 1.18: The graphs of f(z) = 4z — 2? (at left) and f’(z) = 4 — 2z (at right). Slopes on the graph of f
correspond to heights on the graph of f’.

output units of f. On the righthand graph of y = f/(x), the units on the vertical axis are units of f
per unit of x.

Of course, this relationship between the graph of a function y = f(x) and its derivative is
a dynamic one. An excellent way to explore how the graph of f(z) generates the graph of
f'(z) is through a java applet. See, for instance, the applets at http://gvsu.edu/s/5C or
http://gvsu.edu/s/5D, via the sites of Austin and Renault®.

In Section 1.3 when we first defined the derivative, we wrote the definition in terms of a value
a to find f’(a). As we have seen above, the letter a is merely a placeholder, and it often makes
more sense to use x instead. For the record, here we restate the definition of the derivative.

Definition 1.4. Let f be a function and z a value in the function’s domain. We define the derivative

of f with respect to x at the value x, denoted f'(z), by the formula f'(z) = }llir% fla+ hg — /@)
—>

)

provided this limit exists.

We now may take two different perspectives on thinking about the derivative function: given a
graph of y = f(x), how does this graph lead to the graph of the derivative function y = f’(2)? and
given a formula for y = f(z), how does the limit definition of the derivative generate a formula
for y = f'(x)? Both of these issues are explored in the following activities.

SDavid Austin, http://gvsu.edu/s/5r; Marc Renault, http://gvsu.edu/s/5p.
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Activity 1.10.

For each given graph of y = f(z), sketch an approximate graph of its derivative function,
y = f'(z), on the axes immediately below. The scale of the grid for the graph of fis 1 x 1;
assume the horizontal scale of the grid for the graph of f’ is identical to that for f. If necessary,
adjust and label the vertical scale on the axes for the graph of f’.

x

f g
x x

p q
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r s
x x
r! s
x x
w z

Write several sentences that describe your overall process for sketching the graph of the deriva-
tive function, given the graph the original function. What are the values of the derivative func-
tion that you tend to identify first? What do you do thereafter? How do key traits of the graph
of the derivative function exemplify properties of the graph of the original function?

<
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For a dynamic investigation that allows you to experiment with graphing f’ when given the
graph of f,see http://gvsu. edu/s/8y.°

Now, recall the opening example of this section: we began with the functiony = f(z) = 4z —2?

and used the limit definition of the derivative to show that f’(a) = 4 — 2a, or equivalently that
f'(z) = 4—2x. We subsequently graphed the functions f and f’ as shown in Figure 1.18. Following
Activity 1.10, we now understand that we could have constructed a fairly accurate graph of f'(z)
without knowing a formula for either f or f’. At the same time, it is ideal to know a formula for
the derivative function whenever it is possible to find one.

In the next activity, we further explore the more algebraic approach to finding f'(z): given a
formula for y = f(z), the limit definition of the derivative will be used to develop a formula for

f'(z).
Activity 1.11.

For each of the listed functions, determine a formula for the derivative function. For the first
two, determine the formula for the derivative by thinking about the nature of the given function
and its slope at various points; do not use the limit definition. For the latter four, use the
limit definition. Pay careful attention to the function names and independent variables. It
is important to be comfortable with using letters other than f and x. For example, given a
function p(z), we call its derivative p'(z).

@ f(z) =1
(b) g(t) =t

(©) p(2) = 2°
(d) q(s) = 5*
(e) F(t)= ¢

Summary

In this section, we encountered the following important ideas:

e The limit definition of the derivative, f'(z) = limj_, M, produces a value for each z

at which the derivative is defined, and this leads to a new function whose formulais y = f'(x).
Hence we talk both about a given function f and its derivative f’. It is especially important to
note that taking the derivative is a process that starts with a given function (f) and produces a
new, related function ().

e There is essentially no difference between writing f’(a) (as we did regularly in Section 1.3) and
writing f’(z). In either case, the variable is just a placeholder that is used to define the rule for
the derivative function.

®Marc Renault, Calculus Applets Using Geogebra.
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e Given the graph of a function y = f(x), we can sketch an approximate graph of its derivative
y = f'(x) by observing that heights on the derivative’s graph correspond to slopes on the original
function’s graph.

e In Activity 1.10, we encountered some functions that had sharp corners on their graphs, such
as the shifted absolute value function. At such points, the derivative fails to exist, and we say
that f is not differentiable there. For now, it suffices to understand this as a consequence of the
jump that must occur in the derivative function at a sharp corner on the graph of the original
function.

Exercises

1. Let f be a function with the following properties: f is differentiable at every value of x (that
is, f has a derivative at every point), f(—=2) = 1, and f'(-2) = -2, f'(-1) = -1, f/(0) = 0
f'(1)=1,and f'(2) = 2.

(@) On the axes provided at left in Figure 1.19, sketch a possible graph of y = f(z). Explain
why your graph meets the stated criteria.

(b) On the axes at right in Figure 1.19, sketch a possible graph of y = f/(x). What type of
curve does the provided data suggest for the graph of y = f/(x)?

(c) Conjecture a formula for the function y = f(x). Use the limit definition of the derivative
to determine the corresponding formula for y = f’(z). Discuss both graphical and
algebraic evidence for whether or not your conjecture is correct.

Figure 1.19: Axes for plotting y = f(z) in (a) and y = f/(z) in (b).

2. Consider the function g(x) = 22 — z + 3.
(a) Use the limit definition of the derivative to determine a formula for ¢'(x).

(b) Use a graphing utility to plot both y = g(z) and your result for y = ¢'(z); does your
formula for ¢’(x) generate the graph you expected?

D09



38 1.4. THE DERIVATIVE FUNCTION

(c) Use the limit definition of the derivative to find a formula for /’(z) where h(x) = 522 —

4 + 12.

(d) Compare and contrast the formulas for ¢’(x) and 4/(z) you have found. How do the
constants 5, 4, 12, and 3 affect the results?

3. For each graph that provides an original function y = f(«x) in Figure 1.20, your task is to sketch
an approximate graph of its derivative function, y = f’(z), on the axes immediately below.
View the scale of the grid for the graph of f as being 1 x 1, and assume the horizontal scale of
the grid for the graph of f’ is identical to that for f. If you need to adjust the vertical scale on
the axes for the graph of f/, you should label that accordingly.

\ AJ\

17\

f f

\ \/A/\Am
VA REAY

f f

Figure 1.20: Graphs of y = f(x) and grids for plotting the corresponding graph of y = f'(x).
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4. Let g be a continuous function (that is, one with no jumps or holes in the graph) and suppose
that a graph of y = ¢/(z) is given by the graph on the right in Figure 1.21.

2 2
—_—0 o0
-2 2 -2 2
Oo—0 o—
-2 -2

Figure 1.21: Axes for plotting y = g(z) and, at right, the graph of y = ¢'(x).

(a) Observe that for every value of z that satisfies 0 < x < 2, the value of ¢'(z) is constant.
What does this tell you about the behavior of the graph of y = g(x) on this interval?

(b) On what intervals other than 0 < z < 2 do you expect y = g(x) to be a linear function?
Why?

(c) At which values of z is ¢'(z) not defined? What behavior does this lead you to expect
to see in the graph of y = g(z)?

(d) Suppose that g(0) = 1. On the axes provided at left in Figure 1.21, sketch an accurate
graph of y = g(x).
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1.5 Interpreting, estimating, and using the derivative

Motivating Questions

In this section, we strive to understand the ideas generated by the following important questions:

e In contexts other than the position of a moving object, what does the derivative of a function
measure?

e What are the units on the derivative function f/, and how are they related to the units of the
original function f?

e Whatis a central difference, and how can one be used to estimate the value of the derivative
at a point from given function data?

e Given the value of the derivative of a function at a point, what can we infer about how the
value of the function changes nearby?

Introduction

An interesting and powerful feature of mathematics is that it can often be thought of both in
abstract terms and in applied ones. For instance, calculus can be developed almost entirely as
an abstract collection of ideas that focus on properties of arbitrary functions. At the same time,
calculus can also be very directly connected to our experience of physical reality by considering
functions that represent meaningful processes. We have already seen that for a position function
y = s(t), say for a ball being tossed straight up in the air, the ball’s velocity at time ¢ is given by
v(t) = §'(t), the derivative of the position function. Further, recall that if s(¢) is measured in feet at
time ¢, the units on v(t) = s/(t) are feet per second.

In what follows in this section, we investigate several different functions, each with specific
physical meaning, and think about how the units on the independent variable, dependent vari-
able, and the derivative function add to our understanding. To start, we consider the familiar
problem of a position function of a moving object.

Preview Activity 1.5. One of the longest stretches of straight (and flat) road in North America
can be found on the Great Plains in the state of North Dakota on state highway 46, which lies just
south of the interstate highway 1-94 and runs through the town of Gackle. A car leaves town (at
time ¢ = 0) and heads east on highway 46; its position in miles from Gackle at time ¢ in minutes is
given by the graph of the function in Figure 1.22. Three important points are labeled on the graph;
where the curve looks linear, assume that it is indeed a straight line.

(a) Ineveryday language, describe the behavior of the car over the provided time interval. In
particular, discuss what is happening on the time intervals [57, 68] and [68, 104].

(b) Find the slope of the line between the points (57, 63.8) and (104, 106.8). What are the units
on this slope? What does the slope represent?
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; (104, 106.8)
1001
(57,63.8)
601 (68,63.8)
201
| | ot
20 40 60 80 100

Figure 1.22: The graph of y = s(t), the position of the car along highway 46, which tells its distance in miles
from Gackle, ND, at time ¢ in minutes.

(c) Find the average rate of change of the car’s position on the interval [68, 104]. Include units
on your answer.

(d) Estimate the instantaneous rate of change of the car’s position at the moment ¢ = 80. Write
a sentence to explain your reasoning and the meaning of this value.

Units of the derivative function

As we now know, the derivative of the function f at a fixed value z is given by

) — tim FE D) S @)

h—0 h ’

and this value has several different interpretations. If we set z = a, one meaning of f/(a) is the
slope of the tangent line at the point (a, f(a)).

In alternate notation, we also sometimes equivalently write % or % instead of f/(z), and these
notations helps us to further see the units (and thus the meaning) of the derivative as it is viewed
as the instantaneous rate of change of f with respect to x. Note that the units on the slope of the secant
line, w, are “units of f per unit of z.” Thus, when we take the limit to get f'(z), we get
these same units on the derivative f’(z): units of f per unit of z. Regardless of the function f
under consideration (and regardless of the variables being used), it is helpful to remember that
the units on the derivative function are “units of output per unit of input,” in terms of the input
and output of the original function.

For example, say that we have a function y = P(t), where P measures the population of a city
(in thousands) at the start of year ¢ (where ¢t = 0 corresponds to 2010 AD), and we are told that
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P'(2) = 21.37. What is the meaning of this value? Well, since P is measured in thousands and ¢ is
measured in years, we can say that the instantaneous rate of change of the city’s population with
respect to time at the start of 2012 is 21.37 thousand people per year. We therefore expect that in
the coming year, about 21,370 people will be added to the city’s population.

Toward more accurate derivative estimates

It is also helpful to recall, as we first experienced in Section 1.3, that when we want to estimate
the value of f/(x) at a given z, we can use the difference quotient w with a relatively small
value of h. In doing so, we should use both positive and negative values of % in order to make
sure we account for the behavior of the function on both sides of the point of interest. To that end,
we consider the following brief example to demonstrate the notion of a central difference and its

role in estimating derivatives.

Example 1.4. Suppose that y = f(z) is a function for which three values are known: f(1) = 2.5,
f(2) = 3.25,and f(3) = 3.625. Estimate f/(2).

Solution. We know that f/(2) = limj_,0 w But since we don’t have a graph for y = f(z)
nor a formula for the function, we can neither sketch a tangent line nor evaluate the limit exactly.
We can’t even use smaller and smaller values of h to estimate the limit. Instead, we have just two
choices: using h = —1 or h = 1, depending on which point we pair with (2, 3.25).

So, one estimate is
F() = f(2)  25-325

= 0.75.
1-2 -1

@)~

The other is F3) - f(2) 3625 325
'(2) ~ — = T 0.375.
#(2) - . 0.375
Since the first approximation looks only backward from the point (2, 3.25) and the second approx-
imation looks only forward from (2, 3.25), it makes sense to average these two values in order to

account for behavior on both sides of the point of interest. Doing so, we find that

_0.75+0.375

F(2) ~ 5 = 0.5625.

The intuitive approach to average the two estimates found in Example 1.4 is in fact the best
possible estimate to f’(2) when we have just two function values for f on opposite sides of the
point of interest. To see why, we think about the diagram in Figure 1.23, which shows a possible
function y = f(x) that satisfies the data given in Example 1.4. On the left, we see the two secant

lines with slopes that come from computing the backward difference % = 0.75 and from the
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forward difference ! (3§:£ @) — 0.375. Note how the first such line’s slope over-estimates the slope
of the tangent line at (2, f(2)), while the second line’s slope underestimates f'(2). On the right,
however, we see the secant line whose slope is given by the central difference

f(3)—f(1) _3625-25 1125

- = 0.5625.
T 5 0.5625

Note that this central difference has the exact same value as the average of the forward difference
and backward difference (and it is straightforward to explain why this always holds), and more-
over that the central difference yields a very good approximation to the derivative’s value, in part
because the secant line that uses both a point before and after the point of tangency yields a line
that is closer to being parallel to the tangent line.

A

Figure 1.23: At left, the graph of y = f(z) along with the secant line through (1,2.5) and (2, 3.25), the secant
line through (2,3.25) and (3,3.625), as well as the tangent line. At right, the same graph along with the
secant line through (1, 2.5) and (3, 3.625), plus the tangent line.

In general, the central difference approximation to the value of the first derivative is given by

Pl L0 D= Ta=h)

and this quantity measures the slope of the secant line to y = f(«) through the points (a — h, f(a —
h)) and (a+h, f(a+h)). Anytime we have symmetric data surrounding a point at which we desire
to estimate the derivative, the central difference is an ideal choice for so doing.

The following activities will further explore the meaning of the derivative in several different
contexts while also viewing the derivative from graphical, numerical, and algebraic perspectives.

Activity 1.12.

A potatois placed in an oven, and the potato’s temperature F' (in degrees Fahrenheit) at various
points in time is taken and recorded in the following table. Time ¢ is measured in minutes.
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Lt | F@

0 |70

15 || 180.5
30 || 251
45 || 296
60 || 324.5
75 || 342.8
90 || 354.5

(a) Use a central difference to estimate the instantaneous rate of change of the temperature
of the potato at ¢ = 30. Include units on your answer.

(b) Use a central difference to estimate the instantaneous rate of change of the temperature
of the potato at ¢ = 60. Include units on your answer.

(c) Without doing any calculation, which do you expect to be greater: F’(75) or F’(90)?
Why?

(d) Suppose it is given that F'(64) = 330.28 and F”(64) = 1.341. What are the units on these
two quantities? What do you expect the temperature of the potato to be when ¢ = 65?
when t = 66? Why?

(e) Write a couple of careful sentences that describe the behavior of the temperature of the
potato on the time interval [0, 90], as well as the behavior of the instantaneous rate of
change of the temperature of the potato on the same time interval.

Activity 1.13.

A company manufactures rope, and the total cost of producing r feet of rope is C(r) dollars.
(a) What does it mean to say that C'(2000) = 8007
(b) What are the units of C’(r)?

(c) Suppose that C'(2000) = 800 and C’(2000) = 0.35. Estimate C'(2100), and justify your
estimate by writing at least one sentence that explains your thinking.

(d) Which of the following statements do you think is true, and why?
e C'(2000) < C'(3000)
e (C’(2000) = C"(3000)
e (C’(2000) > C’(3000)
(e) Suppose someone claims that C’(5000) = —0.1. What would the practical meaning of

this derivative value tell you about the approximate cost of the next foot of rope? Is this
possible? Why or why not?
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Activity 1.14.

Researchers at a major car company have found a function that relates gasoline consumption to
speed for a particular model of car. In particular, they have determined that the consumption
C, in liters per kilometer, at a given speed s, is given by a function C' = f(s), where s is the
car’s speed in kilometers per hour.

(a) Data provided by the car company tells us that f(80) = 0.015, f(90) = 0.02, and
£(100) = 0.027. Use this information to estimate the instantaneous rate of change of
fuel consumption with respect to speed at s = 90. Be as accurate as possible, use proper
notation, and include units on your answer.

(b) By writing a complete sentence, interpret the meaning (in the context of fuel consump-
tion) of “ f(80) = 0.015.”

(c) Write at least one complete sentence that interprets the meaning of the value of f'(90)
that you estimated in (a).

<

In Section 1.4, we learned how use to the graph of a given function f to plot the graph of its
derivative, f’. It is important to remember that when we do so, not only does the scale on the
vertical axis often have to change to accurately represent f’, but the units on that axis also differ.
For example, suppose that P(t) = 400 — 330e 293 tells us the temperature in degrees Fahrenheit
of a potato in an oven at time ¢ in minutes. In Figure 1.24, we sketch the graph of P on the left and
the graph of P’ on the right.

°F °F /min
400 16
300 ¥=2L 12
| /
200 s\y =2
100 4
min min

20 40 60 80 20 40 60 80

Figure 1.24: Plot of P(t) = 400 — 330e 993" at left, and its derivative P’(t) at right.

Note how not only are the vertical scales different in size, but different in units, as the units of
P are °F, while those of P’ are °F/min. In all cases where we work with functions that have an
applied context, it is helpful and instructive to think carefully about units involved and how they
further inform the meaning of our computations.
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Summary

In this section, we encountered the following important ideas:

e Regardless of the context of a given function y = f(z), the derivative always measures the
instantaneous rate of change of the output variable with respect to the input variable.

e The units on the derivative function y = f/(x) are units of f per unit of x. Again, this measures
how fast the output of the function f changes when the input of the function changes.

o The central difference approximation to the value of the first derivative is given by

flath) = fla=h)
2h ’

f'(a) ~

and this quantity measures the slope of the secant line to y = f(x) through the points (a —
h, f(a —h)) and (a + h, f(a+ h)). The central difference generates a good approximation of the
derivative’s value any time we have symmetric data surrounding a point of interest.

¢ Knowing the derivative and function values at a single point enables us to estimate other func-
tion values nearby. If, for example, we know that f/(7) = 2, then we know that at z = 7, the
function f is increasing at an instantaneous rate of 2 units of output for every one unit of input.
Thus, we expect f(8) to be approximately 2 units greater than f(7). The value is approximate
because we don’t know that the rate of change stays the same as x changes.

Exercises

1. A cup of coffee has its temperature F' (in degrees Fahrenheit) at time ¢ given by the function
F(t) = 75 + 110~ %% where time is measured in minutes.

(a) Use a central difference with h = 0.01 to estimate the value of F”(10).

(b) What are the units on the value of F’(10) that you computed in (a)? What is the practical
meaning of the value of F”(10)?

(c) Which do you expect to be greater: F'(10) or F'(20)? Why?

(d) Write a sentence that describes the behavior of the function y = F’(t) on the time inter-
val 0 <t < 30. How do you think its graph will look? Why?

2. The temperature change 7' (in Fahrenheit degrees), in a patient, that is generated by a dose ¢
(in milliliters), of a drug, is given by the function ' = f(q).

(a) What does it mean to say f(50) = 0.75? Write a complete sentence to explain, using
correct units.

(b) A person’s sensitivity, s, to the drug is defined by the function s(¢) = f’(¢). What are
the units of sensitivity?
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(c) Suppose that f/(50) = —0.02. Write a complete sentence to explain the meaning of this
value. Include in your response the information given in (a).

3. The velocity of a ball that has been tossed vertically in the air is given by v(t) = 16 — 32t, where
v is measured in feet per second, and ¢ is measured in seconds. The ball is in the air from ¢t = 0
until £ = 2.

(a) When is the ball’s velocity greatest?
(b) Determine the value of v'(1). Justify your thinking.

(c) What are the units on the value of v/(1)? What does this value and the corresponding
units tell you about the behavior of the ball at time ¢ = 1?

(d) What is the physical meaning of the function v’ (¢)?
phy g

4. The value, V, of a particular automobile (in dollars) depends on the number of miles, m, the
car has been driven, according to the function V' = h(m).

(a) Suppose that ~(40000) = 15500 and h(55000) = 13200. What is the average rate of
change of h on the interval [40000, 55000], and what are the units on this value?

(b) In addition to the information given in (a), say that 2(70000) = 11100. Determine the
best possible estimate of h’(55000) and write one sentence to explain the meaning of
your result, including units on your answer.

(c) Which value do you expect to be greater: 4’'(30000) or 4'(80000)? Why?

(d) Write a sentence to describe the long-term behavior of the function V' = h(m), plus
another sentence to describe the long-term behavior of 4'(m). Provide your discussion
in practical terms regarding the value of the car and the rate at which that value is
changing.
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1.6 The second derivative

Motivating Questions

In this section, we strive to understand the ideas generated by the following important questions:

e How does the derivative of a function tell us whether the function is increasing or decreas-
ing at a point or on an interval?

e What can we learn by taking the derivative of the derivative (to achieve the second deriva-
tive) of a function f?

e What does it mean to say that a function is concave up or concave down? How are these
characteristics connected to certain properties of the derivative of the function?

e What are the units on the second derivative? How do they help us understand the rate of
change of the rate of change?

Introduction

Given a differentiable function y = f(z), we know that its derivative, y = f’(x), is a related
function whose output at a value = = a tells us the slope of the tangent line to y = f(z) at the
point (a, f(a)). That is, heights on the derivative graph tell us the values of slopes on the original
function’s graph. Therefore, the derivative tells us important information about the function f.

Figure 1.25: Two tangent lines on a graph demonstrate how the slope of the tangent line tells us whether
the function is rising or falling, as well as whether it is doing so rapidly or slowly.

At any point where f/(x) is positive, it means that the slope of the tangent line to f is positive,
and therefore the function f is increasing (or rising) at that point. Similarly, if f/(a) is negative, we
know that the graph of f is decreasing (or falling) at that point.
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In the next part of our study, we work to understand not only whether the function f is in-
creasing or decreasing at a point or on an interval, but also how the function f is increasing or
decreasing. Comparing the two tangent lines shown in Figure 1.25, we see that at point A, the
value of f/(x) is positive and relatively close to zero, which coincides with the graph rising slowly.
By contrast, at point B, the derivative is negative and relatively large in absolute value, which
is tied to the fact that f is decreasing rapidly at B. It also makes sense to not only ask whether
the value of the derivative function is positive or negative and whether the derivative is large or
small, but also to ask “how is the derivative changing?”

We also now know that the derivative, y = f’(z), is itself a function. This means that we can
consider taking its derivative — the derivative of the derivative — and therefore ask questions like
“what does the derivative of the derivative tell us about how the original function behaves?” As
we have done regularly in our work to date, we start with an investigation of a familiar problem
in the context of a moving object.

Preview Activity 1.6. The position of a car driving along a straight road at time ¢ in minutes is
given by the function y = s(¢) that is pictured in Figure 1.26. The car’s position function has units
measured in thousands of feet. For instance, the point (2,4) on the graph indicates that after 2
minutes, the car has traveled 4000 feet.

Yy S
14 4
10 41
6 4
2 4
| t
2 6 10

Figure 1.26: The graph of y = s(t), the position of the car (measured in thousands of feet from its starting
location) at time ¢ in minutes.

(a) In everyday language, describe the behavior of the car over the provided time interval.
In particular, you should carefully discuss what is happening on each of the time intervals
[0,1], [1,2],[2,3], [3,4], and [4, 5], plus provide commentary overall on what the car is doing
on the interval [0, 12].

(b) On the lefthand axes provided in Figure 1.27, sketch a careful, accurate graph of y = s'(¢).
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(c) What is the meaning of the function y = s(¢) in the context of the given problem? What
can we say about the car’s behavior when s'(t) is positive? when §/(t) is zero? when s'(t)
is negative?

(d) Rename the function you graphed in (b) to be called y = v(t). Describe the behavior of v
in words, using phrases like “v is increasing on the interval ...” and “v is constant on the
interval .. ..”

(e) Sketch a graph of the function y = ¢'(¢) on the righthand axes provide in Figure 1.26.
Write at least one sentence to explain how the behavior of v'(¢) is connected to the graph
of y = v(t).

Figure 1.27: Axes for plotting y = v(t) = s'(¢) and y = v/(¢).

Increasing, decreasing, or neither

When we look at the graph of a function, there are features that strike us naturally, and common
language can be used to name these features. In many different settings so far, we have intuitively
used the words increasing and decreasing to describe a function’s graph. Here we connect these
terms more formally to a function’s behavior on an interval of input values.

Definition 1.5. Given a function f(z) defined on the interval (a, b), we say that f is increasing on
(a,b) provided that for all z, y in the interval (a,b), if z < y, then f(z) < f(y). Similarly, we say
that f is decreasing on (a, b) provided that for all z, y in the interval (a, b), if x < y, then f(z) > f(y).

Simply put, an increasing function is one that is rising as we move from left to right along the
graph, and a decreasing function is one that falls as the value of the input increases. For a function
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that has a derivative at a point, we will also talk about whether or not the function is increasing or
decreasing at that point. Moreover, the fact of whether or not the function is increasing, decreasing,
or neither at a given point depends precisely on the value of the derivative at that point.

Let f be a function that is differentiable at + = a. Then f is increasing at z = « if and only if
f'(a) > 0 and f is decreasing at x = a if and only if f'(a) < 0. If f/(a) = 0, then we say f is
neither increasing nor decreasing at = = a.

Figure 1.28: A function that is decreasing at A, increasing at B, and more generally, decreasing on the
intervals -3 < x < —2and 0 < z < 2 and increasingon —2 < < 0and 2 < z < 3.

For example, the function pictured in Figure 1.28 is increasing at any point at which f/(z) is
positive, and hence is increasing on the entire interval —2 < 2 < 0. Note that at both x = £2 and
x = 0, we say that f is neither increasing nor decreasing, because f’(z) = 0 at these values.

The Second Derivative

For any function, we are now accustomed to investigating its behavior by thinking about its
derivative. Given a function f, its derivative is a new function, one that is given by the rule

Fla) — tim LD @)

h—0 h

Because [’ is itself a function, it is perfectly feasible for us to consider the derivative of the deriva-
tive, which is the new function y = [f’(x)]’. We call this resulting function the second derivative of
y = f(z), and denote the second derivative by y = f”(z). Due to the presence of multiple possible
derivatives, we will sometimes call f’ “the first derivative” of f, rather than simply “the deriva-
tive” of f. Formally, the second derivative is defined by the limit definition of the derivative of

the first derivative: " ) /()
weon o fl@+h)— f(x
f @) = fim h '
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We note that all of the established meaning of the derivative function still holds, so when we
compute y = f”(z), this new function measures slopes of tangent lines to the curve y = f/(x), as
well as the instantaneous rate of change of y = f’(x). In other words, just as the first derivative
measures the rate at which the original function changes, the second derivative measures the rate
at which the first derivative changes. This means that the second derivative tracks the instanta-
neous rate of change of the instantaneous rate of change of f. That is, the second derivative will
help us to understand how the rate of change of the original function is itself changing.

Concavity

In addition to asking whether a function is increasing or decreasing, it is also natural to inquire how
a function is increasing or decreasing. To begin, there are three basic behaviors that an increasing
function can demonstrate on an interval, as pictured in Figure 1.29: the function can increase
more and more rapidly, increase at the same rate, or increase in a way that is slowing down.
Fundamentally, we are beginning to think about how a particular curve bends, with the natural
comparison being made to lines, which don’t bend at all. More than this, we want to understand
how the bend in a function’s graph is tied to behavior characterized by the first derivative of the
function.

Figure 1.29: Three functions that are all increasing, but doing so at an increasing rate, at a constant rate, and
at a decreasing rate, respectively.

For the leftmost curve in Figure 1.29, picture a sequence of tangent lines to the curve. As we
move from left to right, the slopes of those tangent lines will increase. Therefore, the rate of change
of the pictured function is increasing, and this explains why we say this function is increasing at
an increasing rate. For the rightmost graph in Figure 1.29, observe that as « increases, the function
increases but the slope of the tangent line decreases, hence this function is increasing at a decreasing
rate.

Of course, similar options hold for how a function can decrease. Here we must be extra care-
ful with our language, since decreasing functions involve negative slopes, and negative numbers
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present an interesting situation in the tension between common language and mathematical lan-
guage. For example, it can be tempting to say that “—100 is bigger than —2.” But we must re-
member that when we say one number is greater than another, this describes how the numbers
lie on a number line: = < y provided that x lies to the left of y. So of course, —100 is less than —2.
Informally, it might be helpful to say that “—100 is more negative than —2.” This leads us to note
particularly that when a function’s values are negative, and those values subsequently get more
negative, the function must be decreasing.

Now consider the three graphs shown in Figure 1.30. Clearly the middle graph demonstrates
the behavior of a function decreasing at a constant rate. If we think about a sequence of tangent
lines to the first curve that progress from left to right, we see that the slopes of these lines get less
and less negative as we move from left to right. That means that the values of the first deriva-
tive, while all negative, are increasing, and thus we say that the leftmost curve is decreasing at an
increasing rate.

Figure 1.30: From left to right, three functions that are all decreasing, but doing so in different ways.

This leaves only the rightmost curve in Figure 1.30 to consider. For that function, the slope of
the tangent line is negative throughout the pictured interval, but as we move from left to right, the
slopes get more and more negative. Hence the slope of the curve is decreasing, and we say that
the function is decreasing at a decreasing rate.

This leads us to introduce the notion of concavity which provides simpler language to describe
some of these behaviors. Informally, when a curve opens up on a given interval, like the upright
parabola y = z? or the exponential growth function y = e%, we say that the curve is concave up on
that interval. Likewise, when a curve opens down, such as the parabola y = —z? or the opposite
of the exponential function y = —e”, we say that the function is concave down. This behavior is
linked to both the first and second derivatives of the function.

In Figure 1.31, we see two functions along with a sequence of tangent lines to each. On the
lefthand plot where the function is concave up, observe that the tangent lines to the curve always
lie below the curve itself and that, as we move from left to right, the slope of the tangent line
is increasing. Said differently, the function f is concave up on the interval shown because its
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derivative, f’, is increasing on that interval. Similarly, on the righthand plot in Figure 1.31, where
the function shown is concave down, there we see that the tangent lines alway lie above the curve
and that the value of the slope of the tangent line is decreasing as we move from left to right.
Hence, what makes f concave down on the interval is the fact that its derivative, f’, is decreasing.

Figure 1.31: At left, a function that is concave up; at right, one that is concave down.

We state these most recent observations formally as the definitions of the terms concave up and
concave down.

Definition 1.6. Let f be a differentiable function on an interval (a, b). Then f is concave up on (a, b)
if and only if f’ is increasing on (a, b); f is concave down on (a,b) if and only if f’ is decreasing on
(a,b).

The following activities lead us to further explore how the first and second derivatives of a
function determine the behavior and shape of its graph. We begin by revisiting Preview Activ-
ity 1.6.

Activity 1.15.

The position of a car driving along a straight road at time ¢ in minutes is given by the function
y = s(t) that is pictured in Figure 1.32. The car’s position function has units measured in
thousands of feet. Remember that you worked with this function and sketched graphs of y =
v(t) = §'(t) and y = v/(t) in Preview Activity 1.6.

(a) On what intervals is the position function y = s(t) increasing? decreasing? Why?

(b) On which intervals is the velocity function y = v(t) = §'(t) increasing? decreasing?
neither? Why?

(c) Acceleration is defined to be the instantaneous rate of change of velocity, as the accel-
eration of an object measures the rate at which the velocity of the object is changing.
Say that the car’s acceleration function is named «a(t). How is a(t) computed from v(t)?
How is a(t) computed from s(¢)? Explain.
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Figure 1.32: The graph of y = s(t), the position of the car (measured in thousands of feet from its starting
location) at time ¢ in minutes.

(d) What can you say about s” whenever s’ is increasing? Why?

(e) Using only the words increasing, decreasing, constant, concave up, concave down, and lin-
ear, complete the following sentences. For the position function s with velocity v and
acceleration a,

e on an interval where v is positive, s is
e on an interval where v is negative, s is

e on an interval where v is zero, s is
on an interval where a is positive, v is
on an interval where a is negative, v is

on an interval where a is zero, v is
on an interval where « is positive, s is
on an interval where a is negative, s is
on an interval where a is zero, s is

<

The context of position, velocity, and acceleration is an excellent one in which to understand
how a function, its first derivative, and its second derivative are related to one another. In Ac-
tivity 1.15, we can replace s, v, and a with an arbitrary function f and its derivatives f’ and f”,
and essentially all the same observations hold. In particular, note that f’ is increasing if and only
if both f is concave up, and similarly f’ is increasing if and only if f” is positive. Likewise, f’ is
decreasing if and only if both f is concave down, and f’ is decreasing if and only if f” is negative.

Activity 1.16.

This activity builds on our experience and understanding of how to sketch the graph of f’ given
the graph of f. Below, given the graph of a function f, sketch f’ on the first axes below, and
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then sketch f” on the second set of axes. In addition, for each, write several careful sentences
in the spirit of those in Activity 1.15 that connect the behaviors of f, f/, and f”. For instance,
write something such as

f'is on the interval , which is connected to the fact that
fis on the same interval and f"is
on the interval as well

but of course with the blanks filled in. Throughout, view the scale of the grid for the graph of f
as being 1 x 1, and assume the horizontal scale of the grid for the graph of f’is identical to that
for f. If you need to adjust the vertical scale on the axes for the graph of f’ or f”, you should
label that accordingly.

N \ ISUVAVAR BAVAVNSED

! !

f/l f//

Figure 1.33: Two given functions f, with axes provided for plotting f’ and f” below.
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Activity 1.17.

A potato is placed in an oven, and the potato’s temperature F' (in degrees Fahrenheit) at vari-
ous points in time is taken and recorded in the following table. Time ¢ is measured in minutes.
In Activity 1.12, we computed approximations to F’(30) and F’(60) using central differences.
Those values and more are provided in the second table below, along with several others com-
puted in the same way.

[t F® | [t [FO]

0 || 70 0 || NA
15 || 180.5 15 || 6.03
30 || 251 30 || 3.85
45 || 296 45 || 2.45

60 || 324.5 60 || 1.56
75 || 342.8 75 | 1.00
90 || 354.5 90 || NA

(a) What are the units on the values of F’(t)?
(b) Use a central difference to estimate the value of F”(30).

(c) What is the meaning of the value of F/(30) that you have computed in (c) in terms of
the potato’s temperature? Write several careful sentences that discuss, with appropriate
units, the values of F(30), F’(30), and F"(30), and explain the overall behavior of the
potato’s temperature at this point in time.

(d) Overall, is the potato’s temperature increasing at an increasing rate, increasing at a con-
stant rate, or increasing at a decreasing rate? Why?

Summary

In this section, we encountered the following important ideas:

¢ A differentiable function f is increasing at a point or on an interval whenever its first derivative
is positive, and decreasing whenever its first derivative is negative.

e By taking the derivative of the derivative of a function f, we arrive at the second derivative,
f”. The second derivative measures the instantaneous rate of change of the first derivative, and
thus the sign of the second derivative tells us whether or not the slope of the tangent line to f
is increasing or decreasing.

¢ A differentiable function is concave up whenever its first derivative is increasing (or equiva-
lently whenever its second derivative is positive), and concave down whenever its first deriva-
tive is decreasing (or equivalently whenever its second derivative is negative). Examples of
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functions that are everywhere concave up are y = 2% and y = e%; examples of functions that are
everywhere concave down are y = —x? and y = —e”.

e The units on the second derivative are “units of output per unit of input per unit of input.”
They tell us how the value of the derivative function is changing in response to changes in the
input. In other words, the second derivative tells us the rate of change of the rate of change of
the original function.

Exercises

1. Suppose that y = f(x) is a differentiable function for which the following information is
known: f(2) = =3, f'(2) = 1.5, f"(2) = —0.25.

(a) Is f increasing or decreasing at « = 2? Is f concave up or concave down at z = 2?
(b) Do you expect f(2.1) to be greater than —3, equal to —3, or less than —3? Why?
(c) Do you expect f'(2.1) to be greater than 1.5, equal to 1.5, or less than 1.5? Why?
(d) Sketch a graph of y = f(z) near (2, f(2)) and include a graph of the tangent line.

2. For a certain function y = g(z), its derivative is given by the function pictured in Figure 1.34.

Figure 1.34: The graph of y = ¢'(z).

(a) What is the approximate slope of the tangent line to y = g(z) at the point (2, g(2))?

(b) How many real number solutions can there be to the equation g(x) = 0? Justify your
conclusion fully and carefully by explaining what you know about how the graph of g
must behave based on the given graph of ¢'.

(c) On the interval —3 < z < 3, how many times does the concavity of g change? Why?

(d) Use the provided graph to estimate the value of g”(2).

3. A bungee jumper’s height h (in feet ) at time ¢ (in seconds) is given in part by the data in the
following table:

Q020



1.6. THE SECOND DERIVATIVE 59

't JooJo5 [10 |15 [20 [25 [30 [35 [40 [45 |50 |
L h(t) | 200\1842\1599\1319\1047\818\655\568\555\604\698\
't [[55 |60 |65 |70 [75 [80 [85 [90 [95 |10.0 |
[ h(t) [ 81.6 [93.7 [ 1044 [ 112.6 [ 117.7 | 119.4 | 118.2 [ 114.8 [ 110.0 [ 104.7 |

(a) Use the given data to estimate h'(4.5), h'(5), and h’(5.5). At which of these times is the
bungee jumper rising most rapidly?

(b) Use the given data and your work in (a) to estimate h”(5).

(c) What physical property of the bungee jumper does the value of h”(5) measure? What
are its units?

(d) Based on the data, on what approximate time intervals is the function y = h(t) concave
down? What is happening to the velocity of the bungee jumper on these time intervals?

4. For each prompt that follows, sketch a possible graph of a function on the interval —3 < z < 3
that satisfies the stated properties.

(@) y = f(x) such that f is increasing on —3 < = < 3, f is concave up on —3 < = < 0, and f
is concave downon 0 < z < 3.

(b) y = g(x) such that g is increasing on —3 < x < 3, ¢ is concave down on —3 < z < 0,
and g is concaveup on 0 < = < 3.

(c) y = h(z) such that h is decreasing on —3 < x < 3, h is concave up on —3 < z < —1,
neither concave up nor concave down on —1 < z < 1, and h is concave down on
1<z <.

(d) y = p(z) such that p is decreasing and concave down on —3 < z < 0 and p is increasing
and concave downon 0 < = < 3.
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1.7 Limits, Continuity, and Differentiability

Motivating Questions

In this section, we strive to understand the ideas generated by the following important questions:

e What does it mean graphically to say that f has limit L as x — a? How is this connected to
having a left-hand limit at # = a and having a right-hand limit at z = a?

e What does it mean to say that a function f is continuous at x = a? What role do limits play
in determining whether or not a function is continuous at a point?

e What does it mean graphically to say that a function f is differentiable at + = a? How is
this connected to the function being locally linear?

e How are the characteristics of a function having a limit, being continuous, and being differ-
entiable at a given point related to one another?

Introduction

In Section 1.2, we learned about how the concept of limits can be used to study the trend of a
function near a fixed input value. As we study such trends, we are fundamentally interested in
knowing how well-behaved the function is at the given point, say = a. In this present section,
we aim to expand our perspective and develop language and understanding to quantify how the
function acts and how its value changes near a particular point. Beyond thinking about whether
or not the function has a limit L at z = a, we will also consider the value of the function f(a) and
how this value is related to lim,_,, f(x), as well as whether or not the function has a derivative
f'(a) at the point of interest. Throughout, we will build on and formalize ideas that we have
encountered in several settings.

We begin to consider these issues through the following preview activity that asks you to
consider the graph of a function with a variety of interesting behaviors.

Preview Activity 1.7. A function f defined on —4 < 2 < 4 is given by the graph in Figure 1.35.
Use the graph to answer each of the following questions. Note: to the right of x = 2, the graph of
[ is exhibiting infinite oscillatory behavior similar to the function sin(%) that we encountered in
Figure 1.7 in Example 1.2.

(a) For each of the values a = —3,—-2,—1,0, 1, 2, 3, determine whether or not h_r)n f(z) exists.
xX a

If the function has a limit L at a given point, state the value of the limit using the notation
lim f(x) = L. If the function does not have a limit at a given point, write a sentence to
r—a

explain why.

(b) For each of the values of a from part (a) where f has a limit, determine the value of f(a)
at each such point. In addition, for each such a value, does f(a) have the same value as
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Figure 1.35: The graph of y = f(x).

i ?
lim f(z)?

(c) For each of the values a = —3,—2,—1,0, 1,2, 3, determine whether or not f’(a) exists. In
particular, based on the given graph, ask yourself if it is reasonable to say that f has a
tangent line at (a, f(a)) for each of the given a-values. If so, visually estimate the slope of
the tangent line to find the value of f’(a).

Having a limit at a point

In Section 1.2, we first encountered limits and learned that we say that f has limit L as x ap-
proaches a and write lim f(z) = L provided that we can make the value of f(x) as close to L
T—a

as we like by taking z sufficiently close (but not equal to) a. Here, we expand further on this
definition and focus in more depth on what it means for a function not to have a limit at a given
value.

Essentially there are two behaviors that a function can exhibit at a point where it fails to have a
limit. In Figure 1.36, at left we see a function f whose graph shows a jump at @ = 1. In particular,
if we let x approach 1 from the left side, the value of f approaches 2, while if we let z go to 1 from
the right, the value of f tends to 3. Because the value of f does not approach a single number as z
gets arbitrarily close to 1 from both sides, we know that f does not have a limit at a = 1.

Since f does approach a single value on each side of a = 1, we can introduce the notion of left
and right (or one-sided) limits. We say that f has limit Ly as x approaches a from the left and write

lim f(z) =1,

Tr—a—

provided that we can make the value of f(xz) as close to L; as we like by taking x sufficiently close
to a while always having = < a. In this case, we call L; the left-hand limit of f as = approaches a.
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Similarly, we say L is the right-hand limit of f as x approaches a and write

lim f(z) = Lo

z—at

provided that we can make the value of f(z) as close to Ly as we like by taking x sufficiently close
to a while always having « > a. In the graph of the function f in Figure 1.36, we see that

lim f(z) =2 and lim f(z)=3

z—1— z—1t

and precisely because the left and right limits are not equal, the overall limit of f as x — 1 fails to
exist.

Figure 1.36: Functions f and g that each fail to have a limit at a = 1.

For the function g pictured at right in Figure 1.36, the function fails to have a limit at a = 1
for a different reason. While the function does not have a jump in its graph at a = 1, it is still
not the case that g approaches a single value as x approaches 1. In particular, due to the infinitely
oscillating behavior of g to the right of a = 1, we say that the right-hand limit of g as z — 17 does
not exist, and thus il_)ml g(x) does not exist.

To summarize, anytime either a left- or right-hand limit fails to exist or the left- and right-hand
limits are not equal to each other, the overall limit will not exist. Said differently,

A function f has limit L as © — a if and only if

lim f(z)=L= lim f(x).

T—a~ z—a™t

That is, a function has a limit at x = a if and only if both the left- and right-hand limits at x = a
exist and share the same value.

In Preview Activity 1.7, the function f given in Figure 1.35 only fails to have a limit at two
values: at a = —2 (where the left- and right-hand limits are 2 and —1, respectively) and at = 2,
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where lim,_,5+ f(z) does not exist). Note well that even at values like a = —1 and a = 0 where
there are holes in the graph, the limit still exists.
Activity 1.18.

Consider a function that is piecewise-defined according to the formula

3(x4+2)+2 for-3<z< -2
(x4+2)+1 for—2<z<-1
(x4+2)+1 for-1<z<1
forz =1
forz >1

~
—~
53
N—
|
=N ol Wl

|
S

Use the given formula to answer the following questions.

Figure 1.37: Axes for plotting the function y = f(x) in Activity 1.18.

(a) For each of the values a = —2,—1,0, 1,2, compute f(a).
(b) For each of the values a = —2,—1,0, 1,2, determine lim f(z)and hm+ f(z).

T—a~ r—a
(c) For each of the values a = —2,—1,0, 1,2, determine liLn f(z). If the limit fails to exist,
r—a

explain why by discussing the left- and right-hand limits at the relevant a-value.

(d) For which values of a is the following statement true?

lim f(z) # f(a)

r—a

(e) On the axes provided in Figure 1.37, sketch an accurate, labeled graph of y = f(xz). Be
sure to carefully use open circles (o) and filled circles (o) to represent key points on the

graph, as dictated by the piecewise formula.

<
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Being continuous at a point

Intuitively, a function is continuous if we can draw it without ever lifting our pencil from the page.
Alternatively, we might say that the graph of a continuous function has no jumps or holes in it.
We first consider three specific situations in Figure 1.38 where all three functions have a limit at
a = 1, and then work to make the idea of continuity more precise.

EEA

Figure 1.38: Functions f, g, and h that demonstrate subtly different behaviors at a = 1.

Note that f(1) is not defined, which leads to the resulting hole in the graph of f ata = 1. We
will naturally say that f is not continuous at a = 1. For the next function g in in Figure 1.38, we
observe that while lim,_,; g(x) = 3, the value of ¢(1) = 2, and thus the limit does not equal the
function value. Here, too, we will say that g is not continuous, even though the function is defined
at a = 1. Finally, the function h appears to be the most well-behaved of all three, since at a = 1 its
limit and its function value agree. That is,

lim h(x) =3 = h(1).

r—1

With no hole or jump in the graph of h at a = 1, we desire to say that h is continuous there.

More formally, we make the following definition.
Definition 1.7. A function f is continuous provided that

(a) fhasalimitasx — a,

(b) fisdefined at z = a, and

(© lim f(z) = f(a).

r—a

Conditions (a) and (b) are technically contained implicitly in (c), but we state them explicitly to
emphasize their individual importance. In words, (c) essentially says that a function is continuous
at x = a provided that its limit as * — a exists and equals its function value at z = a. Thus,
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continuous functions are particularly nice: to evaluate the limit of a continuous function at a
point, all we need to do is evaluate the function.

For example, consider p(z) = 2*>—2x+-3. It can be proved that every polynomial is a continuous
function at every real number, and thus if we would like to know lim,_,5 p(x), we simply compute

lim (2% — 2x +3) =22 —2-243 = 3.
r—2

This route of substituting an input value to evaluate a limit works anytime we know function
being considered is continuous. Besides polynomial functions, all exponential functions and the
sine and cosine functions are continuous at every point, as are many other familiar functions and
combinations thereof.

Activity 1.19.

This activity builds on your work in Preview Activity 1.7, using the same function f as given
by the graph that is repeated in Figure 1.39

Figure 1.39: The graph of y = f(x) for Activity 1.19.

(a) At which values of a does lim,_,, f(z) not exist?

(b) At which values of a is f(a) not defined?

(c) At which values of a does f have a limit, but lim,_,, f(z) # f(a)?
(d) State all values of a for which f is not continuous at z = a.

(e) Which condition is stronger, and hence implies the other: f has a limit at z = a or
f is continuous at z = a? Explain, and hence complete the following sentence: “If f

at x = a, then f at z = a,” where you

complete the blanks with has a limit and is continuous, using each phrase once.

<
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Being differentiable at a point

We recall that a function f is said to be differentiable at x = a whenever f’(a) exists. Moreover, for
/'(a) to exist, we know that the function y = f(z) must have a tangent line at the point (a, f(a)),
since f’(a) is precisely the slope of this line. In order to even ask if f has a tangent line at (a, f(a)),
it is necessary that f be continuous at « = a: if f fails to have a limit at z = a, if f(a) is not defined,
or if f(a) does not equal the value of lim,_,, f(z), then it doesn’t even make sense to talk about a
tangent line to the curve at this point.

Indeed, it can be proved formally that if a function f is differentiable at = = a, then it must be
continuous at x = a. So, if f is not continuous at z = a, then it is automatically the case that f is
not differentiable there. For example, in Figure 1.38 from our early discussion of continuity, both
f and g fail to be differentiable at = 1 because neither function is continuous at z = 1. But can a
function fail to be differentiable at a point where the function is continuous?

In Figure 1.40, we revisit the situation where a function has a sharp corner at a point, something
we encountered several times in Section 1.4. For the pictured function f, we observe that f is
clearly continuous at @ = 1, since lim,_,; f(z) =1 = f(1).

\ f

Figure 1.40: A function f that is continuous at ¢ = 1 but not differentiable at a = 1; at right, we zoom in on
the point (1, 1) in a magnified version of the box in the left-hand plot.

But the function f in Figure 1.40 is not differentiable at « = 1 because f’(1) fails to exist.
One way to see this is to observe that f’(z) = —1 for every value of z that is less than 1, while
f'(z) = 41 for every value of z that is greater than 1. That makes it seem that either +1 or
—1 would be equally good candidates for the value of the derivative at x = 1. Alternately, we
could use the limit definition of the derivative to attempt to compute f’(1), and discover that the
derivative does not exist. A similar problem will be investigated in Activity 1.20. Finally, we can
also see visually that the function f in Figure 1.40 does not have a tangent line. When we zoom in
on (1,1) on the graph of f, no matter how closely we examine the function, it will always look like
a “V”, and never like a single line, which tells us there is no possibility for a tangent line there.

To make a more general observation, if a function does have a tangent line at a given point,
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when we zoom in on the point of tangency, the function and the tangent line should appear essen-
tially indistinguishable’. Conversely, if we have a function such that when we zoom in on a point
the function looks like a single straight line, then the function should have a tangent line there,
and thus be differentiable. Hence, a function that is differentiable at + = a will, up close, look
more and more like its tangent line at (a, f(a)), and thus we say that a function is differentiable at
x = ais locally linear.

To summarize the preceding discussion of differentiability and continuity, we make several
important observations.

o If f is differentiable at x = a, then f is continuous at + = a. Equivalently, iff fails to be
continuous at x = qa, then f will not be differentiable at z = a.

e A function can be continuous at a point, but not be differentiable there. In particular, a
function f is not differentiable at z = a if the graph has a sharp corner (or cusp) at the point

(a, f(a)).

e If f is differentiable at + = q, then f is locally linear at + = a. That is, when a function
is differentiable, it looks linear when viewed up close because it resembles its tangent line
there.

Activity 1.20.

In this activity, we explore two different functions and classify the points at which each is not
differentiable. Let g be the function given by the rule g(z) = |z|, and let f be the function that
we have previously explored in Preview Activity 1.7, whose graph is given again in Figure 1.41.

(a) Reasoning visually, explain why g is differentiable at every point = such that = # 0.
(b) Use the limit definition of the derivative to show that ¢’(0) = limj_, %
(c) Explain why ¢/(0) fails to exist by using small positive and negative values of h.

(d) State all values of a for which f is not differentiable at = = a. For each, provide a reason
for your conclusion.

(e) True or false: if a function p is differentiable at = b, then lim,_,;, p(x) must exist. Why?

<

Summary

In this section, we encountered the following important ideas:

e A function f has limit L as  — a if and only if f has a left-hand limit at x = @, has a right-hand
limit at z = a, and the left- and right-hand limits are equal. Visually, this means that there can

"See, for instance, http: //gvsu.edu/s/6J for an applet (due to David Austin, GVSU) where zooming in shows
the increasing similarity between the tangent line and the curve.
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Figure 1.41: The graph of y = f(x) for Activity 1.20.

be a hole in the graph at # = a, but the function must approach the same single value from
either side of =z = a.

A function f is continuous at z = a whenever f(a) is defined, f has a limit as z — a, and the
value of the limit and the value of the function agree. This guarantees that there is not a hole or
jump in the graph of f at z = a.

A function f is differentiable at x = a whenever f’(a) exists, which means that f has a tangent
line at (a, f(a)) and thus f is locally linear at the value = = a. Informally, this means that the
function looks like a line when viewed up close at (a, f(a)) and that there is not a corner point

or cusp at (a, f(a)).

Of the three conditions discussed in this section (having a limit at z = a, being continuous at
x = a, and being differentiable at = = a), the strongest condition is being differentiable, and the
next strongest is being continuous. In particular, if f is differentiable at z = a, then f is also
continuous at © = a, and if f is continuous at = q, then f has a limit at z = a.

Exercises

1.

For each of the following prompts, give an example of a function that satisfies the stated criteria.
A formula or a graph, with reasoning, is sufficient for each. If no such example is possible,
explain why.

(a) A function f that is continuous at ¢ = 2 but not differentiable at a = 2.
(b) A function g that is differentiable at a« = 3 but does not have a limit at a = 3.

(c) A function h that has a limit at a = —2, is defined at a = —2, but is not continuous at
a=—2.

(d) A function p that satisfies all of the following:
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e p(—1)=3and lim,_,_; p(x) =2
e p(0)=T1and p’'(0) =0
e lim, ,; p(x) = p(1) and p'(1) does not exist

2. Consider the graph of the function y = p(x) that is provided in Figure 1.42. Assume that each
portion of the graph of p is a straight line, as pictured.

-3+ 34

Figure 1.42: At left, the piecewise linear function y = p(z). At right, axes for plotting y = p/(x).

(a) State all values of a for which lim,_,, p(x) does not exist.
(b) State all values of a for which p is not continuous at a.
(c) State all values of a for which p is not differentiable at x = a.

(d) On the axes provided in Figure 1.42, sketch an accurate graph of y = p/(z).

3. Let h(z) be a function whose derivative y = h/(z) is given by the graph on the right in Fig-
ure 1.43.

(a) Based on the graph of y = h/(x), what can you say about the behavior of the function
y = h(z)?

(b) At which values of z is y = h/(z) not defined? What behavior does this lead you to
expect to see in the graph of y = h(z)?

(c) Is it possible for y = h(z) to have points where h is not continuous? Explain your
answer.

(d) On the axes provided at left, sketch at least two distinct graphs that are possible func-
tions y = h(x) that each have a derivative y = h/(z) that matches the provided graph at
right. Explain why there are multiple possibilities for y = h(x).

4. Consider the function g(z) = /|z|.
(a) Use a graph to explain visually why g is not differentiable at = = 0.
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3 3
2..
y = h'(v)
—() 1 Q=
-3 3 3 2 -1 1 2 3
Q=) O
_2..
-3 -3

Figure 1.43: Axes for plotting y = h(z) and, at right, the graph of y = h/(z).

(b) Use the limit definition of the derivative to show that

g'(0) = lim \/W

h—0

(c) Investigate the value of ¢/(0) by estimating the limit in (b) using small positive and

. . . —0.01
negative values of h. For instance, you might compute |0 o1 | Be sure to use several

different values of h (both positive and negative), including ones closer to 0 than 0.01.
What do your results tell you about ¢’(0)?

(d) Use your graph in (a) to sketch an approximate graph of y = ¢'(z).
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1.8 The Tangent Line Approximation

Motivating Questions

In this section, we strive to understand the ideas generated by the following important questions:

e What is the formula for the general tangent line approximation to a differentiable function
y = f(x) at the point (a, f(a))?

e What is the principle of local linearity and what is the local linearization of a differentiable
function f at a point (a, f(a))?

e How does knowing just the tangent line approximation tell us information about the be-
havior of the original function itself near the point of approximation? How does knowing
the second derivative’s value at this point provide us additional knowledge of the original
function’s behavior?

Introduction

Among all functions, linear functions are simplest. One of the powerful consequences of a func-
tion y = f(x) being differentiable at a point (a, f(a)) is that, up close, the function y = f(z) is
locally linear and looks like its tangent line at that point. In certain circumstances, this allows us
to approximate the original function f with a simpler function L that is linear: this can be advan-
tageous when we have limited information about f or when f is computationally or algebraically
complicated. We will explore all of these situations in what follows.

It is essential to recall that when f is differentiable at x = q, the value of f’(a) provides the
slope of the tangent line to y = f(z) at the point (a, f(a)). By knowing both a point on the line and
the slope of the line we are thus able to find the equation of the tangent line. Preview Activity 1.8
will refresh these concepts through a key example and set the stage for further study.

Preview Activity 1.8. Consider the function y = g(z) = —22 + 3z + 2.
(a) Use the limit definition of the derivative to compute a formula for y = ¢'(z).
(b) Determine the slope of the tangent line to y = g(x) at the value z = 2.
(c) Compute g(2).

(d) Find an equation for the tangent line to y = g(z) at the point (2, f(2)). Write your result in
point-slope form®.

(e) On the axes provided in Figure 1.44, sketch an accurate, labeled graph of y = g(z) along
with its tangent line at the point (2, g(2)).

8Recall that a line with slope m that passes through (zo, y0) has equation y—yo = m(z—2), and this is the point-slope
form of the equation.
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Figure 1.44: Axes for plotting y = g(z) and its tangent line to the point (2, g(2)).

The tangent line

Given a function f that is differentiable at + = a, we know that we can determine the slope of
the tangent line to y = f(z) at (a, f(a)) by computing f’(a). The resulting tangent line through
(a, f(a)) with slope m = f’(a) has its equation in point-slope form given by

y = f(a) = f'(a)(z - a),

which we can also express as y = f’(a)(z—a)+ f(a). Note well: there is a major difference between
f(a) and f(z) in this context. The former is a constant that results from using the given fixed value
of a, while the latter is the general expression for the rule that defines the function. The same is
true for f’(a) and f’(z): we must carefully distinguish between these expressions. Each time we
find the tangent line, we need to evaluate the function and its derivative at a fixed a-value.

In Figure 1.45, we see a labeled plot of the graph of a function f and its tangent line at the point
(a, f(a)). Notice how when we zoom in we see the local linearity of f more clearly highlighted
as the function and its tangent line are nearly indistinguishable up close. This can also be seen
dynamically in the java applet at http://gvsu.edu/s/6J.

The local linearization

A slight change in perspective and notation will enable us to be more precise in discussing how
the tangent line to y = f(x) at (a, f(a)) approximates f near z = a. Taking the equation for the
tangent line and solving for y, we observe that the tangent line is given by

y=f'(a)z —a)+ f(a)


http://gvsu.edu/s/6J
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Figure 1.45: A function y = f(z) and its tangent line at the point (a, f(a)): at left, from a distance, and
at right, up close. At right, we label the tangent line function by y = L(z) and observe that for = near a,

f(z) = L(x).

and moreover that this line is itself a function of z. Replacing the variable y with the expression
L(z), we call

L(z) = f'(a)(x —a) + f(a)
the local linearization of f at the point (a, f(a)). In this notation, it is particularly important to

observe that L(x) is nothing more than a new name for the tangent line, and that for z close to a,
we have that f(z) ~ L(x).

Say, for example, that we know that a function y = f(x) has its tangent line approximation
given by L(z) = 3 — 2(z — 1) at the point (1, 3), but we do not know anything else about the
function f. If we are interested in estimating a value of f(z) for z near 1, such as f(1.2), we can
use the fact that f(1.2) ~ L(1.2) and hence

F(1.2) ~ L(1.2) =3 - 2(1.2 — 1) = 3 — 2(0.2) = 2.6.

Again, much of the new perspective here is only in notation since y = L(x) is simply a new name
for the tangent line function. In light of this new notation and our observations above, we note
that since L(z) = f(a)+ f'(a)(z —a) and L(z) ~ f(x) for x near q, it also follows that we can write

f(z) = f(a) + f'(a)(z — a) for z near a.
The next activity explores some additional important properties of the local linearization y =
L(z) to a function f at given a-value.
Activity 1.21.

Suppose it is known that for a given differentiable function y = g(x), its local linearization at
the point where a = —1is given by L(z) = =2+ 3(z + 1).
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(a) Compute the values of L(—1) and L'(—1).
(b) What must be the values of g(—1) and ¢'(—1)? Why?

(c) Do you expect the value of g(—1.03) to be greater than or less than the value of g(—1)?
Why?

(d) Use the local linearization to estimate the value of g(—1.03).

(e) Suppose that you also know that ¢”(—1) = 2. What does this tell you about the graph
ofy =g(x)ata=—1?

(f) For z near —1, sketch the graph of the local linearization y = L(x) as well as a possible
graph of y = g(x) on the axes provided in Figure 1.46.

Figure 1.46: Axes for plotting y = L(x) and y = g(z).

<

As we saw in the example provided by Activity 1.21, the local linearization y = L(z) is a linear
function that shares two important values with the function y = f(x) that it is derived from. In
particular, observe that since L(x) = f(a) + f'(a)(z — a), it follows that L(a) = f(a). In addition,
since L is a linear function, its derivative is its slope. Hence, L'(z) = f'(a) for every value of z,
and specifically L'(a) = f’(a). Therefore, we see that L is a linear function that has both the same
value and the same slope as the function f at the point (a, f(a)).

In situations where we know the linear approximation y = L(x), we therefore know the orig-
inal function’s value and slope at the point of tangency. What remains unknown, however, is
the shape of the function f at the point of tangency. There are essentially four possibilities, as
enumerated in Figure 1.47.

These stem from the fact that there are three options for the value of the second derivative:
either f”(a) < 0, f"(a) = 0, or f”(a) > 0. If f”(a) > 0, then we know the graph of f is concave
up, and we see the first possibility on the left, where the tangent line lies entirely below the curve.
If f”(a) < 0, then we find ourselves in the second situation (from left) where f is concave down
and the tangent line lies above the curve. In the situation where f”(a) = 0 and f” changes sign at
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~ L~ ~
/ /

Figure 1.47: Four possible graphs for a nonlinear differentiable function and how it can be situated relative
to its tangent line at a point.

T = a, the concavity of the graph will change, and we will see either the third or fourth option”. A
fiftth option (that is not very interesting) can occur, which is where the function f is linear, and so
f(x) = L(x) for all values of x.

The plots in Figure 1.47 highlight yet another important thing that we can learn from the con-
cavity of the graph near the point of tangency: whether the tangent line lies above or below the
curve itself. This is key because it tells us whether or not the tangent line approximation’s values
will be too large or too small in comparison to the true value of f. For instance, in the first situation
in the leftmost plot in Figure 1.47 where f”(a) > 0, since the tangent line falls below the curve, we
know that L(z) < f(x) for all values of z near a.

We explore these ideas further in the following activity.
Activity 1.22.

This activity concerns a function f(x) about which the following information is known:

e f is a differentiable function defined at every real number z

. f(2)=-1
e y = f'(x) has its graph given in Figure 1.48

Your task is to determine as much information as possible about f (especially near the value
a = 2) by responding to the questions below.

(a) Find a formula for the tangent line approximation, L(x), to f at the point (2, —1).

(b) Use the tangent line approximation to estimate the value of f(2.07). Show your work
carefully and clearly.

(c) Sketch a graph of y = f”(z) on the righthand grid in Figure 1.48; label it appropriately.

(d) Is the slope of the tangent line to y = f(x) increasing, decreasing, or neither when
x = 2? Explain.

°It is possible to have f”/(a) = 0 and have f” not change sign at = = a, in which case the graph will look like one of
the first two options.
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Figure 1.48: At center, a graph of y = f'(z); at left, axes for plotting y = f(x); at right, axes for plotting
y=["(z).

(e) Sketch a possible graph of y = f(x) near x = 2 on the lefthand grid in Figure 1.48.
Include a sketch of y = L(z) (found in part (a)). Explain how you know the graph of
y = f(x) looks like you have drawn it.

(f) Does your estimate in (b) over- or under-estimate the true value of f(2)? Why?

<

The idea that a differentiable function looks linear and can be well-approximated by a linear
function is an important one that finds wide application in calculus. For example, by approxi-
mating a function with its local linearization, it is possible to develop an effective algorithm to
estimate the zeroes of a function. Local linearity also helps us to make further sense of certain
challenging limits. For instance, we have seen that a limit such as

sin(z)

lim

z—0 T

is indeterminate because both its numerator and denominator tend to 0. While there is no algebra
that we can do to simplify Smafx) , itis straightforward to show that the linearization of f(x) = sin(z)
at the point (0,0) is given by L(z) = x. Hence, for values of = near 0, sin(z) ~ x. As such, for

values of x near 0,

sin(z) @ ]
oz
which makes plausible the fact that
li sin(z) _ 1.
z—0 T

These ideas and other applications of local linearity will be explored later on in our work.

Summary

In this section, we encountered the following important ideas:
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e The tangent line to a differentiable function y = f(z) at the point (a, f(a)) is given in point-
slope form by the equation

y— fla) = f'(a)(x - a).

e The principle of local linearity tells us that if we zoom in on a point where a function y = f(x)
is differentiable, the function should become indistinguishable from its tangent line. That is, a
differentiable function looks linear when viewed up close. We rename the tangent line to be the
function y = L(z) where L(z) = f(a) + f'(a)(z — a) and note that f(x) =~ L(x) for all x near
Tr = Q.

e If we know the tangent line approximation L(z) = f(a)+ f'(a)(x—a), then because L(a) = f(a)
and L'(a) = f'(a), we also know both the value and the derivative of the function y = f(x) at
the point where x = a. In other words, the linear approximation tells us the height and slope
of the original function. If, in addition, we know the value of f”(a), we then know whether the
tangent line lies above or below the graph of y = f(z) depending on the concavity of f.

Exercises

1. A certain function y = p(z) has its local linearization at a = 3 given by L(z) = —2z + 5.
(a) What are the values of p(3) and p/(3)? Why?
(b) Estimate the value of p(2.79).

(c) Suppose that p”(3) = 0 and you know that p”(z) < 0 for < 3. Is your estimate in (b)
too large or too small?

(d) Suppose that p”(x) > 0 for « > 3. Use this fact and the additional information above to
sketch an accurate graph of y = p(z) near = 3. Include a sketch of y = L(x) in your
work.

2. A potato is placed in an oven, and the potato’s temperature F' (in degrees Fahrenheit) at various
points in time is taken and recorded in the following table. Time ¢ is measured in minutes.

KNG

0 [[70

15 || 180.5

30 [ 251

45 | 296

60 | 324.5
| 75 || 342.8

90 | 354.5

(a) Use a central difference to estimate F’(60). Use this estimate as needed in subsequent
questions.

(b) Find the local linearization y = L(t) to the function y = F(t) at the point where a = 60.

D09



78 1.8. THE TANGENT LINE APPROXIMATION

(c) Determine an estimate for F'(63) by employing the local linearization.
(d) Do you think your estimate in (c) is too large or too small? Why?
3. An object moving along a straight line path has a differentiable position function y = s(¢). Itis
known that at time ¢t = 9 seconds, the object’s position is s = 4 feet (measured from its starting

point at ¢t = 0). Furthermore, the object’s instantaneous velocity at ¢t = 9 is —1.2 feet per second,
and its acceleration at the same instant is 0.08 feet per second per second.

(a) Use local linearity to estimate the position of the object at ¢ = 9.34.
(b) Is your estimate likely too large or too small? Why?
(c) In everyday language, describe the behavior of the moving object at ¢t = 9. Is it moving
toward its starting point or away from it? Is its velocity increasing or decreasing?
4. For a certain function f, its derivative is known to be f'(z) = (z — 1)e~*". Note that you do not
know a formula for y = f(x).

(a) At what z-value(s) is f/(z) = 0? Justify your answer algebraically, but include a graph
of f’ to support your conclusion.

(b) Reasoning graphically, for what intervals of z-values is f”(x) > 0? What does this tell
& &rap Y,
you about the behavior of the original function f? Explain.

(c) Assuming that f(2) = —3, estimate the value of f(1.88) by finding and using the tangent
line approximation to f at x = 2. Is your estimate larger or smaller than the true value
of f(1.88)? Justify your answer.
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Chapter 2

Computing Derivatives

2.1 Elementary derivative rules

Motivating Questions

In this section, we strive to understand the ideas generated by the following important questions:

e What are alternate notations for the derivative?

e How can we sometimes use the algebraic structure of a function f(z) to easily compute a
formula for f'(x)?

e What is the derivative of a power function of the form f(z) = 2"? What is the derivative of
an exponential function of form f(x) = a*?

e If we know the derivative of y = f(x), how is the derivative of y = k f(z) computed, where
k is a constant?

e If we know the derivatives of y = f(x) and y = g(z), how is the derivative of y = f(z)+g(x)
computed?

Introduction

In Chapter 1, we developed the concept of the derivative of a function. We now know that the
derivative f’ of a function f measures the instantaneous rate of change of f with respect to
as well as the slope of the tangent line to y = f(x) at any given value of z. To date, we have
focused primarily on interpreting the derivative graphically or, in the context of functions in a
physical setting, as a meaningful rate of change. To actually calculate the value of the derivative
at a specific point, we have typically relied on the limit definition of the derivative.
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80 2.1. ELEMENTARY DERIVATIVE RULES

In this present chapter, we will investigate how the limit definition of the derivative

Fe) — fim T =)

h—0 h

leads to interesting patterns and rules that enable us to quickly find a formula for f/(x) based on
the formula for f(x) without using the limit definition directly. For example, we already know
that if f(z) = z, then it follows that f'(x) = 1. While we could use the limit definition of the
derivative to confirm this, we know it to be true because f(x) is a linear function with slope 1
at every value of . One of our goals is to be able to take standard functions, say ones such as
g(x) = 427 — sin(x) + 3¢%, and, based on the algebraic form of the function, be able to apply
shortcuts to almost immediately determine the formula for ¢'(z).

Preview Activity 2.1. Functions of the form f(z) = 2", wheren = 1,2, 3, .., are often called power
functions. The first two questions below revisit work we did earlier in Chapter 1, and the following
questions extend those ideas to higher powers of x.

(a) Use the limit definition of the derivative to find f'(x) for f(x) = 22
(b) Use the limit definition of the derivative to find f’(x) for f(x) = 3.

(c) Use the limit definition of the derivative to find f'(z) for f(z) = 2*. (Hint: (a + b)* =
at 4 4a3b + 6a?b? + 4ab® + b*. Apply this rule to (z + h)?* within the limit definition.)

(d) Based on your work in (a), (b), and (c), what do you conjecture is the derivative of f(z) =
25?2 Of f(x) = 2132

(e) Conjecture a formula for the derivative of f(z) = 2" that holds for any positive integer n.
That is, given f(x) = 2™ where n is a positive integer, what do you think is the formula for

f'(@)?

Some Key Notation

In addition to our usual f’ notation for the derivative, there are other ways to symbolically denote
the derivative of a function, as well as the instruction to take the derivative. We know that if
we have a function, say f(z) = 22, that we can denote its derivative by f/(z), and we write
f'(z) = 2z. Equivalently, if we are thinking more about the relationship between y and z, we
sometimes denote the derivative of y with respect to x with the symbol

dy
dz

which we read “dee-y dee-x.” This notation comes from the fact that the derivative is related to
the slope of a line, and slope is measured by %. Note that while we read % as “change in y over
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change in z,” for the derivative symbol g—fc, we view this is a single symbol, not a quotient of two

2

quantitiesl. For example, if y = 2, we'll write that the derivative is g—g = 2z.

Furthermore, we use a variant of % notation to convey the instruction to take the derivative
of a certain quantity with respect to a given variable. In particular, if we write

this means “take the derivative of the quantity in [J with respect to z.” To continue our example
above with the squaring function, here we may write % [2?] = 2z.

It is important to note that the independent variable can be different from x. If we have f(z) =
22, we then write f'(2) = 22. Similarly, if y = 2, we can say % = 2t. And changing the variable

and derivative notation once more, it is also true that d%[qg] = 2q. This notation may also be
applied to second derivatives: f(z) = & {%} = 227{.

In what follows, we’ll be working to widely expand our repertoire of functions for which we
can quickly compute the corresponding derivative formula

Constant, Power, and Exponential Functions

So far, we know the derivative formula for two important classes of functions: constant functions
and power functions. For the first kind, observe that if f(z) = c is a constant function, then its
graph is a horizontal line with slope zero at every point. Thus, - [c] = 0. We summarize this with
the following rule.

Constant Functions: For any real number ¢, if f(x) = ¢, then f/(x) = 0.

Thus, if f(x) = 7, then f'(z) = 0. Similarly, - [v/3] = 0.

For power functions, from your work in Preview Activity 2.1, you have conjectured that for
any positive integer n, if f(z) = 2", then f’(x) = nz™~1. Not only can this rule be formally proved
to hold for any positive integer n, but also for any nonzero real number (positive or negative).

n—1

Power Functions: For any nonzero real number, if f(z) = z", then f/(z) = nx

This rule for power functions allows us to find derivatives such as the following: if g(2) = 273,

then ¢'(2) = —3z~*. Similarly, if h(t) = t7/%, then 4 = 1¢2/; likewise, d%[q”] =mq™ L.
As we next turn to thinking about derivatives of combinations of basic functions, it will be
instructive to have one more type of basic function whose derivative formula we know. For now,

we simply state this rule without explanation or justification; we will explore why this rule is true

!That is, we do not say “dee-y over dee-x.”
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in one of the exercises at the end of this section, plus we will encounter graphical reasoning for
why the rule is plausible in Preview Activity 2.2.

Exponential Functions: For any positive real number a, if f(z) = %, then f/(z) = a” In(a).

For instance, this rule tells us that if f(z) = 2%, then f/(z) = 2% In(2). Similarly, for p(¢) = 10,
p/'(t) = 10'In(10). It is especially important to note that when a = ¢, where e is the base of the
natural logarithm function, we have that

d x| x —
%[e ]=¢€"In(e) =e

xT

since In(e) = 1. This is an extremely important property of the function e”: its derivative function
is itself!

Finally, note carefully the distinction between power functions and exponential functions: in
power functions, the variable is in the base, as in 22, while in exponential functions, the variable
is in the power, as in 2”. As we can see from the rules, this makes a big difference in the form of
the derivative.

The following activity will check your understanding of the derivatives of the three basic types
of functions noted above.

Activity 2.1.

Use the three rules above to determine the derivative of each of the following functions. For

each, state your answer using full and proper notation, labeling the derivative with its name.

For example, if you are given a function /(z), you should write “}’(z) =" or “% =" as part of

your response.
@@ f@t)=
(b) g(z) =77
(c) h
(d) p(x) =312
(e r(t) = (V2)'
() £la
(8) m(t) =

(2
(

w) =

Constant Multiples and Sums of Functions

Of course, most of the functions we encounter in mathematics are more complicated than being
simply constant, a power of a variable, or a base raised to a variable power. In this section and
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several following, we will learn how to quickly compute the derivative of a function constructed
as an algebraic combination of basic functions. For instance, we’d like to be able to understand
how to take the derivative of a polynomial function such as p(t) = 3t> — 7t* + ¢ — 9, which is a
function made up of constant multiples and sums of powers of ¢. To that end, we develop two
new rules: the Constant Multiple Rule and the Sum Rule.

Say we have a function y = f(x) whose derivative formula is known. How is the derivative
of y = kf(z) related to the derivative of the original function? Recall that when we multiply a
function by a constant k, we vertically stretch the graph by a factor of |k| (and reflect the graph
across y = 0 if k£ < 0). This vertical stretch affects the slope of the graph, making the slope of the
function y = kf(x) be k times as steep as the slope of y = f(z). In terms of the derivative, this
is essentially saying that when we multiply a function by a factor of k£, we change the value of its
derivative by a factor of k as well. Thus?, the Constant Multiple Rule holds:

The Constant Multiple Rule: For any real number £, if f(z) is a differentiable function with
derivative f'(z), then L[k f(z)] = kf' ().

In words, this rule says that “the derivative of a constant times a function is the constant times
the derivative of the function.” For example, if g(t) = 3 - 5!, we have ¢'(t) = 3 - 5! In(5). Similarly,
415,72 = 5(—22793).

Next we examine what happens when we take a sum of two functions. If we have y = f(z)
and y = g(x), we can compute a new function y = (f + g)(z) by adding the outputs of the two
functions: (f + g)(z) = f(x) + g(z). Not only does this result in the value of the new function
being the sum of the values of the two known functions, but also the slope of the new function is
the sum of the slopes of the known function. Therefore®, we atrive at the following Sum Rule for
derivatives:

The Sum Rule: If f(z) and g(z) are differentiable functions with derivatives f’(z) and ¢'(z)
respectively, then -L[f(z) + g(z)] = f'(z) + ¢/ ().

In words, the Sum Rule tells us that “the derivative of a sum is the sum of the derivatives.”
It also tells us that any time we take a sum of two differentiable functions, the result must also
be differentiable. Furthermore, because we can view the difference function y = (f — g)(z) =
f(z) —g(z)asy = f(z) + (=1 g(z)), the Sum Rule and Constant Multiple Rules together tell us
that % [f(z)+ (=1-g(x))] = f'(x) — ¢'(x), or that “the derivative of a difference is the difference of
the derivatives.” Hence we can now compute derivatives of sums and differences of elementary
functions. For instance, - (2% + w?) = 2%In(2) + 2w, and if h(g) = 3¢° — 4¢3, then W/ (q) =
3(5¢°) — 4(—3¢™*) = 15¢° + 12¢~*.

Activity 2.2.

>The Constant Multiple Rule can be formally proved as a consequence of properties of limits, using the limit defini-
tion of the derivative.

*Like the Constant Multiple Rule, the Sum Rule can be formally proved as a consequence of properties of limits,
using the limit definition of the derivative.
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84 2.1. ELEMENTARY DERIVATIVE RULES

Use only the rules for constant, power, and exponential functions, together with the Constant
Multiple and Sum Rules, to compute the derivative of each function below with respect to
the given independent variable. Note well that we do not yet know any rules for how to
differentiate the product or quotient of functions. This means that you may have to do some
algebra first on the functions below before you can actually use existing rules to compute the
desired derivative formula. In each case, label the derivative you calculate with its name using
proper notation such as f/(z), h'(z), dr/dt, etc.

(@) f(z) = — gt 427
(b) g(z) = 14e® + 32°

(©) h(z) =2z + 2 1 +5°
(d) r(t) = V/53t7 — et 4 et
(€ sy) = (v +D(y* - 1)

3 —r+2
O qle) = ———

(g) p(a) =3a* —2a® + 7a® — a + 12

<

In the same way that we have shortcut rules to help us find derivatives, we introduce some
language that is simpler and shorter. Often, rather than say “take the derivative of f,” we’ll instead
say simply “differentiate f.” This phrasing is tied to the notion of having a derivative to begin
with: if the derivative exists at a point, we say “ f is differentiable,” which is tied to the fact that f
can be differentiated.

As we work more and more with the algebraic structure of functions, it is important to strive to
develop a big picture view of what we are doing. Here, we can note several general observations
based on the rules we have so far. One is that the derivative of any polynomial function will be
another polynomial function, and that the degree of the derivative is one less than the degree of the
original function. For instance, if p(t) = 7t5—4t3+8t, pis a degree 5 polynomial, and its derivative,
p'(t) = 35t — 122 + 8, is a degree 4 polynomial. Additionally, the derivative of any exponential
function is another exponential function: for example, if g(z) = 7 - 2%, then ¢/'(z) = 7 2*1n(2),
which is also exponential.

Furthermore, while our current emphasis is on learning shortcut rules for finding derivatives
without directly using the limit definition, we should be certain not to lose sight of the fact that
all of the meaning of the derivative still holds that we developed in Chapter 1. That is, anytime
we compute a derivative, that derivative measures the instantaneous rate of change of the original
function, as well as the slope of the tangent line at any selected point on the curve. The following
activity asks you to combine the just-developed derivative rules with some key perspectives that
we studied in Chapter 1.

Activity 2.3.
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2.1. ELEMENTARY DERIVATIVE RULES 85

Each of the following questions asks you to use derivatives to answer key questions about
functions. Be sure to think carefully about each question and to use proper notation in your
responses.

(a) Find the slope of the tangent line to h(z) = \/z + 1 at the point where z = 4.
(b) A population of cells is growing in such a way that its total number in millions is given
by the function P(t) = 2(1.37)" + 32, where ¢ is measured in days.

i. Determine the instantaneous rate at which the population is growing on day 4, and
include units on your answer.
ii. Is the population growing at an increasing rate or growing at a decreasing rate on
day 4? Explain.
(c) Find an equation for the tangent line to the curve p(a) = 3a* — 2a® + 7a? — a + 12 at the
point where a = —1.

(d) What the difference between being asked to find the slope of the tangent line (asked in
(a)) and the equation of the tangent line (asked in (c))?

Summary

In this section, we encountered the following important ideas:

e Given a differentiable function y = f(z), we can express the derivative of f in several different

notations: f'(x), %, %, and -L[f(z)].

e The limit definition of the derivative leads to patterns among certain families of functions that
enable us to compute derivative formulas without resorting directly to the limit definition. For
example, if f is a power function of the form f(z) = 2", then f’(z) = nz"~! for any real number
n other than 0. This is called the Rule for Power Functions.

e We have stated a rule for derivatives of exponential functions in the same spirit as the rule for
power functions: for any positive real number q, if f(z) = a”, then f'(z) = a” In(a).

e If we are given a constant multiple of a function whose derivative we know, or a sum of func-
tions whose derivatives we know, the Constant Multiple and Sum Rules make it straightfor-
ward to compute the derivative of the overall function. More formally, if f(z) and g(z) are
differentiable with derivatives f’(z) and ¢’(x) and a and b are constants, then

2 Jaf () + by(e)] = af'(z) + by ().

Exercises

1. Let f and g be differentiable functions for which the following information is known: f(2) =5,
9(2) = =3, f'(2) = -1/2,4'(2) = 2.
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(a) Let i be the new function defined by the rule h(z) = 3f(z) —4g(z). Determine h(2) and
h'(2).
(b) Find an equation for the tangent line to y = h(z) at the point (2, h(2)).

(c) Let p be the function defined by the rule p(z) = —2f(z) + 3g(z). Is p increasing, de-
creasing, or neither at a = 2? Why?

(d) Estimate the value of p(2.03) by using the local linearization of p at the point (2, p(2)).

2. Consider the functions r(t) = t' and s(t) = arccos(t), for which you are given the facts that

r'(t) = t'(In(t) + 1) and §'(t) = — \/ll_j Do not be concerned with where these derivative

formulas come from. We restrict our interest in both functions to the domain 0 < ¢ < 1.

(@) Letw(t) = 3t' — 2arccos(t). Determine w’(t).
(b) Find an equation for the tangent line to y = w(t) at the point (3, w(3)).

(c) Letv(t) = t' + arccos(t). Is v increasing or decreasing at the instant ¢ = 1? Why?

3. Let functions p and ¢ be the piecewise linear functions given by their respective graphs in
Figure 2.1. Use the graphs to answer the following questions.

Figure 2.1: The graphs of p (in blue) and ¢ (in green).

(a) At what values of z is p not differentiable? At what values of x is ¢ not differentiable?
Why?

(b) Let r(z) = p(x) + 2¢q(z). At what values of z is r not differentiable? Why?
(c) Determine r'(—2) and 7/(0).
(d) Find an equation for the tangent line to y = r(x) at the point (2, 7(2)).

4. Let f(x) = a”. The goal of this problem is to explore how the value of a affects the derivative
of f(x), without assuming we know the rule for % [a”] that we have stated and used in earlier
work in this section.
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(a) Use the limit definition of the derivative to show that

h T
, oat-adt—a

:1 _
f'(w) = Jim

(b) Explain why it is also true that

h
-1
f/(x)zax-}llig%)a o

(c) Use computing technology and small values of & to estimate the value of

h_
L= lim &1

when a = 2. Do likewise when a = 3.

(d) Note that it would be ideal if the value of the limit L. was 1, for then f would be a
particularly special function: its derivative would be simply a”, which would mean
that its derivative is itself. By experimenting with different values of a between 2 and
3, try to find a value for a for which

L = lim
(e) Compute In(2) and In(3). What does your work in (b) and (c) suggest is true about
d 9z d 9T
J-[2%] and F-[27].

(f) How do your investigations in (d) lead to a particularly important fact about the num-
ber e?
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2.2 The sine and cosine functions

Motivating Questions

In this section, we strive to understand the ideas generated by the following important questions:

e What is a graphical justification for why - [a®] = a®In(a)?

e What do the graphs of y = sin(z) and y = cos(x) suggest as formulas for their respective
derivatives?

e Once we know the derivatives of sin(x) and cos(z), how do previous derivative rules work
when these functions are involved?

Introduction

Throughout Chapter 2, we will be working to develop shortcut derivative rules that will help us
to bypass the limit definition of the derivative in order to quickly determine the formula for f’(z)
when we are given a formula for f(z). In Section 2.1, we learned the rule for power functions,
that if f(z) = 2", then f'(z) = naz""!, and justified this in part due to results from different n-
values when applying the limit definition of the derivative. We also stated the rule for exponential
functions, that if a is a positive real number annd f(z) = a%, then f/'(x) = a”In(a). Later in this
present section, we are going to work to conjecture formulas for the sine and cosine functions,
primarily through a graphical argument. To help set the stage for doing so, the following preview
activity asks you to think about exponential functions and why it is reasonable to think that the
derivative of an exponential function is a constant times the exponential function itself.

Preview Activity 2.2. Consider the function g(x) = 2%, which is graphed in Figure 2.2.
(a) At each of z = —2,-1,0,1,2, use a straightedge to sketch an accurate tangent line to
y=g().
(b) Use the provided grid to estimate the slope of the tangent line you drew at each point in
().

(c) Use the limit definition of the derivative to estimate ¢’(0) by using small values of h, and
compare the result to your visual estimate for the slope of the tangent line to y = g(x) at
z = 0in (b).

(d) Based on your work in (a), (b), and (c), sketch an accurate graph of y = ¢/(z) on the axes
adjacent to the graph of y = g(x).

(e) Write at least one sentence that explains why it is reasonable to think that ¢'(z) = cg(z),
where c is a constant. In addition, calculate In(2), and then discuss how this value, com-
bined with your work above, reasonably suggests that ¢'(z) = 2% In(2).
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Figure 2.2: At left, the graph of y = g(x) = 2”. Atright, axes for plotting y = ¢'(z).

The sine and cosine functions

The sine and cosine functions are among the most important functions in all of mathematics.
Sometimes called the circular functions due to their genesis in the unit circle, these periodic func-
tions play a key role in modeling repeating phenomena such as the location of a point on a bicycle
tire, the behavior of an oscillating mass attached to a spring, tidal elevations, and more. Like poly-
nomial and exponential functions, the sine and cosine functions are considered basic functions,
ones that are often used in the building of more complicated functions. As such, we would like to
know formulas for -4 [sin(z)] and - [cos(z)], and the next two activities lead us to that end.

Activity 2.4.

Consider the function f(x) = sin(z), which is graphed in Figure 2.3 below. Note carefully that
the grid in the diagram does not have boxes that are 1 x 1, but rather approximately 1.57 x 1,
as the horizontal scale of the grid is 7/2 units per box.

(a) Ateachofx = —27, — 37”, -7, —%5,0,5,m, 37”, 27, use a straightedge to sketch an accurate
tangent line to y = f(z).

(b) Use the provided grid to estimate the slope of the tangent line you drew at each point.
Pay careful attention to the scale of the grid.

(c) Use the limit definition of the derivative to estimate f’(0) by using small values of », and
compare the result to your visual estimate for the slope of the tangent line to y = f(x)
at z = 0 in (b). Using periodicity, what does this result suggest about f'(2m)? about

f'(=2m)?

(d) Based on your work in (a), (b), and (c), sketch an accurate graph of y = f’(z) on the
axes adjacent to the graph of y = f(z).
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(e) What familiar function do you think is the derivative of f(z) = sin(x)?

/\.1][/\.2«...1][

2 - oo S ¢ om R
<! -1

Figure 2.3: At left, the graph of y = f(x) = sin(x).

Activity 2.5.

Consider the function g(x) = cos(z), which is graphed in Figure 2.4 below. Note carefully that
the grid in the diagram does not have boxes that are 1 x 1, but rather approximately 1.57 x 1,
as the horizontal scale of the grid is 7/2 units per box.

Figure 2.4: At left, the graph of y = g(z) = cos(z).

(a) Ateachofz = —2m, —%’r, -7, —5,0,%,m, 37”, 27, use a straightedge to sketch an accurate
tangent line to y = g(z).

(b) Use the provided grid to estimate the slope of the tangent line you drew at each point.
Again, note the scale of the axes and grid.

(c) Use the limit definition of the derivative to estimate ¢’(5) by using small values of
h, and compare the result to your visual estimate for the slope of the tangent line to
y = g(z) atz = % in (b). Using periodicity, what does this result suggest about ¢'(— 2 )?
can symmetry on the graph help you estimate other slopes easily?

(d) Based on your work in (a), (b), and (c), sketch an accurate graph of y = ¢’(x) on the axes
adjacent to the graph of y = g(z).

(e) What familiar function do you think is the derivative of g(z) = cos(z)?

Q020



2.2. THE SINE AND COSINE FUNCTIONS 91

The results of the two preceding activities suggest that the sine and cosine functions not only
have the beautiful interrelationships that are learned in a course in trigonometry — connections
such as the identities sin?(z) + cos?(z) = 1 and cos(z — ) = sin(z) — but that they are even
further linked through calculus, as the derivative of each involves the other. The following rules
summarize the results of the activities*.

Sine and Cosine Functions: For all real numbers z,

%[Sin(x)] = cos(z) and %[cos(a:)] = —sin(x)

We have now added two additional functions to our library of basic functions whose deriva-
tives we know: power functions, exponential functions, and the sine and cosine functions. The
constant multiple and sum rules still hold, of course, and all of the inherent meaning of the deriva-
tive persists, regardless of the functions that are used to constitute a given choice of f(z). The
following activity puts our new knowledge of the derivatives of sin(x) and cos(z) to work.

Activity 2.6.

Answer each of the following questions. Where a derivative is requested, be sure to label the
derivative function with its name using proper notation.

(a) Determine the derivative of h(t) = 3 cos(t) — 4sin(t).
(b) Find the exact slope of the tangent line to y = f(z) = 2z + % at the point where
T =3z.

(c) Find the equation of the tangent line to y = g(x) = 2? + 2cos(z) at the point where
r=71I
2

(d) Determine the derivative of p(z) = 2* + 4* 4+ 4 cos(z) — sin(%).
2

(e) The function P(t) = 24 + 8sin(t) represents a population of a particular kind of animal
that lives on a small island, where P is measured in hundreds and ¢ is measured in
decades since January 1, 2010. What is the instantaneous rate of change of P on January
1,2030? What are the units of this quantity? Write a sentence in everyday language that
explains how the population is behaving at this point in time.

Summary

In this section, we encountered the following important ideas:

e If we consider the graph of an exponential function f(xz) = a® (where a > 1), the graph of
f'(z) behaves similarly, appearing exponential and as a possibly scaled version of the original

*These two rules may be formally proved using the limit definition of the derivative and the expansion identities
for sin(z + h) and cos(z + h).
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function a®. For f(z) = 2%, careful analysis of the graph and its slopes suggests that -£[27] =
27 In(2), which is a special case of the rule we stated in Section 2.1.

e By carefully analyzing the graphs of y = sin(z) and y = cos(x), plus using the limit definition
of the derivative at select points, we found that - [sin(z)] = cos(z) and -& [cos(z)] = — sin(x).
e We note that all previously encountered derivative rules still hold, but now may also be applied

to functions involving the sine and cosine, plus all of the established meaning of the derivative
applies to these trigonometric functions as well.

Exercises

1. Suppose that V() = 24 - 1.07" + 6 sin(t) represents the value of a person’s investment portfolio
in thousands of dollars in year ¢, where ¢t = 0 corresponds to January 1, 2010.

(a) Atwhat instantaneous rate is the portfolio’s value changing on January 1, 2012? Include
units on your answer.

(b) Determine the value of V”(2). What are the units on this quantity and what does it tell
you about how the portfolio’s value is changing?

(c) On the interval 0 < ¢ < 20, graph the function V (¢) = 24 - 1.07" + 6sin(t) and describe
its behavior in the context of the problem. Then, compare the graphs of the functions
A(t) =24-1.07"and V() = 24-1.07" + 6 sin(¢), as well as the graphs of their derivatives
A'(t) and V'(t). What is the impact of the term 6sin(¢) on the behavior of the function
V(t)?
2. Let f(z) = 3cos(z) — 2sin(z) + 6.
(a) Determine the exact slope of the tangent line to y = f(x) at the point where a = 7.
(b) Determine the tangent line approximation to y = f(x) at the point where a = 7.
(c) At the point where a = 7, is f increasing, decreasing, or neither?

(d) At the point where a = 37”, does the tangent line to y = f(x) lie above the curve, below
the curve, or neither? How can you answer this question without even graphing the
function or the tangent line?

3. In this exercise, we explore how the limit definition of the derivative more formally shows that
%[Sin(x)] = cos(x). Letting f(x) = sin(z), note that the limit definition of the derivative tells

us that

() = }ng% sin(z + h) — sin(x) .

(a) Recall the trigonometric identity for the sine of a sum of angles o and g:
sin(a + ) = sin(a) cos(B) + cos(a) sin(f). Use this identity and some algebra to show
that

f(@) = lim sin(z) (cos(h) — 2) + cos() sin(h)
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(b) Next, note that as h changes, x remains constant. Explain why it therefore makes sense
to say that

ron . cos(h)—1 . sin(h)
f'(z) = sin(x) ]lllg(lj — + cos(z) }lgr(l] —

(c) Finally, use small values of h to estimate the values of the two limits in (c):

lim M and lim sm(h)'
h—0 h—0 h

(d) What do your results in (c) thus tell you about f'(x)?
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2.3 The product and quotient rules

Motivating Questions

In this section, we strive to understand the ideas generated by the following important questions:

e How does the algebraic structure of a function direct us in computing its derivative using
shortcut rules?

e How do we compute the derivative of a product of two basic functions in terms of the
derivatives of the basic functions?

e How do we compute the derivative of a quotient of two basic functions in terms of the
derivatives of the basic functions?

e How do the product and quotient rules combine with the sum and constant multiple rules
to expand the library of functions we can quickly differentiate?

Introduction

So far, the basic functions we know how to differentiate include power functions ("), exponential
functions (a”), and the two fundamental trigonometric functions (sin(z) and cos(x)). With the sum
rule and constant multiple rules, we can also compute the derivative of combined functions such
as

f(z) = 72" —4-9° + wsin(x) — V3 cos(z),

because the function f is fundamentally a sum of basic functions. Indeed, we can now quickly say
that f/(z) = 772'° — 4- 9% In(9) + 7 cos(x) + v/3sin(x).

But we can of course combine basic functions in ways other than multiplying them by con-
stants and taking sums and differences. For example, we could consider the function that results
from a product of two basic functions, such as

p(z) = #* cos(2),
or another that is generated by the quotient of two basic functions, one like

sin(t)

q(t) = —

While the derivative of a sum is the sum of the derivatives, it turns out that the rules for computing
derivatives of products and quotients are more complicated. In what follows we explore why this
is the case, what the product and quotient rules actually say, and work to expand our repertoire
of functions we can easily differentiate. To start, Preview Activity 2.3 asks you to investigate the
derivative of a product and quotient of two polynomials.

Preview Activity 2.3. Let f and g be the functions defined by f(¢) = 2t> and g(t) = t3 + 4t.
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(a) Determine f'(t) and ¢'(t).

(b) Let p(t) = 2t3(#3 + 4t) and observe that p(t) = f(t) - g(t). Rewrite the formula for p by
distributing the 2¢? term. Then, compute p/(t) using the sum and constant multiple rules.

(c) True or false: p/(t) = f'(t) - ¢'(t).

3
(d) Letq(t) = % and observe that ¢(t) = ;g; Rewrite the formula for ¢ by dividing each

term in the numerator by the denominator and simplify to write ¢ as a sum of constant
multiples of powers of t. Then, compute ¢(t) using the sum and constant multiple rules.

(e) True or false: ¢/(t) =

The product rule

As parts (b) and (d) of Preview Activity 2.3 show, it is not true in general that the derivative of
a product of two functions is the product of the derivatives of those functions. Indeed, the rule
for differentiating a function of the form p(z) = f(x) - g(z) in terms of the derivatives of f and g¢
is more complicated than simply taking the product of the derivatives of f and g¢. To see further
why this is the case, as well as to begin to understand how the product rule actually works, we
consider an example involving meaningful functions.

Say that an investor is regularly purchasing stock in a particular company. Let N(t) be a
function that represents the number of shares owned on day ¢, where ¢ = 0 represents the first day
on which shares were purchased. Further, let S(t) be a function that gives the value of one share
of the stock on day ¢; note that the units on S(t) are dollars per share. Moreover, to compute the
total value on day ¢ of the stock held by the investor, we use the function V' (t) = N(¢) - S(t). By
taking the product

V(t) = N(t)shares - S(t) dollars per share,

we have the total value in dollars of the shares held. Observe that over time, both the number of
shares and the value of a given share will vary. The derivative N'(¢) measures the rate at which
the number of shares held is changing, while S’(¢) measures the rate at which the value per share
is changing. The big question we’d like to answer is: how do these respective rates of change
affect the rate of change of the total value function?

To help better understand the relationship among changes in NV, S, and V/, let’s consider some
specific data. Suppose that on day 100, the investor owns 520 shares of stock and the stock’s
current value is $27.50 per share. This tells us that N (100) = 520 and S(100) = 27.50. In addition,
say that on day 100, the investor purchases an additional 12 shares (so the number of shares held
is rising at a rate of 12 shares per day), and that on that same day the price of the stock is rising at
a rate of 0.75 dollars per share per day. Viewed in calculus notation, this tells us that N'(100) = 12
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(shares per day) and 57(100) = 0.75 (dollars per share per day). At what rate is the value of the
investor’s total holdings changing on day 100?

Observe that the increase in total value comes from two sources: the growing number of shares,
and the rising value of each share. If only the number of shares is rising (and the value of each
share is constant), the rate at which which total value would rise is found by computing the prod-
uct of the current value of the shares with the rate at which the number of shares is changing. That
is, the rate at which total value would change is given by
dollars shares dollars

12 = 330

100) - N'(100) = 27.
5(100) (100) = 27.50 share day day

Note particularly how the units make sense and explain that we are finding the rate at which the
total value V' is changing, measured in dollars per day. If instead the number of shares is constant,
but the value of each share is rising, then the rate at which the total value would rise is found
similarly by taking the product of the number of shares with the rate of change of share value. In
particular, the rate total value is rising is

dollars per share dollars

day =390 day

N(100) - §’(100) = 520 shares - 0.75

Of course, when both the number of shares is changing and the value of each share is changing,
we have to include both of these sources, and hence the rate at which the total value is rising is

dollars
day

V’(100) = S(100) - N'(100) 4+ N(100) - $'(100) = 330 + 390 = 720

This tells us that we expect the total value of the investor’s holdings to rise by about $720 on
the 100th day.

Next, we expand our perspective from the specific example above to the more general and
abstract setting of a product p of two differentiable functions, f and g¢. If we have P(x) = f(x)-g(x),
our work above suggests that P'(z) = f(z)¢'(z)+g(x)f'(z). Indeed, a formal proof using the limit
definition of the derivative can be given to show that the following rule, called the product rule,
holds in general.

Product Rule: If f and g are differentiable functions, then their product P(z) = f(x) - g(z) is
also a differentiable function, and

P'(x) = f(z)g'(x) + g(2)f'(x).

*While this example highlights why the product rule is true, there are some subtle issues to recognize. For one,
if the stock’s value really does rise exactly $0.75 on day 100, and the number of shares really rises by 12 on day 100,
then we’d expect that V(101) = N(101) - S(101) = 532 - 28.25 = 15029. If, as noted above, we expect the total value
to rise by $720, then with V' (100) = N(100) - S(100) = 520 - 27.50 = 14300, then it seems like we should find that
V(101) = V(100) + 720 = 15020. Why do the two results differ by 9? One way to understand why this difference
occurs is to recognize that N’(100) = 12 represents an instantaneous rate of change, while our (informal) discussion has
also thought of this number as the total change in the number of shares over the course of a single day. The formal
proof of the product rule reconciles this issue by taking the limit as the change in the input tends to zero.
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In light of the earlier example involving shares of stock, the product rule also makes sense
intuitively: the rate of change of P should take into account both how fast f and g are changing,
as well as how large f and g are at the point of interest. Furthermore, we note in words what the
product rule says: if P is the product of two functions f (the first function) and ¢ (the second),
then “the derivative of P is the first times the derivative of the second, plus the second times
the derivative of the first.” It is often a helpful mental exercise to say this phrasing aloud when
executing the product rule.
For example, if P(z) = 23 - cos(z), we can now use the product rule to differentiate P. The first
function is 2® and the second function is cos(z). By the product rule, P’ will be given by the first,
23, times the derivative of the second, — sin(z), plus the second, cos(z), times the derivative of the
first, 3z2. That is,

P'(2) = 23(—sin(z)) + cos(2)32* = —2 sin(z) + 322 cos(2).

The following activity further explores the use of the product rule.
Activity 2.7.

Use the product rule to answer each of the questions below. Throughout, be sure to carefully
label any derivative you find by name. That is, if you're given a formula for f(x), clearly label
the formula you find for f’(z). It is not necessary to algebraically simplify any of the derivatives
you compute.

(@) Let m(w) = 3w!'™4*. Find m’ (w).
(b) Let h(t) = (sin(t) + cos(t))t*. Find A/(t).

(c) Determine the slope of the tangent line to the curve y = f(z) at the point where a = 1 if
f is given by the rule f(z) = e” sin(x).

(d) Find the tangent line approximation L(z) to the function y = g(z) at the point where
a = —1if g is given by the rule g(z) = (2% + z)2%.

The quotient rule

Because quotients and products are closely linked, we can use the product rule to understand how
to take the derivative of a quotient. In particular, let Q(x) be defined by Q(x) = f(x)/g(z), where
f and g are both differentiable functions. We desire a formula for )’ in terms of f, g, f/, and ¢'. It
turns out that @ is differentiable everywhere that g(z) # 0. Moreover, taking the formula @ = f/g
and multiplying both sides by g, we can observe that
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Thus, we can use the product rule to differentiate f. Doing so,

f(x) = Q(x)g'(x) + g(x)Q'(x).

Since we want to know a formula for @Q)', we work to solve this most recent equation for Q’'(x),
finding first that

Dividing both sides by g(x), we have

_ f'@) - QW) (@)

Finally, we also recall that Q(z) = £@) Using this expression in the preceding equation and sim-

plifying, we have

Q@) = g

This shows the fundamental argument for why the quotient rule holds.

Quotient Rule: If f and g are differentiable functions, then their quotient Q(z) = % isalso a

differentiable function for all © where g(x) # 0, and

(@) f'(z) = f(2)g'(z)

/ g
Q (I) - g(l’)Q

Like the product rule, it can be helpful to think of the quotient rule verbally. If a function @
is the quotient of a top function f and a bottom function g, then @’ is given by “the bottom times
the derivative of the top, minus the top times the derivative of the bottom, all over the bottom
squared.” For example, if Q(t) = sin(t)/2!, then we can identify the top function as sin(¢) and the
bottom function as 2¢. By the quotient rule, we then have that Q" will be given by the bottom, 2¢,
times the derivative of the top, cos(t), minus the top, sin(¢), times the derivative of the bottom,
2!1n(2), all over the bottom squared, (2¢)2. That is,

2t cos(t) — sin(t)2¢ In(2)
(26)? '
In this particular example, it is possible to simplify @’ (t) by removing a factor of 2¢ from both the

numerator and denominator, hence finding that

cos(t) — sin(t) In(2)
2t ’

Q'(t) =

Q'(t) =
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In general, we must be careful in doing any such simplification, as we don’t want to correctly
execute the quotient rule but then find an incorrect overall derivative due to an algebra error.
As such, we will often place more emphasis on correctly using derivative rules than we will on
simplifying the result that follows.

The following activity further explores the use of the quotient rule.
Activity 2.8.

Use the quotient rule to answer each of the questions below. Throughout, be sure to carefully
label any derivative you find by name. That is, if you're given a formula for f(x), clearly label
the formula you find for f’(z). Itis not necessary to algebraically simplify any of the derivatives
you compute.

z

(@) Letr(z) = AT Find 7/(2).
(b) Letwv(t) = coss(itn)(i)—t?' Find v/(t).

2 —2r —8

(c) Determine the slope of the tangent line to the curve R(z) = at the point

22 _
where z = 0.

(d) When a camera flashes, the intensity I of light seen by the eye is given by the function

100t
T et

I(t)

)

where [ is measured in candles and ¢ is measured in milliseconds. Compute I'(0.5),
I'(2), and I'(5); include appropriate units on each value; and discuss the meaning of
each.

Combining rules

One of the challenges to learning to apply various derivative shortcut rules correctly and effec-
tively is recognizing the fundamental structure of a function. For instance, consider the function
given by

.’E2

f(z) = zsin(z) + cos@) 72

How do we decide which rules to apply? Our first task is to recognize the overall structure of the
given function. Observe that the function f is fundamentally a sum of two slightly less compli-
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cated functions, so we can apply the sum rule® and get

) = ;[xsin(x)+mij+2]
d

d . x2
T dx [ sin()] + dx [cos(m) + 2]
Now, the left-hand term above is a product, so the product rule is needed there, while the right-
hand term is a quotient, so the quotient rule is required. Applying these rules respectively, we
find that
(cos(x) + 2)2z — 2%(—sin(z))
(cos(x) + 2)?
22 cos(z) + 422 4 22 sin(x)
(cos(z) + 2)?

f'(x) = (zcos(z)+sin(z)) +

= xcos(z) + sin(z)

We next consider how the situation changes with the function defined by
oy
Overall, s is a quotient of two simpler function, so the quotient rule will be needed. Here, we

execute the quotient rule and use the notation d% to defer the computation of the derivative of the
numerator and derivative of the denominator. Thus,

/ _(y2+1).diy{y.7y]_y-7y_%[y2+1]
s(y) = e ‘

Now, there remain two derivatives to calculate. The first one, % [y - 7Y] calls for use of the product

rule, while the second, d% [y? + 1] takes only an elementary application of the sum rule. Applying
these rules, we now have

() = WD I + 7 1] -y - T2y

(y2 +1)?

While some minor simplification is possible, we are content to leave s'(y) in its current form,
having found the desired derivative of s. In summary, to compute the derivative of s, we applied
the quotient rule. In so doing, when it was time to compute the derivative of the top function, we
used the product rule; at the point where we found the derivative of the bottom function, we used
the sum rule.

In general, one of the main keys to success in applying derivative rules is to recognize the
structure of the function, followed by the careful and diligent application of relevant derivative
rules. The best way to get good at this process is by doing a large number of exercises, and the
next activity provides some practice and exploration to that end.

Activity 2.9.

®When taking a derivative that involves the use of multiple derivative rules, it is often helpful to use the notation
<L [ ] to wait to apply subsequent rules. This is demonstrated in each of the two examples presented here.

Q020



2.3. THE PRODUCT AND QUOTIENT RULES 101

Use relevant derivative rules to answer each of the questions below. Throughout, be sure to
use proper notation and carefully label any derivative you find by name.

(a) Let f(r) = (57 + sin(r)) (4" — 2 cos(r)). Find f'(r).

cos(t) ..
(b) Letp(t) = 6 (62 Find p'(¢).
a7z 0.2 Z . /
(c) Letg(z) =3z"e* — 2z"sin(z) + R Find ¢/(2).

(d) A moving particle has its position in feet at time ¢ in seconds given by the function
_ 3cos(t) — sin(t)

s(t) 5 . Find the particle’s instantaneous velocity at the moment ¢ = 1.
(e) Suppose that f(z) and g(z) are differentiable functions and it is known that f(3) = —2,
1'3)=7,9(3)=4,and ¢'(3) = —1. If p(x) = f(z) - g(x) and q(z) = g((i;, calculate p/(3)

and ¢/(3).

<

As the algebraic complexity of the functions we are able to differentiate continues to increase,
it is important to remember that all of the derivative’s meaning continues to hold. Regardless of
the structure of the function f, the value of f/(a) tells us the instantaneous rate of change of f with
respect to x at the moment = = a, as well as the slope of the tangent line to y = f(x) at the point

(a, f(a)).

Summary

In this section, we encountered the following important ideas:

e If a function is a sum, product, or quotient of simpler functions, then we can use the sum,
product, or quotient rules to differentiate the overall function in terms of the simpler functions
and their derivatives.

e The product rule tells us that if P is a product of differentiable functions f and g according to
the rule P(z) = f(z)g(z), then

P'(x) = f(z)g'(z) + g(2)f'(x).

e The quotient rule tells us that if () is a quotient of differentiable functions f and g according to

the rule Q(z) = %, then

() f'(x) = f(x)g'(x)
g()? '

e The product and quotient rules now complement the constant multiple and sum rules and
enable us to compute the derivative of any function that consists of sums, constant multiples,
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102 2.3. THE PRODUCT AND QUOTIENT RULES

products, and quotients of basic functions we already know how to differentiate. For instance,
if F has the form

_ 2a(x) — 5b(x)

c(x)-d(z)

then F'is fundamentally a quotient, and the numerator is a sum of constant multiples and the
denominator is a product. Hence the derivative of F' can be found by applying the quotient
rule and then using the sum and constant multiple rules to differentiate the numerator and the
product rule to differentiate the denominator.

F(x)

Exercises
1. Let f and g be differentiable functions for which the following information is known: f(2) = 5,
9(2) ==3,1'(2) = -1/2,4'(2) = 2.
(a) Let h be the new function defined by the rule h(x) = g(x) - f(x). Determine h(2) and
h'(2).
(b) Find an equation for the tangent line to y = h(z) at the point (2, ~(2)).

(c) Let r be the function defined by the rule r(z) = %. Is r increasing, decreasing, or
neither at a = 2? Why?

~

(d) Estimate the value of (2.06) by using the local linearization of p at the point (2, p(2)).

2. Consider the functions r(t) = ¢' and s(t) = arccos(t), for which you are given the facts that

r(t) = t'(In(t) + 1) and §'(t) = —ﬁ. Do not be concerned with where these derivative

formulas come from. We restrict our interest in both functions to the domain 0 < ¢ < 1.

(a) Let w(t) = t' arccos(t). Determine w’(t).

(b) Find an equation for the tangent line to y = w(t) at the point (3, w(3)).

(c) Letw(t) = L(t) Is v increasing or decreasing at the instant ¢t = 3? Why?

arccos

3. Let functions p and ¢ be the piecewise linear functions given by their respective graphs in
Figure 2.5. Use the graphs to answer the following questions.

(@) Letr(z) = p(z) - ¢(z). Determine r'(—2) and 7/(0).

(b) Are there values of x for which r/(x) does not exist? If so, which values, and why?
(c) Find an equation for the tangent line to y = r(z) at the point (2, r(2)).

(d) Letz(z) = %. Determine 2/(0) and 2/(2).

(e) Are there values of z for which 2/(z) does not exist? If so, which values, and why?

4. A farmer with large land holdings has historically grown a wide variety of crops. With the
price of ethanol fuel rising, he decides that it would be prudent to devote more and more of his
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Figure 2.5: The graphs of p (in blue) and ¢ (in green).

acreage to producing corn. As he grows more and more corn, he learns efficiencies that increase
his yield per acre. In the present year, he used 7000 acres of his land to grow corn, and that land
had an average yield of 170 bushels per acre. At the current time, he plans to increase his
number of acres devoted to growing corn at a rate of 600 acres/year, and he expects that right
now his average yield is increasing at a rate of 8 bushels per acre per year. Use this information
to answer the following questions.

(a) Say that the present year is t = 0, that A(¢) denotes the number of acres the farmer
devotes to growing corn in year ¢, Y (¢) represents the average yield in year ¢ (measured
in bushels per acre), and C(¢) is the total number of bushels of corn the farmer produces.
What is the formula for C'(t) in terms of A(t) and Y (t)? Why?

(b) What is the value of C'(0)? What does it measure?

(c) Write an expression for C’(t) in terms of A(t), A'(t), Y(¢), and Y'(¢). Explain your
thinking.
(d) What is the value of C’(0)? What does it measure?

(e) Based on the given information and your work above, estimate the value of C(1).

5. Let f(v) be the gas consumption (in liters/km) of a car going at velocity v (in km/hour). In
other words, f(v) tells you how many liters of gas the car uses to go one kilometer if it is
traveling at v kilometers per hour. In addition, suppose that f(80) = 0.05 and f/(80) = 0.0004.

(a) Let g(v) be the distance the same car goes on one liter of gas at velocity v. What is the
relationship between f(v) and g(v)? Hence find ¢(80) and ¢'(80).

(b) Let h(v) be the gas consumption in liters per hour of a car going at velocity v. In other
words, h(v) tells you how many liters of gas the car uses in one hour if it is going at
velocity v. What is the algebraic relationship between h(v) and f(v)? Hence find h(80)
and 7/(80).
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(c) How would you explain the practical meaning of these function and derivative values
to a driver who knows no calculus? Include units on each of the function and derivative
values you discuss in your response.
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2.4 Derivatives of other trigonometric functions

Motivating Questions

In this section, we strive to understand the ideas generated by the following important questions:

e What are the derivatives of the tangent, cotangent, secant, and cosecant functions?

e How do the derivatives of tan(z), cot(x), sec(x), and csc(x) combine with other derivative
rules we have developed to expand the library of functions we can quickly differentiate?

Introduction

One of the powerful themes in trigonometry is that the entire subject emanates from a very simple
idea: locating a point on the unit circle.

Figure 2.6: The unit circle and the definition of the sine and cosine functions.

Because each angle 6 corresponds to one and only one point (x,y) on the unit circle, the -
and y-coordinates of this point are each functions of 6. Indeed, this is the very definition of cos(¢)
and sin(é): cos(f) is the z-coordinate of the point on the unit circle corresponding to the angle 6,
and sin(f) is the y-coordinate. From this simple definition, all of trigonometry is founded. For
instance, the fundamental trigonometric identity,

sin?(0) + cos*() = 1,

is a restatement of the Pythagorean Theorem, applied to the right triangle shown in Figure 2.6.

We recall as well that there are four other trigonometric functions, each defined in terms of
the sine and/or cosine functions. These six trigonometric functions together offer us a wide range
of flexibility in problems involving right triangles. The tangent function is defined by tan(f) =
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sin() ' while the cotangent function is its reciprocal: cot(d) = <% The secant function is the
cos(6) & p sin(6)

reciprocal of the cosine function, sec(f) = cosl(G) , and the cosecant function is the reciprocal of the

1
sin(0) *

sine function, csc(f) =

Because we know the derivatives of the sine and cosine function, and the other four trigono-
metric functions are defined in terms of these familiar functions, we can now develop shortcut
differentiation rules for the tangent, cotangent, secant, and cosecant functions. In this section’s
preview activity, we work through the steps to find the derivative of y = tan(x).

sin(x)
cos(z)*

Preview Activity 2.4. Consider the function f(x) = tan(z), and remember that tan(z) =
(a) What is the domain of f?
(b) Use the quotient rule to show that one expression for f’(z) is

cos(x) cos(x) + sin(z) sin(x)

fi(z) =

cos? ()

(c) What is the Fundamental Trigonometric Identity? How can this identity be used to find a
simpler form for f’(x)?

(d) Recall that sec(z) = Cosl(m) . How can we express f/(x) in terms of the secant function?

(e) For what values of z is f’(x) defined? How does this set compare to the domain of f?

Derivatives of the cotangent, secant, and cosecant functions

In Preview Activity 2.4, we found that the derivative of the tangent function can be expressed in
several ways, but most simply in terms of the secant function. Next, we develop the derivative of
the cotangent function.

Let g(z) = cot(z). To find ¢'(z), we observe that g(r) = ij((g and apply the quotient rule.
Hence
i) = sin(z)( 81n(szi:1)1)2(x)cos(a:) cos(z)
~ sin®(z) + cos?(x)
- sin?(x)

By the Fundamental Trigonometric Identity, we see that ¢'(z) =

1
sin(x)

—m ; recalling that csc(z) =

, it follows that we can most simply express ¢’ by the rule

J(z) = —csc?(x).
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Note that neither g nor ¢’ is defined when sin(z) = 0, which occurs at every integer multiple of 7.
Hence we have the following rule.

Cotangent Function: For all real numbers z such that x # kr, where k = 0, £1,£2, ...,

d
%[cot(w)] = —csc?(x).

Observe that the shortcut rule for the cotangent function is very similar to the rule we discov-
ered in Preview Activity 2.4 for the tangent function.

Tangent Function: For all real numbers x such that %’r, where k = £1,+2,...,

d
T [tan(z)] = sec?(z).

In the next two activities, we develop the rules for differentiating the secant and cosecant
functions.

Activity 2.10.
Let h(z) = sec(x) and recall that sec(z) = —2

cos(z)*

(a) What is the domain of h?

(b) Use the quotient rule to develop a formula for A'(z) that is expressed completely in
terms of sin(z) and cos(x).

(c) How can you use other relationships among trigonometric functions to write 2'(z) only
in terms of tan(x) and sec(z)?

(d) What is the domain of »'? How does this compare to the domain of h?

Activity 2.11.

Let p(z) = csc(z) and recall that csc(z) = ==

sin(z) *

(a) What is the domain of p?

(b) Use the quotient rule to develop a formula for p’(z) that is expressed completely in
terms of sin(z) and cos(x).

(c) How can you use other relationships among trigonometric functions to write p’(x) only
in terms of cot(x) and csc(x)?

(d) What is the domain of p’? How does this compare to the domain of p?

<
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The quotient rule has thus enabled us to determine the derivatives of the tangent, cotangent,
secant, and cosecant functions, expanding our overall library of basic functions we can differenti-
ate. Moreover, we observe that just as the derivative of any polynomial function is a polynomial,
and the derivative of any exponential function is another exponential function, so it is that the
derivative of any basic trigonometric function is another function that consists of basic trigono-
metric functions. This makes sense because all trigonometric functions are periodic, and hence
their derivatives will be periodic, too.

As has been and will continue to be the case throughout our work in Chapter 2, the derivative
retains all of its fundamental meaning as an instantaneous rate of change and as the slope of the
tangent line to the function under consideration. Our present work primarily expands the list of
functions for which we can quickly determine a formula for the derivative. Moreover, with the
addition of tan(x), cot(x), sec(z), and csc(z) to our library of basic functions, there are many more
functions we can differentiate through the sum, constant multiple, product, and quotient rules.

Activity 2.12.

Answer each of the following questions. Where a derivative is requested, be sure to label the
derivative function with its name using proper notation.

(a) Let f(z) = 5sec(z) — 2csc(z). Find the slope of the tangent line to f at the point where

_r
r=3.

(b) Let p(z) = 2?sec(z) — zcot(z). Find the instantaneous rate of change of p at the point
where z = 7.

() Leth(t) = ;;“fl) — 2¢t cos(t). Find /(t).
(d) Letg(r) = rse;ﬂ(r). Find ¢'(r).

(e) When a mass hangs from a spring and is set in motion, the object’s position oscillates in
a way that the size of the oscillations decrease. This is usually called a damped oscillation.
Suppose that for a particular object, its displacement from equilibrium (where the object
sits at rest) is modeled by the function

~ 15sin(t)
= — .

s(t
() =—"
Assume that s is measured in inches and ¢ in seconds. Sketch a graph of this function
for ¢ > 0 to see how it represents the situation described. Then compute ds/dt, state the
units on this function, and explain what it tells you about the object’s motion. Finally,
compute and interpret s'(2).

Summary

In this section, we encountered the following important ideas:
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e The derivatives of the other four trigonometric functions are

d d
%[tan(m)] = sec’(z), @[cot(x)] = —csc?(z),
%[sec(:c)] = sec(z) tan(x), and %[csc(m)] = —csc(z) cot(x).

Each derivative exists and is defined on the same domain as the original function. For example,
both the tangent function and its derivative are defined for all real numbers z such that 2 # £,
where k = +1,+£2,.. ..

e The above four rules for the derivatives of the tangent, cotangent, secant, and cosecant can be
used along with the rules for power functions, exponential functions, and the sine and cosine,
as well as the sum, constant multiple, product, and quotient rules, to quickly differentiate a
wide range of different functions.

Exercises

1. An object moving vertically has its height at time ¢ (measured in feet, with time in seconds)
2 cos(t)
12t -

(a) What is the object’s instantaneous velocity when ¢ = 2?

given by the function h(t) =3 +

(b) What is the object’s acceleration at the instant ¢ = 2?

(c) Describe in everyday language the behavior of the object at the instant ¢ = 2.
2. Let f(z) = sin(x) cot(x).

(a) Use the product rule to find f'(z).

(b) True or false: for all real numbers z, f(z) = cos(x).

(c) Explain why the function that you found in (a) is almost the opposite of the sine func-
tion, but not quite. (Hint: convert all of the trigonometric functions in (a) to sines and
cosines, and work to simplify. Think carefully about the domain of f and the domain

of f'.)
3. Let p(2) be given by the rule

ztan(z)

- 4+ 35+ 1.
z%ec(z)—l—l+ o

p(z) =
(a) Determine p/(z).
(b) Find an equation for the tangent line to p at the point where z = 0.

(c) Att =0, is p increasing, decreasing, or neither? Why?
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2.5 The chain rule

Motivating Questions

In this section, we strive to understand the ideas generated by the following important questions:

e What is a composite function and how do we recognize its structure algebraically?

e Given a composite function C(x) = f(g(z)) that is built from differentiable functions f and
g, how do we compute C’(z) in terms of f, g, f/, and ¢’? What is the statement of the Chain
Rule?

Introduction

In addition to learning how to differentiate a variety of basic functions, we have also been devel-
oping our ability to understand how to use rules to differentiate certain algebraic combinations of
them. For example, we not only know how to take the derivative of f(x) = sin(x) and g(x) = 22,

but now we can quickly find the derivative of each of the following combinations of f and g¢:

s(x) = 322 — 5sin(z),

p(z) = 2% sin(z), and

sin(m)‘

q(z) = —3

Finding s’ uses the sum and constant multiple rules, determining p’ requires the product rule,
and ¢’ can be attained with the quotient rule. Again, we note the importance of recognizing the
algebraic structure of a given function in order to find its derivative: s(x) = 3g(z) — 5f(x), p(z) =

g(z) - f(z),and q(z) = L.

g(x)
There is one more natural way to algebraically combine basic functions, and that is by compos-
ing them. For instance, let’s consider the function

C(x) = sin(x?),

and observe that any input x passes through a chain of functions. In particular, in the process that
defines the function C(x), z is first squared, and then the sine of the result is taken. Using an
arrow diagram,

r — z2 — sin(2?).

In terms of the elementary functions f and g, we observe that « is first input in the function g, and
then the result is used as the input in f. Said differently, we can write

O(z) = f(g(x)) = sin(a?)

and say that C' is the composition of f and g. We will refer to g, the function that is first applied to
x, as the inner function, while f, the function that is applied to the result, is the outer function.
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The main question that we answer in the present section is: given a composite function C(x) =
f(g(x)) that is built from differentiable functions f and g, how do we compute C’(x) in terms of
f, 9, f', and ¢'? In the same way that the rate of change of a product of two functions, p(z) =
f(z) - g(z), depends on the behavior of both f and g, it makes sense intuitively that the rate of
change of a composite function C(z) = f(g(z)) will also depend on some combination of f and
g and their derivatives. The rule that describes how to compute C” in terms of f and g and their
derivatives will be called the chain rule.

But before we can learn what the chain rule says and why it works, we first need to be com-
fortable decomposing composite functions so that we can correctly identify the inner and outer
functions, as we did in the example above with C(z) = sin(z?).

Preview Activity 2.5. For each function given below, identify its fundamental algebraic structure.
In particular, is the given function a sum, product, quotient, or composition of basic functions? If
the function is a composition of basic functions, state a formula for the inner function g and the
outer function f so that the overall composite function can be written in the form f(g(x)). If the
function is a sum, product, or quotient of basic functions, use the appropriate rule to determine
its derivative.

(a) h(z) = tan(2%)

(b) p(w) = 2" tan(x)

(0) r(x) = (tan(z))?

(d) m(z) = et

() w(x) =/ + tan(x)
(f) 2(x) = /tan(z)

The chain rule

One of the challenges of differentiating a composite function is that it often cannot be written in
an alternate algebraic form. For instance, the function C(z) = sin(z?) cannot be expanded or
otherwise rewritten, so it presents no alternate approaches to taking the derivative. But other
composite functions can be expanded or simplified, and these present a way to begin to explore
how the chain rule might have to work. To that end, we consider two examples of composite
functions that present alternate means of finding the derivative.

Example 2.1. Let f(z) = —42 + 7 and ¢g(z) = 3z — 5. Determine a formula for C'(z) = f(g(x)) and
compute C’(x). How is C’ related to f and ¢ and their derivatives?
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Solution. By the rules given for f and g,

Clx) = flyg(@))

f(Bz —5)
—4(3x —5)+7
—122 42047
= —12z+ 27.

Thus, C’(xz) = —12. Noting that f/(x) = —4 and ¢'(x) = 3, we observe that C’ appears to be the
product of f" and ¢'.

From one perspective, Example 2.1 may be too elementary. Linear functions are the simplest of all
functions, and perhaps composing linear functions (which yields another linear function) does not
exemplify the true complexity that is involved with differentiating a composition of more compli-
cated functions. At the same time, we should remember the perspective that any differentiable
function is locally linear, so any function with a derivative behaves like a line when viewed up
close. From this point of view, the fact that the derivatives of f and g are multiplied to find the
derivative of their composition turns out to be a key insight.

We now consider a second example involving a nonlinear function to gain further understand-
ing of how differentiating a composite function involves the basic functions that combine to form
it.

Example 2.2. Let C(x) = sin(2x). Use the double angle identity to rewrite C' as a product of basic
functions, and use the product rule to find C’. Rewrite C” in the simplest form possible.

Solution. By the double angle identity for the sine function,
C(z) = sin(2x) = 2sin(z) cos(x).
Applying the product rule and simplifying,
C’(x) = 2sin(x)(—sin(x)) + cos(z)(2 cos(x)) = 2(cos?(z) — sin®(x)).
Next, we recall that one of the double angle identities for the cosine function tells us that
cos(2z) = cos?(z) — sin?(z).
Substituting this result in our expression for C’(z), we now have that

C'(x) = 2cos(2x).

Q020



2.5. THE CHAIN RULE 113

So from Example 2.2, we see that if C'(z) = sin(2z), then C’(z) = 2 cos(2z). Letting g(z) = 22 and
f(z) = sin(z), we observe that C'(z) = f(g(x)). Moreover, with ¢’'(z) = 2 and f'(x) = cos(z), it
follows that we can view the structure of C’(x) as

C'(x) = 2cos(2z) = g'(x) ' (9(x)).

In this example, we see that for the composite function C(z) = f(g(z)), the derivative C’ is (as in
the example involving linear functions) constituted by multiplying the derivatives of f and g, but
with the special condition that f’ is evaluated at g(z), rather than at .

It makes sense intuitively that these two quantities are involved in understanding the rate of
change of a composite function: if we are considering C(z) = f(g(z)) and asking how fast C is
changing at a given x value as x changes, it clearly matters (a) how fast g is changing at z, as well
as how fast f is changing at the value of g(z). It turns out that this structure holds not only for
the functions in Examples 2.1 and 2.2, but indeed for all differentiable functions” as is stated in the
Chain Rule.

Chain Rule: If g is differentiable at x and f is differentiable at g(x), then the composite function
C defined by C(x) = f(g(z)) is differentiable at = and

As with the product and quotient rules, it is often helpful to think verbally about what the
chain rule says: “If C'is a composite function defined by an outer function f and an inner function
g, then C’ is given by the derivative of the outer function, evaluated at the inner function, times
the derivative of the inner function.”

At least initially in working particular examples requiring the chain rule, it can be also be
helpful to clearly identify the inner function g and outer function f, compute their derivatives
individually, and then put all of the pieces together to generate the derivative of the overall com-
posite function. To see what we mean by this, consider the function

r(z) = (tan(z))2.
2

The function r is composite, with inner function g(x) = tan(z) and outer function f(z) = z~.
Organizing the key information involving f, g, and their derivatives, we have

f(x) =a? g(x) = tan(z)
f'(x) =2z g'(x) = sec*(z)
f'(g(x)) = 2tan(z)

Applying the chain rule, which tells us that 7'(z) = f/(g(z))¢'(x), we find that for r(z) =
(tan(x))?, its derivative is
' (x) = 2tan(z) sec?(x).

"Like other differentiation rules, the Chain Rule can be proved formally using the limit definition of the derivative.
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As a side note, we remark that another way to write () is 7(z) = tan?(z). Observe that in
this format, the composite nature of the function is more implicit, but this is common notation for
powers of trigonometric functions: cos*(z), sin®(z), and sec?(z) are all composite functions, with
the outer function a power function and the inner function a trigonometric one.

The chain rule now substantially expands the library of functions we can differentiate, as the
following activity demonstrates.

Activity 2.13.

For each function given below, identify an inner function g and outer function f to write the
function in the form f(g(z)). Then, determine f'(x), ¢'(x), and f/(g(x)), and finally apply the
chain rule to determine the derivative of the given function.

(@) h(z) = cos(z?)

(b) p(x) = /tan(z)

(0) s(x) = 2

(d) z(z) = cot®(z)

(e) m(x) = (sec(x) + e%)?

Using multiple rules simultaneously

The chain rule now joins the sum, constant multiple, product, and quotient rules in our collec-
tion of the different techniques for finding the derivative of a function through understanding its
algebraic structure and the basic functions that constitute it. It takes substantial practice to get
comfortable with navigating multiple rules in a single problem; using proper notation and taking
a few extra steps can be particularly helpful as well. We demonstrate with an example and then
provide further opportunity for practice in the following activity.

Example 2.3. Find a formula for the derivative of h(t) = 3" +2 secd(t).

Solution. We first observe that the most basic structure of h is that it is the product of two func-
tions: h(t) = a(t) - b(t) where a(t) = 3°°+2t and b(t) = sec’(t). Therefore, we see that we will
need to use the product rule to differentiate 2. When it comes time to differentiate a and b in their
roles in the product rule, we observe that since each is a composite function, the chain rule will be
needed. We therefore begin by working separately to compute a/(t) and ¥/ (¢).

Writing a(t) = f(g(t)) = 32, and finding the derivatives of f and g, we have
f(t)=3" g(t) =2 + 2t
f'(t) = 3'In(3) gt)=2t+1
F'(g(t)) = 3"+ In(3)
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Thus, by the chain rule, it follows that o’ (t) = f'(g(t))g'(t) = 37" +2¢In(3)(2t + 1).

Turning next to b, we write b(t) = 7(s(t)) = sec*(t) and find the derivatives of r and g. Doing
so,

r(t) =t4 s(t) = sec(t)
() = 4¢3 §'(t) = sec(t) tan(t)
' (s(t)) = 4sec3(t)

By the chain rule, we now know that V() = r'(s(t))s'(t) = 4sec®(t) sec(t) tan(t) = 4sec(t) tan(t).

Now we are finally ready to compute the derivative of the overall function h. Recalling that
h(t) = 3t +2 secd(t), by the product rule we have

Iip\ t2+2ti 4 4 i 242t
h'(t) =3 o [sec”(t)] + sec™(t) pr [37 .

From our work above with a and b, we know the derivatives of 32 and sec*(t), and therefore

h'(t) = 3742ty sect(t) tan(t) + sec4(t)3t2+2t In(3)(2t + 2).

Activity 2.14.

For each of the following functions, find the function’s derivative. State the rule(s) you use,
label relevant derivatives appropriately, and be sure to clearly identify your overall answer.

@) plr) = 47T T 27

(b) m(v) = sin(v?) cos(v?)
cos(10

(©) h(y) = M

d) s(z) = 9z sec(2)

(e) c(x) = Sin(ea’j)

<

The chain rule now adds substantially to our ability to do different familiar problems that in-
volve derivatives. Whether finding the equation of the tangent line to a curve, the instantaneous
velocity of a moving particle, or the instantaneous rate of change of a certain quantity, if the func-
tion under consideration involves a composition of other functions, the chain rule is indispensable.

Activity 2.15.

Use known derivative rules, including the chain rule, as needed to answer each of the following
questions.

(a) Find an equation for the tangent line to the curve y = v/e* + 3 at the point where = = 0.
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(b)

(d)

1
If s(t) = CFE represents the position function of a particle moving horizontally

along an axis at time ¢ (where s is measured in inches and ¢ in seconds), find the par-
ticle’s instantaneous velocity at ¢ = 1. Is the particle moving to the left or right at that
instant?

At sea level, air pressure is 30 inches of mercury. At an altitude of & feet above sea level,
the air pressure, P, in inches of mercury, is given by the function

P — 30e—0-0000323h
Compute dP/dh and explain what this derivative function tells you about air pressure,

including a discussion of the units on dP/dh. In addition, determine how fast the air
pressure is changing for a pilot of a small plane passing through an altitude of 1000 feet.

Suppose that f(z) and g(z) are differentiable functions and that the following informa-
tion about them is known:

z | f(z) | f'(z) | 9(z) | ¢'(x)
1] 2 | =5 | =3 | 4
2 | =3 4 | -1 2

If C(x) is a function given by the formula f(g(x)), determine C’(2). In addition, if D(z)
is the function f(f(z)), find D'(—1).

The composite version of basic function rules

As we gain more experience with differentiating complicated functions, we will become more
comfortable in the process of simply writing down the derivative without taking multiple steps.
We demonstrate part of this perspective here by showing how we can find a composite rule that
corresponds to two of our basic functions. For instance, we know that % [sin(x)] = cos(x). If we
instead want to know

d ..
lsin(u(a))],

X

where u is a differentiable function of z, then this requires the chain rule with the sine function as
the outer function. Applying the chain rule,

d .. ,
d—[sm(u(z))] = cos(u(x)) - u'(x).

X

Similarly, since % [a”] = a” In(a), it follows by the chain rule that
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In the process of getting comfortable with derivative rules, an excellent exercise is to write down
a list of all basic functions whose derivatives are known, list those derivatives, and then write the
corresponding chain rule for the composite version with the inner function being an unknown
function u(z) and the outer function being the known basic function. These versions of the chain
rule are particularly simple when the inner function is linear, since the derivative of a linear func-
tion is a constant. For instance,

d
. (52 +7)'°] = 10(5z 4+ 7)° - 5,

di [tan(17z)] = 17sec?(17x), and
x

d -3z _ 9,3z
%[e ]— 3e ",

Summary

In this section, we encountered the following important ideas:

e A composite function is one where the input variable z first passes through one function, and
then the resulting output passes through another. For example, the function h(z) = 25"(*) is
composite since  — sin(x) — 251(@),

e Given a composite function C(z) = f(g(x)) that is built from differentiable functions f and g,
the chain rule tells us that we compute C’(z) in terms of f, g, f, and ¢’ according to the formula

C'(z) = f'(g(x))g'(x).

Exercises
1. Consider the basic functions f(z) = 23 and g(z) = sin(z).

(a) Let h(z) = f(g(x)). Find the exact instantaneous rate of change of & at the point where

Y
=7z

(b) Which function is changing most rapidly at x = 0.25: h(z) = f(g(x)) or r(z) = g(f(z))?
Why?

(c) Leth(z) = f(g9(z)) and r(z) = g(f(x)). Which of these functions has a derivative that is
periodic? Why?

2. Let u(xz) be a differentiable function. For each of the following functions, determine the deriva-
tive. Each response will involve v and/or «’.

(@) p(z) = et
(b) q(z) = u(e”)
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(z) = cot(u(x))
(d) s(z) = u(cot(z))

(z) = u(z?)
(f) b(x) = u'(x)

3. Let functions p and ¢ be the piecewise linear functions given by their respective graphs in
Figure 2.7. Use the graphs to answer the following questions.

(c) r(x

(e) a(x

Figure 2.7: The graphs of p (in blue) and ¢ (in green).

(a) Let C(z) = p(q(z)). Determine C’'(—1) and C’(—2).
(b) Find a value of = for which C’(z) does not exist. Explain your thinking.
(c) LetY(z) = q(¢(z)) and Z(z) = q(p(z)). Determine Y'(—2) and Z’(0).
4. If a spherical tank of radius 4 feet has h feet of water present in the tank, then the volume of

water in the tank is given by the formula

V= gh2(12 —h).

(a) At what instantaneous rate is the volume of water in the tank changing with respect to
the height of the water at the instant 4 = 1? What are the units on this quantity?

(b) Now suppose that the height of water in the tank is being regulated by an inflow and
outflow (e.g., a faucet and a drain) so that the height of the water at time ¢ is given by
the rule h(t) = sin(nt) + 1, where ¢ is measured in hours (and #h is still measured in
feet). At what rate is the height of the water changing with respect to time at the instant
t=2?

(c) Continuing under the assumptions in (b), at what instantaneous rate is the volume of
water in the tank changing with respect to time at the instant ¢ = 2?
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(d) What are the main differences between the rates found in (a) and (c)? Include a discus-
sion of the relevant units.
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2.6 Derivatives of Inverse Functions

Motivating Questions

In this section, we strive to understand the ideas generated by the following important questions:

e What is the derivative of the natural logarithm function?
e What are the derivatives of the inverse trigonometric functions arcsin(z) and arctan(z)?

e If g is the inverse of a differentiable function f, how is ¢’ computed in terms of f, f’, and g?

Introduction

Much of mathematics centers on the notion of function. Indeed, throughout our study of calculus,
we are investigating the behavior of functions, often doing so with particular emphasis on how
fast the output of the function changes in response to changes in the input. Because each function
represents a process, a natural question to ask is whether or not the particular process can be
reversed. That is, if we know the output that results from the function, can we determine the
input that led to it? Connected to this question, we now also ask: if we know how fast a particular
process is changing, can we determine how fast the inverse process is changing?

As we have noted, one of the most important functions in all of mathematics is the natural
exponential function f(z) = e”. Because the natural logarithm, g(z) = In(z), is the inverse of the
natural exponential function, the natural logarithm is similarly important. One of our goals in this
section is to learn how to differentiate the logarithm function, and thus expand our library of basic
functions with known derivative formulas. First, we investigate a more familiar setting to refresh
some of the basic concepts surrounding functions and their inverses.

Preview Activity 2.6. The equationy = 8(30 — 32) relates a temperature given in z degrees Fahren-
heit to the corresponding temperature y measured in degrees Celcius.

(a) Solve the equation y = 8(:1: — 32) for x to write « (Fahrenheit temperature) in terms of y
(Celcius temperature).

(b) Let C(z) = 2(z — 32) be the function that takes a Fahrenheit temperature as input and
produces the Celcius temperature as output. In addition, let F'(y) be the function that
converts a temperature given in y degrees Celcius to the temperature F'(y) measured in
degrees Fahrenheit. Use your work in (a) to write a formula for F'(y).

(c) Next consider the new function defined by p(z) = F(C(z)). Use the formulas for F' and
C' to determine an expression for p(z) and simplify this expression as much as possible.
What do you observe?

(d) Now, let r(y) = C(F(y)). Use the formulas for F' and C to determine an expression for
r(y) and simplify this expression as much as possible. What do you observe?
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(e) What is the value of C’(x)? of F'(y)? How do these values appear to be related?

Basic facts about inverse functions

A function f : A — B is a rule that associates each element in the set A to one and only one
element in the set B. We call A the domain of f and B the codomain of f. If there exists a function
g : B — A such that g(f(a)) = a for every possible choice of a in the set A and f(g(b)) = b for
every b in the set B, then we say that g is the inverse of f. We often use the notation f~! (read “ f-
inverse”) to denote the inverse of f. Perhaps the most essential thing to observe about the inverse
function is that it undoes the work of f. Indeed, if y = f(x), then

FHy) = H(f@) =2,

and this leads us to another key observation: writing y = f(z) and x = f~!(y) say the exact same
thing. The only difference between the two equations is one of perspective — one is solved for z,
while the other is solved for .

Here we briefly remind ourselves of some key facts about inverse functions. For a function
f+A—B,

e f hasan inverse if and only if f is one-to-one® and onto’;

e provided f~! exists, the domain of f~! is the codomain of f, and the codomain of f~! is the
domain of f;

e f7}(f(z)) = z for every x in the domain of f and f(f!(y)) = y for every y in the codomain
of f;

e y= f(x)ifand only if x = f~!(y).

The last stated fact reveals a special relationship between the graphs of f and f~!. In particular,
if we consider y = f(x) and a point (x,y) that lies on the graph of f, then it is also true that
r = f~!(y), which means that the point (y, x) lies on the graph of f~!. This shows us that the
graphs of f and f~! are the reflections of one another across the line y = z, since reflecting across
y = x is precisely the geometric action that swaps the coordinates in an ordered pair. In Figure 2.8,
we see this exemplified for the function y = f(z) = 27 and its inverse, with the points (—1, 1) and
(1, —1) highlighting the reflection of the curves across y = z.

To close our review of important facts about inverses, we recall that the natural exponential
function y = f(z) = e” has an inverse function, and its inverse is the natural logarithm, =
f~Y(y) = In(y). Indeed, writing y = e” is interchangeable with = = In(y), plus In(e®) = x for every
real number 2 and e™¥) = y for every positive real number .

8A function f is one-to-one provided that no two distinct inputs lead to the same output.
A function f is onto provided that every possible element of the codomain can be realized as an output of the
function for some choice of input from the domain.
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Figure 2.8: A graph of a function y = f(z) along with its inverse, y = f~!(x).

The derivative of the natural logarithm function

In what follows, we determine a formula for the derivative of g(z) = In(x). To do so, we take
advantage of the fact that we know the derivative of the natural exponential function, which is
the inverse of g. In particular, we know that writing g(z) = In(x) is equivalent to writing e9(*) = .
Now we differentiate both sides of this most recent equation. In particular, we observe that

The righthand side is simply 1; applying the chain rule to the left side, we find that
9@ g (z) = 1.

Since our goal is to determine ¢’(z), we solve for ¢'(x), so

1
/ _
g (I) - eg(x) .

Finally, we recall that since g(z) = In(z), e9®) = @) = 2, and thus

g'(z) = é

d 1
Natural Logarithm: For all positive real numbers z, o In(z)] = —.
X X

This rule for the natural logarithm function now joins our list of other basic derivative rules
that we have already established. There are two particularly interesting things to note about the
fact that -L[In(z)] = 1. One is that this rule is restricted to only apply to positive values of z, as
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these are the only values for which the original function is defined. The other is that for the first
time in our work, differentiating a basic function of a particular type has led to a function of a
very different nature: the derivative of the natural logarithm is not another logarithm, nor even
an exponential function, but rather a rational one.

Derivatives of logarithms may now be computed in concert with all of the rules known to date.
For instance, if f(¢) = In(t> + 1), then by the chain rule, f'(t) = = - 2t.

t2+1
Activity 2.16.
For each function given below, find its derivative.
(@) h(z) = 2?In(x)

®) o) = 2

(©) s(y) = In(cos(y) +2)
(d) z(x) = tan(In(x))
(e) m(z) = In(In(z))

<

In addition to the important rule we have derived for the derivative of the natural log func-
tions, there are additional interesting connections to note between the graphs of f(z) = e* and

fH(z) = In(z).

Figure 2.9: A graph of the function y = e” along with its inverse, y = In(x), where both functions are viewed
using the input variable x.

In Figure 2.9, we are reminded that since the natural exponential function has the property
that its derivative is itself, the slope of the tangent to y = e* is equal to the height of the curve at
that point. For instance, at the point A = (In(0.5), 0.5), the slope of the tangent line is m4 = 0.5,
and at B = (In(5), 5), the tangent line’s slope is mp = 5. At the corresponding points A’ and B’
on the graph of the natural logarithm function (which come from reflecting across the line y = x),
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we know that the slope of the tangent line is the reciprocal of the z-coordinate of the point (since
“2n(z)] = 1). Thus, with A’ = (0.5,In(0.5)), we have ma = 5= = 2, and at B’ = (5,In(5)),
mpr = 5

In particular, we observe that m 4 = n%; and mpg = miB This is not a coincidence, but in fact
holds for any curve y = f(x) and its inverse, provided the inverse exists. One rationale for why
this is the case is due to the reflection across y = z: in so doing, we essentially change the roles
of z and y, thus reversing the rise and run, which leads to the slope of the inverse function at the
reflected point being the reciprocal of the slope of the original function. At the close of this section,
we will also look at how the chain rule provides us with an algebraic formulation of this general
phenomenon.

Inverse trigonometric functions and their derivatives

Trigonometric functions are periodic, so they fail to be one-to-one, and thus do not have inverses.
However, if we restrict the domain of each trigonometric function, we can force the function to be

one-to-one. For instance, consider the sine function on the domain [-7, 7].

N

o T
I

|
N

Figure 2.10: A graph of f(z) = sin(z) (in blue), restricted to the domain [-7, 7], along with its inverse,
/7(z) = arcsin(x) (in magenta).

Because no output of the sine function is repeated on this interval, the function is one-to-one
and thus has an inverse. In particular, if we view f(z) = sin(z) as having domain [-7, §] and
codomain [—1, 1], then there exists an inverse function f~! such that

f L = 5

We call f~! the arcsine (or inverse sine) function and write f~1(y) = arcsin(y). It is especially
important to remember that writing

y =sin(z) and x = arcsin(y)
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say the exact same thing. We often read “the arcsine of y” as “the angle whose sine is y.” For

example, we say that T is the angle whose sine is , which can be written more concisely as

arcsin(3) = Z, which is equivalent to writing sin(Z) = 1.

Next, we determine the derivative of the arcsine function. Letting h(z) = arcsin(z), our goal is
to find 1/(z). Since h(x) is the angle whose sine is z, it is equivalent to write

sin(h(z)) = .
Differentiating both sides of the previous equation, we have

d

= %[l’]a

< fsin(h))]
and by the fact that the righthand side is simply 1 and by the chain rule applied to the left side,
cos(h(z))h'(z) = 1.

Solving for 1'(z), it follows that

Finally, we recall that h(x) = arcsin(z), so the denominator of 4/(x) is the function cos(arcsin(z)),
or in other words, “the cosine of the angle whose sine is z.” A bit of right triangle trigonometry
allows us to simplify this expression considerably.

1 T
0
V1—22

Figure 2.11: The right triangle that corresponds to the angle § = arcsin(z).

Let’s say that § = arcsin(z), so that 6 is the angle whose sine is . From this, it follows that
we can picture # as an angle in a right triangle with hypotenuse 1 and a vertical leg of length z,
as shown in Figure 2.11. The horizontal leg must be v/1 — 22, by the Pythagorean Theorem. Now,
note particularly that § = arcsin(z) since sin(f) = z, and recall that we want to know a different
expression for cos(arcsin(z)). From the figure, cos(arcsin(z)) = cos(f) = v1 — 22
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Thus, returning to our earlier work where we established that if h(z) = arcsin(z), then h/(z) =

Wlsin(x))/ we have now shown that

1
B (z) = .
@)= =
Inverse sine: For all real numbers = such that -1 <z <1 i[aurcsin(:zﬁ)] = !
) -7 T Vdx VI =22

Activity 2.17.

The following prompts in this activity will lead you to develop the derivative of the inverse
tangent function.

(a) Letr(z) = arctan(z). Use the relationship between the arctangent and tangent functions
to rewrite this equation using only the tangent function.

(b) Differentiate both sides of the equation you found in (a). Solve the resulting equation for
r'(x), writing r/(z) as simply as possible in terms of a trigonometric function evaluated
at r(x).

(c) Recall that r(z) = arctan(x). Update your expression for 7/(z) so that it only involves
trigonometric functions and the independent variable .

(d) Introduce a right triangle with angle 6 so that § = arctan(z). What are the three sides of
the triangle?

(e) In terms of only x and 1, what is the value of cos(arctan(z))?
(f) Use the results of your work above to find an expression involving only 1 and z for

' (x).

<

While derivatives for other inverse trigonometric functions can be established similarly, we
primarily limit ourselves to the arcsine and arctangent functions. With these rules added to our
library of derivatives of basic functions, we can differentiate even more functions using derivative
shortcuts. In Activity 2.18, we see each of these rules at work.

Activity 2.18.
Determine the derivative of each of the following functions.
(@) f(z) = 2®arctan(x) + % In(x)
(b) p(t) = 2taresin(®)
(c) h(z
(d) sy
(e) m(v) = In(sin(v) + 1)

Q020
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0 o) =tan 2

The link between the derivative of a function and the derivative of its inverse

In Figure 2.9, we saw an interesting relationship between the slopes of tangent lines to the natural
exponential and natural logarithm functions at points that corresponded to reflection across the
line y = z. In particular, we observed that for a point such as (In(2), 2) on the graph of f(z) = €*,
the slope of the tangent line at this pointis f/(In(2)) = 2, while at the corresponding point (2, In(2))
on the graph of f~!(z) = In(x), the slope of the tangent line at this point is (f~1)/(2) = 1, which is
the reciprocal of f'(In(2)).

That the two corresponding tangent lines having slopes that are reciprocals of one another is
not a coincidence. If we consider the general setting of a differentiable function f with differen-
tiable inverse g such that y = f(z) if and only if z = g(y), then we know that f(g(x)) = « for every
z in the domain of f~!. Differentiating both sides of this equation with respect to z, we have

d d
%[f(g(a:))] = @[33],

and by the chain rule,
fg(x)g (x) = 1.

Solving for ¢’(x), we have
1

T (@)

Here we see that the slope of the tangent line to the inverse function g at the point (z, g(z)) is
precisely the reciprocal of the slope of the tangent line to the original function f at the point
(9(x), f9(x))) = (g(x), ).

To see this more clearly, consider the graph of the function y = f(z) shown in Figure 2.12,

along with its inverse y = g(z). Given a point (a, b) that lies on the graph of f, we know that (b, a)
lies on the graph of g; said differently, f(a) = b and g(b) = a. Now, applying the rule that

g'(x)

to the value x = b, we have

which is precisely what we see in the figure: the slope of the tangent line to g at (b,a) is the
reciprocal of the slope of the tangent line to f at (a,b), since these two lines are reflections of one
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m = f'(a)
y = f(x) (a,5)
m = g'(b)
(bv a). |
d
y = g(r)

Figure 2.12: A graph of function y = f(z) along with its inverse, y = g(x) = f~!(x). Observe that the slopes
of the two tangent lines are reciprocals of one another.

another across the line y = x.

Derivative of an inverse function: Suppose that f is a differentiable function with inverse g
and that (a, b) is a point that lies on the graph of f at which f’(a) # 0. Then

1
~ J'a)

More generally, for any z in the domain of ¢/, we have

g'(b)

1
F'(g(x))

g'(x) =

The rules we derived for In(z), arcsin(z), and arctan(z) are all just specific examples of this
general property of the derivative of an inverse function. For example, with g(z) = In(z) and
f(z) = €, it follows that
1 1 1

Flol)) — @ ~ o’

g'(x) =

Summary

In this section, we encountered the following important ideas:

e For all positive real numbers z, di[ln(x)] = —.

i T
Q00
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d 1
e For all real numbers z such that —1 < 2 < 1, d—[arcsin(aﬁ)] = - = In addition, for all real
€z -z
d 1
numbers x, %[arctan(x)] = m

e If g is the inverse of a differentiable function f, then for any point z in the domain of ¢/,
1

9@ = Ty

Exercises

1. Determine the derivative of each of the following functions. Use proper notation and clearly
identify the derivative rules you use.

(@) f(xz)=In(2arctan(z) + 3arcsin(z) + 5)
(b) r(z) = arctan(In(arcsin(z)))
(c) q(t) = arctan®(3t) arcsin®(7t)

arctan(v) >

arcsin(v) + v2

<®mm=m<

Figure 2.13: A function y = f(z) for use in Exercise 2.

2. Consider the graph of y = f(x) provided in Figure 2.13 and use it to answer the following
questions.

(a) Use the provided graph to estimate the value of f'(1).

etch an approximate graph of y = f~ " (x). Label at least three distinct points on the
(b) Sketch pproxi graph of f1 Label at 1 hree distinct poi h
graph that correspond to three points on the graph of f.

(c) Based on your work in (a), what is the value of (f~1)'(—1)? Why?

3. Let f(z) = 2% + 4.
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(a) Sketch a graph of y = f(x) and explain why f is an invertible function.
(b) Let g be the inverse of f and determine a formula for g.

(c) Compute f'(z), ¢'(z), f'(2), and ¢'(6). What is the special relationship between f’(2)
and ¢'(6)? Why?

4. Let h(x) = = + sin(x).
(a) Sketch a graph of y = h(z) and explain why h must be invertible.

(b) Explain why it does not appear to be algebraically possible to determine a formula for
hL.

(c) Observe that the point (7, § + 1) lies on the graph of y = h(z). Determine the value of
(R (5 +1)-
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2.7 Derivatives of Functions Given Implicitly

Motivating Questions

In this section, we strive to understand the ideas generated by the following important questions:

e What does it mean to say that a curve is an implicit function of z, rather than an explicit
function of z?

e How does implicit differentiation enable us to find a formula for % when y is an implicit
function of z?

¢ In the context of an implicit curve, how can we use g—g to answer important questions about
the tangent line to the curve?

Introduction

In all of our studies with derivatives to date, we have worked in a setting where we can express a
formula for the function of interest explicitly in terms of x. But there are many interesting curves
that are determined by an equation involving = and y for which it is impossible to solve for y in
terms of x. Perhaps the simplest and most natural of all such curves are circles. Because of the

2?2+ 9% =16

Figure 2.14: At left, the circle given by 2% + y? = 16. In the middle, the portion of the circle 2? + y* = 16
that has been highlighted in the box at left. And at right, the lemniscate given by 23 — y3 = 6zy.

circle’s symmetry, for each = value strictly between the endpoints of the horizontal diameter, there
are two corresponding y-values. For instance, in Figure 2.14, we have labeled A = (—3,/7) and
B = (-3, —/7), and these points demonstrate that the circle fails the vertical line test. Hence, it is
impossible to represent the circle through a single function of the form y = f(z). At the same time,
portions of the circle can be represented explicitly as a function of z, such as the highlighted arc
that is magnified in the center of Figure 2.14. Moreover, it is evident that the circle is locally linear,

D09
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so we ought to be able to find a tangent line to the curve at every point; thus, it makes sense to
wonder if we can compute % at any point on the circle, even though we cannot write y explicitly
as a function of z. Finally, we note that the righthand curve in Figure 2.14 is called a lemniscate and
is just one of many fascinating possibilities for implicitly given curves.

In working with implicit functions, we will often be interested in finding an equation for %
that tells us the slope of the tangent line to the curve at a point (z,y). To do so, it will be necessary
for us to work with y while thinking of y as a function of x, but without being able to write an
explicit formula for y in terms of x. The following preview activity reminds us of some ways we
can compute derivatives of functions in settings where the function’s formula is not known. For
instance, recall the earlier example % [e¥®)] = eu®)q/ ().

Preview Activity 2.7. Let f be a differentiable function of x (whose formula is not known) and re-
call that % [f(z)] and f’(z) are interchangeable notations. Determine each of the following deriva-
tives of combinations of explicit functions of z, the unknown function f, and an arbitrary constant
c.

@ o+ f(@)

®) - [2f()

© 2 fetat fay]
(@ [

(© = [ef(x) + Flex) + cf (@)

Implicit Differentiation

Because a circle is perhaps the simplest of all curves that cannot be represented explicitly as a
single function of x, we begin our exploration of implicit differentiation with the example of the
circle given by z?+y* = 16. It is visually apparent that this curve is locally linear, so it makes sense
for us to want to find the slope of the tangent line to the curve at any point, and moreover to think
that the curve is differentiable. The big question is: how do we find a formula for %, the slope of
the tangent line to the circle at a given point on the circle? By viewing y as an implicit'? function of
x, we essentially think of y as some function whose formula f(x) is unknown, but which we can
differentiate. Just as y represents an unknown formula, so too its derivative with respect to z, %,
will be (at least temporarily) unknown.

'%Essentially the idea of an implicit function is that it can be broken into pieces where each piece can be viewed as an
explicit function of z, and the combination of those pieces constitutes the full implicit function. For the circle, we could
choose to take the top half as one explicit function of z, and the bottom half as another.
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Consider the equation 22 + y? = 16 and view y as an unknown differentiable function of z.
Differentiating both sides of the equation with respect to =, we have

dyo, 29_ d
oo [+ = - [16].

On the right, the derivative of the constant 16 is 0, and on the left we can apply the sum rule, so it

follows that p p
a o9 LA
dx[x]—i_dx[y] 0-

Next, it is essential that we recognize the different roles being played by = and y. Since x is the
independent variable, it is the variable with respect to which we are differentiating, and thus

4 [2?] = 27. But y is the dependent variable and y is an implicit function of z. Thus, when

we want to compute % [y?] it is identical to the situation in Preview Activity 2.7 where we com-

puted %[ f(z)?]. In both situations, we have an unknown function being squared, and we seek

ldy

the derivative of the result. This requires the chain rule, by which we find that %[yz] =2y .

Therefore, continuing our work in differentiating both sides of 22 + 3% = 16, we now have that
d
2x + 2y—y =0.
dzx

Since our goal is to find an expression for %, we solve this most recent equation for %. Subtracting
2z from both sides and dividing by 2y,

Figure 2.15: The circle given by 22 4+ y* = 16 with point (a, b) on the circle and the tangent line at that point,
with labeled slopes of the radial line, m,., and tangent line, m.

There are several important things to observe about the result that % = —%. First, this expres-
sion for the derivative involves both x and y. It makes sense that this should be the case, since for
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each value of z between —4 and 4, there are two corresponding points on the circle, and the slope

of the tangent line is different at each of these points. Second, this formula is entirely consistent

with our understanding of circles. If we consider the radius from the origin to the point (a, b), the

slope of this line segment is m, = 2. The tangent line to the circle at (a, b) will be perpendicular

to the radius, and thus have slope m; = —{, as shown in Figure 2.15. Finally, the slope of the

tangent line is zero at (0,4) and (0, —4), and is undefined at (—4, 0) and (4, 0); all of these values
x

are consistent with the formula % = -

We consider the following more complicated example to investigate and demonstrate some
additional algebraic issues that arise in problems involving implicit differentiation.

Example 2.4. For the curve given implicitly by 3 + y? — 22y = 2, shown in Figure 2.16, find the
slope of the tangent line at (—1,1).

Figure 2.16: The curve 23 + y? — 22y = 2.

Solution. We begin by differentiating the curve’s equation implicitly. Taking the derivative of

each side with respect to z,
d d
oo [0yt = 2my] = - 2],
by the sum rule and the fact that the derivative of a constant is zero, we have
d s d ., d
— — — —[2zy] = 0.
e el U e £

For the three derivatives we now must execute, the first uses the simple power rule, the second
requires the chain rule (since y is an implicit function of x), and the third necessitates the product
rule (again since y is a function of ). Applying these rules, we now find that

d d
322 + 2y£ - [mﬁ +2y] = 0.

Q020



2.7. DERIVATIVES OF FUNCTIONS GIVEN IMPLICITLY 135

Remembering that our goal is to find an expression for g—g so that we can determine the slope of a
particular tangent line, we want to solve the preceding equation for %. To do so, we get all of the

terms involving Z—Z on one side of the equation and then factor. Expanding and then subtracting
322 — 2y from both sides, it follows that

dy dy 2
Qy—= — 2x—> =2y — .
ydac xdw y—3w

Factoring the left side to isolate %, we have

%(Qy —2z) = 2y — 322

Finally, we divide both sides by (2y — 2x) and conclude that

@72y—3x2
de 2y —2z’

Here again, the expression for % depends on both x and y. To find the slope of the tangent line at
g p dz 9€P P g
—1,1), we substitute this point in the formula for 4 1sing the notation
P da g

dy ~2(1) = 3(-1)? 1

dr|_yy  20)-2(-1) 4

This value matches our visual estimate of the slope of the tangent line shown in Figure 2.16.

Example 2.4 shows that it is possible when differentiating implicitly to have multiple terms
involving %- Regardless of the particular curve involved, our approach will be similar each time.
After differentiating, we expand so that each side of the equation is a sum of terms, some of which
involve %. Next, addition and subtraction are used to get all terms involving % on one side of
the equation, with all remaining terms on the other. Finally, we factor to get a single instance of
%, and then divide to solve for g—g.

Note, too, that since g—z is often a function of both z and y, we use the notation

dy
dzx (a,b)

to denote the evaluation of % at the point (a,b). This is analogous to writing f’(a) when [ de-
pends on a single variable.
Finally, there is a big difference between writing % and %. For example,

d
%[5132 + 3]
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gives an instruction to take the derivative with respect to z of the quantity 2% + y?, presumably
where y is a function of x. On the other hand,

dy 2 2
dw( +y°)

means the product of the derivative of y with respect to = with the quantity z2+y?. Understanding
this notational subtlety is essential.

The following activities present opportunities to explore several different problems involving
implicit differentiation.

Activity 2.19.

Consider the curve defined by the equation z = y° — 5y + 4y, whose graph is pictured in
Figure 2.17.

Q

R

Figure 2.17: The curve = = 3° — 5y + 4y.

(a) Explain why it is not possible to express y as an explicit function of x.
(b) Use implicit differentiation to find a formula for dy/dz.

(c) Use your result from part (b) to find an equation of the line tangent to the graph of
x = y° — 5y + 4y at the point (0, 1).

(d) Use your result from part (b) to determine all of the points at which the graph of x =
y° — 5y + 4y has a vertical tangent line.

<

Two natural questions to ask about any curve involve where the tangent line can be vertical or
horizontal. To be horizontal, the slope of the tangent line must be zero, while to be vertical, the
slope must be undefined. It is typically the case when differentiating implicitly that the formula
for g—g is expressed as a quotient of functions of x and y, say

dy _ p(z,y)
dz q(z,y)
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Thus, we observe that the tangent line will be horizontal precisely when the numerator is zero,
or p(z,y) = 0. Similarly, the tangent line will be vertical whenever ¢(z,y) = 0, making the de-
nominator 0 and thus the slope undefined. If both = and y are involved in an equation such as
p(x,y) = 0, we try to solve for one of them in terms of the other, and then use the resulting con-
dition in the original equation that defines the curve to find an equation in a single variable that
we can solve to determine the point(s) that lie on the curve at which the condition holds. It is not
always possible to execute the desired algebra due to the possibly complicated combinations of
functions that often arise.

Activity 2.20.

Consider the curve defined by the equation y(y? — 1)(y — 2) = x(x — 1)(x — 2), whose graph is
pictured in Figure 2.18. Through implicit differentiation, it can be shown that

Figure 2.18: The curve y(y? — 1)(y — 2) = z(z — 1)(z — 2).

dy _ (z—1)(z—=2)+z(x—2)+z(x—1)
dr (P =1y —2)+20°(y - 2) +y(y> - 1)

Use this fact to answer each of the following questions.

(a) Determine all points (x,y) at which the tangent line to the curve is horizontal.
(b) Determine all points (z,y) at which the tangent line is vertical.
(c) Find the equation of the tangent line to the curve at one of the points where z = 1.

<

The closing activity in this section offers more opportunities to practice implicit differentiation.
Activity 2.21.

For each of the following curves, use implicit differentiation to find dy/dz and determine the
equation of the tangent line at the given point.

(@) =3 —y3 =6zy, (-3,3)
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(b) sin(y) +y =2° +z, (0,0)
(c) ze~™ =y?2, (0.571433,1)

Summary

In this section, we encountered the following important ideas:

e When we have an equation involving = and y where y cannot be solved for explicitly in terms
of , but where portions of the curve can be thought of as being generated by explicit functions
of x, we say that y is an implicit function of z. A good example of such a curve is the unit circle.

¢ In the process of implicit differentiation, we take the equation that generates an implicitly given
curve and differentiate both sides with respect to x while treating y as a function of z. In
so doing, the chain rule leads % to arise, and then we may subsequently solve for % using
algebra.

e While % may now involve both the variables = and y, % still measures the slope of the tangent
line to the curve, and thus this derivative may be used to decide when the tangent line is
horizontal (% = 0) or vertical (% is undefined), or to find the equation of the tangent line at a
particular point on the curve.

Exercises

1. Consider the curve given by the equation 2y3 +y? — 3% = 2* — 22® + 22. Find all points at which
the tangent line to the curve is horizontal or vertical.

2. For the curve given by the equation sin(z + y) + cos(x — y) = 1, find the equation of the tangent
line to the curve at the point (7§, 5).

3. Implicit differentiation enables us a different perspective from which to see why the rule % [a”] =

a” In(a) holds, if we assume that % [In(z)] = 1. This exercise leads you through the key steps
to do so.

(a) Let y = a®. Rewrite this equation using the natural logarithm function to write z in
terms of y (and the constant a).

(b) Differentiate both sides of the equation you found in (a) with respect to z, keeping in
mind that y is implicitly a function of .

(c) Solve the equation you found in (b) for %, and then use the definition of y to write g—g
solely in terms of . What have you found?
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2.8 Using Derivatives to Evaluate Limits

Motivating Questions

In this section, we strive to understand the ideas generated by the following important questions:

e How can derivatives be used to help us evaluate indeterminate limits of the form §?

e What does it mean to say that lim, . f(z) = L and lim,_,, f(z) = 00?

07

e How can derivatives assist us in evaluating indeterminate limits of the form 52

Introduction

Because differential calculus is based on the definition of the derivative, and the definition of the
derivative involves a limit, there is a sense in which all of calculus rests on limits. In addition, the
limit involved in the limit definition of the derivative is one that always generates an indetermi-
nate form of %. If f is a differentiable function for which f/(z) exists, then when we consider

Fe) — tim LT =)

h—0 h

Y

it follows that not only does h — 0 in the denominator, but also (f(z + k) — f(z)) — 0 in the nu-
merator, since f is continuous. Thus, the fundamental form of the limit involved in the definition
of f/(z)is §. Remember, saying a limit has an indeterminate form only means that we don't yet

know its value and have more work to do: indeed, limits of the form % can take on any value, as

is evidenced by evaluating f/(x) for varying values of z for a function such as f’(z) = 22

Of course, we have learned many different techniques for evaluating the limits that result
from the derivative definition, and including a large number of shortcut rules that enable us to
evaluate these limits quickly and easily. In this section, we turn the situation upside-down: rather
than using limits to evaluate derivatives, we explore how to use derivatives to evaluate certain
limits. This topic will combine several different ideas, including limits, derivative shortcuts, local
linearity, and the tangent line approximation.

o+ —2

Preview Activity 2.8. Let h be the function given by h(z) = — 1
2 —

(a) What is the domain of h?
24—
(b) Explain why liml 21 results in an indeterminate form.
T—

22 —

(c) Next we will investigate the behavior of both the numerator and denominator of i near
the point where = = 1. Let f(z) = 2° + x —2 and g(x) = 2% — 1. Find the local linearizations
of f and g at a = 1, and call these functions L(x) and Ly(x), respectively.
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Ly(x)
Lg(x)

(e) Using your work from (c), evaluate

for x neara = 1.

(d) Explain why h(z) ~

o Lr(@)
r—1 Lg(ZL‘) '

What do you think your result tells us about lim1 h(x)?
T—
(f) Investigate the function h(z) graphically and numerically near # = 1. What do you think
is the value of lim1 h(x)?
z—

Using derivatives to evaluate indeterminate limits of the form 2.

The fundamental idea of Preview Activity 2.8 — that we can evaluate an indeterminate limit of
the form { by replacing each of the numerator and denominator with their local linearizations at
the point of interest — can be generalized in a way that enables us to easily evaluate a wide range

of limits. We begin by assuming that we have a function h(x) that can be written in the form
h(z) = % where f and g are both differentiable at + = a and for which f(a) = g(a) = 0. We are
interested in finding a way to evaluate the indeterminate limit given by liin h(x).InFigure 2.19, we

see a visual representation of the situation involving such functions f and g. In particular, we see

f
Ly

Figure 2.19: At left, the graphs of f and ¢ near the value q, along with their tangent line approximations L
and L, at 2 = a. At right, zooming in on the point a and the four graphs.

that both f and g have an z-intercept at the point where « = a. In addition, since each function is
differentiable, each is locally linear, and we can find their respective tangent line approximations
Ly and L, at x = a, which are also shown in the figure. Since we are interested in the limit
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of % as © — a, the individual behaviors of f(z) and g(x) as + — a are key to understand.
Here, we take advantage of the fact that each function and its tangent line approximation become

indistinguishable as z — a.

First, let’s reall that L¢(z) = f'(a)(z — a) + f(a) and Ly(z) = ¢'(a)(x — a) + g(a). The critical
observation we make is that when taking the limit, because z is getting arbitrarily close to a, we
can replace f with L, and replace g with L , and thus we observe that

lim @ = lim Ly(@)
T—a g(x) r—a Lg(x)
M@0+ /@
z—a g'(a)(z — a) + g(a)

Next, we remember a key fundamental assumption: that both f(a) = 0 and g(a) = 0, as this is
precisely what makes the original limit indeterminate. Substituting these values for f(a) and g(a)
in the limit above, we now have

lim @ = lim 7]”((1)( @)
—a g(z) z—~a g'(a)(z — a)
)
a—a g'(a) ’

where the latter equality holds since x is approaching (but not equal to) a, so 7=¢ = 1. Finally, we
note that £, (( ; is constant with respect to z, and thus

i L) _ 1)
~ag(z) ¢(a)

We have, of course, implicitly made the assumption that ¢'(a) # 0, which is essential to the overall

g :gg; We summarize our work above with the statement of L'Hopital’s

Rule, which is the formal name of the result we have shown.

L'Hopital’s Rule: Let f and g be differentiable at = = a, and suppose that f(a) = g(a) = 0 and
that ¢’(a) # 0. Then

o 12) _ S0

vag(z)  g'(a)

In practice, we typically add the minor assumption that f’ and ¢’ are continuous at a, and
hence we can write that )
o £@) @)

z—a g(x) - a:l—m g’(x)

I

which reflects the fundamental benefit of L’'Hopital’s Rule: if Hz é § produces an indeterminate limit

0

of form 0

as x — a, it is equivalent to consider the limit of the quotient of the two functions’
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derivatives, w For example, if we consider the limit from Preview Activity 2.8,
g’ (x) p y

. P rr—2
hm27,
x—1 x€X —1

by L'Hopital’s Rule we have that

5 :c5—}-x—2_1, 5x4+1_6_3
zl—% $2—1 _:cl—>Inl 2.56 _2_ '

By being able to replace the numerator and denominator with their respective derivatives, we
often move from an indeterminate limit to one whose value we can easily determine.

Activity 2.22.

Evaluate each of the following limits. If you use L'Hopital’s Rule, indicate where it was used,
and be certain its hypotheses are met before you apply it.

In(1
(@) lim 2LF2)
x—0 x

cos(x)

(b) lim

T—T T

. 2In(x)
(© I
. sin(z) —x
d) lim ———
(d) 250 cos(2x) — 1
<

While L’'Hopital’s Rule can be applied in an entirely algebraic way;, it is important to remember

f

N m = f'(a)
T [m=r
/ ,

N =50 “Nm=g'(a)

g

Figure 2.20: Two functions f and g that satisfy L’'Hopital’s Rule.

that the genesis of the rule is graphical: the main idea is that the slopes of the tangent lines to f
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and g at 2 = a determine the value of the limit of % as x — a. We see this in Figure 2.20, which
is a modified version of Figure 2.19, where we can see from the grid that f/(a) = 2and ¢'(a) = -1,
hence by L'Hopital’s Rule,
f@) a2
vmag(z)  g'(a) 1 '
Indeed, what we observe is that it’s not the fact that f and g both approach zero that matters most,
but rather the rate at which each approaches zero that determines the value of the limit. This is

a good way to remember what L'Hopital’s Rule says: if f(a) = g(a) = 0, the the limit of % as

x — a is given by the ratio of the slopes of f and g at z = a.
Activity 2.23.

In this activity, we reason graphically to evaluate limits of ratios of functions about which some
information is known.

Figure 2.21: Three graphs referenced in the questions of Activity 2.23.

(a) Use the left-hand graph to determine the values of f(2), f'(2), g(2), and ¢'(2). Then,
evaluate

(c) Use the right-hand graph to compute r(2), r'(2), s(2), s'(2). Explain why you cannot
determine the exact value of
r(z)

um ———
2 s(x)
without further information being provided, but that you can determine the sign of

lim, o ;Eg . In addition, state what the sign of the limit will be, with justification.

<
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Limits involving oo

The concept of infinity, denoted oo, arises naturally in calculus, like it does in much of mathemat-
ics. It is important to note from the outset that co is a concept, but not a number itself. Indeed,
the notion of co naturally invokes the idea of limits. Consider, for example, the function f(z) = %,

whose graph is pictured in Figure 2.22. We note that = 0 is not in the domain of f, so we may

Figure 2.22: The graph of f(z) = 1.

naturally wonder what happens as z — 0. As z — 07, we observe that f(z) increases without
bound. That is, we can make the value of f(z) as large as we like by taking x closer and closer (but
not equal) to 0, while keeping = > 0. This is a good way to think about what infinity represents: a
quantity is tending to infinity if there is no single number that the quantity is always less than.

Recall that when we write lim f(z) = L, this means that can make f(x) as close to L as we’'d
Tr—a

like by taking z sufficiently close (but not equal) to a. We thus expand this notation and language

to include the possibility that either L or a can be co. For instance, for f(z) = %, we now write

by which we mean that we can make 1 as large as we like by taking z sufficiently close (but not
equal) to 0. In a similar way, we naturally write

1
lim — =0,
T—00 I

since we can make 1 as close to 0 as we’d like by taking = sufficiently large (i.e., by letting

increase without bound).

In general, we understand the notation 1131 f(z) = oo to mean that we can make f(z) as large
r—a
as we’d like by taking x sufficiently close (but not equal) to a, and the notation 1i_>m f(z) =Lto
T—00

mean that we can make f(x) as close to L as we’d like by taking z sufficiently large. This notation
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applies to left- and right-hand limits, plus we can also use limits involving —oco. For example,
returning to Figure 2.22 and f(z) = 1, we can say that

:EI

1
lim —=—-oco and lim —=0.
=0~ T T—>—00 I
Finally, we write

li_)m flx) =

when we can make the value of f(z) as large as we’d like by taking z sufficiently large. For
example,

lim 2? = oo.

T—00

Note particularly that limits involving infinity identify vertical and horizontal asymptotes of a

function. If lim,_,, f(z) = oo, then = a is a vertical asymptote of f, while if lim,_,, f(z) = L,
then y = L is a horizontal asymptote of f. Similar statements can be made using —oo, as well as
with left- and right-hand limitsas ¢ — a~ orz — a™.

In precalculus classes, it is common to study the end behavior of certain families of functions,
by which we mean the behavior of a function as * — oo and as z — —oo. Here we briefly examine
a library of some familiar functions and note the values of several limits involving co. For the

641
y=f(x)
™ 5
5
64+
y=g(x)

Figure 2.23: Graphs of some familiar functions whose end behavior as x — Foc is known. In the middle
graph, f(z) = 23 — 16z and g(z) = 2* — 1622 — 8.

natural exponential function e”, we note that lim,_,, e = oo and lim,_,_, €* = 0, while for the
related exponential decay function e, observe that these limits are reversed, with lim,_,, e™* =
0 and lim,_,_ o e~* = oo. Turning to the natural logarithm function, we have lim, o+ In(z) = —co
and lim;_,~ In(z) = oco. While both e” and In(z) grow without bound as x — oo, the exponential
function does so much more quickly than the logarithm function does. We’ll soon use limits to
quantify what we mean by “quickly.”

For polynomial functions of the form p(z) = apz™ + an_12"" 1+ - a1z + ag, the end behavior
depends on the sign of a,, and whether the highest power n is even or odd. If n is even and a,,
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146 2.8. USING DERIVATIVES TO EVALUATE LIMITS

is positive, then lim,_,o p(x) = oo and lim,_,_ p(x) = oo, as in the plot of g in Figure 2.23. If
instead a,, is negative, then lim,_,,, p(z) = —oo and lim,_,_ p(x) = —oo. In the situation where
n is odd, then either lim,_,~, p(z) = oo and lim,—,_, p(z) = oo (Which occurs when a,, is positive,
as in the graph of f in Figure 2.23), or lim, ,, p(z) = oo and lim, ,_ p(z) = oo (When a, is
negative).

A function can fail to have a limit as x — co. For example, consider the plot of the sine function
at right in Figure 2.23. Because the function continues oscillating between —1 and 1 as © — oo, we
say that lim,_, sin(z) does not exist.

Finally, it is straightforward to analyze the behavior of any rational function as z — oco. Con-
sider, for example, the function
_ 3a?—4x+5
alz) = Tx2 + 92 — 10°
Note that both (322 — 4z + 5) — oo as  — oo and (722 + 92 — 10) — oo as ¢ — oo. Here we
say that lim, , q(x) has indeterminate form 2, much like we did when we encountered limits
of the form Y. We can determine the value of this limit through a standard algebraic approach.

0
Multiplying the numerator and denominator each by -1, we find that

lim ¢(x) = lim —33:2 —dets . 512
oo o Ta? + 9z — 10 L
1 1
3 415 +5%
2500 7+ 91 — 10
3
7

since x% — 0 and % — 0 as + — oo. This shows that the rational function ¢ has a horizontal
asymptote at y = 2. A similar approach can be used to determine the limit of any rational function

as r — oQ.

But how should we handle a limit such as

IE2

lim —7

rz—o00 el
Here, both 22 — 0o and e* — oo, but there is not an obvious algebraic approach that enables us
to find the limit’s value. Fortunately, it turns out that L'Hopital’s Rule extends to cases involving

infinity.

L'Hopital’s Rule (c0): If f and g are differentiable and both approach zero or both approach
+oo as x — a (where a is allowed to be c0), then

@) )
P gw) e ()

To evaluate lim, g—j, we observe that we can apply L'Hopital’s Rule, since both 22 — oo and
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e” — oo. Doing so, it follows that
oz . 2z
lim — = lim —.
r—00 el z—o0 e¥
This updated limit is still indeterminate and of the form =, but it is simpler since 2z has replaced
z2. Hence, we can apply L'Hopital’s Rule again, by which we find that
. a? . 2z . 2
Iim — = lim — = lim —.
x—00 el z—o00 er r—00 er
Now, since 2 is constant and e* — oo as x — oo, it follows that e% — 0 as x — oo, which shows
that

Activity 2.24.

Evaluate each of the following limits. If you use L'Hopital’s Rule, indicate where it was used,
and be certain its hypotheses are met before you apply it.

@ Mmoo

. et +x
(b) zhﬁnolo 2e% 4+ 2

© lim &)

a0t L1
x

(d) lim

T —
x—)i 2

li —
(€) Jipa,we

<

When we are considering the limit of a quotient of two functions % that results in an inde-

terminate form of 3, in essence we are asking which function is growing faster without bound.
We say that the function g dominates the function f as x — oo provided that

lim —= =0,
Z—>00 g(x)

whereas f dominates g provided that lim,_, % = oo. Finally, if the value of lim; % is

finite and nozero, we say that f and g grow at the same rate. For example, from earlier work we
know that lim,_, oo ’g—i =0, so e dominates z2, while lim,_, % = %, so f(z) =322 —4x+5
and g(x) = 72? + 9z — 10 grow at the same rate.

Summary

In this section, we encountered the following important ideas:
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148 2.8. USING DERIVATIVES TO EVALUATE LIMITS

e Derivatives be used to help us evaluate indeterminate limits of the form § through L'Hopital’s
Rule, which is developed by replacing the functions in the numerator and denominator with
their tangent line approximations. In particular, if f(a) = g(a) = 0 and f and g are differentiable
at a, L'Hopital’s Rule tells us that

fle) . f(@)

M g(e) " gl

e When we write z — oo, this means that z is increasing without bound. We thus use co along
with limit notation to write lim,_,~, f(z) = L, which means we can make f(z) as close to L as
we like by choosing z to be sufficiently large, and similarly lim,_,, f(x) = oo, which means we
can make f(z) as large as we like by choosing z sufficiently close to a.

e A version of L’'Hopital’s Rule also allows us to use derivatives to assist us in evaluating inde-
terminate limits of the form 2. In particular, If f and g are differentiable and both approach
zero or both approach oo as x — a (where a is allowed to be o), then

@) )
P @) A ()

Exercises

1. Let f and g be differentiable functions about which the following information is known: f(3) =
9(3) =0, f'(3) =4¢'(3) =0, f'(3) = —2,and ¢"(3) = 1. Let a new function % be given by the
rule h(x) = %. On the same set of axes, sketch possible graphs of f and g near = 3, and use
the provided information to determine the value of

lim h(x).

T—3
Provide explanation to support your conclusion.

2. Find all vertical and horizontal asymptotes of the function

where qa, b, and c are distinct, arbitrary constants. In addition, state all values of = for which R
is not continuous. Sketch a possible graph of R, clearly labeling the values of a, b, and c.

3. Consider the function g(x) = 22*, which is defined for all z > 0. Observe that lim,_,y+ g(z) is
indeterminate due to its form of 0°. (Think about how we know that 0¥ = 0 for all £ > 0, while
0 = 1 for all b # 0, but that neither rule can apply to 0°.)

(a) Let h(x) = In(g(x)). Explain why h(z) = 2z In(z).
21n(z)

1
x

(b) Next, explain why it is equivalent to write h(x) =
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(c) Use L'Hopital’s Rule and your work in (b) to compute lim, o+ h(z).

(d) Based on the value of lim,_,q+ h(z), determine lim,_,o+ g(z).

4. Recall we say that function g dominates function f provided thatlim,_, f(z) = oo, lim,_,00 g(x) =
oo, and limg_s oo % =0.
(a) Which function dominates the other: In(z) or /z?
(b) Which function dominates the other: In(x) or {/z? (n can be any positive integer)
(c) Explain why e” will dominate any polynomial function.

(d) Explain why 2" will dominate In(z) for any positive integer n.
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Chapter 3

Using Derivatives

3.1 Using derivatives to identify extreme values of a function

Motivating Questions

In this section, we strive to understand the ideas generated by the following important questions:

e What are the critical values of a function f and how are they connected to identifying the
most extreme values the function achieves?

e How does the first derivative of a function reveal important information about the behavior
of the function, including the function’s extreme values?

e How can the second derivative of a function be used to help identify extreme values of the
function?

Introduction

In many different settings, we are interested in knowing where a function achieves its least and
greatest values. These can be important in applications —say to identify a point at which maximum
profit or minimum cost occurs — or in theory to understand how to characterize the behavior of a
function or a family of related functions. Consider the simple and familiar example of a parabolic
function such as s(t) = —16¢ + 32t + 48 (shown at left in Figure 3.1) that represents the height of
an object tossed vertically: its maximum value occurs at the vertex of the parabola and represents
the highest value that the object reaches. Moreover, this maximum value identifies an especially
important point on the graph, the point at which the curve changes from increasing to decreasing.

More generally, for any function we consider, we can investigate where its lowest and highest
points occur in comparison to points nearby or to all possible points on the graph. Given a function
f,wesay that f(c) is a global or absolute maximum provided that f(c) > f(x) for all x in the domain
of f, and similarly call f(c) a global or absolute minimum whenever f(c) < f(z) for all z in the
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152 3.1. USING DERIVATIVES TO IDENTIFY EXTREME VALUES OF A FUNCTION

Figure 3.1: Atleft, s(t) = —16t* + 24t + 32 whose vertex is (2,41); at right, a function g that demonstrates
several high and low points.

domain of f. For instance, for the function g given at right in Figure 3.1, g has a global maximum
of g(c), but g does not appear to have a global minimum, as the graph of g seems to decrease
without bound. We note that the point (¢, g(c)) marks a fundamental change in the behavior of
g, where g changes from increasing to decreasing; similar things happen at both (a, g(a)) and
(b, g(b)), although these points are not global mins or maxes.

For any function f, we say that f(c) is a local maximum or relative maximum provided that
f(¢) > f(x) for all x near ¢, while f(c) is called a local or relative minimum whenever f(c) < f(z)
for all  near c. Any maximum or minimum may be called an extreme value of f. For example, in
Figure 3.1, g has a relative minimum of g(b) at the point (b, (b)) and a relative maximum of g(a)
at (a, g(a)). We have already identified the global maximum of g as g(c); this global maximum can
also be considered a relative maximum.

We would like to use fundamental calculus ideas to help us identify and classify key function
behavior, including the location of relative extremes. Of course, if we are given a graph of a
function, it is often straightforward to locate these important behaviors visually. We investigate
this situation in the following preview activity.

Preview Activity 3.1. Consider the function h given by the graph in Figure 3.2. Use the graph to
answer each of the following questions.

(a) Identify all of the values of ¢ for which h(c) is a local maximum of h.

(b) Identify all of the values of ¢ for which h(c) is a local minimum of A.

(c) Does h have a global maximum? If so, what is the value of this global maximum?
(d) Does h have a global minimum? If so, what is its value?

(e) Identify all values of ¢ for which A'(c) = 0.
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Figure 3.2: The graph of a function & on the interval [—3, 3].

(f) Identify all values of ¢ for which //(c) does not exist.

(g) True or false: every relative maximum and minimum of i occurs at a point where //(c) is
either zero or does not exist.

(h) True or false: at every point where //(c) is zero or does not exist, h has a relative maximum
or minimum.

Critical points and the first derivative test

If a function has a relative extreme value at a point (¢, f(c)), the function must change its behavior
at c regarding whether it is increasing or decreasing before or after the point.

\ ~

/\

\ T ~

Figure 3.3: From left to right, a function with a relative maximum where its derivative is zero; a function
with a relative maximum where its derivative is undefined; a function with neither a maximum nor a
minimum at a point where its derivative is zero; a function with a relative minimum where its derivative is
zero; and a function with a relative minimum where its derivative is undefined.

For example, if a continuous function has a relative maximum at ¢, such as those pictured in
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the two leftmost functions in Figure 3.3, then it is both necessary and sufficient that the function
change from being increasing just before c to decreasing just after c. In the same way, a continu-
ous function has a relative minimum at c if and only if the function changes from decreasing to
increasing at c. See, for instance, the two functions pictured at right in Figure 3.3. There are only
two possible ways for these changes in behavior to occur: either f'(c¢) = 0 or f’(c) is undefined.

Because these values of ¢ are so important, we call them critical values. More specifically, we
say that a function f has a critical value at © = ¢ provided that f'(c) = 0 or f’(c) is undefined.
Critical values provide us with the only possible locations where the function f may have relative
extremes. Note that not every critical value produces a maximum or minimum; in the middle
graph of Figure 3.3, the function pictured there has a horizontal tangent line at the noted point,
but the function is increasing before and increasing after, so the critical value does not yield a
location where the function is greater than every value nearby, nor less than every value nearby:.

The first derivative test summarizes how sign changes in the first derivative indicate the pres-
ence of a local maximum or minimum for a given function.

First Derivative Test: If p is a critical value of a continuous function f that is differentiable
near p (except possibly at z = p), then f has a relative maximum at p if and only if f’ changes
sign from positive to negative at p, and f has a relative minimum at p if and only if f’ changes
sign from negative to positive at p.

We consider an example to show one way the first derivative test can be used to identify the
relative extreme values of a function.

Example 3.1. Let f be a function whose derivative is given by the formula f'(z) = e=2*(3 — x)(z +
1)2. Determine all critical values of f and decide whether a relative maximum, relative minimum,
or neither occurs at each.

Solution. Since we already have f’(z) written in factored form, it is straightforward to find the
critical values of f. Since f'(x) is defined for all values of z, we need only determine where
f'(z) = 0. From the equation

e 2B —x)(z+1)%2=0
and the zero product property, it follows that # = 3 and = —1 are critical values of f. (Note
particularly that there is no value of x that makes e=2* = 0.)

Next, to apply the first derivative test, we’d like to know the sign of f’(x) at values near the
critical values. Because the critical values are the only locations at which f’ can change sign, it
follows that the sign of the derivative is the same on each of the intervals created by the critical
values: for instance, the sign of f’ must be the same for every value of + < —1. We create a
first derivative sign chart to summarize the sign of f’ on the relevant intervals along with the
corresponding behavior of f.

The first derivative sign chart in Figure 3.4 comes from thinking about the sign of each of the
terms in the factored form of f’(z) at one selected point in the interval under consideration. For
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o+ NRNENE +
sign(f") + + -
1 1
L] L]
behav(f) INC —1 INC 3 DEC

Figure 3.4: The first derivative sign chart for a function f whose derivative is given by the formula f/(x) =
e (3 —z)(x+1)%

instance, for z < —1, we could consider x = —2 and determine the sign of e 2%, (3—z), and (z+1)?
at the value z = —2. We note that both e 2% and (z + 1)? are positive regardless of the value of z,
while (3 — z) is also positive at z = —2. Hence, each of the three terms in f’ is positive, which we

indicate by writing “4-++.” Taking the product of three positive terms obviously results in a value
that is positive, which we denote by the “+” in the interval to the left of x = —1 indicating the
overall sign of f’. And, since f’ is positive on that interval, we further know that f is increasing,
which we summarize by writing “INC” to represent the corresponding behavior of f. In a similar
way, we find that f’ is positive and f is increasing on —1 < z < 3, and f’ is negative and f is
decreasing for = > 3.

Now, by the first derivative test, to find relative extremes of f we look for critical value at

which f’ changes sign. In this example, f’ only changes sign at z = 3, where f’ changes from
positive to negative, and thus f has a relative maximum at + = 3. While f has a critical value

at z = —1, since f is increasing both before and after x = —1, f has neither a minimum nor a
maximum at x = —1.
Activity 3.1.

Suppose that g(x) is a function continuous for every value of x # 2 whose first derivative is
x4 4)(x —1)?
fa) = EHDED

xr=2.

. Further, assume that it is known that g has a vertical asymptote at

(a) Determine all critical values of g.

(b) By developing a carefully labeled first derivative sign chart, decide whether g has as a
local maximum, local minimum, or neither at each critical value.

(c) Does g have a global maximum? global minimum? Justify your claims.
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(d) What is the value of li_>m ¢ (z)? What does the value of this limit tell you about the

long-term behavior of g?

(e) Sketch a possible graph of y = g(x).

The second derivative test

Recall that the second derivative of a function tells us several important things about the behavior
of the function itself. For instance, if f” is positive on an interval, then we know that f’ is increas-
ing on that interval and, consequently, that f is concave up, which also tells us that throughout
the interval the tangent line to y = f(x) lies below the curve at every point. In this situation where
we know that f’(p) = 0, it turns out that the sign of the second derivative determines whether f
has a local minimum or local maximum at the critical value p.

\

\ / \

Figure 3.5: Four possible graphs of a function f with a horizontal tangent line at a critical value.

In Figure 3.5, we see the four possibilities for a function f that has a critical point p at which
f'(p) = 0, provided f”(p) is not zero on an interval including p (except possibly at p). On either
side of the critical point, f” can be either positive or negative, and hence f can be either concave up
or concave down. In the first two graphs, f does not change concavity at p, and in those situations,
/ has either a local minimum or local maximum. In particular, if f'(p) = 0 and f”(p) < 0, then
we know f is concave down at p with a horizontal tangent line, and this guarantees f has a local
maximum there. This fact, along with the corresponding statement for when f”(p) is positive, is
stated in the second derivative test.

Second Derivative Test: If p is a critical value of a continuous function f such that f/'(p) = 0
and f”(p) # 0, then f has a relative maximum at p if and only if f”(p) < 0, and f has a relative
minimum at p if and only if f”(p) > 0.

In the event that f”(p) = 0, the second derivative test is inconclusive. That is, the test doesn’t
provide us any information. This is because if f”(p) = 0, it is possible that f has a local minimum,
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local maximum, or neither.!

Just as a first derivative sign chart reveals all of the increasing and decreasing behavior of a
function, we can construct a second derivative sign chart that demonstrates all of the important
information involving concavity.

Example 3.2. Let f(z) be a function whose first derivative is f'(x) = 3z* — 92%. Construct both
first and second derivative sign charts for f, fully discuss where f is increasing and decreasing
and concave up and concave down, identify all relative extreme values, and sketch a possible

graph of f.

Solution. Since we know f/(z) = 32 — 922, we can find the critical values of f by solving 3z% —
9x2 = 0. Factoring, we observe that

0 =322(2? — 3) = 322 (z + V3)(z — V3),
so that x = 0, ++/3 are the three critical values of f. It then follows that the first derivative sign
chart for f is given in Figure 3.6. Thus, f is increasing on the intervals (—oc, —v/3) and (v/3, ),

J'(@) = 322 + V3) (@ — V3)

+ - - ++ - ++ - +++
sign(f’) + - - +
[ [ [
I I I
behav(f) INC _/3 DEC 0 DEC 3 INC

Figure 3.6: The first derivative sign chart for f when f’(z) = 32% — 92% = 32%(2? — 3).

while f is decreasing on (—+/3,0) and (0,+/3). Note particularly that by the first derivative test,
this information tells us that f has a local maximum at z = —+/3 and a local minimum at z = /3.
While f also has a critical value at x = 0, neither a maximum nor minimum occurs there since f’
does not change sign at z = 0.

Next, we move on to investigate concavity. Differentiating f'(r) = 3z* — 922, we see that
f"(x) = 1223 — 18x. Since we are interested in knowing the intervals on which f” is positive and
negative, we first find where f”(z) = 0. Observe that

3 3 3
=122 — 18z =12z (2?2 — = | =12 \[ —
0 x 8x x(a; 2) :c(a:—i— 2) <x 2),

!Consider the functions f(z) = z*, g(z) = —2*, and h(x) = 2* at the critical point p = 0.
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which implies that z = 0,4 /3. Building a sign chart for f” in the exact same way we do so for f,
p 2 g aslg y

we see the result shown in Figure 3.7. Therefore, f is concave down on the intervals (—oo, —/3)
f(z) =12z (x—i— \/g) (ac— %)
- -4+ - ++- +++
sign(f") - + - +
1 1 1
1 1 1
behav(f) CCD CCU 0 CCD CCU
V3 Vi

Figure 3.7: The second derivative sign chart for f when f”(z) = 122% — 18z = 122 (:cQ - %)

and (0, /32), and concave up on (0, 1/32) and (1/2, c0).
2 P 2 2

Putting all of the above information together, we now see a complete and accurate possible
graph of f in Figure 3.8. The point A = (—+/3, f(—/3) is a local maximum, as f is increasing prior

A
B
f
C
D
E
—V3 —V15 V15 V3

Figure 3.8: A possible graph of the function f in Example 3.2.

to A and decreasing after; similarly, the point £ = (v/3, f(1/3) is a local minimum. Note, too, that
f is concave down at A and concave up at B, which is consistent both with our second derivative
sign chart and the second derivative test. At points B and D, concavity changes, as we saw in
the results of the second derivative sign chart in Figure 3.7. Finally, at point C, f has a critical
value with a horizontal tangent line, but neither a maximum nor a minimum occurs there since f
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3.1. USING DERIVATIVES TO IDENTIFY EXTREME VALUES OF A FUNCTION 159

is decreasing both before and after C. It is also the case that concavity changes at C'.

While we completely understand where f is increasing and decreasing, where f is concave up
and concave down, and where f has relative extremes, we do not know any specific information
about the y-coordinates of points on the curve. For instance, while we know that f has a local
maximum at x = —+/3, we don’t know the value of that maximum because we do not know
f(=V/3). Any vertical translation of our sketch of f in Figure 3.8 would satisfy the given criteria
for f.

Points B, C, and D in Figure 3.8 are locations at which the concavity of f changes. We give a
special name to any such point: if p is a value in the domain of a continuous function f at which f
changes concavity, then we say that (p, f(p)) is an inflection point of f. Just as we look for locations
where f changes from increasing to decreasing at points where f’(p) = 0 or f’(p) is undefined, so
too we find where f”(p) = 0 or f”(p) is undefined to see if there are points of inflection at these
locations.

It is important at this point in our study to remind ourselves of the big picture that derivatives
help to paint: the sign of the first derivative f’ tells us whether the function f is increasing or
decreasing, while the sign of the second derivative f” tells us how the function f is increasing or
decreasing.

Activity 3.2.

Suppose that g is a function whose second derivative, g”, is given by the following graph.

NI

Figure 3.9: The graph of y = ¢"'(x).

(a) Find all points of inflection of g.
(b) Fully describe the concavity of g by making an appropriate sign chart.

(c) Suppose you are given that ¢’(—1.67857351) = 0. Is there is a local maximum, local
minimum, or neither (for the function g) at this critical value of g, or is it impossible to
say? Why?
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(d) Assuming that ¢”(z) is a polynomial (and that all important behavior of g” is seen in
the graph above, what degree polynomial do you think g(z) is? Why?

<

As we will see in more detail in the following section, derivatives also help us to understand
families of functions that differ only by changing one or more parameters. For instance, we might
be interested in understanding the behavior of all functions of the form f(z) = a(zx — h)* + k
where a, h, and k are numbers that may vary. In the following activity, we investigate a particular
example where the value of a single parameter has considerable impact on how the graph appears.

Activity 3.3.

Consider the family of functions given by h(z) = 2% + cos(kz), where k is an arbitrary positive
real number.

(a) Use a graphing utility to sketch the graph of h for several different k-values, including
k =1,3,5,10. Plot h(z) = 22+ cos(3x) on the axes provided below. What is the smallest

121

Figure 3.10: Axes for plotting y = h(x).

value of k at which you think you can see (just by looking at the graph) at least one
inflection point on the graph of h?

(b) Explain why the graph of h has no inflection points if ¥ < /2, but infinitely many
inflection points if £ > V2.

(c) Explain why, no matter the value of k, h can only have a finite number of critical values.

<
Summary

In this section, we encountered the following important ideas:

e The critical values of a continuous function f are the values of p for which f'(p) = 0 or f/(p)
does not exist. These values are important because they identify horizontal tangent lines or
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corner points on the graph, which are the only possible locations at which a local maximum or
local minimum can occur.

e Given a differentiable function f, whenever f’ is positive, f is increasing; whenever f’ is nega-
tive, f is decreasing. The first derivative test tells us that at any point where f changes from in-
creasing to decreasing, f has a local maximum, while conversely at any point where f changes
from decreasing to increasing f has a local minimum.

e Given a twice differentiable function f, if we have a horizontal tangent line at z = p and f”(p)
is nonzero, then the fact that f” tells us the concavity of f will determine whether f has a
maximum or minimum at z = p. In particular, if f/(p) = 0 and f”(p) < 0, then f is concave
down at p and f has a local maximum there, while if f'(p) = 0 and f”(p) > 0, then f has a local
minimum at p. If f/(p) = 0 and f”(p) = 0, then the second derivative does not tell us whether
f has a local extreme at p or not.

Exercises

1. This problem concerns a function about which the following information is known:

e f is a differentiable function defined at every real number z

. J(0)=-1/2
e y = f’(z) has its graph given at center in Figure 3.11

51 7

Figure 3.11: At center, a graph of y = f'(z); at left, axes for plotting y = f(x); at right, axes for plotting
y = f"(x).

(a) Construct a first derivative sign chart for f. Clearly identify all critical numbers of f,
where f is increasing and decreasing, and where f has local extrema.
(b) On the right-hand axes, sketch an approximate graph of y = f”(z).

(c) Construct a second derivative sign chart for f. Clearly identify where f is concave up
and concave down, as well as all inflection points.
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(d) On the left-hand axes, sketch a possible graph of y = f(x).
2. Suppose that g is a differentiable function and ¢'(2) = 0. In addition, suppose thaton 1 < z < 2
and 2 < z < 31itis known that ¢'(z) is positive.
(a) Does g have a local maximum, local minimum, or neither at x = 2? Why?

(b) Suppose that ¢"(x) exists for every = such that 1 < z < 3. Reasoning graphically,
describe the behavior of g’ (x) for z-values near 2.

(c) Besides being a critical value of g, what is special about the value x = 2 in terms of the
behavior of the graph of g?

3. Suppose that h is a differentiable function whose first derivative is given by the graph in Fig-
ure 3.12.

h/

Figure 3.12: The graph of y = h/(x).

(a) How many real number solutions can the equation h(z) = 0 have? Why?

(b) If h(z) = 0 has two distinct real solutions, what can you say about the signs of the two
solutions? Why?

(c) Assume that lim,_,, h'(x) = 3, as appears to be indicated in Figure 3.12. How will the
graph of y = h(z) appear as z — c0? Why?

(d) Describe the concavity of y = h(x) as fully as you can from the provided information.
4. Let p be a function whose second derivative is p”(z) = (z + 1)(z — 2)e™".
(a) Construct a second derivative sign chart for p and determine all inflection points of p.

(b) Suppose you also know that x = @ is a critical value of p. Does p have a local

minimum, local maximum, or neither at x = %? Why?
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(c) If the point (2, i—g) lies on the graph of y = p(z) and p/(2) = —e%, find the equation of
the tangent line to y = p(x) at the point where = 2. Does the tangent line lie above
the curve, below the curve, or neither at this value? Why?
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3.2 Using derivatives to describe families of functions

Motivating Questions

In this section, we strive to understand the ideas generated by the following important questions:

¢ Given a family of functions that depends on one or more parameters, how does the shape
of the graph of a typical function in the family depend on the value of the parameters?

e How can we construct first and second derivative sign charts of functions that depend on
one or more parameters while allowing those parameters to remain arbitrary constants?

Introduction

Mathematicians are often interested in making general observations, say by describing patterns
that hold in a large number of cases. For example, think about the Pythagorean Theorem: it
doesn’t tell us something about a single right triangle, but rather a fact about every right triangle,
thus providing key information about every member of the right triangle family. In the next part of
our studies, we would like to use calculus to help us make general observations about families of
functions that depend on one or more parameters. People who use applied mathematics, such as
engineers and economists, often encounter the same types of functions in various settings where
only small changes to certain constants occur. These constants are called parameters.

d+al

f(@&) =asin(b(t —c)) +d

[ c—i—%’T

Figure 3.13: The graph of f(t) = asin(b(t — ¢)) + d based on parameters a, b, ¢, and d.

We are already familiar with certain families of functions. For example, f(t) = asin(b(t—c))+d
is a stretched and shifted version of the sine function with amplitude a, period 2r phase shift ¢,
and vertical shift d. We understand from experience with trigonometric functions that a affects
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the size of the oscillation, b the rapidity of oscillation, and ¢ where the oscillation starts, as shown
in Figure 3.13, while d affects the vertical positioning of the graph.

In addition, there are several basic situations that we already understand completely. For
instance, every function of the form y = ma + b is a line with slope m and y-intercept (0, b).
Note that this form allows us to consider every possible line through two parameters. Further, we
understand that the value of b affects the line’s steepness and whether the line rises or falls from
left to right, while the value of b situates the line vertically on the coordinate axes.

For other less familiar families of functions, we would like to use calculus to understand and
classify where key behavior occurs: where members of the family are increasing or decreasing,
concave up or concave down, where relative extremes occur, and more, all in terms of the param-
eters involved. To get started, we revisit a common collection of functions to see how calculus
confirms things we already know.

Preview Activity 3.2. Let a, h, and k be arbitrary real numbers with a # 0, and let f be the function
given by the rule f(z) = a(x — h)? + k.

(a) What familiar type of functionis f? What information do you know about f just by looking
at its form? (Think about the roles of a, h, and k.)

(b) Next we use some calculus to develop familiar ideas from a different perspective. To start,
treat a, h, and k as constants and compute f’(z).

(c) Find all critical values of f. (These will depend on at least one of a, h, and k.)
(d) Assume that a < 0. Construct a first derivative sign chart for f.

(e) Based on the information you’ve found above, classify the critical values of f as maxima
or minima.

Describing families of functions in terms of parameters

Given a family of functions that depends on one or more parameters, our goal is to describe the
key characteristics of the overall behavior of each member of the familiy in terms of those param-
eters. By finding the first and second derivatives and constructing first and second derivative sign
charts (each of which may depend on one or more of the parameters), we can often make broad
conclusions about how each member of the family will appear. The fundamental steps for this
analysis are essentially identical to the work we did in Section 3.1, as we demonstrate through the
following example.

Example 3.3. Consider the two-parameter family of functions given by g(z) = aze™**, where a
and b are positive real numbers. Fully describe the behavior of a typical member of the family
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in terms of a and b, including the location of all critical values, where g is increasing, decreasing,
concave up, and concave down, and the long term behavior of g.

Solution. We begin by computing ¢'(z). By the product rule,

d d
/ _ b —bx
g(w) = ar ] e dx

[a/x:l Y

and thus by applying the chain rule and constant multiple rule, we find that
¢ (x) = aze P (=b) + e~ (a).

To find the critical values of g, we solve the equation ¢'(z) = 0. Here, it is especially helpful to
factor ¢'(z). We thus observe that setting the derivative equal to zero implies

0= ae " (—bx +1).

Since we are given that a # 0 and we know that e~b =£ 0 for all values of z, the only way the
preceding equation can hold is when —bz + 1 = 0. Solving for z, we find that z = 7, and this is
therefore the only critical value of g.

Now, recall that we have shown ¢/(x) = ae~"*(1 — bz) and that the only critical number of g is
z = . This enables us to construct the first derivative sign chart for g that is shown in Figure 3.14.

g (z) = ae™b*(1 — bx)

++ +—
sign(g’) + -

(S

behav(g) INC DEC

Figure 3.14: The first derivative sign chart for g(z) = aze™"".

Note particularly that in ¢’(x) = ae~**(1 — bx), the term ae~%" is always positive, so the sign
depends on the linear term (1 — bz), which is zero when = = % Note that this line has negative

slope (=b), so (1 — bz) is positive for z < ¢ and negative for z > ;. Hence we can not only

conclude that g is always increasing for < } and decreasing for > 1, but also that g has a

global maximum at (4, ¢(3)) and no local minimum.

—br we differentiate

We turn next to analyzing the concavity of g. With ¢’(z) = —abxre " + ae
to find that

g"(x) = —abre " (—b) 4+ 7" (—ab) + ae~"*(~b).
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g"(x) = abe™b* (bx — 2)

+— ++
sign(g") - +

SN -

behav(g)  CCD CCcuU

Figure 3.15: The second derivative sign chart for g(z) = aze™%*.

Combining like terms and factoring, we now have

¢"(x) = ab’ze™" — 2abe™"* = abe " (bx — 2).

—bx

Similar to our work with the first derivative, we observe that abe™"" is always positive, and thus
2

the sign of g” depends on the sign of (bx — 2), which is zero when z = #. Since (bx — 2) represents
a line with positive slope (b), the value of (bz — 2) is negative for z < # and positive for z > 2, and
thus the sign chart for ¢” is given by the one shown in Figure 3.15. Thus, g is concave down for all

z < % and concave up forall z > 2.

Finally, we analyze the long term behavior of g by considering two limits. First, we note that

. . — . axr
lim g(z) = lim aze *® = lim o
T—00 T—00 r—00 b

Since this limit has indeterminate form 52, we can apply L'Hopital’s Rule and thus find that

lim, 0 g(z) = 0. In the other direction,

lim g(z) = lim aze ™ = —o0,
T—r—00 T—r—00

since ax — —oo and e — oo as x — —oo. Hence, as we move left on its graph, g decreases

without bound, while as we move to the right, g(z) — 0.

All of the above information now allows us to produce the graph of a typical member of this
family of functions without using a graphing utility (and without choosing particular values for a
and b), as shown in Figure 3.16.

We note that the value of b controls the horizontal location of the global maximum and the
inflection point, as neither depends on a. The value of a affects the vertical stretch of the graph.
For example, the global maximum occurs at the point (, g(3)) = (£, %e~!), so the larger the value

of a, the greater the value of the global maximum.
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global max
inflection pt

g(z) = axe™

ST
Q-‘l[\') -

Figure 3.16: The graph of g(x) = aze".

The kind of work we’ve completed in Example 3.3 can often be replicated for other families of
functions that depend on parameters. Normally we are most interested in determining all critical
values, a first derivative sign chart, a second derivative sign chart, and some analysis of the limit of
the function as z — oo. Throughout, we strive to work with the parameters as arbitrary constants.
If stuck, it is always possible to experiment with some particular values of the parameters present
to reduce the algebraic complexity of our work. The following sequence of activities offers several
key examples where we see that the values of different parameters substantially affect the behavior
of individual functions within a given family.

Activity 3.4.

Consider the family of functions defined by p(z) = 23

—ax, where a # 01is an arbitrary constant.

(a) Find p/(x) and determine the critical values of p. How many critical values does p have?

(b) Construct a first derivative sign chart for p. What can you say about the overall behavior
of p if the constant a is positive? Why? What if the constant a is negative? In each case,
describe the relative extremes of p.

(c) Find p”(x) and construct a second derivative sign chart for p. What does this tell you
about the concavity of p? What role does a play in determining the concavity of p?

(d) Without using a graphing utility, sketch and label typical graphs of p(x) for the cases
where a > 0 and a < 0. Label all inflection points and local extrema.

(e) Finally, use a graphing utility to test your observations above by entering and plotting
the function p(z) = 23 —ax for at least four different values of a. Write several sentences
to describe your overall conclusions about how the behavior of p depends on a.

Activity 3.5.
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Consider the two-parameter family of functions of the form h(z) = a(1 — e~%*), where a and b
are positive real numbers.

(a) Find the first derivative and the critical values of h. Use these to construct a first deriva-
tive sign chart and determine for which values of = the function A is increasing and
decreasing.

(b) Find the second derivative and build a second derivative sign chart. For which values
of z is a function in this family concave up? concave down?

(c) What is the value of lim a(1 —e™%)? lim a(1 — e %%)?
T—r00 Tr—r—00

(d) How does changing the value of b affect the shape of the curve?

(e) Without using a graphing utility, sketch the graph of a typical member of this family.
Write several sentences to describe the overall behavior of a typical function 4 and how
this behavior depends on a and b.

Activity 3.6.

Let L(t) = where A4, ¢, and k are all positive real numbers.

1+ ce—kt’

(a) Observe that we can equivalently write L(t) = A(1 + ce *)~!. Find L'(t) and explain
why L has no critical values. Is L always increasing or always decreasing? Why?

(b) Given the fact that
L//(t) A k2 —kt Ce_kt —1
= Ack“e™ ——
(14 cekt)3’
find all values of ¢ such that L”(¢) = 0 and hence construct a second derivative sign
chart. For which values of ¢ is a function in this family concave up? concave down?

(c) What is the value of tlgrolo R A e S

(d) Find the value of L(z) at the inflection point found in (b).
(e) Without using a graphing utility, sketch the graph of a typical member of this family.

Write several sentences to describe the overall behavior of a typical function 4 and how
this behavior depends on a and b.

(f) Explain why it is reasonable to think that the function L(t) models the growth of a
population over time in a setting where the largest possible population the surrounding
environment can support is A.

Summary

In this section, we encountered the following important ideas:
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e Given a family of functions that depends on one or more parameters, by investigating how
critical values and locations where the second derivative is zero depend on the values of these
parameters, we can often accurately describe the shape of the function in terms of the parame-
ters.

e In particular, just as we can created first and second derivative sign charts for a single function,
we often can do so for entire families of functions where critical values and possible inflection
points depend on arbitrary constants. These sign charts then reveal where members of the fam-
ily are increasing or decreasing, concave up or concave down, and help us to identify relative
extremes and inflection points.

Exercises

3

1. Consider the one-parameter family of functions given by p(z) = 23 — az?, where a > 0.

(a) Sketch a plot of a typical member of the family, using the fact that each is a cubic poly-
nomial with a repeated zero at z = 0 and another zero at z = a.

(b) Find all critical values of p.

(c) Compute p” and find all values for which p”(z) = 0. Hence construct a second deriva-
tive sign chart for p.

(d) Describe how the location of the critical values and the inflection point of p change as a
changes. That is, if the value of a is increased, what happens to the critical values and
inflection point?

—x

2. Letg(z) = ¢

r —C

be a one-parameter family of functions where ¢ > 0.

(a) Explain why ¢ has a vertical asymptote at = = c.

(b) Determine lim ¢(z)and lim g¢(x).
T—00 T—r—00

(c) Compute ¢'(x) and find all critical values of g.

(d) Construct a first derivative sign chart for ¢ and determine whether each critical value
results in a local minimum, local maximum, or neither.

(e) Sketch a typical member of this family of functions with important behaviors clearly
labeled.

(z—m)?

3. Let E(z) =e 22 , where m is any real number and s is a positive real number.
(a) Compute E'(x) and hence find all critical values of E.

(b) Construct a first derivative sign chart for E and classify each critical value as a local
minimum, local maximum, or neither.
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(c) It can be shown that E”(z) is given by the formula

4

—m o 2 2
E"(z) = 6_% <(x m)” = s ) .

S

Find all values of z for which E”(x) = 0.

(d) Determine ILm E(x)and Erg E(x).

(e) Construct a labeled graph of a typical function E that clearly shows how important

points on the graph of y = E(z) depend on m and s.
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3.3 Global Optimization

Motivating Questions

In this section, we strive to understand the ideas generated by the following important questions:

e What are the differences between finding relative extreme values and global extreme values
of a function?

e How is the process of finding the global maximum or minimum of a function over the
function’s entire domain different from determining the global maximum or minimum on
a restricted domain?

e For a function that is guaranteed to have both a global maximum and global minimum on a
closed, bounded interval, what are the possible points at which these extreme values occur?

Introduction

We have seen that we can use the first derivative of a function to determine where the function
is increasing or decreasing, and the second derivative to know where the function is concave
up or concave down. Each of these approaches provides us with key information that helps us
determine the overall shape and behavior of the graph, as well as whether the function has a
relative minimum or relative maximum at a given critical value. Remember that the difference
between a relative maximum and a global maximum is that there is a relative minimum of f at
x = pif f(p) > f(x) for all x near p, while there is a global maximum at p if f(p) > f(z) for all z
in the domain of f. For instance, in Figure 3.17, we see a function f that has a global maximum at

global max

relative max

relative |min

f

BN

Figure 3.17: A function f with a global maximum, but no global minimum.

z = c and a relative maximum at « = q, since f(c) is greater than f(z) for every value of x, while
f(a) is only greater than the value of f(z) for = near a. Since the function appears to decrease
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without bound, f has no global minimum, though clearly f has a relative minimum at z = b.

Our emphasis in this section is on finding the global extreme values of a function (if they exist).
In so doing, we will either be interested in the behavior of the function over its entire domain or
on some restricted portion. The former situation is familiar and similar to work that we did in the
two preceding sections of the text. We explore this through a particular example in the following
preview activity.

3

Preview Activity 3.3. Let =2+ ——F03
review Activity et f(x) + 14 (x+1)2

(a) Determine all of the critical values of f.

(b) Construct a first derivative sign chart for f and thus determine all intervals on which f is
increasing or decreasing.

(c) Does f have a global maximum? If so, why, and what is its value and where is the maxi-
mum attained? If not, explain why.

(d) Determine lim f(z)and lim f(x).
T—00 T—r—00

(e) Explain why f(z) > 2 for every value of x.

(f) Does f have a global minimum? If so, why, and what is its value and where is the mini-
mum attained? If not, explain why.

Global Optimization

For the functions in Figure 3.17 and Preview Activity 3.3, we were interested in finding the global
minimum and global maximum on the entire domain, which turned out to be (—o0, c0) for each.
At other times, our perspective on a function might be more focused due to some restriction on its
domain. For example, rather than considering f(z) = 2 + m for every value of x, perhaps
instead we are only interested in those x for which 0 < z < 4, and we would like to know which
values of z in the interval [0, 4] produce the largest possible and smallest possible values of f. We
are accustomed to critical values playing a key role in determining the location of extreme values
of a function; now, by restricting the domain to an interval, it makes sense that the endpoints of
the interval will also be important to consider, as we see in the following activity. When limiting
ourselves to a particular interval, we will often refer to the absolute maximum or minimum value,
rather than the global maximum or minimum.

Activity 3.7.
Let g(z) = 223 — 22 + 2.

(a) Find all critical values of g that lie in the interval —2 < z < 3.
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(b) Use a graphing utility to construct the graph of g on the interval —2 <z < 3.

(c) From the graph, determine the z-values at which the global minimum and global max-
imum of g occur on the interval [—2, 3].

(d) How do your answers change if we instead consider the interval —2 <z < 2?

(e) What if we instead consider the interval —2 < z < 1?

<

In Activity 3.7, we saw how the absolute maximum and absolute minimum of a function on a
closed, bounded interval [a, b], depend not only on the critical values of the function, but also on
the selected values of a and b. These observations demonstrate several important facts that hold
much more generally. First, we state an important result called the Extreme Value Theorem.

The Extreme Value Theorem: If f is a continuous function on a closed interval [a, b], then f
attains both an absolute minimum and absolute maximum on [a,b]. That is, for some value
Zp, such that a < z,,, <0, it follows that f(x,,) < f(x) for all z in [a, b]. Similarly, there is a
value x )y in [a, b] such that f(xzps) = M for all z in [a, b]. Letting m = f(z,) and M = f(zn),
it follows that m < f(z) < M for all z in [a, b].

The Extreme Value Theorem tells us that provided a function is continuous, on any closed
interval [a, b] the function has to achieve both an absolute minimum and an absolute maximum.
Note, however, that this result does not tell us where these extreme values occur, but rather only
that they must exist. As seen in the examples of Activity 3.7, it is apparent that the only possible
locations for relative extremes are either the endpoints of the interval or at a critical value (the
latter being where a relative minijumum or maximum could occur, which is a potential location
for an absolute extreme). Thus, we have the following approach to finding the absolute maximum
and minimum of a continuous function f on the interval [a, b]:

e find all critical values of f that lie in the interval;

e evaluate the function f at each critical value in the interval and at each endpoint of the
interval;

e from among the noted function values, the smallest is the absolute minimum of f on the
interval, while the largest is the absolute maximum.

Activity 3.8.
Find the exact absolute maximum and minimum of each function on the stated interval.

(@) h(z)=ze"*,10,3]

(b) p(t) = Sm( ) + cos(t), [-5, 5]
(©) q(z) = 75, 3,7
(d) f(.%) 67(3372)2/ (—OO, OO)
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<

One of the big lessons in finding absolute extreme values is the realization that the interval we
choose has nearly the same impact on the problem as the function under consideration. Consider,
for instance, the function pictured in Figure 3.18. In sequence, from left to right, as we see the

Figure 3.18: A function g considered on three different intervals.

interval under consideration change from [—2, 3] to [-2,2] to [—2, 1], we move from having two
critical values in the interval with the absolute minimum at one critical value and the absolute
maximum at the right endpoint, to still having both critical numbers in the interval but then with
the absolute minimum and maximum at the two critical values, to finally having just one critical
value in the interval with the absolute maximum at one critical value and the absolute minimum
at one endpoint. It is particularly essential to always remember to only consider the critical values
that lie within the interval.

Moving towards applications

In Section 3.4, we will focus almost exclusively on applied optimization problems: problems
where we seek to find the absolute maximum or minimum value of a function that represents
some physical situation. We conclude this current section with an example of one such problem
because it highlights the role that a closed, bounded domain can play in finding absolute extrema.
In addition, these problems often involve considerable preliminary work to develop the function
which is to be optimized, and this example demonstrates that process.

Example 3.4. A 20 cm piece of wire is cut into two pieces. One piece is used to form a square and
the other an equilateral triangle. How should the wire be cut to maximize the total area enclosed
by the square and triangle? to minimize the area?
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Solution. We begin by constructing a picture that exemplifies the given situation. The primary
variable in the problem is where we decide to cut the wire. We thus label that point =, and note
that the remaining portion of the wire then has length 20 — = As shown in Figure 3.19, we see that

20— x

wlg
8

20—z

Figure 3.19: A 20 cm piece of wire cut into two pieces, one of which forms an equilateral triangle, the other
which yields a square.

the x cm of the wire that are used to form the equilateral triangle result in a triangle with three
sides of length %. For the remaining 20 — x cm of wire, the square that results will have each side
of length 20-2.

At this point, we note that there are obvious restrictions on x: in particular, 0 < z < 20. In the
extreme cases, all of the wire is being used to make just one figure. For instance, if z = 0, then all
20 cm of wire are used to make a square thatis 5 x 5.

Now, our overall goal is to find the absolute minimum and absolute maximum areas that can
be enclosed. We note that the area of the triangle is Ax = 1bh = 5 - £ - £¥3, since the height of
an equilateral triangle is v/3 times half the length of the base. Further, the area of the square is

Aq =% = (29%)2. Therefore, the total area function is

Az) = ‘/332”2 + (20;9”)2.

Again, note that we are only considering this function on the restricted domain [0, 20] and we seek
its absolute minimum and absolute maximum.

Differentiating A(x), we have

A(a) = ‘/3%2(20‘”“’) <_1> SR

18 1 1) T 18773

Setting A’(x) = 0, it follows that = = 4\%‘1 5~ 11.3007 is the only critical value of A, and we note

that this lies within the interval [0, 20].

Evaluating A at the critical value and endpoints, we see that

180 \2 180 2
180 . \/g( 4\/§+9) 20 - 4\/§+9 ~
o A = + ~ 10.8741
43 +9 4 4
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° A(O) =25
1
o A(20) = *3/3(400) _ % 3 ~ 10.2450

Thus, the absolute minimum occurs when = ~ 11.3007 and results in the minimum area of ap-
proximately 10.8741 square centimeters, while the absolute maximum occurs when we invest all
of the wire in the square (and none in the triangle), resulting in 25 square centimeters of area.
These results are confirmed by a plot of y = A(z) on the interval [0, 20], as shown in Figure 3.20.

5 10 15 20

Figure 3.20: A plot of the area function from Example 3.4.

Activity 3.9.

A piece of cardboard that is 10 x 15 (each measured in inches) is being made into a box without
a top. To do so, squares are cut from each corner of the box and the remaining sides are folded
up. If the box needs to be at least 1 inch deep and no more than 3 inches deep, what is the
maximum possible volume of the box? what is the minimum volume? Justify your answers
using calculus.

(a) Draw a labeled diagram that shows the given information. What variable should we
introduce to represent the choice we make in creating the box? Label the diagram ap-
propriately with the variable, and write a sentence to state what the variable represents.

(b) Determine a formula for the function V' (that depends on the variable in (a)) that tells
us the volume of the box.

(c) What is the domain of the function V? That is, what values of = make sense for input?
Are there additional restrictions provided in the problem?

(d) Determine all critical values of the function V.
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(e) Evaluate V' at each of the endpoints of the domain and at any critical values that lie in
the domain.

(f) What is the maximum possible volume of the box? the minimum?

<

The approaches shown in Example 3.4 and experienced in Activity 3.9 include standard steps
that we undertake in almost every applied optimization problem: we draw a picture to demon-
strate the situation, introduce one or more variables to represent quantities that are changing,
work to find a function that models the quantity to be optimized, and then decide an appropriate
domain for that function. Once that work is done, we are in the familiar situation of finding the
absolute minimum and maximum of a function over a particular domain, at which time we apply
the calculus ideas that we have been studying to this point in Chapter 3.

Summary

In this section, we encountered the following important ideas:

e To find relative extreme values of a function, we normally use a first derivative sign chart and
classify all of the function’s critical values. If instead we are interested in absolute extreme val-
ues, we first decide whether we are considering the entire domain of the function or a particular
interval.

e In the case of finding global extremes over the function’s entire domain, we again use a first
or second derivative sign chart in an effort to make overall conclusions about whether or not
the function can have a absolute maximum or minimum. If we are working to find absolute
extremes on a restricted interval, then we first identify all critical values of the function that lie
in the interval.

e For a continuous function on a closed, bounded interval, the only possible points at which
absolute extreme values occur are the critical values and the endpoints. Thus, to find said
absolute extremes, we simply evaluate the function at each endpoint and each critical value in
the interval, and then we compare the results to decide which is largest (the absolute maximum)
and which is smallest (the absolute minimum).

Exercises

1. Based on the given information about each function, decide whether the function has global
maximum, a global minimum, neither, both, or that it is not possible to say without more
information. Assume that each function is twice differentiable and defined for all real numbers,
unless noted otherwise. In each case, write one sentence to explain your conclusion.

(a) fisa function such that f”(x) < 0 for every x.

(b) g is a function with two critical values a and b (where a < b), and ¢'(x) < 0 for z < a,
g (z) <0fora <z <b,and ¢'(z) > 0 for z > b.
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(c) his a function with two critical values a and b (where a < b), and h/(z) < 0 for = < q,
h'(z) > 0fora < x < b,and h/(z) < 0 for x > b. In addition, lim,_,~ h(xz) = 0 and
lim,,_ o h(z) = 0.

(d) pis a function differentiable everywhere except at x = a and p’(x) > 0 for < a and
p’(xz) < 0forz > a.

2. For each family of functions that depends on one or more parameters, determine the function’s
absolute maximum and absolute minimum on the given interval.

@) p(z) = 28 — a’z, 0,

(b) r(z) = aze™t®, [3,b]

(c) w(z) =a(l —e %), [b,3b]
(d) s(z) =sin(kz), [, 2]

3. For each of the functions described below (each continuous on [a, b]), state the location of the
function’s absolute maximum and absolute minimum on the interval [a, b], or say there is not
enough information provided to make a conclusion. Assume that any critical values mentioned
in the problem statement represent all of the critical numbers the function has in [a, b]. In each
case, write one sentence to explain your answer.

(@) f'(z) <0forall zin [a,b]

(b) g has a critical value at ¢ such that a < ¢ < band ¢'(z) > 0 for z < cand ¢'(z) < 0 for
x>c

(c) h(a) = h(b) and h"(x) < 0 for all z in [a, D]
(d) p(a) > 0, p(b) < 0, and for the critical value ¢ such thata < ¢ < b, p'(z) < 0 for z < ¢
and p/(z) > 0forz > ¢

4. Let s(t) = 3sin(2(t — §)) + 5. Find the exact absolute maximum and minimum of s on the
provided intervals by testing the endpoints and finding and evaluating all relevant critical
values of s.
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3.4 Applied Optimization

Motivating Questions

In this section, we strive to understand the ideas generated by the following important questions:

¢ In a setting where a situation is described for which optimal parameters are sought, how
do we develop a function that models the situation and use calculus to find the desired
maximum or minimum?

Introduction

Near the conclusion of Section 3.3, we considered two examples of optimization problems where
determining the function to be optimized was part of a broader question. In Example 3.4, we
sought to use a single piece of wire to build two geometric figures (an equilateral triangle and
square) and to understand how various choices for how to cut the wire led to different values
of the area enclosed. One of our conclusions was that in order to maximize the total combined
area enclosed by the triangle and square, all of the wire must be used to make a square. In the
subsequent Activity 3.9, we investigated how the volume of a box constructed from a piece of
cardboard by removing squares from each corner and folding up the sides depends on the size of
the squares removed.

Both of these problems exemplify situations where there is not a function explicitly provided
to optimize. Rather, we first worked to understand the given information in the problem, draw-
ing a figure and introducing variables, and then sought to develop a formula for a function that
models the quantity (area or volume, in the two examples, respectively) to be optimized. Once the
function was established, we then considered what domain was appropriate on which to pursue
the desired absolute minimum or maximum (or both). At this point in the problem, we are finally
ready to apply the ideas of calculus to determine and justify the absolute minimum or maximum.
Thus, what is primarily different about problems of this type is that the problem-solver must do
considerable work to introduce variables and develop the correct function and domain to repre-
sent the described situation.

Throughout what follows in the current section, the primary emphasis is on the reader solv-
ing problems. Initially, some substantial guidance is provided, with the problems progressing to
require greater independence as we move along.

Preview Activity 3.4. According to U.S. postal regulations, the girth plus the length of a parcel
sent by mail may not exceed 108 inches, where by “girth” we mean the perimeter of the smallest
end. What is the largest possible volume of a rectangular parcel with a square end that can be sent
by mail? What are the dimensions of the package of largest volume?

(a) Let x represent the length of one side of the square end and y the length of the longer side.
Label these quantities appropriately on the image shown in Figure 3.21.
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-

Figure 3.21: A rectangular parcel with a square end.

(b) What is the quantity to be optimized in this problem? Find a formula for this quantity in
terms of x and y.

(c) The problem statement tells us that the parcel’s girth plus length may not exceed 108
inches. In order to maximize volume, we assume that we will actually need the girth
plus length to equal 108 inches. What equation does this produce involving = and y?

(d) Solve the equation you found in (c) for one of = or y (whichever is easier).

(e) Now use your work in (b) and (d) to determine a formula for the volume of the parcel so
that this formula is a function of a single variable.

(f) Over what domain should we consider this function? Note that both = and y must be
positive; how does the constraint that girth plus length is 108 inches produce intervals of
possible values for x and y?

(g) Find the absolute maximum of the volume of the parcel on the domain you established
in (f) and hence also determine the dimensions of the box of greatest volume. Justify that
you’ve found the maximum using calculus.

More applied optimization problems

Many of the steps in Preview Activity 3.4 are ones that we will execute in any applied optimization
problem. We briefly summarize those here to provide an overview of our approach in subsequent
questions.

e Draw a picture and introduce variables. It is essential to first understand what quantities
are allowed to vary in the problem and then to represent those values with variables. Con-
structing a figure with the variables labeled is almost always an essential first step. Some-
times drawing several diagrams can be especially helpful to get a sense of the situation. A
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nice example of this can be seenat http://gvsu.edu/s/99, where the choice of where to
bend a piece of wire into the shape of a rectangle determines both the rectangle’s shape and
area.

e Identify the quantity to be optimized as well as any key relationships among the vari-
able quantities. Essentially this step involves writing equations that involve the variables
that have been introduced: one to represent the quantity whose minimum or maximum is
sought, and possibly others that show how multiple variables in the problem may be inter-
related.

e Determine a function of a single variable that models the quantity to be optimized; this may
involve using other relationships among variables to eliminate one or more variables in the
function formula. For example, in Preview Activity 3.4, we initially found that V = %y,
but then the additional relationship that 4z + y = 108 (girth plus length equals 108 inches)
allows us to relate  and y and thus observe equivalently that y = 108 — 4x. Substituting for
y in the volume equation yields V (z) = 22(108 — 4z), and thus we have written the volume
as a function of the single variable x.

e Decide the domain on which to consider the function being optimized. Often the physical
constraints of the problem will limit the possible values that the independent variable can
take on. Thinking back to the diagram describing the overall situation and any relationships
among variables in the problem often helps identify the smallest and largest values of the
input variable.

e Use calculus to identify the absolute maximum and/or minimum of the quantity being opti-
mized. This always involves finding the critical values of the function first. Then, depending
on the domain, we either construct a first derivative sign chart (for an open or unbounded
interval) or evaluate the function at the endpoints and critical values (for a closed, bounded
interval), using ideas we’ve studied so far in Chapter 3.

¢ Finally, we make certain we have answered the question: does the question seek the absolute
maximum of a quantity, or the values of the variables that produce the maximum? That is,
finding the absolute maximum volume of a parcel is different from finding the dimensions
of the parcel that produce the maximum.

Activity 3.10.

A soup can in the shape of a right circular cylinder is to be made from two materials. The
material for the side of the can costs $0.015 per square inch and the material for the lids costs
$0.027 per square inch. Suppose that we desire to construct a can that has a volume of 16 cubic
inches. What dimensions minimize the cost of the can?

(a) Draw a picture of the can and label its dimensions with appropriate variables.

(b) Use your variables to determine expressions for the volume, surface area, and cost of
the can.
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(c) Determine the total cost function as a function of a single variable. What is the domain
on which you should consider this function?

(d) Find the absolute minimum cost and the dimensions that produce this value.

<

Familiarity with common geometric formulas is particularly helpful in problems like the one
in Activity 3.10. Sometimes those involve perimeter, area, volume, or surface area. At other times,
the constraints of a problem introduce right triangles (where the Pythagorean Theorem applies)
or other functions whose formulas provide relationships among variables present.

Activity 3.11.

A hiker starting at a point P on a straight road walks east towards point (), which is on the road
and 3 kilometers from point P. Two kilometers due north of point @ is a cabin. The hiker will
walk down the road for a while, at a pace of 8 kilometers per hour. At some point Z between
P and @), the hiker leaves the road and makes a straight line towards the cabin through the
woods, hiking at a pace of 3 kph, as pictured in Figure 3.22. In order to minimize the time to
go from P to Z to the cabin, where should the hiker turn into the forest?

Figure 3.22: A hiker walks from P to Z to the cabin, as pictured.

<

In more geometric problems, we often use curves or functions to provide natural constraints.
For instance, we could investigate which isosceles triangle that circumscribes a unit circle has the
smallest area, which you can explore for yourself at http://gvsu.edu/s/9b. Or similarly, for
a region bounded by a parabola, we might seek the rectangle of largest area that fits beneath the
curve, as shown at http://gvsu.edu/s/9c. The next activity is similar to the latter problem.

Activity 3.12.

Consider the region in the z-y plane that is bounded by the z-axis and the function f(z) =
25 — z2. Construct a rectangle whose base lies on the z-axis and is centered at the origin, and
whose sides extend vertically until they intersect the curve y = 25 — 22. Which such rectangle
has the maximum possible area? Which such rectangle has the greatest perimeter? Which has
the greatest combined perimeter and area? (Challenge: answer the same questions in terms of
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positive parameters a and b for the function f(z) = b — az?.)

Activity 3.13.

A trough is being constructed by bending a 4 x 24 (measured in feet) rectangular piece of sheet
metal. Two symmetric folds 2 feet apart will be made parallel to the longest side of the rectangle
so that the trough has cross-sections in the shape of a trapezoid, as pictured in Figure 3.23. At
what angle should the folds be made to produce the trough of maximum volume?

Figure 3.23: A cross-section of the trough formed by folding to an angle of .

Summary

In this section, we encountered the following important ideas:

e While there is no single algorithm that works in every situation where optimization is used, in
most of the problems we consider, the following steps are helpful: draw a picture and introduce
variables; identify the quantity to be optimized and find relationships among the variables;
determine a function of a single variable that models the quantity to be optimized; decide the
domain on which to consider the function being optimized; use calculus to identify the absolute
maximum and/or minimum of the quantity being optimized.

Exercises

1. A rectangular box with a square bottom and closed top is to be made from two materials. The
material for the side costs $1.50 per square foot and the material for the bottom costs $3.00
per square foot. If you are willing to spend $15 on the box, what is the largest volume it can
contain? Justify your answer completely using calculus.

2. A farmer wants to start raising cows, horses, goats, and sheep, and desires to have a rectangular
pasture for the animals to graze in. However, no two different kinds of animals can graze
together. In order to minimize the amount of fencing she will need, she has decided to enclose
a large rectangular area and then divide it into four equally sized pens, or grazing areas. She
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has decided to purchase 7500 ft of fencing. What is the maximum possible area that each of the
four pens will enclose?

3. Two vertical towers of heights 60 ft and 80 ft stand on level ground, with their bases 100 ft
apart. A cable that is stretched from the top of one pole to some point on the ground between
the poles, and then to the top of the other pole. What is the minimum possible length of cable
required? Justify your answer completely using calculus.

4. A company is designing propane tanks that are cylindrical with hemispherical ends. Assume
that the company wants tanks that will hold 1000 cubic meters of gas, and that the ends are
more expensive to make, costing $5 per square foot, while the cylindrical barrel between the
ends costs $2 per square foot. Use calculus to determine the minimum cost to construct such a
tank.
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3.5 Related Rates

Motivating Questions

In this section, we strive to understand the ideas generated by the following important questions:

¢ If two quantities that are related, such as the radius and volume of a spherical balloon, are
both changing as implicit functions of time, how are their rates of change related? That
is, how does the relationship between the values of the quantities affect the relationship
between their respective derivatives with respect to time?

Introduction

In most of our applications of the derivative so far, we have worked in settings where one quantity
(often called y) depends explicitly on another (say z), and in some way we have been interested
in the instantaneous rate at which y changes with respect to z, leading us to compute %. These
settings emphasize how the derivative enables us to quantify how the quantity y is changing as =
changes at a given z-value.

We are next going to consider situations where multiple quantities are related to one another
and changing, but where each quantity can be considered an implicit function of the variable ¢,
which represents time. Through knowing how the quantities are related, we will be interested in
determining how their respective rates of change with respect to time are related. For example,
suppose that air is being pumped into a spherical balloon in such a way that its volume increases
at a constant rate of 20 cubic inches per second. It makes sense that since the balloon’s volume
and radius are related, by knowing how fast the volume is changing, we ought to be able to relate
this rate to how fast the radius is changing. More specifically, can we find how fast the radius of
the balloon is increasing at the moment the balloon’s diameter is 12 inches?

The following preview activity leads you through the steps to answer this question.

Preview Activity 3.5. A spherical balloon is being inflated at a constant rate of 20 cubic inches per
second. How fast is the radius of the balloon changing at the instant the balloon’s diameter is 12
inches? Is the radius changing more rapidly when d = 12 or when d = 16? Why?

(a) Draw several spheres with different radii, and observe that as volume changes, the radius,
diameter, and surface area of the balloon also change.

(b) Recall that the volume of a sphere of radius r is V = 47r3. Note well that in the setting of
this problem, both V' and r are changing as time ¢ changes, and thus both V' and r may be
dv

viewed as implicit functions of ¢, with respective derivatives 4 and 2.

Differentiate both sides of the equation V' = %wr?’ with respect to ¢ (using the chain rule on
the right) to find a formula for 2" that depends on both r and 2.

(c) At this point in the problem, by differentiating we have “related the rates” of change of
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V and r. Recall that we are given in the problem that the balloon is being inflated at a
constant rate of 20 cubic inches per second. Is this rate the value of % or 42 Why?

(d) From part (c), we know the value of <~ dV at every value of ¢. Next, observe that when the di-
ameter of the balloon is 12, we know the value of the radius. In the equation % = 4724,
substitute these Values for the relevant quantities and solve for the remammg unknown
quantity, which is 2. How fast is the radius changing at the instant d = 12?

(e) How is the situation different when d = 16? When is the radius changing more rapidly,
when d = 12 or when d = 16?

Related Rates Problems

In problems where two or more quantities can be related to one another, and all of the variables
involved can be viewed as implicit functions of time, ¢, we are often interested in how the rates
of change of the individual quantities with respect to time are themselves related; we call these
related rates problems. Often these problems involve identifying one or more key underlying ge-
ometric relationships to relate the variables involved. Once we have an equation establishing the
fundamental relationship among variables, we differentiate implicitly with respect to time to find
connections among the rates of change.

For example, consider the situation where sand is being dumped by a conveyor belt on a pile
so that the sand forms a right circular cone, as pictured in Figure 3.24. As sand falls from the

Figure 3.24: A conical pile of sand.

conveyor belt onto the top of the pile, obviously several features of the sand pile will change: the
volume of the pile will grow, the height will increase, and the radius will get bigger, too. All of
these quantities are related to one another, and the rate at which each is changing is related to the
rate at which sand falls from the conveyor.

The first key steps in any related rates problem involve identifying which variables are chang-
ing and how they are related. In the current problem involving a conical pile of sand, we observe
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that the radius and height of the pile are related to the volume of the pile by the standard equation

for the volume of a cone,
1
V = _mr’h.
3
Viewing each of V, r, and h as functions of ¢, we can differentiate implicitly to determine an
equation that relates their respective rates of change. Taking the derivative of each side of the

equation with respect to t,
d d |1
Vi=— [mﬁh] :

V1= 13

On the left, 4[V]is simply 4. On the right, the situation is more complicated, as both r and h are
implicit functions of ¢, hence we have to use the product and chain rules. Doing so, we find that

av a1,
1 ,d 1 .d, ,
= 3™ g+ gmhg
I odh 1 dr

3™ g T3y

Note particularly how we are using ideas from Section 2.7 on implicit differentiation. There we

found that when y is an implicit function of z, % [y?] = 2y%. The exact same thing is occurring

d (2] _ 9p.dr
here when we compute 7 [r°] = 2r%;.

With our arrival at the equation

av. 1 o,dh 2 dr

3w + gﬂrh%,
we have now related the rates of change of V, h, and r. If we are given sufficient information, we
may then find the value of one or more of these rates of change at one or more points in time. Say,
for instance, that we know the following: (a) sand falls from the conveyor in such a way that the
height of the pile is always half the radius, and (b) sand falls from the conveyor belt at a constant
rate of 10 cubic feet per minute. With this information given, we can answer questions such as:

how fast is the height of the sandpile changing at the moment the radius is 4 feet?

The information that the height is always half the radius tells us that for all values of t, h = 3r.

Differentiating with respect to ¢, it follows that 9 = 19 These relationships enable us to relate
av

4¥ exclusively to just one of r or h. Substituting the expressions involving r and % for h and 2!

we now have that E
av- 1 o ldr 2 1 dr
% =3 .§%+§FT.§T.E' (3.1)
Since sand falls from the conveyor at the constant rate of 10 cubic feet per minute, this tells us the
value of 4, the rate at which the volume of the sand pile changes. In particular, 4~ = 10 ft*/min.
Furthermore, since we are interested in how fast the height of the pile is changing at the instant

r = 4, we use the value r = 4 along with % = 10 in Equation (3.1), and hence find that

8 dr E dr

1 5 1dr 2 1 dr n
-z — 2= T —
3 dt|._, 3 dt

10 = —m4?. Y
3™ s aw| T3 @

r=4 r=4
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With only the value of % .4 Temaining unknown, we solve for d ., and find that 10 = 87 dr —t?

so that
dr

dr 10
dt B

— ~ 0.39789
r=4 8w

feet per second. Because we were interested in how fast the height of the pile was changing at this

instant, we want to know % when r = 4. Since % = %% for all values of ¢, it follows

dt

dh

5
I = o ~ 0.19894 ft/min.

r=4 Q

Note particularly how we distinguish between the notations % and &

7t | .4+ The former repre-
sents the rate of change of » with respect to ¢ at an arbitrary value of ¢, while the latter is the rate
of change of r with respect to ¢ at a particular moment, in fact the moment » = 4. While we don’t
know the exact value of ¢, because information is provided about the value of r, it is important to

distinguish that we are using this more specific data.

The relationship between h and r, with h = %r for all values of ¢, enables us to transition easily
between questions involving r and h. Indeed, had we known this information at the problem’s
outset, we could have immediately simplified our work. Using h = 3r, it follows that since
V= %wrQh, we can write V' solely in terms of r to have

1 1 1
V=car?(Zh) = ard
3 mr ( 5 > 5 mr
From this last equation, differentiating with respect to ¢ implies

awv 1 4
— = -7,
dt 2

from which the same conclusions made earlier about % and % can be made.

Our work with the sandpile problem above is similar in many ways to our approach in Preview
Activity 3.5, and these steps are typical of most related rates problems. In certain ways, they
also resemble work we do in applied optimization problems, and here we summarize the main
approach for consideration in subsequent problems.

¢ Identify the quantities in the problem that are changing and choose clearly defined variable
names for them. Draw one or more figures that clearly represent the situation.

e Determine all rates of change that are known or given and identify the rate(s) of change to
be found.

e Find an equation that relates the variables whose rates of change are known to those vari-
ables whose rates of change are to be found.

e Differentiate implicitly with respect to ¢ to relate the rates of change of the involved quanti-
ties.
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e Evaluate the derivatives and variables at the information relevant to the instant at which a
certain rate of change is sought. Use proper notation to identify when a derivative is being
evaluated at a particular instant, such as % r—tt

In the first step of identifying changing quantities and drawing a picture, it is important to
think about the dynamic ways in which the involved quantities change. Sometimes a sequence
of pictures can be helpful; for some already-drawn pictures that can be easily modified as applets
built in Geogebra, see the following links? which represent

e how a circular oil slick’s area grows as its radius increases http://gvsu.edu/s/9n;

e how the location of the base of a ladder and its height along a wall change as the ladder
slides http://gvsu.edu/s/90;

e how the water level changes in a conical tank as it fills with water at a constant rate
http://gvsu.edu/s/9p (compare the problem in Activity 3.14);

e how a skateboarder’s shadow changes as he moves past a lamppost
http://gvsu.edu/s/9q.

Drawing well-labeled diagrams and envisioning how different parts of the figure change is a key
part of understanding related rates problems and being successful at solving them.

Activity 3.14.

A water tank has the shape of an inverted circular cone (point down) with a base of radius
6 feet and a depth of 8 feet. Suppose that water is being pumped into the tank at a constant
instantaneous rate of 4 cubic feet per minute.

(a) Draw a picture of the conical tank, including a sketch of the water level at a point in
time when the tank is not yet full. Introduce variables that measure the radius of the
water’s surface and the water’s depth in the tank, and label them on your figure.

(b) Say that r is the radius and h the depth of the water at a given time, t. What equation
relates the radius and height of the water, and why?

(c) Determine an equation that relates the volume of water in the tank at time ¢ to the depth
h of the water at that time.

(d) Through differentiation, find an equation that relates the instantaneous rate of change
of water volume with respect to time to the instantaneous rate of change of water depth
at time ¢.

(e) Find the instantaneous rate at which the water level is rising when the water in the tank
is 3 feet deep.

(f) When is the water rising most rapidly: at h =3, h =4, or h = 5?

We again refer to the work of Prof. Marc Renault of Shippensburg University, found at http://gvsu.edu/s/5p.
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<

Recognizing familiar geometric configurations is one way that we relate the changing quanti-
ties in a given problem. For instance, while the problem in Activity 3.14 is centered on a conical
tank, one of the most important observations is that there are two key right triangles present. In
another setting, a right triangle might be indicative of an opportunity to take advantage of the
Pythagorean Theorem to relate the legs of the triangle. But in the conical tank, the fact that the
water at any time fills a portion of the tank in such a way that the ratio of radius to depth is con-
stant turns out to be the most important relationship with which to work. That enables us to write
r in terms of h and reduce the overall problem to one where the volume of water depends simply
on h, and hence to subsequently relate % and %. In other situations where a changing angle is
involved, a right triangle may offer the opportunity to find relationships among various parts of

the triangle using trigonometric functions.
Activity 3.15.

A television camera is positioned 4000 feet from the base of a rocket launching pad. The angle
of elevation of the camera has to change at the correct rate in order to keep the rocket in sight. In
addition, the auto-focus of the camera has to take into account the increasing distance between
the camera and the rocket. We assume that the rocket rises vertically. (A similar problem is
discussed and pictured dynamically at http://gvsu.edu/s/9t. Exploring the applet at the
link will be helpful to you in answering the questions that follow.)

(a) Draw a figure that summarizes the given situation. What parts of the picture are chang-
ing? What parts are constant? Introduce appropriate variables to represent the quanti-
ties that are changing.

(b) Find an equation that relates the camera’s angle of elevation to the height of the rocket,
and then find an equation that relates the instantaneous rate of change of the camera’s
elevation angle to the instantaneous rate of change of the rocket’s height (where all rates
of change are with respect to time).

(c) Find an equation that relates the distance from the camera to the rocket to the rocket’s
height, as well as an equation that relates the instantaneous rate of change of distance
from the camera to the rocket to the instantaneous rate of change of the rocket’s height
(where all rates of change are with respect to time).

(d) Suppose that the rocket’s speed is 600 ft/sec at the instant it has risen 3000 feet. How
fast is the distance from the television camera to the rocket changing at that moment? If
the camera is following the rocket, how fast is the camera’s angle of elevation changing
at that same moment?

(e) If from an elevation of 3000 feet onward the rocket continues to rise at 600 feet/sec, will
the rate of change of distance with respect to time be greater when the elevation is 4000
feet than it was at 3000 feet, or less? Why?

<

In addition to being able to find instantaneous rates of change at particular points in time,
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we are often able to make more general observations about how particular rates themselves will
change over time. For instance, when a conical tank (point down) is filling with water at a constant
rate, we naturally intuit that the depth of the water should increase more slowly over time. Note
how carefully we need to speak: we mean to say that while the depth, h, of the water is increasing,
its rate of change % is decreasing (both as a function of ¢ and as a function of &). These observa-
tions may often be made by taking the general equation that relates the various rates and solving
for one of them, and doing this without substituting any particular values for known variables or
rates. For instance, in the conical tank problem in Activity 3.14, we established that

v 1 ,dh
w16 g
and hence
dh _ 16 v
dt — 7wh? dt’

Provided that 4 is constant, it is immediately apparent that as h gets larger, 2 will get smaller,
while always remaining positive. Hence, the depth of the water is increasing at a decreasing rate.

Activity 3.16.

As pictured in the applet at http://gvsu.edu/s/9q, a skateboarder who is 6 feet tall rides
under a 15 foot tall lamppost at a constant rate of 3 feet per second. We are interested in
understanding how fast his shadow is changing at various points in time.

(a) Draw an appropriate right triangle that represents a snapshot in time of the skate-
boarder, lamppost, and his shadow. Let 2 denote the horizontal distance from the base
of the lamppost to the skateboarder and s represent the length of his shadow. Label
these quantities, as well as the skateboarder’s height and the lamppost’s height on the
diagram.

(b) Observe that the skateboarder and the lamppost represent parallel line segments in the
diagram, and thus similar triangles are present. Use similar triangles to establish an
equation that relates = and s.

(c) Use your work in (b) to find an equation that relates Z—f and %.

(d) At what rate is the length of the skateboarder’s shadow increasing at the instant the
skateboarder is 8 feet from the lamppost?

(e) As the skateboarder’s distance from the lamppost increases, is his shadow’s length in-
creasing at an increasing rate, increasing at a decreasing rate, or increasing at a constant
rate?

(f) Which is moving more rapidly: the skateboarder or the tip of his shadow? Explain, and
justify your answer.
<

As we progress further into related rates problems, less direction will be provided. In the first
three activities of this section, we have been provided with guided instruction to build a solution
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in a step by step way. For the closing activity and the following exercises, most of the detailed
work is left to the reader.

Activity 3.17.

A baseball diamond is 90’ square. A batter hits a ball along the third base line runs to first base.
At what rate is the distance between the ball and first base changing when the ball is halfway
to third base, if at that instant the ball is traveling 100 feet/sec? At what rate is the distance
between the ball and the runner changing at the same instant, if at the same instant the runner
is 1/8 of the way to first base running at 30 feet/sec?

<

Summary

In this section, we encountered the following important ideas:

e When two or more related quantities are changing as implicit functions of time, their rates
of change can be related by implicitly differentiating the equation that relates the quantities
themselves. For instance, if the sides of a right triangle are all changing as functions of time,
say having lengths z, y, and z, then these quantities are related by the Pythagorean Theorem:
2% + y? = 22. Tt follows by implicitly differentiating with respect to ¢ that their rates are related

by the equation
dx dy dz
2+ 2y =2z —
Ta TV T

so that if we know the values of z, y, and z at a particular time, as well as two of the three rates,
we can deduce the value of the third.

Exercises

1. A sailboat is sitting at rest near its dock. A rope attached to the bow of the boat is drawn in
over a pulley that stands on a post on the end of the dock that is 5 feet higher than the bow. If
the rope is being pulled in at a rate of 2 feet per second, how fast is the boat approaching the
dock when the length of rope from bow to pulley is 13 feet?

2. A baseball diamond is a square with sides 90 feet long. Suppose a baseball player is advancing
from second to third base at the rate of 24 feet per second, and an umpire is standing on home
plate. Let 6 be the angle between the third baseline and the line of sight from the umpire to the
runner. How fast is 6 changing when the runner is 30 feet from third base?

3. Sand is being dumped off a conveyer belt onto a pile in such a way that the pile forms in the
shape of a cone whose radius is always equal to its height. Assuming that the sand is being
dumped at a rate of 10 cubic feet per minute, how fast is the height of the pile changing when
there are 1000 cubic feet on the pile?

4. A swimming pool is 60 feet long and 25 feet wide. Its depth varies uniformly from 3 feet at the
shallow end to 15 feet at the deep end, as shown in the Figure 3.25. Suppose the pool has been
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25 3
60

15

Figure 3.25: The swimming pool described in Exercise 4.

emptied and is now being filled with water at a rate of 800 cubic feet per minute. At what rate
is the depth of water (measured at the deepest point of the pool) increasing when it is 5 feet
deep at that end? Over time, describe how the depth of the water will increase: at an increasing
rate, at a decreasing rate, or at a constant rate. Explain.
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Chapter 4

The Definite Integral

4.1 Determining distance traveled from velocity

Motivating Questions

In this section, we strive to understand the ideas generated by the following important questions:

o If we know the velocity of a moving body at every point in a given interval, can we deter-
mine the distance the object has traveled on the time interval?

e How is the problem of finding distance traveled related to finding the area under a certain
curve?

e What does it mean to antidifferentiate a function and why is this process relevant to finding
distance traveled?

o If velocity is negative, how does this impact the problem of finding distance traveled?

Introduction

In the very first section of the text, we considered a situation where a moving object had a known
position at time ¢. In particular, we stipulated that a tennis ball tossed into the air had its height
s (in feet) at time ¢ (in seconds) given by s(t) = 64 — 16(¢t — 1)®. From this starting point, we
investigated the average velocity of the ball on a given interval [a, b], computed by the difference
quotient W, and eventually found that we could determine the exact instantaneous velocity
of the ball at time ¢ by taking the derivative of the position function,

s'(t) = }ng(l) ‘W

Thus, given a differentiable position function, we are able to know the exact velocity of the moving
object at any point in time.
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196 4.1. DETERMINING DISTANCE TRAVELED FROM VELOCITY

Moreover, from this foundational problem involving position and velocity we have learned a
great deal. Given a differentiable function f, we are now able to find its derivative and use this
derivative to determine the function’s instantaneous rate of change at any point in the domain,
as well as to find where the function is increasing or decreasing, is concave up or concave down,
and has relative extremes. The vast majority of the problems and applications we have consid-
ered have involved the situation where a particular function is known and we seek information
that relies on knowing the function’s instantaneous rate of change. That is, we have typically pro-
ceeded from a function f to its derivative, f/, and then used the meaning of the derivative to help
us answer important questions.

In a much smaller number of situations so far, we have encountered the reverse situation where
we instead know the derivative, f/, and have tried to deduce information about f. It is this partic-
ular problem that will be the focus of our attention in most of Chapter 4: if we know the instanta-
neous rate of change of a function, are we able to determine the function itself? To begin, we start
with a more focused question: if we know the instantaneous velocity of an object moving along a
straight line path, can we determine its corresponding position function?

Preview Activity 4.1. Suppose that a person is taking a walk along a long straight path and walks
at a constant rate of 3 miles per hour.

(@) On the left-hand axes provided in Figure 4.1, sketch a labeled graph of the velocity function
v(t) = 3. Note that while the scale on the two sets of axes is the same, the units on the right-

1 mph | miles

hrs hrs

Figure 4.1: At left, axes for plotting y = v(t); at right, for plotting y = s(¢).

hand axes differ from those on the left. The right-hand axes will be used in question (d).

(b) How far did the person travel during the two hours? How is this distance related to the
area of a certain region under the graph of y = v(¢)?

(c) Find an algebraic formula, s(t), for the position of the person at time ¢, assuming that
5(0) = 0. Explain your thinking.
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4.1. DETERMINING DISTANCE TRAVELED FROM VELOCITY 197

(d) On the right-hand axes provided in Figure 4.1, sketch a labeled graph of the position func-
tion y = s(t).

(e) For what values of ¢ is the position function s increasing? Explain why this is the case
using relevant information about the velocity function v.

Area under the graph of the velocity function

In Preview Activity 4.1, we encountered a fundamental fact: when a moving object’s velocity is
constant (and positive), the area under the velocity curve over a given interval tells us the distance
the object traveled. As seen at left in Figure 4.2, if we consider an object moving at 2 miles per hour

5] mph 5] mph
y = v(t)
= // \./
A
1 A 1 :
hrs hrs
1 2 3 1 2 3

Figure 4.2: At left, a constant velocity function; at right, a non-constant velocity function.

over the time interval [1, 1.5], then the area A; of the shaded region under y = v(¢) on [1,1.5] is

il 1
mres - hours = 1 mile.

A =2
! hour 2

This principle holds in general simply due to the fact that distance equals rate times time, provided
the rate is constant. Thus, if v(¢) is constant on the interval [a, b], then the distance traveled on [a, ]
is the area A that is given by

A=wv(a)(b—a)=v(a)t,

where At is the change in ¢ over the interval. Note, too, that we could use any value of v(t)
on the interval [a, b], since the velocity is constant; we simply chose v(a), the value at the inter-
val’s left endpoint. For several examples where the velocity function is piecewise constant, see
http://gvsu.edu/s/9T.!

'Marc Renault, calculus applets.
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The situation is obviously more complicated when the velocity function is not constant. At
the same time, on relatively small intervals on which v(t) does not vary much, the area principle
allows us to estimate the distance the moving object travels on that time interval. For instance, for
the non-constant velocity function shown at right in Figure 4.2, we see that on the interval [1, 1.5],
velocity varies from v(1) = 2.5 down to v(1.5) ~ 2.1. Hence, one estimate for distance traveled is
the area of the pictured rectangle,

il 1
miies 2 hours = 1.25 miles.
hour 2

Ay =v(1)At =25

Because v is decreasing on [1, 1.5] and the rectangle lies above the curve, clearly A; = 1.25 is an
over-estimate of the actual distance traveled.

If we want to estimate the area under the non-constant velocity function on a wider interval,
say [0, 3], it becomes apparent that one rectangle probably will not give a good approximation.
Instead, we could use the six rectangles pictured in Figure 4.3, find the area of each rectangle, and

mph

— y=v(t)

hrs

Figure 4.3: Using six rectangles to estimate the area under y = v(¢) on [0, 3].

add up the total. Obviously there are choices to make and issues to understand: how many rectan-
gles should we use? where should we evaluate the function to decide the rectangle’s height? what
happens if velocity is sometimes negative? can we attain the exact area under any non-constant
curve? These questions and more are ones we will study in what follows; for now it suffices to
realize that the simple idea of the area of a rectangle gives us a powerful tool for estimating both
distance traveled from a velocity function as well as the area under an arbitrary curve. To explore
the setting of multiple rectangles to approximate area under a non-constant velocity function, see
the applet found at http://gvsu.edu/s/9U.2

Activity 4.1.

Suppose that a person is walking in such a way that her velocity varies slightly according to
the information given in the table below and graph given in Figure 4.4.

*Marc Renault, calculus applets.
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| ¢t ] 000 | 025 | 050 | 0.75 | 1.00 | 1.25 | 150 | 1.75 | 2.00 |
| v(t) | 1.5000 | 1.7891 | 1.9375 | 1.9922 | 2.0000 | 2.0078 | 2.0625 | 2.2109 | 2.5000 |

hrs

Figure 4.4: The graph of y = v(t).

(a) Using the grid, graph, and given data appropriately, estimate the distance traveled by
the walker during the two hour interval from ¢ = 0 to ¢ = 2. You should use time in-
tervals of width At = 0.5, choosing a way to use the function consistently to determine
the height of each rectangle in order to approximate distance traveled.

(b) How could you get a better approximation of the distance traveled on [0, 2]? Explain,
and then find this new estimate.

(c) Now suppose that you know that v is given by v(¢) = 0.5t —1.5t>+1.5¢+1.5. Remember
that v is the derivative of the walker’s position function, s. Find a formula for s so that
s =w.

(d) Based on your work in (c), what is the value of s(2) — s(0)? What is the meaning of this
quantity?

Two approaches: area and antidifferentiation

When the velocity of a moving object is positive, the object’s position is always increasing. While
we will soon consider situations where velocity is negative and think about the ramifications of
this condition on distance traveled, for now we continue to assume that we are working with a
positive velocity function. In that setting, we have established that whenever v is actually constant,
the exact distance traveled on an interval is the area under the velocity curve; furthermore, we
have observed that when v is not constant, we can estimate the total distance traveled by finding
the areas of rectangles that help to approximate the area under the velocity curve on the given
interval. Hence, we see the importance of the problem of finding the area between a curve and the
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200 4.1. DETERMINING DISTANCE TRAVELED FROM VELOCITY

horizontal axis: besides being an interesting geometric question, in the setting of the curve being
the (positive) velocity of a moving object, the area under the curve over an interval tells us the
exact distance traveled on the interval. We can estimate this area any time we have a graph of the
velocity function or a table of data that tells us some relevant values of the function.

In Activity 4.1, we also encountered an alternate approach to finding the distance traveled. In
particular, if we know a formula for the instantaneous velocity, y = v(t), of the moving body at
time ¢, then we realize that v must be the derivative of some corresponding position function s.
If we can find a formula for s from the formula for v, it follows that we know the position of the
object at time ¢. In addition, under the assumption that velocity is positive, the change in position
over a given interval then tells us the distance traveled on that interval.

For a simple example, consider the situation from Preview Activity 4.1, where a person is
walking along a straight line and has velocity function v(¢) = 3 mph. As pictured in Figure 4.5,

| mph | miles

s(t) = 3t

A=3-125=3.75

Figure 4.5: The velocity function v(¢) = 3 and corresponding position function s(t) = 3t.

we see the already noted relationship between area and distance traveled on the left-hand graph of
the velocity function. In addition, because the velocity is constant at 3, we know that if® s(t) = 3¢,
then §'(t) = 3, so s(t) = 3t is a function whose derivative is v(¢). Furthermore, we now observe
that s(1.5) = 4.5 and s(0.25) = 0.75, which are the respective locations of the person at times
t = 0.25 and t = 1.5, and therefore

s(1.5) — 5(0.25) = 4.5 — 0.75 = 3.75 miles.

This is not only the change in position on [0.25, 1.5], but also precisely the distance traveled on
[0.25, 1.5], which can also be computed by finding the area under the velocity curve over the same
interval. There are profound ideas and connections present in this example that we will spend
much of the remainder of Chapter 4 studying and exploring.

For now, it is most important to observe that if we are given a formula for a velocity function
v, it can be very helpful to find a function s that satisfies s = /. In this context, we say that s

*Here we are making the implicit assumption that s(0) = 0; we will further discuss the different possibilities for
values of s(0) in subsequent study.
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is an antiderivative of v. More generally, just as we say that f’ is the derivative of f for a given
function f, if we are given a function g and G is a function such that G’ = g, we say that G is
an antiderivative of g. For example, if g(x) = 32 + 2z, an antiderivative of g is G(z) = 2 + 27,
since G'(z) = g(z). Note that we say “an” antiderivative of g rather than “the” antiderivative
of g because H(z) = 2® + 22 + 5 is also a function whose derivative is g, and thus H is another
antiderivative of g.

Activity 4.2.

A ball is tossed vertically in such a way that its velocity function is given by v(t) = 32 — 32¢,
where ¢ is measured in seconds and v in feet per second. Assume that this function is valid for
0<t<2

(a) For what values of ¢ is the velocity of the ball positive? What does this tell you about
the motion of the ball on this interval of time values?

(b) Find an antiderivative, s, of v that satisfies s(0) = 0.

(c) Compute the value of s(1) — s(). What is the meaning of the value you find?

(d) Using the graph of y = v(t) provided in Figure 4.6, find the exact area of the region
under the velocity curve between t = 1 and ¢t = 1. What is the meaning of the value
you find?

(e) Answer the same questions as in (c) and (d) but instead using the interval [0, 1].

(f) What is the value of s(2) — s(0)? What does this result tell you about the flight of the
ball? How is this value connected to the provided graph of y = v(¢)? Explain.

ft/sec
24 4
v(t) =32 — 32t
121 (t)
sec
1 2
S124
2414

Figure 4.6: The graph of y = v(t).
<
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When velocity is negative

Most of our work in this section has occurred under the assumption that velocity is positive. This
hypothesis guarantees that the movement of the object under consideration is always in a single
direction, and hence ensures that the moving body’s change in position is the same as the distance
it travels on a given interval. As we saw in Activity 4.2, there are natural settings in which a
moving object’s velocity is negative; we would like to understand this scenario fully as well.

Consider a simple example where a person goes for a walk on a beach along a stretch of very
straight shoreline that runs east-west. We can naturally assume that their initial position is s(0) =
0, and further stipulate that their position function increases as they move east from their starting
location. For instance, a position of s = 1 mile represents being one mile east of the start location,
while s = —1 tells us the person is one mile west of where they began walking on the beach.
Now suppose the person walks in the following manner. From the outset at ¢ = 0, the person
walks due east at a constant rate of 3 mph for 1.5 hours. After 1.5 hours, the person stops abruptly
and begins walking due west at the constant rate of 4 mph and does so for 0.5 hours. Then, after
another abrupt stop and start, the person resumes walking at a constant rate of 3 mph to the east
for one more hour. What is the total distance the person traveled on the time interval ¢ = 0 to
t = 3? What is the person’s total change in position over that time?

On one hand, these are elementary questions to answer because the velocity involved is con-
stant on each interval. From ¢t = 0 to ¢ = 1.5, the person traveled

Dyg,1.5) = 3 miles per hour - 1.5 hours = 4.5 miles.
Similarly, on ¢t = 1.5 to t = 2, having a different rate, the distance traveled is
Dy 5.9) = 4 miles per hour - 0.5 hours = 2 miles.
Finally, similar calculations reveal that in the final hour, the person walked
Dy 31 = 3 miles per hour - 1 hours = 3 miles,
so the total distance traveled is
D = D15 + Djiso + Digg = 4.5+ 2+ 3 = 9.5 miles.

Since the velocity on 1.5 < t < 2 is actually v = —4, being negative to indication motion in the
westward direction, this tells us that the person first walked 4.5 miles east, then 2 miles west,
followed by 3 more miles east. Thus, the walker’s total change in position is

change in position = 4.5 — 2 + 3 = 5.5 miles.

While we have been able to answer these questions fairly easily, it is also important to think
about this problem graphically in order that we can generalize our solution to the more compli-
cated setting when velocity is not constant, as well as to note the particular impact that negative
velocity has. In Figure 4.7, we see how the distances we computed above can be viewed as areas:
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mph miles
451 451 (1:5:4.5)
3.0 =t 3017~
1.54 A1 =45 A3 =3 1.5+ (2,2:5)
: e =" lhrs : hrs
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-3.0¢ -3.0¢
451 E— 451

Figure 4.7: At left, the velocity function of the person walking; at right, the corresponding position function.

Ay = 4.5 comes from taking rate times time (3 - 1.5), as do As and A3 for the second and third
rectangles. The big new issue is that while A is an area (and is therefore positive), because this
area involves an interval on which the velocity function is negative, its area has a negative sign
associated with it. This helps us to distinguish between distance traveled and change in position.

The distance traveled is the sum of the areas,
D:A1+A2—|—A3:45+2+3:95m11es

But the change in position has to account for the sign associated with the area, where those above
the t-axis are considered positive while those below the t-axis are viewed as negative, so that

5(3) — s(0) = (+4.5) + (—2) + (+3) = 5.5 miles,

assigning the “—2” to the area in the interval [1.5, 2] because there velocity is negative and the
person is walking in the “negative” direction. In other words, the person walks 4.5 miles in the
positive direction, followed by two miles in the negative direction, and then 3 more miles in the
positive direction. This affect of velocity being negative is also seen in the graph of the function
y = s(t), which has a negative slope (specifically, its slope is —4) on the interval 1.5 < t < 2 since
the velocity is —4 on that interval, which shows the person’s position function is decreasing due
to the fact that she is walking east, rather than west. On the intervals where she is walking west,
the velocity function is positive and the slope of the position function s is therefore also positive.

To summarize, we see that if velocity is sometimes negative, this makes the moving object’s
change in position different from its distance traveled. By viewing the intervals on which velocity
is positive and negative separately, we may compute the distance traveled on each such interval,
and then depending on whether we desire total distance traveled or total change in position,
we may account for negative velocities that account for negative change in position, while still
contributing positively to total distance traveled. We close this section with one additional activity
that further explores the effects of negative velocity on the problem of finding change in position
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and total distance traveled.
Activity 4.3.

Suppose that an object moving along a straight line path has its velocity v (in meters per sec-
ond) at time ¢ (in seconds) given by the piecewise linear function whose graph is pictured in
Figure 4.8. We view movement to the right as being in the positive direction (with positive ve-
locity), while movement to the left is in the negative direction. Suppose further that the object’s

! m/sec
24
\ sec
L
24
41

Figure 4.8: The velocity function of a moving object.

initial position at time ¢ = 0 is s(0) = 1.
(a) Determine the total distance traveled and the total change in position on the time inter-
val 0 <t < 2. What is the object’s position at t = 2?

(b) On what time intervals is the moving object’s position function increasing? Why? On
what intervals is the object’s position decreasing? Why?

(c) What is the object’s position at ¢ = 82 How many total meters has it traveled to get to
this point (including distance in both directions)? Is this different from the object’s total
change in positionon ¢ = 0 to ¢ = 8?

(d) Find the exact position of the object att = 1,2,3,...,8 and use this data to sketch an
accurate graph of y = s(t). How can you use the provided information about y = v(t)
to determine the concavity of s on each relevant interval?

Summary

In this section, we encountered the following important ideas:

o If we know the velocity of a moving body at every point in a given interval and the velocity is
positive throughout, we can estimate the object’s distance traveled and in some circumstances
determine this value exactly.
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¢ In particular, when velocity is positive on an interval, we can find the total distance traveled by

finding the area under the velocity curve and above the t-axis on the given time interval. We
may only be able to estimate this area, depending on the shape of the velocity curve.

The antiderivative of a function f is a new function £’ whose derivative is f. That is, F' is an
antiderivative of f provided that F' = f. In the context of velocity and position, if we know
a velocity function v, an antiderivative of v is a position function s that satisfies s’ = v. If v
is positive on a given interval, say [a, b], then the change in position, s(b) — s(a), measures the
distance the moving object traveled on [a, b].

In the setting where velocity is sometimes negative, this means that the object is sometimes
traveling in the opposite direction (depending on whether velocity is positive or negative), and
thus involves the object backtracking. To determine distance traveled, we have to think about
the problem separately on intervals where velocity is positive and negative and account for the
change in position on each such interval.

Exercises

1.

Along the eastern shore of Lake Michigan from Lake Macatawa (near Holland) to Grand Haven,
there is a bike bath that runs almost directly north-south. For the purposes of this problem, as-
sume the road is completely straight, and that the function s(¢) tracks the position of the biker
along this path in miles north of Pigeon Lake, which lies roughly halfway between the ends of
the bike path.

Suppose that the biker’s velocity function is given by the graph in Figure 4.9 on the time inter-
val 0 <t < 4 (where t is measured in hours), and that s(0) = 1.

mph miles
10 y=v(t) 104
6 6
21 ‘hrs 21 ‘hrs
9 2 4 5 924 1 2 3 4 5
-6 -6
104 -10+

Figure 4.9: The graph of the biker’s velocity, y = v(¢), at left. At right, axes to plot an approximate sketch of
y = s(t).

(a) Approximately how far north of Pigeon Lake was the cyclist when she was the greatest
distance away from Pigeon Lake? At what time did this occur?
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(b) What is the cyclist’s total change in position on the time interval 0 < ¢ < 2? Att = 2,
was she north or south of Pigeon Lake?

(c) What is the total distance the biker traveled on 0 < t < 4? At the end of the ride, how
close was she to the point at which she started?

(d) Sketch an approximate graph of y = s(t), the position function of the cyclist, on the
interval 0 < ¢ < 4. Label at least four important points on the graph of s.

2. A toy rocket is launched vertically from the ground on a day with no wind. The rocket’s vertical
velocity at time ¢ (in seconds) is given by v(t) = 500 — 32t feet/sec.

(a) At what time after the rocket is launched does the rocket’s velocity equal zero? Call this
time value a. What happens to the rocket at t = a?

(b) Find the value of the total area enclosed by y = v(t) and the t-axis on the interval
0 <t < a. What does this area represent in terms of the physical setting of the problem?

(c) Find an antiderivative s of the function v. Thatis, find a function s such that s'(t) = v(t).

(d) Compute the value of s(a) — s(0). What does this number represent in terms of the
physical setting of the problem?

(e) Compute s(5) — s(1). What does this number tell you about the rocket’s flight?

3. An object moving along a horizontal axis has its instantaneous velocity at time ¢ in seconds
given by the function v pictured in Figure 4.10, where v is measured in feet/sec. Assume that

y = o(t)

1 N3 4.5 6 7
_1 4

Figure 4.10: The graph of y = v(¢), the velocity function of a moving object.
the curves that make up the parts of the graph of y = v(t) are either portions of straight lines
or portions of circles.
(@) Determine the exact total distance the object traveled on 0 <t < 2.

(b) What is the value and meaning of s(5) — s(2), where y = s(¢) is the position function of
the moving object?

(c) On which time interval did the object travel the greatest distance: [0, 2], [2,4], or [5, 7]?
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(d) On which time interval(s) is the position function s increasing? At which point(s) does
s achieve a relative maximum?

4. Filters at a water treatment plant become dirtier over time and thus become less effective;
they are replaced every 30 days. During one 30-day period, the rate at which pollution passes
through the filters into a nearby lake (in units of particulate matter per day) is measured every
6 days and is given in the following table. The time ¢ is measured in days since the filters were
replaced.

Day, t 0|6]12|18 |24 |30
Rate of pollution in units per day, p(¢t) | 7 | 8 | 10 | 13 | 18 | 35

(a) Plot the given data on a set of axes with time on the horizontal axis and the rate of
pollution on the vertical axis.

(b) Explain why the amount of pollution that entered the lake during this 30-day period
would be given exactly by the area bounded by y = p(t) and the t-axis on the time
interval [0, 30].

(c) Estimate the total amount of pollution entering the lake during this 30-day period.
Carefully explain how you determined your estimate.
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4.2 Riemann Sums

Motivating Questions

In this section, we strive to understand the ideas generated by the following important questions:

e How can we use a Riemann sum to estimate the area between a given curve and the hori-
zontal axis over a particular interval?

e What are the differences among left, right, middle, and random Riemann sums?

e What is sigma notation and how does this enable us to write Riemann sums in an abbrevi-
ated form?

Introduction

In Section 4.1, we learned that if we have a moving object with velocity function v, whenever v(t)
is positive, the area between y = v(t) and the t-axis over a given time interval tells us the distance
traveled by the object over that time period; in addition, if v(t) is sometimes negative and we
view the area of any region below the t-axis as having an associated negative sign, then the sum
of these signed areas over a given interval tells us the moving object’s change in position over the
time interval. For instance, for the velocity function given in Figure 4.11, if the areas of shaded

y=o(t)

Figure 4.11: A velocity function that is sometimes negative.

regions are A;, Ay, and Az as labeled, then the total distance D traveled by the moving object on
[a, b] is
D = Al + AQ + Ag,

while the total change in the object’s position on [a, b] is
S(b) — s(a) =A; — Ay + As.
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Because the motion is in the negative direction on the interval where v(t) < 0, we subtract A;
when determining the object’s total change in position.

Of course, finding D and s(b) — s(a) for the situation given in Figure 4.11 presumes that we
can actually find the areas represented by A;, As, and As. In most of our work in Section 4.1, such
as in Activities 4.2 and 4.3, we worked with velocity functions that were either constant or linear,
so that by finding the areas of rectangles and triangles, we could find the area bounded by the
velocity function and the horizontal axis exactly. But when the curve that bounds a region is not
one for which we have a known formula for area, we are unable to find this area exactly. Indeed,
this is one of our biggest goals in Chapter 4: to learn how to find the exact area bounded between
a curve and the horizontal axis for as many different types of functions as possible.

To begin, we expand on the ideas in Activity 4.1, where we encountered a nonlinear velocity
function and approximated the area under the curve using four and eight rectangles, respectively.
In the following preview activity, we focus on three different options for deciding how to find the
heights of the rectangles we will use.

Preview Activity 4.2. A person walking along a straight path has her velocity in miles per hour
at time ¢ given by the function v(¢) = 0.5t — 1.5t2 + 1.5t + 1.5, for times in the interval 0 < ¢ < 2.
The graph of this function is also given in each of the three diagrams in Figure 4.12. Note that in

3 mph N mph 3 mph
y = () y = v(t) y = ()
2 2+ 2 7‘
Al A2 A3 A4 B1 32 B3 B4 Cl CQ 03 04
hrs hrs hrs
1 2 1 2 1 2

Figure 4.12: Three approaches to estimating the area under y = v(t) on the interval [0, 2].

each diagram, we use four rectangles to estimate the area under y = v(t) on the interval [0, 2], but
the method by which the four rectangles’ respective heights are decided varies among the three
individual graphs.

(a) How are the heights of rectangles in the left-most diagram being chosen? Explain, and
hence determine the value of

S=A1+A+ A3+ Ay

by evaluating the function y = v(t) at appropriately chosen values and observing the
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width of each rectangle. Note, for example, that
A3 = ’U(l) .

(b) Explain how the heights of rectangles are being chosen in the middle diagram and find the
value of
T = By + By + B3 + By.

(c) Likewise, determine the pattern of how heights of rectangles are chosen in the right-most
diagram and determine
U=C1+Cy+Cs5+C4.

(d) Of the estimates S, T', and U, which do you think is the best approximation of D, the total
distance the person traveled on [0, 2]? Why?

Sigma Notation

It is apparent from several different problems we have considered that sums of areas of rectangles
is one of the main ways to approximate the area under a curve over a given interval. Intuitively,
we expect that using a larger number of thinner rectangles will provide a way to improve the
estimates we are computing. As such, we anticipate dealing with sums with a large number of
terms. To do so, we introduce the use of so-called sigma notation, named for the Greek letter %,
which is the capital letter S in the Greek alphabet.

For example, say we are interested in the sum

1+2+3+--+100,

which is the sum of the first 100 natural numbers. Sigma notation provides a shorthand notation
that recognizes the general pattern in the terms of the sum. It is equivalent to write

100

D k=1+2+3+-- +100.
k=1
100
We read the symbol Z k as “the sum from £ equals 1 to 100 of k.” The variable k is usually called
k=1

the index of summation, and the letter that is used for this variable is immaterial. Each sum in
sigma notation involves a function of the index; for example,

10
D (K +2k)=(1"+2- 1)+ (2°+2-2) + (37 +2-3) + - + (10> + 2 10),
k=1
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and more generally,

Ry =)+ f(2)+---+ f(n).
k=1
Sigma notation allows us the flexibility to easily vary the function being used to track the pattern
in the sum, as well as to adjust the number of terms in the sum simply by changing the value of n.
We test our understanding of this new notation in the following activity.

Activity 4.4.

For each sum written in sigma notation, write the sum long-hand and evaluate the sum to find
its value. For each sum written in expanded form, write the sum in sigma notation.

5
(@) ) (k> +2)
k=1

6
b) > (2i—1)
=3

© 3+T7+11+154---+27
(d) 4+ 8+16+32---+ 256

° 1
© > 5
=1

Riemann Sums

When a moving body has a positive velocity function y = v(t) on a given interval [a, b], we know
that the area under the curve over the interval is the total distance the body travels on [a, b]. While
this is the fundamental motivating force behind our interest in the area bounded by a function, we
are also interested more generally in being able to find the exact area bounded by y = f(x) on an
interval [a, b], regardless of the meaning or context of the function f. For now, we continue to focus
on determining an accurate estimate of this area through the use of a sum of the areas of rectangles,
doing so in the setting where f(x) > 0 on [a, b]. Throughout, unless otherwise indicated, we also
assume that f is continuous on [a, b].

The first choice we make in any such approximation is the number of rectangles. If we say
that the total number of rectangles is n, and we desire n rectangles of equal width to subdivide
the interval [a, b], then each rectangle must have width Az = b*T“ We observe further that z; =
xo0 + Az, x9 = xo + 2Az, and thus in general x; = a + Az, as pictured in Figure 4.13.

We use each subinterval [z;,z;11] as the base of a rectangle, and next must choose how to
decide the height of the rectangle that will be used to approximate the area under y = f(x) on the
subinterval. There are three standard choices: use the left endpoint of each subinterval, the right
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a b
1 1 1 1 1 1 1
T T T T T T T
o T1 €2 s Ti Tit1 cee Tpn—1 Tn
| |
Az

Figure 4.13: Subdividing the interval [a, b] into n subintervals of equal length Az.

endpoint of each subinterval, or the midpoint of each. These are precisely the options encountered
in Preview Activity 4.2 and seen in Figure 4.12. We next explore how these choices can be reflected
in sigma notation.

If we now consider an arbitrary positive function f on [a, b] with the interval subdivided as
shown in Figure 4.13, and choose to use left endpoints, then on each interval of the form [z;, z;11],
the area of the rectangle formed is given by

A1 = f(z) - Az,

as seen in Figure 4.14. If we let L,, denote the sum of the areas of rectangles whose heights are

\ y = f(z)

Al Ay | - A An\

To X1 T2 Tj Ti41l Tp—1 Tp

Figure 4.14: Subdividing the interval [a, b] into n subintervals of equal length Az and approximating the
area under y = f(x) over [a, b] using left rectangles.
given by the function value at each respective left endpoint, then we see that

L, = A1+A2+"‘+Ai+1+"‘+An
= flxo) - Dx+ f(z1) - Dx+---+ f(zi) - Dx+ -+ fzn-1) - L.

In the more compact sigma notation, we have
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Note particularly that since the index of summation begins at 0 and ends at n — 1, there are indeed
n terms in this sum. We call L,, the left Riemann sum for the function f on the interval [a, b].

There are now two fundamental issues to explore: the number of rectangles we choose to
use and the selection of the pattern by which we identify the height of each rectangle. It is best
to explore these choices dynamically, and the applet* found at http://gvsu.edu/s/a9 is a
particularly useful one. There we see the image shown in Figure 4.15, but with the opportunity to

=
=

Sample Point Placement 2
v Relative  jeft endpoint 4 f(x)=sin(2x)—%+3

V¥ Show e———
" Random*
I~ Upper Sum
I~ Lower Sum 3
Number of Subintervals /
2

n=10
-~

Approximations !
Relative: 7.73716
Random: 6.51399 0

Upper: 8.58074 0 2 3 4 6
Lower: 4.12815

Integral: 6.32356

* Make sure the applet has
focus, then use Ctrl-R or F9
to recompute random values -2

Figure 4.15: A snapshot of the applet found at http://gvsu.edu/s/a9.

adjust the slider bars for the left endpoint and the number of subintervals. By moving the sliders,
we can see how the heights of the rectangles change as we consider left endpoints, midpoints,
and right endpoints, as well as the impact that a larger number of narrower rectangles has on the
approximation of the exact area bounded by the function and the horizontal axis.

To see how the Riemann sums for right endpoints and midpoints are constructed, we consider
Figure 4.16. For the sum with right endpoints, we see that the area of the rectangle on an arbitrary
interval [z;, z;41] is given by

Biy1 = f(ziq1) - A,

so that the sum of all such areas of rectangles is given by

R, = Bi+By+-+Bip1+-+B,
= f(x1) Dz + f(wa) - D+ + flwigr) - Az + -+ flan) - Ax

= > fla)La.
=1

We call R,, the right Riemann sum for the function f on the interval [a,b]. For the sum that uses
midpoints, we introduce the notation

T + Tit1

Tip1 = 5

*Marc Renault, Geogebra Calculus Applets.
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\v = /() \lv = f@)
\\‘N
-
By Bz| - |Biyg - [Bn Ci|Co| - [Ciq] -+ Cn\
rg I1 T2 Ty Ti+1 Tp—1 Tn ro I1 T2 Ty Ti4+1l Tp—1 Tp

Figure 4.16: Riemann sums using right endpoints and midpoints.

so that 7; 1 is the midpoint of the interval [z;, z;+1]. For instance, for the rectangle with area C in
Figure 4.16, we now have
Cq = f(fl) Az,

Hence, the sum of all the areas of rectangles that use midpoints is

M, = Ci+Cot-+Cip1+--+Cy
= [@D) Do+ f(@3) Dat o+ f@inr) Dot o+ f(@) - Da

i=1

and we say that M,, is the middle Riemann sum for f on [a, b].

When f(z) > 0 on [a, b], each of the Riemann sums L,,, R, and M,, provides an estimate of the
area under the curve y = f(z) over the interval [a, b]; momentarily, we will discuss the meaning
of Riemann sums in the setting when f is sometimes negative. We also recall that in the context
of a nonnegative velocity function y = v(t), the corresponding Riemann sums are approximating
the distance traveled on [a, b] by the moving object with velocity function v.

There is a more general way to think of Riemann sums, and that is to not restrict the choice of
where the function is evaluated to determine the respective rectangle heights. That is, rather than
saying we'll always choose left endpoints, or always choose midpoints, we simply say that a point
rj,, will be selected at random in the interval [z;, 7;11] (so that z; < z7,; < x;11), which makes
the Riemann sum given by

F@h)-Dx+ fla3) Dzt + flafy,) - Drt -+ fz}) - D =Y fla]) A,
=1

Athttp://gvsu.edu/s/a9, the applet noted earlier and referenced in Figure 4.15, by uncheck-
ing the “relative” box at the top left, and instead checking “random,” we can easily explore the
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effect of using random point locations in subintervals on a given Riemann sum. In computational
practice, we most often use L,,, R, or M,, while the random Riemann sum is useful in theoret-
ical discussions. In the following activity, we investigate several different Riemann sums for a
particular velocity function.

Activity 4.5.

Suppose that an object moving along a straight line path has its position in feet at time ¢ in

seconds given by v(t) = 2(t — 3)% + 2.

(a) Carefully sketch the region whose exact area will tell you the value of the distance the
object traveled on the time interval 2 < ¢ < 5.

(b) Estimate the distance traveled on [2, 5] by computing L4, R4, and M.

(c) Does averaging L, and R, result in the same value as M,? If not, what do you think the
average of L, and R4 measures?

(d) For this question, think about an arbitrary function f, rather than the particular function
v given above. If f is positive and increasing on [a, b], will L,, over-estimate or under-
estimate the exact area under f on [a, b]? Will R,, over- or under-estimate the exact area
under f on [a, b]? Explain.

<

When the function is sometimes negative

For a Riemann sum such as )
e
L, = Z f(zi) Az,
i=0

we can of course compute the sum even when f takes on negative values. We know that when f
is positive on [a, b], the corresponding left Riemann sum L,, estimates the area bounded by f and
the horizontal axis over the interval. For a function such as the one pictured in Figure 4.17, where
in the first figure a left Riemann sum is being taken with 12 subintervals over [a, d], we observe
that the function is negative on the interval b < z < ¢, and so for the four left endpoints that fall
in [b, ¢], the terms f(z;) Az have negative function values. This means that those four terms in the
Riemann sum produce an estimate of the opposite of the area bounded by y = f(x) and the z-axis
on [b, c].

In Figure 4.17, we also see evidence that by increasing the number of rectangles used in a
Riemann sum, it appears that the approximation of the area (or the opposite of the area) bounded
by a curve appears to improve. For instance, in the middle graph, we use 24 left rectangles, and
from the shaded areas, it appears that we have decreased the error from the approximation that
uses 12. When we proceed to Section 4.3, we will discuss the natural idea of letting the number of
rectangles in the sum increase without bound.

For now, it is most important for us to observe that, in general, any Riemann sum of a contin-
uous function f on an interval [a, b] approximates the difference between the area that lies above
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Figure 4.17: At left and center, two left Riemann sums for a function f that is sometimes negative; at right,
the areas bounded by f on the interval [a, d].

the horizontal axis on [a,b] and under f and the area that lies below the horizontal axis on [a, b]
and above f. In the notation of Figure 4.17, we may say that

Loy = Ay — Ay + As,

where Ly, is the left Riemann sum using 24 subintervals shown in the middle graph, and A; and
As are the areas of the regions where f is positive on the interval of interest, while A, is the area
of the region where f is negative. We will also call the quantity A; — Ay + A3 the net signed area
bounded by f over the interval [a, d], where by the phrase “signed area” we indicate that we are
attaching a minus sign to the areas of regions that fall below the horizontal axis.

Finally, we recall from the introduction to this present section that in the context where the
function f represents the velocity of a moving object, the total sum of the areas bounded by the
curve tells us the total distance traveled over the relevant time interval, while the total net signed
area bounded by the curve computes the object’s change in position on the interval.

Activity 4.6.

Suppose that an object moving along a straight line path has its velocity v (in feet per second)
at time ¢ (in seconds) given by

1 7

(a) Compute M;, the middle Riemann sum, for v on the time interval [1,5]. Be sure to
clearly identify the value of At as well as the locations of ¢y, t1, ---, t5. In addition,
provide a careful sketch of the function and the corresponding rectangles that are being
used in the sum.

(b) Building on your work in (a), estimate the total change in position of the object on the
interval [1, 5].
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(c) Building on your work in (a) and (b), estimate the total distance traveled by the object
on [1,5].

(d) Use appropriate computing technology® to compute Mg and Mag. What exact value do
you think the middle sum eventually approaches as n increases without bound? What
does that number represent in the physical context of the overall problem?

Summary

In this section, we encountered the following important ideas:

e A Riemann sum is simply a sum of products of the form f(z})Az that estimates the area be-
tween a positive function and the horizontal axis over a given interval. If the function is some-
times negative on the interval, the Riemann sum estimates the difference between the areas that
lie above the horizontal axis and those that lie below the axis.

e The three most common types of Riemann sums are left, right, and middle sums, plus we can
also work with a more general, random Riemann sum. The only difference among these sums
is the location of the point at which the function is evaluated to determine the height of the
rectangle whose area is being computed in the sum. For a left Riemann sum, we evaluate the
function at the left endpoint of each subinterval, while for right and middle sums, we use right
endpoints and midpoints, respectively.

o The left, right, and middle Riemann sums are denoted L,,, R,, and M, with formulas

Ly = f(z0) Az + f(m) Dz + -+ flwn_1) Az =Y fla;)Ax,

Ry = f(x1)Ax + f(z2) Az + -+ flan) Dz =Y fla:)Ax,
=1

M, = f(@) Az + f(@)Ax + -+ f(@n) Az = > f(Ti) A,
=1

where 2y = a, x; = a + ilAx, and z,, = b, using Az = I’_T“ For the midpoint sum, 7; =

(i1 +24)/2.

Exercises

1. Consider the function f(z) = 3z + 4.

°For instance, consider the appletat http://gvsu.edu/s/a9 and change the function and adjust the locations of
the blue points that represent the interval endpoints a and b.
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(a) Compute M, for y = f(z) on the interval [2, 5]. Be sure to clearly identify the value of
Az, as well as the locations of xg, x1, . . ., 4. Include a careful sketch of the function and
the corresponding rectangles being used in the sum.

(b) Use a familiar geometric formula to determine the exact value of the area of the region
bounded by y = f(x) and the z-axis on [2, 5].

(c) Explain why the values you computed in (a) and (b) turn out to be the same. Will this
be true if we use a number different than n = 4 and compute M,,? Will L, or R4 have
the same value as the exact area of the region found in (b)?

(d) Describe the collection of functions g for which it will always be the case that

b
regardless of the value of n.
2. Let S be the sum given by

S =((14)2%+1)-04+ ((1.8)%+1)- 0.4+ ((2.2)2 + 1) - 0.4+ ((2.6)> +1) - 0.4+ ((3.0)> +1) - 0.4.

(a) Assume that S is a right Riemann sum. For what function f and what interval [a, b] is
S~ [ f(z)dz? Why?

(b) How does your answer to (a) change if S is a left Riemann sum? a middle Riemann
sum?

(c) Suppose that S really is a right Riemann sum. What is geometric quantity does S ap-
proximate?

(d) Use sigma notation to write a new sum R that is the right Riemann sum for the same
function, but that uses twice as many subintervals as S.

3. A car traveling along a straight road is braking and its velocity is measured at several different
points in time, as given in the following table.

seconds, ¢ 0 |03|06]09|12|15]1.8
Velocity in ft/sec, v(t) | 100 | 88 | 74 | 59 | 40 | 19 | O

(a) Plot the given data on a set of axes with time on the horizontal axis and the velocity on
the vertical axis.

(b) Estimate the total distance traveled during the car the time brakes using a middle Rie-
mann sum with 3 subintervals.

(c) Estimate the total distance traveled on [0, 1.8] by computing Lg, Rs, and % (Lg + Rg).

(d) Assuming that v(¢) is always decreasing on [0, 1.8], what is the maximum possible dis-
tance the car traveled before it stopped? Why?
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4. The rate at which pollution escapes a scrubbing process at a manufacturing plant increases
over time as filters and other technologies become less effective. For this particular example,
assume that the rate of pollution (in tons per week) is given by the function r that is pictured
in Figure 4.18.

tons/week

Figure 4.18: The rate, r(t), of pollution in tons per week.

(a) Use the graph to estimate the value of M, on the interval [0, 4].
(b) What is the meaning of M, in terms of the pollution discharged by the plant?
(c) Suppose that r(t) = 0.5¢"-°. Use this formula for r to compute L5 on [0, 4].

(d) Determine an upper bound on the total amount of pollution that can escape the plant
during the pictured four week time period that is accurate within an error of at most
one ton of pollution.
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4.3 The Definite Integral

Motivating Questions

In this section, we strive to understand the ideas generated by the following important questions:

e How does increasing the number of subintervals affect the accuracy of the approximation
generated by a Riemann sum?

e What is the definition of the definite integral of a function f over the interval [a, b]?

e What does the definite integral measure exactly, and what are some of the key properties of
the definite integral?

Introduction
In Figure 4.17, which is repeated below as Figure 4.19, we see visual evidence that increasing the

number of rectangles in a Riemann sum improves the accuracy of the approximation of the net
signed area that is bounded by the given function on the interval under consideration. We thus

y = f(z) y = f(z) y = f(x)

Figure 4.19: At left and center, two left Riemann sums for a function f that is sometimes negative; at right,
the exact areas bounded by f on the interval [a, d].

explore the natural idea of allowing the number of rectangles to increase without bound in an
effort to compute the exact net signed area bounded by a function on an interval. In addition,
it is important to think about the differences among left, right, and middle Riemann sums and
the different results they generate as the value of n increases. As we have done throughout our
investigations with area, we begin with functions that are exclusively positive on the interval
under consideration.
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Preview Activity 4.3. Consider the applet found at http://gvsu.edu/s/aw’. There, you will
initially see the situation shown in Figure 4.20. Observe that we can change the window in which

sum = 7.43076923 .
xmin
-5
AT xmax
/ 5
//"
- ymin
|3 T30 -5
ymax
5
——————
3 Set Limits
)= 3/(1+ xA2) ( Compute! )
Intervals: 5 Method: | Left Endpoint 4

Figure 4.20: A left Riemann sum with 5 subintervals for the function f(z) = H% on the interval [-5, 5].
The value of the sum is Ly = 7.43076923.

the function is viewed, as well as the function itself. Set the minimum and maximum values of z
and y so that we view the function on the window where 1 < z < 4 and —1 < y < 12, where the
function is f(z) = 2z + 1 (note that you need to enter “2+x+1” as the function’s formula). You
should see the updated figure shown in Figure 4.21. Note that the value of the Riemann sum of

sum = 16.2 A
xmin
1
| xmax
,—""/7): 4
= - ymin
T -1
e
e - ymax
T 12
ST
Set Limits
2 3 4
) = 2+x+1 ( Compute! )
Intervals: 5 Method: | Left Endpoint 4

Figure 4.21: A left Riemann sum with 5 subintervals for the function f(z) = 2z + 1 on the interval [1, 4].
The value of the sum is Ls = 16.2.

our choice is displayed in the upper left corner of the window. Further, by updating the value in

%David Eck of Hobart and William Smith Colleges, author of Java Components for Mathematics,
http://gvsu.edu/s/av.
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the “Intervals” window and/or the “Method”, we can see the different value of the Riemann sum
that arises by clicking the “Compute!” button.

(a) Update the applet so that the function being considered is f(z) = 2z+1 on [1, 4], as directed
above. For this function on this interval, compute L,,, M,,, R,, for n = 10, n = 100, and
n = 1000. What do you conjecture is the exact area bounded by f(z) = 2z + 1 and the
x-axis on [1,4]?

(b) Use basic geometry to determine the exact area bounded by f(z) = 2z + 1 and the z-axis
on [1,4].

(c) Based on your work in (a) and (b), what do you observe occurs when we increase the
number of subintervals used in the Riemann sum?

(d) Update the applet to consider the function f(z) = 2%+ 1 on the interval [1, 4] (note that you
will want to increase the maximum value of y to at least 17, and you need to enter “x"2 +
1” for the function formula). Use the applet to compute L,,, M,,, R, for n = 10, n = 100,
and n = 1000. What do you conjecture is the exact area bounded by f(z) = 22 + 1 and the
x-axis on [1,4]?

(e) Why can we not compute the exact value of the area bounded by f(z) = 2? + 1 and the
x-axis on [1, 4] using a formula like we did in (b)?

The definition of the definite integral

In both examples in Preview Activity 4.4, we saw that as the number of rectangles got larger and
larger, the values of L,,, M, and R,, all grew closer and closer to the same value. It turns out
that this occurs for any continuous function on an interval [a, b], and even more generally for a
Riemann sum using any point z;, ; in the interval [x;, z;11]. Said differently, as we let n — oo, it
doesn’t really matter where we choose to evaluate the function within a given subinterval, because

n—o0 n—oo n—oo n—00 <

lim L, = lim R, = lim M, = lim Y f(a})Ax.
=1

That these limits always exist (and share the same value) for a continuous’ function f allows us
to make the following definition.

7Tt turns out that a function need not be continuous in order to have a definite integral. For our purposes, we assume
that the functions we consider are continuous on the interval(s) of interest. It is straightforward to see that any function
that is piecewise continuous on an interval of interest will also have a well-defined definite integral.
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b
Definition 4.1. The definite integral of a continuous function f on the interval [a, b], denoted / f(z)dx,
a

is the real number given by
b n
| rayde = i > s

where Ax = b_T“, x; =a+ iz (fori=0,...,n), and x; satisfies x;_; <z} < x; (fori=1,...,n).
We call the symbol [ the integral sign, the values a and b the limits of integration, and the function
f the integrand. The process of determining the real number f: f(z)dx is called evaluating the
definite integral. While we will come to understand that there are several different interpretations
of the value of the definite integral, for now the most important is that f: f(x) dx measures the net
signed area bounded by y = f(x) and the z-axis on the interval [a, b]. For example, in the notation

y = f(z)

Figure 4.22: A continuous function f on the interval [a, d].

of the definite integral, if f is the function pictured in Figure 4.22 and A;, A3, and A3 are the exact
areas bounded by f and the z-axis on the respective intervals [a, b], [b, ¢], and [c, d], then

b c d
/Gf(x)d:c:Al,/bf(x)dx:—Ag,/c f(z)dx = As,

and J
/ f(l’) dr = A1 — Ay + As.
a
We can also use definite integrals to express the change in position and distance traveled by a

moving object. In the setting of a velocity function v on an interval [a, b], it follows from our work
above and in preceding sections that the change in position, s(b) — s(a), is given by

D09



224 4.3. THE DEFINITE INTEGRAL

If the velocity function is nonnegative on [a, b], then ff v(t) dt tells us the distance the object trav-
eled. When velocity is sometimes negative on [a, b], the areas bounded by the function on intervals
where v does not change sign can be found using integrals, and the sum of these values will tell
us the distance the object traveled.

If we wish to compute the value of a definite integral using the definition, we have to take
the limit of a sum. While this is possible to do in select circumstances, it is also tedious and
time-consuming; moreover, computing these limits does not offer much additional insight into
the meaning or interpretation of the definite integral. Instead, in Section 4.4, we will learn the
Fundamental Theorem of Calculus, a result that provides a shortcut for evaluating a large class
of definite integrals. This will enable us to determine the exact net signed area bounded by a
continuous function and the z-axis in many circumstances, including examples such as
[ 14 (2% + 1) dz, which we approximated by Riemann sums in Preview Activity 4.4.

For now, our goal is to understand the meaning and properties of the definite integral, rather
than how to actually compute its value using ideas in calculus. Thus, we temporarily rely on the
net signed area interpretation of the definite integral and observe that if a given curve produces
regions whose areas we can compute exactly through known area formulas, we can thus compute
the exact value of the integral. For instance, if we wish to evaluate the definite integral

Figure 4.23: The area bounded by f(z) = 2z + 1 and the z-axis on the interval [1, 4].

f14 (2z + 1) dxz, we can observe that the region bounded by this function and the z-axis is the
trapezoid shown in Figure 4.23, and by the known formula for the area of a trapezoid, its area is
A=3(3+9)-3=18,5s0

4
/ (2x 4+ 1)dx = 18.
1

Activity 4.7.

Use known geometric formulas and the net signed area interpretation of the definite integral
to evaluate each of the definite integrals below.
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1
(a) / 3z dx
0

4
(b) /_1(2 —2x)dx

1
(©) /_1\/1—x2da:

4
(d) / g(x) dx, where g is the function pictured in Figure 4.24. Assume that each portion
3

of g is either part of a line or part of a circle.

3 -2 \ 1 /2 3 4
-1

Figure 4.24: A function g that is piecewise defined; each piece of the function is part of a circle or part of a
line.

Some properties of the definite integral

With the perspective that the definite integral of a function f over an interval [a, b] measures the net
signed area bounded by f and the z-axis over the interval, we naturally arrive at several different
standard properties of the definite integral. In addition, it is helpful to remember that the definite
integral is defined in terms of Riemann sums that fundamentally consist of the areas of rectangles.

If we consider the definite integral [ f(x) dx for any real number q, it is evident that no area
is being bounded because the interval begins and ends with the same point. Hence,

a
If f is a continuous function and « is a real number, then / f(z)dz =0.
a

Next, we consider the results of subdividing a given interval. In Figure 4.25, we see that

b c c
/f(a:)da::Al,/f(a:)dx:Ag, and/f(a:)da::Al—l-Ag,
a b a
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H

Figure 4.25: The area bounded by y = f(z) on the interval [q, c].

which is indicative of the following general rule.

If f is a continuous function and a, b, and ¢ are real numbers, then

/acf(x)d:c: /abf(x)dx—l—/bcf(x)dx.

While this rule is most apparent in the situation where a < b < ¢, it in fact holds in general for any
values of g, b, and c. This result is connected to another property of the definite integral, which
states that if we reverse the order of the limits of integration, we change the sign of the integral’s
value.

a b
If f is a continuous function and @ and b are real numbers, then / flz)dr = — / f(z)dz.
b a

This result makes sense because if we integrate from a to b, then in the defining Riemann sum

Az = b_T“, while if we integrate from b to a, Az = “T_b = — b;“, and this is the only change in the

sum used to define the integral.

There are two additional properties of the definite integral that we need to understand. Recall
that when we worked with derivative rules in Chapter 2, we found that both the Constant Multiple
Rule and the Sum Rule held. The Constant Multiple Rule tells us that if f is a differentiable
function and k is a constant, then

d ,
kS @) = kS @)

and the Sum Rule states that if f and g are differentiable functions, then

2 17(@) +g@)] = ') + (@)
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These rules are useful because they enable us to deal individually with the simplest parts of certain
functions and take advantage of the elementary operations of addition and multiplying by a con-
stant. They also tell us that the process of taking the derivative respects addition and multiplying
by constants in the simplest possible way.

It turns out that similar rules hold for the definite integral. First, let’s consider the situation
pictured in Figure 4.26, where we examine the effect of multiplying a function by a factor of 2

a Ti Ti1 b a Ti Tiq1 b

Figure 4.26: The areas bounded by y = f(x) and y = 2f(z) on [a, b].

on the area it bounds with the z-axis. Because multiplying the function by 2 doubles its height at
every z-value, we see that if we consider a typical rectangle from a Riemann sum, the difference in
area comes from the changed height of the rectangle: f(z;) for the original function, versus 2f(z;)
in the doubled function, in the case of left sum. Hence, in Figure 4.26, we see that for the pictured
rectangles with areas A and B, it follows B = 2A. As this will happen in every such rectangle,
regardless of the value of n and the type of sum we use, we see that in the limit, the area of the
red region bounded by y = 2f(x) will be twice that of the area of the blue region bounded by
y = f(x). As there is nothing special about the value 2 compared to an arbitrary constant £, it
turns out that the following general principle holds.

Constant Multiple Rule: If f is a continuous function and k is any real number then

/abk-f(x)dx:k/abf(:c)d:c.

Finally, we see a similar situation geometrically with the sum of two functions f and g. In
particular, as shown in Figure 4.27, if we take the sum of two functions f and g, at every point in
the interval, the height of the function f + g is given by (f + ¢)(x;) = f(zi) + g(x;), which is the
sum of the individual function values of f and g (taken at left endpoints). Hence, for the pictured
rectangles with areas A, B, and C, it follows that C' = A 4 B, and because this will occur for every
such rectangle, in the limit the area of the gray region will be the sum of the areas of the blue and
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N\C = (@) + glai) A
A= fag)a \ I+g
f B = g(x;)Ax c
- g
B \l—
| a Ti Tit1 b a Ti Tit1 b a Ti Tit1 b

Figure 4.27: The areas bounded by y = f(z) and y = g(z) on [a,b], as well as the area bounded by y =
f(@) +9(z).

red regions. Stated in terms of definite integrals, we have the following general rule.

Sum Rule: If f and g are continuous functions, then

/ab[f(x) +yg(z)]de = /ab f(x)dz + /abg(x) de.

More generally, the Constant Multiple and Sum Rules can be combined to make the observa-
tion that for any continuous functions f and g and any constants c and %,

b

/ab[Cf(x) + kg(x)| dz = c/abf(w) dr + k:/a 9(z) da.

Activity 4.8.

Suppose that the following information is known about the functions f, g, 22, and z3:
o f02 f(z)dx = -3; f25 f(z)dx =2
° f02 g(x)dex = 4; f25 g(x)dr = -1
. f02:n2d:v =35; f25f(:1:) doe = 47
. f02:c3dx :4;f25x3da: = %

Use the provided information and the rules discussed in the preceding section to evaluate each
of the following definite integrals.

@ J7 f(x)da
) [ g(z)dx
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© [ (f(x)+g(x)) da
(d) f25(3x2 — 423) dx

(e) f50(2x3 —Tg(x))dx

How the definite integral is connected to a function’s average value

One of the most valuable applications of the definite integral is that it provides a way to mean-
ingfully discuss the average value of a function, even for a function that takes on infinitely many
values. Recall that if we wish to take the average of n numbers y1, y2, . . ., yn, we do so by comput-
ing

_ntyttyn

= - .

Avg

Since integrals arise from Riemann sums in which we add n values of a function, it should
not be surprising that evaluating an integral is something like averaging the output values of a
function. Consider, for instance, the right Riemann sum R,, of a function f, which is given by

R, = f(x1) Az + f(zo) DNz + -+ f(xn)Dx = (f(21) + fa2) + -+ f(zn)) Az

Since Ax = IFT“, we can thus write

R":(f($1)+f($2)+"'+f(g:n)).b_a :(bfa)f(xl)_'—f('%?)+"‘+f(33n).

n n

(4.1)

Here, we see that the right Riemann sum with n subintervals is the length of the interval (b — a)
times the average of the n function values found at the right endpoints. And just as with our efforts
to compute area, we see that the larger the value of n we use, the more accurate our average of the
values of f will be. Indeed, we will define the average value of f on [a, b] to be

o L) T e )
AVGla,b] — oo n :

But we also know that for any continuous function f on [a, b], taking the limit of a Riemann sum

b
leads precisely to the definite integral. That is, li_>m R, = / f(z) dz, and thus taking the limit as

n — oo in Equation (4.1), we have that

b
/ f(@)de = (b—a) - faveiay). (42)
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Solving Equation (4.2) for fyyc.,b), We have the following general principle.

Average value of a function: If f is a continuous function on [a, b], then its average value on
[a, b] is given by the formula

1 b
fAVG[a,b} = b—a / f(z) dz.

Observe that Equation (4.2) tells us another way to interpret the definite integral: the definite
integral of a function f from a to b is the length of the interval (b—a) times the average value of the
function on the interval. In addition, Equation (4.2) has a natural visual interpretation when the
function f is nonnegative on [a, b]. Consider Figure 4.28, where we see at left the shaded region

y = f(x) y = f(x) y = f(x)

\ fAVG[a,b] \

(b—a)- fAVG[a,b]

A

Figure 4.28: A function y = f(z), the area it bounds, and its average value on [a, b].

whose area is f; f(z) dz, at center the shaded rectangle whose dimensions are (b — a) by favc[a,5)/
and at right these two figures superimposed. Specifically, note that in dark green we show the
horizontal line y = f.yg[4,)- Thus, the area of the green rectangle is given by (b—a) - fayg[a,5), Which

is precisely the value of f: f(z) dz. Said differently, the area of the blue region in the left figure is
the same as that of the green rectangle in the center figure; this can also be seen by observing that
the areas A; and A, in the rightmost figure appear to be equal. Ultimately, the average value of
a function enables us to construct a rectangle whose area is the same as the value of the definite
integral of the function on the interval. The java applet® at http://gvsu.edu/s/az provides
an opportunity to explore how the average value of the function changes as the interval changes,
through an image similar to that found in Figure 4.28.

Activity 4.9.

Suppose that v(t) = /4 — (t — 2)? tells us the instantaneous velocity of a moving object on the
interval 0 < ¢ < 4, where t is measured in minutes and v is measured in meters per minute.

8David Austin, http://gvsu.edu/s/5r.
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(a) Sketch an accurate graph of y = v(t). What kind of curve is y = /4 — (¢t — 2)??
(b) Evaluate f04 v(t) dt exactly.

(c) In terms of the physical problem of the moving object with velocity v(t), what is the
meaning of f04 v(t) dt? Include units on your answer.

(d) Determine the exact average value of v(t) on [0, 4]. Include units on your answer.

(e) Sketch a rectangle whose base is the line segment from ¢t = 0 to ¢ = 4 on the t-axis such

that the rectangle’s area is equal to the value of f04 v(t) dt. What is the rectangle’s exact
height?

(f) How can you use the average value you found in (d) to compute the total distance
traveled by the moving object over [0, 4]?

Summary

In this section, we encountered the following important ideas:

e Any Riemann sum of a continuous function f on an interval [a, b] provides an estimate of the
net signed area bounded by the function and the horizontal axis on the interval. Increasing the
number of subintervals in the Riemann sum improves the accuracy of this estimate, and letting
the number of subintervals increase without bound results in the values of the corresponding
Riemann sums approaching the exact value of the enclosed net signed area.

e When we take the just described limit of Riemann sums, we arrive at what we call the definite

integral of f over the interval [a,b]. In particular, the symbol f; f(z) dz denotes the definite
integral of f over [a, b], and this quantity is defined by the equation

n

/bf(m) dx = nli_)IgOZf(m;)Ax,
a i=1

where Az = b_T", x; = a+ilx (fori =0,...,n),and =] satisfies z;_1 < 2} < z;(fori =1,...,n).

e The definite integral fab f(z) dz measures the exact net signed area bounded by f and the hor-
izontal axis on [a, b]; in addition, the value of the definite integral is related to what we call

the average value of the function on [a, b]: faglas = ﬁ . fab f(z) dz. In the setting where we
consider the integral of a velocity function v, f: v(t) dt measures the exact change in position of
the moving object on [a, b]; when v is nonnegative, f; v(t) dt is the object’s distance traveled on
[a, b].

e The definite integral is a sophisticated sum, and thus has some of the same natural properties
that finite sums have. Perhaps most important of these is how the definite integral respects
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sums and constant multiples of functions, which can be summarized by the rule

/ab[Cf(:c) + kg(z)] dz = c/abf(a:) dr + k/abg(;,;) dz

where f and g are continuous functions on [a, b] and ¢ and k are arbitrary constants.

Exercises

1. The velocity of an object moving along an axis is given by the piecewise linear function v that
is pictured in Figure 4.29. Assume that the object is moving to the right when its velocity is
positive, and moving to the left when its velocity is negative. Assume that the given velocity
function is valid for t = 0 to t = 4.

| ft/sec

Figure 4.29: The velocity function of a moving object.

(a) Write an expression involving definite integrals whose value is the total change in po-
sition of the object on the interval [0, 4].

(b) Use the provided graph of v to determine the value of the total change in position on
0.4) p grap & p
0,4].

(c) Write an expression involving definite integrals whose value is the total distance trav-
eled by the object on [0,4]. What is the exact value of the total distance traveled on
[0, 4]?

(d) What is the object’s exact average velocity on [0, 4]?

(e) Find an algebraic formula for the object’s position function on [0, 1.5] that satisfies
s(0) = 0.

2. Suppose that the velocity of a moving object is given by v(t) = ¢(t — 1)(t — 3), measured in feet
per second, and that this function is valid for 0 <t < 4.
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(a) Write an expression involving definite integrals whose value is the total change in po-
sition of the object on the interval [0, 4].

(b) Use appropriate technology (such as the applet’ found at http://gvsu.edu/s/aw)
to compute Riemann sums to estimate the object’s total change in position on [0, 4].
Work to ensure that your estimate is accurate to two decimal places, and explain how
you know this to be the case.

(c) Write an expression involving definite integrals whose value is the total distance trav-
eled by the object on [0, 4].

(d) Use appropriate technology to compute Riemann sums to estimate the object’s total
change in position on [0, 4]. Work to ensure that your estimate is accurate to two decimal
places, and explain how you know this to be the case.

(e) What is the object’s average velocity on [0, 4], accurate to two decimal places?

3. Consider the graphs of two functions f and g that are provided in Figure 4.30. Each piece of f
and g is either part of a straight line or part of a circle.

Figure 4.30: Two functions f and g.

(a) Determine the exact value of fol [f(z) + g(x)] de.

(b) Determine the exact value of f14[2f(a:) —3g(z)] dx.
(c) Find the exact average value of h(z) = g(z) — f(z) on [0, 4].

(d) For what constant ¢ does the following equation hold?

/ Cedn = / (@) + 9(a)] da

4. Let f(x) = 3 — 2% and g(v) = 222

“David Eck, Hobart and William Smith Colleges, http://gvsu.edu/s/av.
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(@) On the interval [—1, 1], sketch a labeled graph of y = f(z) and write a definite integral
whose value is the exact area bounded by y = f(x) on [—1, 1].

(b) On the interval [—1, 1], sketch a labeled graph of y = g(z) and write a definite integral
whose value is the exact area bounded by y = g(x) on [—1, 1].

(c) Write an expression involving a difference of definite integrals whose value is the exact
area that lies between y = f(z) and y = g(z) on [-1, 1].

(d) Explain why your expression in (c) has the same value as the single integral
JL1f @) = g(a)] da.

(e) Explain why, in general, if p(z) > ¢(x) for all z in [a, b], the exact area between y = p(x)
and y = ¢(x) is given by

b
[ ta) — gt
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4.4 The Fundamental Theorem of Calculus

Motivating Questions

In this section, we strive to understand the ideas generated by the following important questions:

e How can we find the exact value of a definite integral without taking the limit of a Riemann
sum?

e Whatis the statement of the Fundamental Theorem of Calculus, and how do antiderivatives
of functions play a key role in applying the theorem?

e What is the meaning of the definite integral of a rate of change in contexts other than when
the rate of change represents velocity?

Introduction

Much of our work in Chapter 4 has been motivated by the velocity-distance problem: if we know
the instantaneous velocity function, v(¢), for a moving object on a given time interval [a, b], can we
determine its exact distance traveled on [a, b]? In the vast majority of our discussion in Sections 4.1-
4.3, we have focused on the fact that this distance traveled is connected to the area bounded by
y = v(t) and the t-axis on [a, b]. In particular, for any nonnegative velocity function y = v(t) on
[a,b], we know that the exact area bounded by the velocity curve and the ¢-axis on the interval
tells us the total distance traveled, which is also the value of the definite integral f; v(t) dt. In the
situation where velocity is sometimes negative, the total area bounded by the velocity function still
tells us distance traveled, while the net signed area that the function bounds tells us the object’s
change in position. Recall, for instance, the introduction to Section 4.2, where we observed that

y=v(t)

Figure 4.31: A velocity function that is sometimes negative.

for the velocity function in Figure 4.31, the total distance D traveled by the moving object on [a, b]
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is
D = A + Ay + As,

while the total change in the object’s position on [a, b] is
S(b) — s(a) =A; — Ay + As.

While the areas A;, As, and A3, which are each given by definite integrals, may be computed
through limits of Riemann sums (and in select special circumstances through familiar geometric
formulas), in the present section we turn our attention to an alternate approach, similar to the one
we encountered in Activity 4.2. To explore these ideas further, we consider the following preview
activity.

Preview Activity 4.4. A student with a third floor dormitory window 32 feet off the ground tosses
a water balloon straight up in the air with an initial velocity of 16 feet per second. It turns out that
the instantaneous velocity of the water balloon is given by the velocity function v(t) = —32¢ + 16,
where v is measured in feet per second and ¢ is measured in seconds.

(a) Let s(t) represent the height of the water balloon above the ground at time ¢, and note that
s is an antiderivative of v. That is, v is the derivative of s: s'(t) = v(¢). Find a formula for
s(t) that satisfies the initial condition that the balloon is tossed from 32 feet above ground.
In other words, make your formula for s satisfy s(0) = 32.

(b) At what time does the water balloon reach its maximum height? At what time does the
water balloon land?

(c) Compute the three differences s(3) — s(0), s(2) — s(3), and 5(2) — s(0). What do these
differences represent?

(d) What is the total vertical distance traveled by the water balloon from the time it is tossed
until the time it lands?

(e) Sketch a graph of the velocity function y = v(t) on the time interval [0, 2]. What is the total
net signed area bounded by y = v(¢) and the t-axis on [0, 2]? Answer this question in two
ways: first by using your work above, and then by using a familiar geometric formula to
compute areas of certain relevant regions.

The Fundamental Theorem of Calculus

Consider the setting where we know the position function s(t) of an object moving along an axis,
as well as its corresponding velocity function v(t), and for the moment let us assume that v(t)
is positive on [a,b]. Then, as shown in Figure 4.32, we know two different perspectives on the
distance, D, the object travels: one is that D = s(b) — s(a), which is the object’s change in position.
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Figure 4.32: Finding the distance traveled when we know an object’s velocity function v.

The other is that the distance traveled is the area under the velocity curve, which is given by the
definite integral, so D = f; v(t) dt.

Of course, since both of these expressions tell us the distance traveled, it follows that they are
equal, so

b
s(b) — s(a) = / olt) dt. 43)

Furthermore, we know that Equation (4.3) holds even when velocity is sometimes negative, since
s(b) — s(a) is the object’s change in position over [a, b], which is simultaneously measured by the
total net signed area on [a, b] given by f;’ v(t) dt.

Perhaps the most powerful part of Equation (4.3) lies in the fact that we can compute the
integral’s value if we can find a formula for s. Remember, s and v are related by the fact that v
is the derivative of s, or equivalently that s is an antiderivative of v. For example, if we have an
object whose velocity is v(t) = 3t* + 40 feet per second (which is always nonnegative), and wish
to know the distance traveled on the interval [1, 5], we have that

D = /jv(t)dt

= /5(3t2+40)dt
= s(5) —s(1),

where s is an antiderivative of v. We know that the derivative of #3 is 3% and that the derivative of
40t is 40, so it follows that if s(t) = t3 + 40t, then s is a function whose derivative is v(t) = §'(t) =
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3t2 4+ 40, and thus we have found an antiderivative of v. Therefore,

5
D = /3t2+40dt
1

= s(5) —s(1)
= (5°440-5) - (134+40-1)
= 284 feet.

Note the key lesson of this example: to find the distance traveled, we needed to compute the area
under a curve, which is given by the definite integral. But to evaluate the integral, we found an
antiderivative, s, of the velocity function, and then computed the total change in s on the interval.
In particular, observe that we have found the exact area of the region shown in Figure 4.33, and
done so without a familiar formula (such as those for the area of a triangle or circle) and without
directly computing the limit of a Riemann sum.

1401
1204 y =v(t)
1004
80 +
60 +
~tt
20 +

Figure 4.33: The exact area of the region enclosed by v(t) = 3t? 4+ 40 on [1, 5].

As we proceed to thinking about contexts other than just velocity and position, it turns out
to be advantageous to have a shorthand symbol for a function’s antiderivative. In the general
setting of a continuous function f, we will often denote an antiderivative of f by F, so that the
relationship between F and f is that F'(x) = f(x) for all relevant z. Using the notation V' in place
of s (so that V is an antiderivative of v) in Equation (4.3), we find it is equivalent to write that

b
V(b) - V(a) = / o(t) dt. (4.4)

Now, in the general setting of wanting to evaluate the definite integral f: f(z) dz for an arbitrary
continuous function f, we could certainly think of f as representing the velocity of some moving
object, and z as the variable that represents time. And again, Equations (4.3) and (4.4) hold for
any continuous velocity function, even when v is sometimes negative. This leads us to see that
Equation (4.4) tells us something even more important than the change in position of a moving
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object: it offers a shortcut route to evaluating any definite integral, provided that we can find an
antiderivative of the integrand. The Fundamental Theorem of Calculus (FTC) summarizes these
observations.

The Fundamental Theorem of Calculus: If f is a continuous function on [a, b], and F' is any
antiderivative of f, then

b
/ f(x)dx = F(b) — F(a).

A common alternate notation for F'(b) — F(a) is

F(b) - F(a) = F(x)];

a?

where we read the righthand side as “the function F' evaluated from a to b.” In this notation, the
FTC says that

b
/ f(@)dz = F(z)P.

The FTC opens the door to evaluating exactly a wide range of integrals. In particular, if we are
interested in a definite integral for which we can find an antiderivative F* for the integrand f, then
we can evaluate the integral exactly. For instance since - [2%] = 22, the FTC tells us that

1
/ 22dr =
0

Wl Wl W=

But finding an antiderivative can be far from simple; in fact, often finding a formula for an an-
tiderivative is very hard or even impossible. While we can differentiate just about any function,
even some relatively simple ones don’t have an elementary antiderivative. A significant portion
of integral calculus (which is the main focus of second semester college calculus) is devoted to
understanding the problem of finding antiderivatives.

Activity 4.10.

Use the Fundamental Theorem of Calculus to evaluate each of the following integrals exactly.
For each, sketch a graph of the integrand on the relevant interval and write one sentence that
explains the meaning of the value of the integral in terms of the (net signed) area bounded by
the curve.

(@) /41(2 —2z)dx

(b) /2 sin(z) dz
0
Qoge
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(¢) /01 e dx

(d) /_11 z° dx

(e) /02(3953 — 222 — e%)dx

Basic antiderivatives

The general problem of finding an antiderivative is difficult. In part, this is due to the fact that we
are trying to undo the process of differentiating, and the undoing is much more difficult than the
doing. For example, while it is evident that an antiderivative of f(x) = sin(z) is F'(z) = — cos(z)
and that an antiderivative of g(z) = 2? is G(z) = %%, combinations of f and g can be far more

complicated. Consider such functions as

sin(x)

o and sin(z?).

5sin(z) — 422, 22 sin(z),

What is involved in trying to find an antiderivative for each? From our experience with derivative
rules, we know that while derivatives of sums and constant multiples of basic functions are simple
to execute, derivatives involving products, quotients, and composites of familiar functions are
much more complicated. Thus, it stands to reason that antidifferentiating products, quotients,
and composites of basic functions may be even more challenging. We defer our study of all but
the most elementary antiderivatives to later in the text.

We do note that each time we have a function for which we know its derivative, we have
a function-derivative pair, which also leads us to knowing the antiderivative of a function. For
instance, since we know that

%[— cos(z)] = sin(x),
it follows that F'(z) = —cos(x) is an antiderivative of f(x) = sin(z). It is equivalent to say that
f(z) = sin(z) is the derivative of F'(x) = — cos(z), and thus F' and f together form the function-

derivative pair. Clearly, every basic derivative rule leads us to such a pair, and thus to a known
antiderivative. In Activity 4.11, we will construct a list of most of the basic antiderivatives we
know at this time. Furthermore, those rules will enable us to antidifferentiate sums and constant
multiples of basic functions. For example, if f(z) = 5sin(x) — 422, note that since — cos(z) is an
antiderivative of sin(z) and 32 is an antiderivative of z?, it follows that

F(z) = —b5cos(x) — %x?’

is an antiderivative of f, by the sum and constant multiple rules for differentiation.
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Finally, before proceeding to build a list of common functions whose antiderivatives we know,
we revisit the fact that each function has more than one antiderivative. Because the derivative
of any constant is zero, any time we seek an arbitrary antiderivative, we may add a constant of
our choice. For instance, if we want to determine an antiderivative of g(r) = 22, we know that
G(z) = 323 is one such function. But we could alternately have chosen G(z) = 323 + 7, since in
this case as well, G’(z) = z%. In some contexts later on in calculus, it is important to discuss the
most general antiderivative of a function. If g(z) = 22, we say that the general antiderivative of g is

L3
G(x) = 3% +C,
where C represents an arbitrary real number constant. Regardless of the formula for g, including
+C in the formula for its antiderivative G results in the most general possible antiderivative.

Our primary current interest in antiderivatives is for use in evaluating definite integrals by the
Fundamental Theorem of Calculus. In that situation, the arbitrary constant C' is irrelevant, and
thus we usually omit it. To see why, consider the definite integral

1
/ 22 da.
0

2, suppose we find and use the general antiderivative G(z) = $23 + C.

For the integrand g(z) = x
Then, by the FTC,

1

1 1
/ 22dr = Z234+C
0 3 0

= (;(1)3 + C> - (;(0)3 + C>

Specifically, we observe that the C-values appear as opposites in the evaluation of the integral
and thus do not affect the definite integral’s value. In the same way, the potential inclusion of +C
with the antiderivative has no bearing on any definite integral, and thus we generally choose to
omit this possible constant whenever we evaluate an integral using the Fundamental Theorem of
Calculus.

In the following activity, we work to build a list of basic functions whose antiderivatives we
already know.
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given function, f(z) antiderivative, F'(x)

k, (k # 0)

Table 4.1: Familiar basic functions and their antiderivatives.

Activity 4.11.

Use your knowledge of derivatives of basic functions to complete the above table of antideriva-
tives. For each entry, your task is to find a function F' whose derivative is the given function
f. When finished, use the FTC and the results in the table to evaluate the three given definite
integrals.

(a) /1 (2% — 2 —e" +2) dz
0
w/3

(b) / (2sin(t) — 4 cos(t) + sec?(t) — m) dt
0

1
© [ (Va-a?)da

The total change theorem

As we use the Fundamental Theorem of Calculus to evaluate definite integrals, it is essential that
we remember and understand the meaning of the numbers we find. We briefly summarize three
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key interpretations to date.

e For a moving object with instantaneous velocity v(t), the object’s change in position on the
time interval [a, b] is given by fab v(t) dt, and whenever v(t) > 0 on [a, b], f; v(t) dt tells us the
total distance traveled by the object on [a, b].

e For any continuous function f, its definite integral f; f(x) dx represents the total net signed
area bounded by y = f(x) and the z-axis on [a, b], where regions that lie below the z-axis
have a minus sign associated with their area.

e The value of a definite integral is linked to the average value of a function: for a continuous
function f on [a, b], its average value fyc, ) i given by

1 b
fAVG[a,b] o a/a f(z) dz.
The Fundamental Theorem of Calculus now enables us to evaluate exactly (without taking a limit
of Riemann sums) any definite integral for which we are able to find an antiderivative of the
integrand.

A slight change in notational perspective allows us to gain even more insight into the meaning
of the definite integral. To begin, recall Equation (4.4), where we wrote the Fundamental Theorem
of Calculus for a velocity function v with antiderivative V" as

b
V(b) —V(a) = / v(t) dt.

If we instead replace V with s (which represents position) and replace v with s’ (since velocity is
the derivative of position), Equation (4.4) equivalently reads

b
s(b) — s(a) = / S () dt. (45)

In words, this version of the FTC tells us that the total change in the object’s position function on
a particular interval is given by the definite integral of the position function’s derivative over that
interval.

Of course, this result is not limited to only the setting of position and velocity. Writing the
result in terms of a more general function f, we have the Total Change Theorem.

The Total Change Theorem: If f is a continuously differentiable function on [a, b] with deriva-
tive f’, then

b
£0) - f(@ = [ f(a)da, (4.6)

That is, the definite integral of the derivative of a function on [a, b] is the total change of the
function itself on [a, b].

The Total Change Theorem tells us more about the relationship between the graph of a function
and that of its derivative. Recall Figure 1.18, which provided one of the first times we saw that
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heights on the graph of the derivative function come from slopes on the graph of the function itself.
That observation occurred in the context where we knew f and were seeking f’; if now instead
we think about knowing f” and seeking information about f, we can instead say the following:

differences in heights on f correspond to net signed areas bounded by f'.

Figure 4.34: The graphs of f/(z) = 4 — 2z (at left) and an antiderivative f(z) = 4z — 2? at right. Differences
in heights on f correspond to net signed areas bounded by f’.

To see why this is so, say we consider the difference f(1) — f(0). Note that this value is 3, in part
because f(1) = 3 and f(0) = 0, but also because the net signed area bounded by y = f’(z) on
[0,1]is 3. Thatis, f(1) — f(0) = fol f'(z) dz. A similar pattern holds throughout, including the fact
that since the total net signed area bounded by f’ on [0, 4] is 0, fé f(x)dx = 0, so it must be that
f(4) = £(0) = 0,50 f(4) = f(0).

Beyond this general observation about area, the Total Change Theorem enables us to consider
interesting and important problems where we know the rate of change, and answer key questions
about the function whose rate of change we know.

Example 4.1. Suppose that pollutants are leaking out of an underground storage tank at a rate of
r(t) gallons/day, where ¢ is measured in days. It is conjectured that r(¢) is given by the formula
r(t) = 0.0069t3 — 0.125¢* + 11.079 over a certain 12-day period. The graph of y = r(t) is given in
Figure 4.35. What is the meaning of | 410 r(t) dt and what is its value? What is the average rate at
which pollutants are leaving the tank on the time interval 4 < ¢ < 10?

We know that since r(t) > 0, the value of |, 410 r(t) dt is the area under the curve on the interval
[4,10]. If we think about this area from the perspective of a Riemann sum, the rectangles will have
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al/da;
1o ] 831/ day

10+

N s Oy

days

2 4 6 8 10 12

Figure 4.35: The rate r(t) of pollution leaking from a tank, measured in gallons per day.

heights measured in gallons per day and widths measured in days, thus the area of each rectangle
will have units of
gallons

day

- days = gallons.

Thus, the definite integral tells us the total number of gallons of pollutant that leak from the tank
from day 4 to day 10. The Total Change Theorem tells us the same thing: if we let R(t) denote the
function that measures the total number of gallons of pollutant that have leaked from the tank up
to day ¢, then R/(t) = r(t), and

10
/ r(£) dt = R(10) — R(4),
4

which is the total change in the function that measures total gallons leaked over time, thus the
number of gallons that have leaked from day 4 to day 10.

To compute the exact value, we use the Fundamental Theorem of Calculus. Antidifferentiating
r(t) = 0.0069t3 — 0.125¢t% + 11.079, we find that

10 10
1 1
/ (0.0069t> — 0.125t% + 11.079) dt = (0.0069 > t* —0.125 - gt?’ - 11.079t>
4

4

1 1
= (0.0069 > (10)* —0.125 - g(10)3 + 11.079(10)> —

1 1
(0.0069 > ()t —0.125 - 5(4)3 + 11.079(4))
44.282.

Q

Thus, approximately 44.282 gallons of pollutant leaked over the six day time period.
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To find the average rate at which pollutant leaked from the tank over 4 < ¢ < 10, we want to
compute the average value of r on [4, 10]. Thus,

1 10 44.282
Tavel4,100 T 19" 4 \ r(t)dt = s = 7.380,

which has its units measured in gallons per day.

Activity 4.12.

During a 30-minute workout, a person riding an exercise machine burns calories at a rate of
c calories per minute, where the function y = ¢(t) is given in Figure 4.36. On the interval
0 < t < 10, the formula for cis ¢(t) = —0.05t> + t + 10, while on 20 < t < 30, its formula is
c(t) = —0.05t% 4 2t — 5.

cal/min
104
5 4
min
10 ' 20 ' 30

Figure 4.36: The rate c(t) at which a person exercising burns calories, measured in calories per minute.

(a) What is the exact total number of calories the person burns during the first 10 minutes
of her workout?

(b) Let C(t) be an antiderivative of ¢(¢). What is the meaning of C'(30) — C'(0) in the context
of the person exercising? Include units on your answer.

(c) Determine the exact average rate at which the person burned calories during the 30-
minute workout.

(d) At what time(s), if any, is the instantaneous rate at which the person is burning calories
equal to the average rate at which she burns calories, on the time interval 0 < ¢ < 30?

<

Summary

In this section, we encountered the following important ideas:
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e We can find the exact value of a definite integral without taking the limit of a Riemann sum or
using a familiar area formula by finding the antiderivative of the integrand, and hence applying
the Fundamental Theorem of Calculus.

e The Fundamental Theorem of Calculus says that if f is a continuous function on [a, b] and F'is
an antiderivative of f, then

b
/ f(x)dx = F(b) — F(a).

Hence, if we can find an antiderivative for the integrand f, evaluating the definite integral
comes from simply computing the change in F on [a, b].

o A slightly different perspective on the FTC allows us to restate it as the Total Change Theorem,
which says that

b
/ f(@)dz = f(b) - f(a),

for any continuously differentiable function f. This means that the definite integral of the
instantaneous rate of change of a function f on an interval [a, 0] is equal to the total change in
the function f on [a, b].

Exercises

1. The instantaneous velocity (in meters per minute) of a moving object is given by the function
v as pictured in Figure 4.37. Assume that on the interval 0 < t < 4, v(t) is given by v(t) =
—1t3 4+ 342 + 1, and that on every other interval v is piecewise linear, as shown.

151 m/min y=u(t)

12+

min

4 8 12 16 20 24

Figure 4.37: The velocity function of a moving body.

(@) Determine the exact distance traveled by the object on the time interval 0 < ¢ < 4.
(b) What is the object’s average velocity on [12, 24]?

(c) At what time is the object’s acceleration greatest?
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(d) Suppose that the velocity of the object is increased by a constant value c for all values
of t. What value of ¢ will make the object’s total distance traveled on [12,24] be 210
meters?

2. A function f is given piecewise by the formula

—2?2 42241, if0<z<?2
flx)=< —z+3, if2<x<3
22 —8x+15, if3<z<5

(a) Determine the exact value of the net signed area enclosed by f and the z-axis on the
interval [2, 5].

(b) Compute the exact average value of f on [0, 5].

(c) Find a formula for a function g on 5 < x < 7 so that if we extend the above definition
of f sothat f(x) = g(z) if 5 < z < 7, it follows that f07 f(z)dz =0.

3. When an aircraft attempts to climb as rapidly as possible, its climb rate (in feet per minute)
decreases as altitude increases, because the air is less dense at higher altitudes. Given below
is a table showing performance data for a certain single engine aircraft, giving its climb rate at
various altitudes, where c(h) denotes the climb rate of the airplane at an altitude h.

h (feet) 0 | 1000 | 2000 | 3000 | 4000 | 5000 | 6000 | 7000 | 8000 | 9000 | 10,000
c (ft/min) || 925 | 875 | 830 | 780 | 730 | 685 | 635 | 585 | 535 | 490 440

Let a new function called m(h) measure the number of minutes required for a plane at altitude
h to climb the next foot of altitude.

(a) Determine a similar table of values for m(h) and explain how it is related to the table
above. Be sure to explain the units.

(b) Give a careful interpretation of a function whose derivative is m(h). Describe what the
input is and what the output is. Also, explain in plain English what the function tells
us.

(c) Determine a definite integral whose value tells us exactly the number of minutes re-
quired for the airplane to ascend to 10,000 feet of altitude. Clearly explain why the
value of this integral has the required meaning.

(d) Use the Riemann sum M5 to estimate the value of the integral you found in (c). Include
units on your result.

4. In Chapter 1, we showed that for an object moving along a straight line with position function
s(t), the object’s “average velocity on the interval [a, b]” is given by

5(0) — s(a)

AVlap = b—a
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More recently in Chapter 4, we found that for an object moving along a straight line with
velocity function v(t), the object’s “average value of its velocity function on [a, b]” is

1 b
VavGla,b] b—a / v(t)dt.

Are the “average velocity on the interval [a, b]” and the “average value of the velocity function
on [a,b]” the same thing? Why or why not? Explain.
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Chapter 5

Finding Antiderivatives and Evaluating
Integrals

5.1 Constructing Accurate Graphs of Antiderivatives

Motivating Questions

In this section, we strive to understand the ideas generated by the following important questions:

e Given the graph of a function’s derivative, how can we construct a completely accurate
graph of the original function?

e How many antiderivatives does a given function have? What do those antiderivatives all
have in common?

e Given a function f, how does the rule A(z) = [ f(t) dt define a new function A?

Introduction

A recurring theme in our discussion of differential calculus has been the question “Given informa-
tion about the derivative of an unknown function f, how much information can we obtain about f
itself?” For instance, in Activity 1.22, we explored the situation where the graph of y = f/(x) was
known (along with the value of f at a single point) and endeavored to sketch a possible graph of f
near the known point. In Example 3.1 — and indeed throughout Section 3.1 — we investigated how
the first derivative test enables us to use information regarding f’ to determine where the original
function f is increasing and decreasing, as well as where f has relative extreme values. Further, if
we know a formula or graph of f/, by computing f” we can find where the original function f is
concave up and concave down. Thus, the combination of knowing f’ and f” enables us to fully
understand the shape of the graph of f.
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We returned to this question in even more detail in Section 4.1; there, we considered the situa-
tion where we knew the instantaneous velocity of a moving object and worked from that informa-
tion to determine as much information as possible about the object’s position function. We found
key connections between the net-signed area under the velocity function and the corresponding
change in position of the function; in Section 4.4, the Total Change Theorem further illuminated
these connections between f’ and f in a more general setting, such as the one found in Figure 4.34,
showing that the total change in the value of f over an interval [a, b] is determined by the exact
net-signed area bounded by f’ and the z-axis on the same interval.

In what follows, we explore these issues still further, with a particular emphasis on the situa-
tion where we possess an accurate graph of the derivative function along with a single value of
the function f. From that information, we desire to completely determine an accurate graph of
f that not only represents correctly where f is increasing, decreasing, concave up, and concave
down, but also accurate function values at any point of interest to us.

Preview Activity 5.1. Suppose that the following information is known about a function f: the
graph of its derivative, y = f'(x), is given in Figure 5.1. Further, assume that f’ is piecewise linear
(as pictured) and that for x < 0 and = > 6, f’(z) = 0. Finally, it is given that f(0) = 1.

!
= f'(x
5 y = f'(x) 5
1 1
1 3 5 1 3 5
-1 -1
-3 -3

Figure 5.1: At left, the graph of y = f’(z); at right, axes for plotting y = f(x).

(a) On what interval(s) is f an increasing function? On what intervals is f decreasing?
(b) On what interval(s) is f concave up? concave down?
(c) At what point(s) does f have a relative minimum? a relative maximum?

(d) Recall that the Total Change Theorem tells us that

1
1) — f(0) = "(z) dz.
)= 10) = [ f'a)da

What is the exact value of f(1)?
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(e) Use the given information and similar reasoning to that in (d) to determine the exact value

of f(2), f(3), f(4), f(5), and [(6).

(f) Based on your responses to all of the preceding questions, sketch a complete and accurate
graph of y = f(z) on the axes provided, being sure to indicate the behavior of f for x < 0
and z > 6.

Constructing the graph of an antiderivative

Preview Activity 5.1 demonstrates that when we can find the exact area under a given graph on
any given interval, it is possible to construct an accurate graph of the given function’s antideriva-
tive: that is, we can find a representation of a function whose derivative is the given one. While we
have considered this question at different points throughout our study, it is important to note here
that we now can determine not only the overall shape of the antiderivative, but also the actual
height of the antiderivative at any point of interest.

Indeed, this is one key consequence of the Fundamental Theorem of Calculus: if we know a
function f and wish to know information about its antiderivative, F', provided that we have some
starting point a for which we know the value of F'(a), we can determine the value of F(b) via the

definite integral. In particular, since F'(b) — F(a) = fab f(z) dz, it follows that

b
F(b) = F(a) +/ f(z)dz. (5.1)

Moreover, in the discussion surrounding Figure 4.34, we made the observation that differences in
heights of a function correspond to net-signed areas bounded by its derivative. Rephrasing this in
terms of a given function f and its antiderivative F', we observe that on an interval [a, b],

differences in heights on the antiderivative (such as F'(b) — F'(a)) correspond to the net-signed
area bounded by the original function on the interval [a, ] ( ff f(x) dx).

For example, say that f(z) = 2? and that we are interested in an antiderivative of f that satisfies
F(1) = 2. Thinking of @ = 1 and b = 2 in Equation (5.1), it follows from the Fundamental Theorem
of Calculus that

F(2) = F(1)+/12x2dx
2

1
= 1+*ZC3

3

8 1
= 1 —_Z
“(3-3)

10
= 3

D09



254 5.1. CONSTRUCTING ACCURATE GRAPHS OF ANTIDERIVATIVES

In this way, we see that if we are given a function f for which we can find the exact net-signed area
bounded by f on a given interval, along with one value of a corresponding antiderivative F, we
can find any other value of F' that we seek, and in this way construct a completely accurate graph
of F'. We have two main options for finding the exact net-signed area: using the Fundamental
Theorem of Calculus (which requires us to find an algebraic formula for an antiderivative of the
given function f), or, in the case where f has nice geometric properties, finding net-signed areas
through the use of known area formulas.

Activity 5.1.

Suppose that the function y = f(z) is given by the graph shown in Figure 5.2, and that the
pieces of f are either portions of lines or portions of circles. In addition, let F' be an antideriva-
tive of f and say that F'(0) = —1. Finally, assume that for z <0and =z > 7, f(z) = 0.

y = f(x)

Figure 5.2: At left, the graph of y = f(x).

(@) On what interval(s) is F' an increasing function? On what intervals is F' decreasing?
(b) On what interval(s) is ' concave up? concave down?
(c) At what point(s) does F' have a relative minimum? a relative maximum?

(d) Use the given information to determine the exact value of F'(z) for x = 1,2,...,7. In
addition, what are the values of F'(—1) and F'(8)?

(e) Based on your responses to all of the preceding questions, sketch a complete and accu-
rate graph of y = F(x) on the axes provided, being sure to indicate the behavior of ¥
for x < 0 and > 7. Clearly indicate the scale on the vertical and horizontal axes of
your graph.

(f) What happens if we change one key piece of information: in particular, say that G
is an antiderivative of f and G(0) = 0. How (if at all) would your answers to the
preceding questions change? Sketch a graph of G on the same axes as the graph of F’
you constructed in (e).
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Multiple antiderivatives of a single function

In the final question of Activity 5.1, we encountered a very important idea: a given function f
has more than one antiderivative. In addition, any antiderivative of f is determined uniquely by
identifying the value of the desired antiderivative at a single point. For example, suppose that f
is the function given at left in Figure 5.3, and we say that F' is an antiderivative of f that satisfies

Figure 5.3: At left, the graph of y = f(x). At right, three different antiderivatives of f.

F(0)=1.
Then, using Equation 5.1, we can compute F(1) = 1.5, F\(2) = 1.5, F(3) = —0.5, F'(4) =
-2, F(5) = —0.5, and F(6) = 1, plus we can use the fact that F/ = f to ascertain where F' is

increasing and decreasing, concave up and concave down, and has relative extremes and inflection
points. Through work similar to what we encountered in Preview Activity 5.1 and Activity 5.1,
we ultimately find that the graph of F' is the one given in blue in Figure 5.2.

If we instead chose to consider a function G that is an antiderivative of f but has the property
that G(0) = 3, then G will have the exact same shape as F' (since both share the derivative f), but
G will be shifted vertically away from the graph of F), as pictured in red in Figure 5.2. Note that
G(1)—G(0) = [ f(z)dz = 0.5,justas F(1) — F(0) = 0.5, but since G(0) = 3, G(1) = G(0) +0.5 =
3.5, whereas F'(1) = F'(0) + 0.5 = 1.5, since F'(0) = 1. In the same way, if we assigned a different
initial value to the antiderivative, say H(0) = —1, we would get still another antiderivative, as
shown in magenta in Figure 5.2.

This example demonstrates an important fact that holds more generally:

’ If G and H are both antiderivatives of a function f, then the function G — H must be constant. ‘

To see why this result holds, observe that if G and H are both antiderivatives of f, then G’ = f and
H' = f.Hence, £[G(z)— H(z)] = G'(z) — H'(z) = f(z)— f(z) = 0. Since the only way a function
can have derivative zero is by being a constant function, it follows that the function G — H must
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be constant.

Further, we now see that if a function has a single antiderivative, it must have infinitely many:
we can add any constant of our choice to the antiderivative and get another antiderivative. For this
reason, we sometimes refer to the general antiderivative of a function f. For example, if f(z) = 22, its
general antiderivative is F'(z) = %xB’ + C, where we include the “4C” to indicate that F" includes
all of the possible antiderivatives of f. To identify a particular antiderivative of f, we must be
provided a single value of the antiderivative F' (this value is often called an initial condition). In
the present example, suppose that condition is F'(2) = 3; substituting the value of 2 for z in
F(x) = %xS + C, we find that

1

= —(2)3

and thus C' =3 — % = 1. Therefore, the particular antiderivative in this case is F/(z) = 323 + 3.
Activity 5.2.

For each of the following functions, sketch an accurate graph of the antiderivative that satisfies
the given initial condition. In addition, sketch the graph of two additional antiderivatives of
the given function, and state the corresponding initial conditions that each of them satisfy. If
possible, find an algebraic formula for the antiderivative that satisfies the initial condition.

(a) original function: g(z) = |z| — 1;
initial condition: G(—1) = 0;
interval for sketch: [—2, 2]

(b) original function: h(x) = sin(z);
initial condition: H(0) =1
interval for sketch: [0, 47|
x2, fo<e<1
(c) original function: p(z) = —(z —2)?, ifl <z <2;
0 otherwise

initial condition: P(0) = 1;
interval for sketch: [—1, 3]

Functions defined by integrals
In Equation (5.1), we found an important rule that enables us to compute the value of the an-

tiderivative F' at a point b, provided that we know F(a) and can evaluate the definite integral
from a to b of f. Again, that rule is

b
F(b) = F(a) +/ f(z)dz.
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In several examples, we have used this formula to compute several different values of F(b) and
then plotted the points (b, F'(b)) to assist us in generating an accurate graph of F'. That suggests
that we may want to think of b, the upper limit of integration, as a variable itself. To that end, we
introduce the idea of an integral function, a function whose formula involves a definite integral.

Given a continuous function f, we define the corresponding integral function A according to
the rule

A(z) = / " r)a. (5.2)

Note particularly that because we are using the variable z as the independent variable in the
function A, and = determines the other endpoint of the interval over which we integrate (starting
from a), we need to use a variable other than z as the variable of integration. A standard choice is
t, but any variable other than z is acceptable.

One way to think of the function A is as the “net-signed area from a up to z” function, where
we consider the region bounded by y = f(t) on the relevant interval. For example, in Figure 5.4,
we see a given function f pictured at left, and its corresponding area function (choosing a = 0),
A(z) = [y f(t) dt shown at right.

y = [(t) 51

/
N 7/ 2 |
"\ N

T 2

Figure 5.4: At left, the graph of the given function f. At right, the area function A(x) = foz f@)dt.

Note particularly that the function A measures the net-signed area from ¢ = 0 to ¢t = x bounded
by the curve y = f(t); this value is then reported as the corresponding height on the graph of
y = A(x). It is even more natural to think of this relationship between f and A dynamically. At
http://gvsu.edu/s/cz, we find ajava applet! that brings the static picture in Figure 5.4 to life.
There, the user can move the red point on the function f and see how the corresponding height
changes at the light blue point on the graph of A.

The choice of a is somewhat arbitrary. In the activity that follows, we explore how the value of
a affects the graph of the integral function, as well as some additional related issues.

Activity 5.3.

'David Austin, Grand Valley State University

D09


http://gvsu.edu/s/cz

258 5.1. CONSTRUCTING ACCURATE GRAPHS OF ANTIDERIVATIVES

Suppose that g is given by the graph at left in Figure 5.5 and that A is the corresponding integral
function defined by A(z) = [} g(t) dt.

Figure 5.5: At left, the graph of y = g¢(t); at right, axes for plotting y = A(z), where A is defined by the
formula A(z) = [/ g(t) dt.

(@) On what interval(s) is A an increasing function? On what intervals is A decreasing?
Why?

(b) On what interval(s) do you think A is concave up? concave down? Why?
(c) At what point(s) does A have a relative minimum? a relative maximum?

(d) Use the given information to determine the exact values of A(0), A(1), A(2), A(3), A(4),
A(5),and A(6).

(e) Based on your responses to all of the preceding questions, sketch a complete and accu-
rate graph of y = A(x) on the axes provided, being sure to indicate the behavior of A
forx < 0and z > 6.

(f) How would your graph of A change if A were instead defined by A(z) = [} f(t) dt?

Summary

In this section, we encountered the following important ideas:

e Given the graph of a function f, we can construct the graph of its antiderivative F' provided
that (a) we know a starting value of F, say F'(a), and (b) we can evaluate the integral ff f(z)dx
exactly for relevant choices of a and b. For instance, if we wish to know F'(3), we can compute
F(3) = F(a) + fj f(z) dz. When we combine this information about the function values of F’
together with our understanding of how the behavior of F' = f affects the overall shape of F,
we can develop a completely accurate graph of the antiderivative F.
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e Because the derivative of a constant is zero, if F' is an antiderivative of f, it follows that
G(z) = F(z) + C will also be an antiderivative of f. Said differently, any two antideriva-
tives of a function f differ precisely by a constant. This shows that any function with at least
one antiderivative in fact has infinitely many, and the graphs of any two antiderivatives will
differ only by a vertical translation.

e Given a function f, the rule A(z) = [ f(t) dt defines a new function A that measures the net-
signed area bounded by f on the interval [a,z]. We call the function A the integral function
corresponding to f.

Exercises

1. A moving particle has its velocity given by the quadratic function v pictured in Figure 5.6. In

addition, it is given that A; = % and Ay = %, as well as that for the corresponding position

function s, s(0) = 0.5.

3 3.. S
v
| 14
A H ' . "
1 6 2 4 6
-3 -3

Figure 5.6: At left, the given graph of v. At right, axes for plotting s.

(a) Use the given information to determine s(1), s(3), s(5), and s(6).

(b) On what interval(s) is s increasing? On what interval(s) is s decreasing?

(c) On what interval(s) is s concave up? On what interval(s) is s concave down?
(d) Sketch an accurate, labeled graph of s on the axes at right in Figure 5.6.

(e) Note that v(t) = —2 + (¢ — 3)°. Find a formula for s.

2. A person exercising on a treadmill experiences different levels of resistance and thus burns
calories at different rates, depending on the treadmill’s setting. In a particular workout, the
rate at which a person is burning calories is given by the piecewise constant function ¢ pictured
in Figure 5.7. Note that the units on c are “calories per minute.”

(a) Let C be an antiderivative of c. What does the function C measure? What are its units?
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cal/min
15.. —
_C
10.. —
5.. —
BN min
10 20 30 10 20 30

Figure 5.7: At left, the given graph of c. At right, axes for plotting C.

(b) Assume that C'(0) = 0. Determine the exact value of C(t) at the values t = 5, 10, 15, 20, 25, 30.

(c) Sketch an accurate graph of C on the axes provided at right in Figure 5.7. Be certain to
label the scale on the vertical axis.

(d) Determine a formula for C' that does not involve an integral and is valid for 5 < ¢ < 10.

Q020



5.1. CONSTRUCTING ACCURATE GRAPHS OF ANTIDERIVATIVES 261

3. Consider the piecewise linear function f given in Figure 5.8. Let the functions A, B, and C be
defined by the rules A(z) = [*, f(t)dt, B(x) = [ f(t)dt, and C(z) = []" f(t) dt.

Figure 5.8: At left, the given graph of f. At right, axes for plotting A, B, and C.

(a) For the values z = —1,0,1,...,6, make a table that lists corresponding values of A(x),
B(z),and C(x).

(b) On the axes provided in Figure 5.8, sketch the graphs of A, B, and C.
(c) How are the graphs of A, B, and C related?

(d) How would you best describe the relationship between the function A and the function

2
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5.2 The Second Fundamental Theorem of Calculus

Motivating Questions

In this section, we strive to understand the ideas generated by the following important questions:

e How does the integral function A(z) = [° f(t) d¢ define an antiderivative of f?
e What is the statement of the Second Fundamental Theorem of Calculus?

e How do the First and Second Fundamental Theorems of Calculus enable us to formally see
how differentiation and integration are almost inverse processes?

Introduction

In Section 4.4, we learned the Fundamental Theorem of Calculus (FTC), which from here forward
will be referred to as the First Fundamental Theorem of Calculus, as in this section we develop
a corresponding result that follows it. In particular, recall that the First FTC tells us that if f is a
continuous function on [a, b] and F is any antiderivative of f (thatis, F’ = f), then

b
/ f(@)do = F(b) — F(a).

We have typically used this result in two settings: (1) where f is a function whose graph we know
and for which we can compute the exact area bounded by f on a certain interval [a, b], we can
compute the change in an antiderivative F' over the interval; and (2) where f is a function for
which it is easy to determine an algebraic formula for an antiderivative, we may evaluate the
integral exactly and hence determine the net-signed area bounded by the function on the interval.
For the former, see Preview Activity 5.1 or Activity 5.1. For the latter, we can easily evaluate
exactly integrals such as

4

/ 22 dz,
1

3 is an antiderivative of f(z) = 2. Thus,

since we know that the function F(z) = 3z

4 1 .4
/ e?de = —ab
1 3

= W30
= 21.

Here we see that the First FTC can be viewed from at least two perspectives: first, as a tool to
find the difference F'(b) — F'(a) for an antiderivative F' of the integrand f. In this situation, we

need to be able to determine the value of the integral f; f(z) dz exactly, perhaps through known
geometric formulas for area. It is possible that we may not have a formula for F itself. From a
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second perspective, the First FTC provides a way to find the exact value of a definite integral,
and hence a certain net-signed area exactly, by finding an antiderivative of the integrand and
evaluating its total change over the interval. In this latter case, we need to know a formula for the
antiderivative F, as this enables us to compute net-signed areas exactly through definite integrals,
as demonstrated in Figure 5.9.

Figure 5.9: At left, the graph of f(z) = 22 on the interval [1,4] and the area it bounds. At right, the
antiderivative function F(z) = 22, whose total change on [1,4] is the value of the definite integral at left.

We recall further that the value of a definite integral may have additional meaning depending
on context: change in position when the integrand is a velocity function, total pollutant leaked
from a tank when the integrand is the rate at which pollution is leaking, or other total changes
that correspond to a given rate function that is the integrand. In addition, the value of the definite
integral is always connected to the average value of a continuous function on a given interval:

b
fAVG[a,b] = ﬁ fa f(z)dx.

Next, remember that in the last part of Section 5.1, we studied integral functions of the form
A(z) = [T f(t)dt. Figure 5.4 is a particularly important image to keep in mind as we work with
integral functions, and the corresponding java applet at http://gvsu.edu/s/cz is likewise
foundational to our understanding of the function A. In what follows, we use the First FTC to
gain additional understanding the function A(z) = [ f(t)dt, where the integrand f is given
(either through a graph or a formula), and c is a constant. In particular, we investigate further the
special nature of the relationship between the functions A and f.

Preview Activity 5.2. Consider the function A defined by the rule

Aw = [ syan,
where f(t) =4 — 2t.

(a) Compute A(1) and A(2) exactly.
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(b) Use the First Fundamental Theorem of Calculus to find an equivalent formula for A(z)
that does not involve integrals. That is, use the first FTC to evaluate [;"(4 — 2t) dt.

(c) Observe that f is a linear function; what kind of function is A?
(d) Using the formula you found in (b) that does not involve integrals, compute A’(x).

(e) While we have defined f by the rule f(t) = 4 — 2t, it is equivalent to say that f is given by
the rule f(z) = 4 — 2z. What do you observe about the relationship between A and f?

The Second Fundamental Theorem of Calculus

The result of Preview Activity 5.2 is not particular to the function f(¢) = 4 — 2t, nor to the choice
of “1” as the lower bound in the integral that defines the function A. For instance, if we let f(t) =
cos(t) — t and set A(z) = [} f(t)dt, then we can determine a formula for A without integrals by
the First FTC. Specifically,

Alx) = /2 "(cos(t) — 1) dt

Differentiating A(x), since (sin(2) — 2) is constant, it follows that
Al(x) = cos(z) — z,

and thus we see that A'(z) = f(z). This tells us that for this particular choice of f, A is an an-
tiderivative of f. More specifically, since A(2) = f; f(t)dt = 0, A is the only antiderivative of f
for which A(2) = 0.

In general, if f is any continuous function, F' is any antiderivative of f, and we define the
function A by the rule

Aw) = [ " fa,

where c is an arbitrary constant, then it follows from the First FTC that

Since F'(c) is constant and F' is an antiderivative of f, we see
Al(z) = Fl(z) = f(z),
@loEle
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and thus A is an antiderivative of f. In addition, A(c) = [ f(t)dt = 0. This argument demon-
strates the truth of the Second Fundamental Theorem of Calculus, which we state as follows.

Theorem. (Second FTC) If f is a continuous function, ¢ is a constant, and A(z) = [ f(¢) dt,
then A is the unique antiderivative of f that satisfies A(c) = 0.

Activity 5.4.

Suppose that f is the function given in Figure 5.10 and that f is a piecewise function whose
parts are either portions of lines or portions of circles, as pictured. In addition, let A be the

y = f(x)

Figure 5.10: At left, the graph of y = f(z). At right, axes for sketching y = A(x).

function defined by the rule A(z) = [}’ f(t) dt.
(a) What does the Second FTC tell us about the relationship between A and f?
(b) Compute A(1) and A(3) exactly.

(c) Sketch a precise graph of y = A(x) on the axes at right that accurately reflects where A
is increasing and decreasing, where A is concave up and concave down, and the exact
valuesof Aatx =0,1,...,7.

(d) How is A similar to, but different from, the function F' that you found in Activity 5.1?

(e) With as little additional work as possible, sketch precise graphs of the functions B(z) =
t) dt an T) = t) dt. Justity your results with at least one sentence ot expla-
[ £(t)dtand C(a) = [¥ F(t) dt. Justify y Its with at1 f expl
nation.

<

Understanding Integral Functions
The Second FTC provides us with a means to construct an antiderivative of any continuous func-

tion. In particular, if we are given a continuous function g and wish to find an antiderivative of G,
we can now say that
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provides the rule for such an antiderivative, and moreover that G(c) = 0. Note especially that we
know that G'(z) = g(z). We sometimes want to write this relationship between G and g from a
different notational perspective. In particular, observe that

| 0] =g 53)

This result can be particularly useful when we’re given an integral function such as G and wish to
understand properties of its graph by recognizing that G’(x) = g(x), while not necessarily being
able to ever exactly evaluate the definite integral [ g(t) dt. To see how this is the case, we consider
the following example.

Example 5.1. Investigate the behavior of the integral function
E(x) = / et dt.
0

Solution. E is closely related to the well known error function?, a function that is particularly
important in probability and statistics. It turns out that the function e~** does not have an ele-
mentary antiderivative that we can express without integrals. That is, whereas a function such
as f(t) = 4 — 2t has elementary antiderivative F(t) = 4t — t?, we are unable to find a simple
formula for an antiderivative of e~** that does not involve a definite integral. We will learn more
about finding algebraic formulas for antiderivatives without definite integrals in the sections that
follow.

Returning our attention to the function E, while we cannot evaluate E exactly for any value
other than z = 0, we still can gain a tremendous amount of information about the function E. To
begin, applying the rule in Equation (5.3) to E, it follows that

E'(z) = di {/ et dt} =
T 1Jo

so we know a formula for the derivative of E. Moreover, we know that E(0) = 0. This information
is precisely the type we were given in problems such as the one in Activity 3.1 and others in
Section 3.1, where we were given information about the derivative of a function, but lacked a
formula for the function itself.

Here, using the first and second derivatives of E, along with the fact that £(0) = 0, we can
determine more information about the behavior of E. First, with F'(z) = e*xQ, we note that for all
real numbers z, e=** > 0, and thus E’ (x) > 0 for all . Thus FE is an always increasing function.
Further, we note that as © — oo, E'(z) = et 0, hence the slope of the function E tends to zero

*The error function is defined by the rule erf(x) = % I e~ % dt and has the key property that 0 < erf(z) < 1 for all

0
z > 0 and moreover that lim erf(z) = 1.
Tr—r0o0
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as z — oo (and similarly as ¢ — —oo0). This tells us that £ has horizontal asymptotes as x increases
or decreases without bound.

In addition, we can observe that E”(z) = —2ze~*", and that E”(0) = 0, while E”(z) < 0 for
z > 0and E”(z) > 0 for x < 0. This information tells us that E is concave up for z < 0 and
concave down for x > 0 with a point of inflection at z = 0.

The only thing we lack at this point is a sense of how big E can get as z increases. If we use
a midpoint Riemann sum with 10 subintervals to estimate £(2), we see that £(2) ~ 0.8822; a
similar calculation to estimate £(3) shows little change (£(3) ~ 0.8862), so it appears that as x in-
creases without bound, E approaches a value just larger than 0.886. Putting all of this information
together (and using the symmetry of f(t) = et*), we see the results shown in Figure 5.13.

ft)y=e" [B@) =[5 e at

x

Figure 5.11: At left, the graph of f(t) = e . At right, the integral function E(z) = [; e dt, which is the
unique antiderivative of f that satisfies £(0) = 0.

Again, E is the antiderivative of f(t) = e~*" that satisfies £(0) = 0. Moreover, the values on
the graph of y = E(x) represent the net-signed area of the region bounded by f(t) = e~** from 0

up to x. We see that the value of E increases rapidly near zero but then levels off x increases since

t

there is less and less additional accumulated area bounded by f(t) = e~ * as z increases.

Activity 5.5.
Suppose that f(t) = 15z and F(z) = [ f(t) dt.

(@) On the axes at left in Figure 5.12, plot a graph of f(t) = Hitg on the interval —10 < ¢ <

10. Clearly label the vertical axes with appropriate scale.
(b) What is the key relationship between F' and f, according to the Second FTC?

(c) Use the first derivative test to determine the intervals on which F is increasing and
decreasing.
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Figure 5.12: Axes for plotting f and F'.

(d) Use the second derivative test to determine the intervals on which F' is concave up and

concave down. Note that f/(¢) can be simplified to be written in the form f/(¢) = ﬁ

(e) Using technology appropriately, estimate the values of F'(5) and F'(10) through appro-
priate Riemann sumes.

(f) Sketch an accurate graph of y = F'(z) on the righthand axes provided, and clearly label
the vertical axes with appropriate scale.

Differentiating an Integral Function

We have seen that the Second FTC enables us to construct an antiderivative F' of any continuous
function f by defining F by the corresponding integral function F(z) = [ f(t) dt. Said differently,
if we have a function of the form F(z) = [ f(t) dt, then we know that F'(z) = & [[” f(t)dt] =
f(z). This shows that integral functions, while perhaps having the most complicated formulas
of any functions we have encountered, are nonetheless particularly simple to differentiate. For
instance, if

F(x) = / sin(t?) dt,
then by the Second FTC, we know immediately that

F'(z) = sin(2?).

Stating this result more generally for an arbitrary function f, we know by the Second FTC that

| ) = s,
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In words, the last equation essentially says that “the derivative of the integral function whose
integrand is f, is f.” In this sense, we see that if we first integrate the function f from ¢t = a to
t = x, and then differentiate with respect to x, these two processes “undo” one another.

Taking a different approach, say we begin with a function f(¢) and differentiate with respect
to t. What happens if we follow this by integrating the result from ¢ = a to t = 2? That is, what
can we say about the quantity

*d
| G lrenae

Here, we use the First FTC and note that f(¢) is an antiderivative of % [f(t)] . Applying this result
and evaluating the antiderivative function, we see that

xT

T d
| Guena = sw)
= @)~ fa)

Thus, we see that if we apply the processes of first differentiating f and then integrating the result
from a to x, we return to the function f, minus the constant value f(a). So in this situation, the
two processes almost undo one another, up to the constant f(a).

The observations made in the preceding two paragraphs demonstrate that differentiating and
integrating (where we integrate from a constant up to a variable) are almost inverse processes. In
one sense, this should not be surprising: integrating involves antidifferentiating, which reverses
the process of differentiating. On the other hand, we see that there is some subtlety involved, as
integrating the derivative of a function does not quite produce the function itself. This is con-
nected to a key fact we observed in Section 5.1, which is that any function has an entire family of
antiderivatives, and any two of those antiderivatives differ only by a constant.

Activity 5.6.

Evaluate each of the following derivatives and definite integrals. Clearly cite whether you use
the First or Second FTC in so doing.

(a) % {Ax sin(t?) dt]
r g t4

© [ v

(c) % {/1 cos(t%) dt]

(d) /; % [In(1+¢*)] dt

(e) % [A sin(tQ)dt]

(Hint: Let F(z) = [} sin(¢?) dt and observe that this problem is asking you to evaluate
d 3
dz [F (= )H-
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Summary

In this section, we encountered the following important ideas:

e For a continuous function f, the integral function A(z) = [° f(t) d¢ defines an antiderivative of

f.

e The Second Fundamental Theorem of Calculus is the formal, more general statement of the
preceding fact: if f is a continuous function and ¢ is any constant, then A(z) = [ f(t) dt is the
unique antiderivative of f that satisfies A(c) = 0.

o Together, the First and Second FTC enable us to formally see how differentiation and integra-
tion are almost inverse processes through the observations that

/ C D p) de = f@) - 7o)

dt
and
LN rwyar| = r)
dz | /. A
Exercises

1. Let g be the function pictured below at left, and let F' be defined by F(z) = [, g(t) dt. Assume
that the shaded areas have values A1 = 4.3, Ay = 12.7, A3 = 0.4, and A4 = 1.8. Assume further
that the portion of A, that lies between x = 0.5 and x = 2is 5.4.

Sketch a carefully labeled graph of F' on the axes provided, and include a written analysis of
how you know where g is zero, increasing, decreasing, CCU, and CCD.

-1 11 2 3 4 5 6

Figure 5.13: At left, the graph of ¢g. At right, axes for plotting F'.
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2. The tide removes sand from the beach at a small ocean park at a rate modeled by the function
4rt
= 2 1
R(t) + 5sin < 55 >

A pumping station adds sand to the beach at rate modeled by the function

15t
143t

S()

Both R(t) and S(t) are measured in cubic yards of sand per hour, ¢ is measured in hours, and
the valid times are 0 <t < 6. At time ¢t = 0, the beach holds 2500 cubic yards of sand.

(a) What definite integral measures how much sand will the tide remove during the time
period 0 < ¢ < 6? Why?

(b) Write an expression for Y (z), the total number of cubic yards of sand on the beach at
time z. Carefully explain your thinking and reasoning.

(c) At what instantaneous rate is the total number of cubic yards of sand on the beach at
time t = 4 changing?

(d) Over the time interval 0 < ¢ < 6, at what time ¢ is the amount of sand on the beach
least? What is this minimum value? Explain and justify your answers fully.

3. When an aircraft attempts to climb as rapidly as possible, its climb rate (in feet per minute)
decreases as altitude increases, because the air is less dense at higher altitudes. Given below
is a table showing performance data for a certain single engine aircraft, giving its climb rate at
various altitudes, where c(h) denotes the climb rate of the airplane at an altitude h.

h (feet) 0 | 1000 | 2000 | 3000 | 4000 | 5000 | 6000 | 7000 | 8000 | 9000 | 10,000
c (ft/min) || 925 | 875 | 830 | 780 | 730 | 685 | 635 | 585 | 535 | 490 440

Let a new function m, that also depends on h, (say y = m(h)) measure the number of minutes
required for a plane at altitude A to climb the next foot of altitude.

a. Determine a similar table of values for m(h) and explain how it is related to the table
above. Be sure to discuss the units on m.

b. Give a careful interpretation of a function whose derivative is m(h). Describe what the
input is and what the output is. Also, explain in plain English what the function tells us.

c. Determine a definite integral whose value tells us exactly the number of minutes required
for the airplane to ascend to 10,000 feet of altitude. Clearly explain why the value of this
integral has the required meaning.

d. Determine a formula for a function M (h) whose value tells us the exact number of minutes
required for the airplane to ascend to h feet of altitude.
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e. Estimate the values of M (6000) and A/ (10000) as accurately as you can. Include units on
your results.
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5.3 Integration by Substitution

Motivating Questions

In this section, we strive to understand the ideas generated by the following important questions:

e How can we begin to find algebraic formulas for antiderivatives of more complicated alge-
braic functions?

e What is an indefinite integral and how is its notation used in discussing antiderivatives?

e How does the technique of u-substitution work to help us evaluate certain indefinite inte-
grals, and how does this process rely on identifying function-derivative pairs?

Introduction

In Section 4.4, we learned the key role that antiderivatives play in the the process of evaluating
definite integrals exactly. In particular, the Fundamental Theorem of Calculus tells us that if F'is
any antiderivative of f, then

b
/ f(z)dz = F(b) — F(a).

Furthermore, we realized that each elementary derivative rule developed in Chapter 2 leads to a
corresponding elementary antiderivative, as summarized in Table 4.1. Thus, if we wish to evaluate
an integral such as

/1(w3—\/§+5x) dz,
0

it is straightforward to do so, since we can easily antidifferentiate f(z) = 2®—+/z+5%. In particular,
since a function F whose derivative is f is given by F(z) = 1a* — 22%/2+ ln%5) 57, the Fundamental
Theorem of Calculus tells us that

/01 (z° —Vz +5%) dz =

3(1)4 _ %(1)3/2 + lnz5)51> o <i(0)4 _ %(0)3/2 + 1n15)50>

Because an algebraic formula for an antiderivative of f enables us to evaluate the definite integral

ff f(x) dz exactly, we see that we have a natural interest in being able to find such algebraic an-
tiderivatives. Note that we emphasize algebraic antiderivatives, as opposed to any antiderivative,
since we know by the Second Fundamental Theorem of Calculus that G(z) = [ f(¢) dt is indeed
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an antiderivative of the given function f, but one that still involves a definite integral. One of
our main goals in this section and the one following is to develop understanding, in select circum-
stances, of how to “undo” the process of differentiation in order to find an algebraic antiderivative
for a given function.

Preview Activity 5.3. In Section 2.5, we learned the Chain Rule and how it can be applied to find
the derivative of a composite function. In particular, if u is a differentiable function of z, and f is
a differentiable function of u(z), then

In words, we say that the derivative of a composite function c¢(z) = f(u(x)), where f is considered
the “outer” function and u the “inner” function, is “the derivative of the outer function, evaluated
at the inner function, times the derivative of the inner function.”

(a) For each of the following functions, use the Chain Rule to find the function’s derivative. Be
sure to label each derivative by name (e.g., the derivative of g(z) should be labeled ¢'(z)).

i g(z)=e
ii. h(z) = sin(5z + 1)
iii. p(z) = arctan(2z)
iv. q(z) = (2—Tx)4
v. r(z) = 34-11e

(b) For each of the following functions, use your work in (a) to help you determine the general
antiderivative® of the function. Label each antiderivative by name (e.g., the antiderivative
of m should be called M). In addition, check your work by computing the derivative of
each proposed antiderivative.

i. m(z)=e
ii. n(x) = cos(5x + 1)
iii. () = 752

iv. v(x) = (2 - Tx)3

v. w(r) =341z

*Recall that the general antiderivative of a function includes “+C” to reflect the entire family of functions that share
the same derivative.
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(c) Based on your experience in parts (a) and (b), conjecture an antiderivative for each of the
following functions. Test your conjectures by computing the derivative of each proposed
antiderivative.

i. a(x) = cos(mz)

ii. b(z) = (4o + 7)1

2

iii. c¢(x) = xe

Reversing the Chain Rule: First Steps

In Preview Activity 5.3, we saw that it is usually straightforward to antidifferentiate a function of
the form
hx) = f(u(x)),

whenever f is a familiar function whose antiderivative is known and u(z) is a linear function. For
example, if we consider

h(z) = (5z — 3)°,
in this context the outer function f is f(u) = u5, while the inner function is u(z) = 5z — 3. Since
the antiderivative of f is F(u) = %u7 + C, we see that the antiderivative of A is
1 1
T 35
The inclusion of the constant 1 is essential precisely because the derivative of the inner function is

u'(z) = 5. Indeed, if we now compute H'(z), we find by the Chain Rule (and Constant Multiple
Rule) that

H(z) (5x—3)7'é+02 (52 —3)7+C.

H(z) = % 7(52 —3)° 5 = (52 — 3)° = h(z),

and thus H is indeed the general antiderivative of h.

Hence, in the special case where the outer function is familiar and the inner function is linear,
we can antidifferentiate composite functions according to the following rule.

If h(z) = f(ax+b) and F is a known algebraic antiderivative of f, then the general antideriva-
tive of h is given by

H(z) = %F(aaz Lb) 4 C

When discussing antiderivatives, it is often useful to have shorthand notation that indicates
the instruction to find an antiderivative. Thus, in a similar way to how the notation

d
(@)
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represents the derivative of f(x) with respect to , we use the notation of the indefinite integral,

/f(x) dx

to represent the general antiderivative of f with respect to z. For instance, returning to the ear-
lier example with h(x) = (52 — 3)% above, we can rephrase the relationship between h and its
antiderivative H through the notation

1
/(530 —3)0de = g(&v —6)" 4 C.

When we find an antiderivative, we will often say that we evaluate an indefinite integral; said dif-

ferently, the instruction to evaluate an indefinite integral means to find the general antiderivative.
d

Just as the notation £ [(J] means “find the derivative with respect to x of [J,” the notation [ Odx
means “find a function of z whose derivative is [].”
Activity 5.7.

Evaluate each of the following indefinite integrals. Check each antiderivative that you find by
differentiating.

(@) [sin(8 — 3z)dx

(b) [ sec*(4z)dx

© [ de

(d) [esc(2z +1)cot(2x + 1) dx

© [ e e

) [5*dx

Reversing the Chain Rule: u-substitution

Of course, a natural question arises from our recent work: what happens when the inner function
is not a linear function? For example, can we find antiderivatives of such functions as

g(x) = ze” and h(z) = e”’?

It is important to explicitly remember that differentiation and antidifferentiation are essentially
inverse processes; that they are not quite inverse processes is due to the +C that arises when antid-
ifferentiating. This close relationship enables us to take any known derivative rule and translate it
to a corresponding rule for an indefinite integral. For example, since

d

Ir [m5] = 53:47
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we can equivalently write
/5x4dx =2’ 4 C.

Recall that the Chain Rule states that

dx

Restating this relationship in terms of an indefinite integral,

/ f'(9(x))g (@) dzx = f(g(x)) + C. (5.4)

Hence, Equation (5.4) tells us that if we can take a given function and view its algebraic structure
as f'(g(x))g'(z) for some appropriate choices of f and g, then we can antidifferentiate the function
by reversing the Chain Rule. It is especially notable that both g(z) and ¢/(x) appear in the form of
1 (g(z))d (x); we will sometimes say that we seek to identify a function-derivative pair when trying
to apply the rule in Equation (5.4).

In the situation where we can identify a function-derivative pair, we will introduce a new
variable u to represent the function g(z). Observing that with v = g¢(z), it follows in Leibniz
notation that % = ¢/(z), so that in terms of differentials*, du = ¢’(z)dz. Now converting the
indefinite integral of interest to a new one in terms of u, we have

[1uend@ar= [ e

Provided that f’ is an elementary function whose antiderivative is known, we can now easily
evaluate the indefinite integral in «, and then go on to determine the desired overall antiderivative
of f'(g(x))g'(x). We call this process u-substitution. To see u-substitution at work, we consider the
following example.

Example 5.2. Evaluate the indefinite integral
/:L’3 -sin(7z* 4 3) dx
and check the result by differentiating.

Solution. We can make two key algebraic observations stand regarding the integrand, x3-sin(7z*+
3). First, sin(7z* + 3) is a composite function; as such, we know we’ll need a more sophisticated

*If we recall from the definition of the derivative that du ~ % and use the fact that 44 = ¢/(z), then we see that

g (z) ~ 2—;. Solving for Au, Au = ¢'(z)Az. It is this last relationship that, when expressed in “differential” notation
enables us to write du = ¢’(x) dz in the change of variable formula.
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approach to antidifferentiating. Second, z? is almost the derivative of (72 + 3); the only issue is
a missing constant. Thus, 2® and (7z* + 3) are nearly a function-derivative pair. Furthermore, we
know the antiderivative of f(u) = sin(u). The combination of these observations suggests that we
can evaluate the given indefinite integral by reversing the chain rule through u-substitution.

Letting u represent the inner function of the composite function sin(7z* + 3), we have
u="Taz+3,

and thus % = 282z3. In differential notation, it follows that du = 2823 dzx, and thus z3 dz = % du.
We make this last observation because the original indefinite integral may now be written

/sin(7x4 +3) - 23 du,

and so by substituting the expressions in u for « (specifically u for 7z* + 3 and 5 du for 23 dx), it

follows that

1

/sin(7x4 +3) - 23 de = /sin(u) 53 du.

Now we may evaluate the original integral by first evaluating the easier integral in u, followed by
replacing u by the expression 7z* + 3. Doing so, we find

/sin(7x4 +3)-23dr = /sin(u) L du

28
L [ na
= o5 [ sin(w)du
1
= %(—cos(u))—i-()'
1 4
= —2—8cos(7m +3)+C.

To check our work, we observe by the Chain Rule that

d 1 1
— |—==cos(Tz? +3) +C| = —

|- 55 (-1) sin(7z* + 3) - 282°% = sin(7x4 +3) - a3,

which is indeed the original integrand.

An essential observation about our work in Example 5.2 is that the u-substitution only worked
because the function multiplying sin(72z* + 3) was x3. If instead that function was 2% or z*, the
substitution process may not (and likely would not) have worked. This is one of the primary
challenges of antidifferentiation: slight changes in the integrand make tremendous differences.
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For instance, we can use u-substitution with © = 22 and du = 2xdx to find that

/xerdx = /e“~1du
2
1
= 2/e“du

1

= 56“ +C
1
§€x2 + C

If, however, we consider the similar indefinite integral

/ v dzx,

the missing = to multiply ™’ makes the u-substitution v = 22 no longer possible. Hence, part
of the lesson of u-substitution is just how specialized the process is: it only applies to situations
where, up to a missing constant, the integrand that is present is the result of applying the Chain
Rule to a different, related function.

Activity 5.8.

Evaluate each of the following indefinite integrals by using these steps:

e Find two functions within the integrand that form (up to a possible missing constant) a
function-derivative pair;

e Make a substitution and convert the integral to one involving u and du;
e Evaluate the new integral in v;

e Convert the resulting function of u back to a function of x by using your earlier substitu-
tion;

e Check your work by differentiating the function of x. You should come up with the inte-
grand originally given.

22
@ / 5811
(b) /ex sin(e”) dz

(c) / COS\%E) da

<
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Evaluating Definite Integrals via u-substitution

We have just introduced u-substitution as a means to evaluate indefinite integrals of functions that
can be written, up to a constant multiple, in the form f(g(z))g’(x). This same technique can be
used to evaluate definite integrals involving such functions, though we need to be careful with
the corresponding limits of integration. Consider, for instance, the definite integral

5 2
/ ze® dx.
2

Whenever we write a definite integral, it is implicit that the limits of integration correspond to the
variable of integration. To be more explicit, observe that

5 5 r=5 5
/ ze® dx—/ ze® dx.
2 =2

When we execute a u-substitution, we change the variable of integration; it is essential to note
that this also changes the limits of integration. For instance, with the substitution v = z? and
du = 2x dz, it also follows that when z = 2, u = 22 = 4, and when = = 5, u = 5% = 25. Thus, under
the change of variables of u-substitution, we now have

r=>5 5 u=25 1
/ zet dr = / e' . —du
r=2 u=4 2

=25
= leu b
2 u=4
1 1
= *625 - *64.
2 2

Alternatively, we could consider the related indefinite integral f;’ ze” d, find the antideriva-

tive %612 through u-substitution, and then evaluate the original definite integral. From that per-

spective, we’d have

5 1
/ ze® de = =€
9 2

which is, of course, the same result.
Activity 5.9.

Evaluate each of the following definite integrals exactly through an appropriate u-substitution.

2
X
@ /1 1+ 422 de
1
(b) / e " (2e7" 4+ 3) dx
0
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/7 1
© /24 Ccos (I)

ju T

dzx

Summary

In this section, we encountered the following important ideas:

e To begin to find algebraic formulas for antiderivatives of more complicated algebraic functions,
we need to think carefully about how we can reverse known differentiation rules. To that end,
it is essential that we understand and recall known derivatives of basic functions, as well as the
standard derivative rules.

e The indefinite integral provides notation for antiderivatives. When we write “ [ f(z) dz,” we
mean “the general antiderivative of f.” In particular, if we have functions f and F such that
F'" = f, the following two statements say the exact thing:

d

S lF@) = fa)and [ f(o)do = Pla) + C.

That is, f is the derivative of F', and F' is an antiderivative of f.

e The technique of u-substitution helps us evaluate indefinite integrals of the form [ f(g(z))¢'(z) dx
through the substitutions u = g(z) and du = ¢'(x) dz, so that

[ Ho@ng @ o= [ fu)au.

A key part of choosing the expression in x to let be represented by u is the identification of
a function-derivative pair. To do so, we often look for an “inner” function g(z) that is part
of a composite function, while investigating whether ¢’(x) (or a constant multiple of ¢'(x)) is
present as a multiplying factor of the integrand.

Exercises
1. This problem centers on finding antiderivatives for the basic trigonometric functions other than

sin(z) and cos(x).

(a) Consider the indefinite integral / tan(z) dez. By rewriting the integrand as tan(z) =

sin(x)
cos(x)

and hence evaluate / tan(x) dx.

and identifying an appropriate function-derivative pair, make a u-substitution

(b) In a similar way, evaluate / cot(x) dx.
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(c) Consider the indefinite integral

/ sec?(z) + sec(x) tan(x) g

sec(x) + tan(x)

Evaluate this integral using the substitution u = sec(x) + tan(z).

(d) Simplify the integrand in (c) by factoring the numerator. What is a far simpler way to
write the integrand?

(e) Combine your work in (c) and (d) to determine [ sec(z) dz.

(f) Using (c)-(e) as a guide, evaluate / csc(x) dx.

2. Consider the indefinite integral / xvVa — ldx.

(a) At first glance, this integrand may not seem suited to substitution due to the presence
of x in separate locations in the integrand. Nonetheless, using the composite function
V& —1as aguide, let u = x — 1. Determine expressions for both x and dz in terms of w.

(b) Convert the given integral in = to a new integral in u.

(c) Evaluate the integral in (b) by noting that /u = u'/? and observing that it is now possi-
ble to rewrite the integrand in u by expanding through multiplication.

(d) Evaluate each of the integrals / 2%V/r — 1dr and / zy/ x? — 1 dz. Write a paragraph to

discuss the similarities among the three indefinite integrals in this problem and the role
of substitution and algebraic rearrangement in each.

3. Consider the indefinite integral / sin®(x) da.
(a) Explain why the substitution v = sin(x) will not work to help evaluate the given inte-
gral.

(b) Recall the Fundamental Trigonometric Identity, which states that sin?(x) + cos?(x) = 1.
By observing that sin®(z) = sin(z) -sin?(x), use the Fundamental Trigonometric Identity
to rewrite the integrand as the product of sin(x) with another function.

(c) Explain why the substitution v = cos(z) now provides a possible way to evaluate the
integral in (b).

(d) Use your work in (a)-(c) to evaluate the indefinite integral / sin®(z) d.

(e) Use a similar approach to evaluate / cos®(z) d.
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4. For the town of Mathland, MI, residential power consumption has shown certain trends over
recent years. Based on data reflecting average usage, engineers at the power company have
modeled the town’s rate of energy consumption by the function

r(t) = 4 + sin(0.263t + 4.7) + cos(0.526¢ + 9.4).

Here, t measures time in hours after midnight on a typical weekday, and r is the rate of con-
sumption in megawatts per hour at time t. Units are critical throughout this problem.

(a) Sketch a carefully labeled graph of 7(¢) on the interval [0,24] and explain its meaning.
Why is this a reasonable model of power consumption?

(b) Without calculating its value, explain the meaning of f024 r(t) dt. Include appropriate
units on your answer.

(c) Determine the exact amount of power Mathland consumes in a typical day.

(d) What is Mathland’s average rate of energy consumption in a given 24-hour period?
What are the units on this quantity?
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5.4 Integration by Parts

Motivating Questions

In this section, we strive to understand the ideas generated by the following important questions:

e How do we evaluate indefinite integrals that involve products of basic functions such as
J xsin(z) dz and [ ze® dz?

e Whatis the method of integration by parts and how can we consistently apply it to integrate
products of basic functions?

e How does the algebraic structure of functions guide us in identifying v and dv in using
integration by parts?

Introduction

In Section 5.3, we learned the technique of u-substitution for evaluating indefinite integrals that
involve certain composite functions. For example, the indefinite integral [ z3sin(z*) dx is per-
fectly suited to u-substitution, since not only is there a composite function present, but also the
inner function’s derivative (up to a constant) is multiplying the composite function. Through u-
substitution, we learned a general situation where recognizing the algebraic structure of a function
can enable us to find its antiderivative.

It is natural to ask similar questions to those we considered in Section 5.3 about functions
with a different elementary algebraic structure: those that are the product of basic functions. For
instance, suppose we are interested in evaluating the indefinite integral

/ zsin(z) dz.

Here, there is not a composite function present, but rather a product of the basic functions f(z) = =
and g(z) = sin(z). From our work in Section 2.3 with the Product Rule, we know that it is relatively
complicated to compute the derivative of the product of two functions, so we should expect that
antidifferentiating a product should be similarly involved. In addition, intuitively we expect that
evaluating [ x sin(z) dz will involve somehow reversing the Product Rule.

To that end, in Preview Activity 5.4 we refresh our understanding of the Product Rule and then
investigate some indefinite integrals that involve products of basic functions.

Preview Activity 5.4. In Section 2.3, we developed the Product Rule and studied how it is em-
ployed to differentiate a product of two functions. In particular, recall that if f and ¢ are differen-
tiable functions of z, then

—f (@) g(@)] = f(2) - g'(x) + g(z) - f'(=).
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(a) For each of the following functions, use the Product Rule to find the function’s derivative.
Be sure to label each derivative by name (e.g., the derivative of g(x) should be labeled

g'(@))-
i. g(x) = zsin(x)
ii. h(zx) = ze”
iii. p(x) = zln(z)

iv. g(x) = 22 cos(x)

v. r(x) = e”sin(x)

(b) Use your work in (a) to help you evaluate the following indefinite integrals. Use differen-
tiation to check your work.

i. /:Eex + e dx

ii. /em(sin(x) + cos(x)) dx
iii. /233 cos(z) — 2% sin(z) dz
iv. /xcos(x) + sin(z) dzx

V. /1+ln(a:) dx

(c) Observe that the examples in (b) work nicely because of the derivatives you were asked
to calculate in (a). Each integrand in (b) is precisely the result of differentiating one of
the products of basic functions found in (a). To see what happens when an integrand is
still a product but not necessarily the result of differentiating an elementary product, we
consider how to evaluate

/a: cos(z) dx.

i. First, observe that p
. [zsin(z)] =  cos(z) + sin(z).
T
Integrating both sides indefinitely and using the fact that the integral of a sum is the
sum of the integrals, we find that

/ <CZ3 [:r:sin(a:)]) do = / zcos(z) dz + / sin(e) dz.
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In this last equation, evaluate the indefinite integral on the left side as well as the
rightmost indefinite integral on the right.

ii. Inthe most recent equation from (i.), solve the equation for the expression [ z cos(z) dz.

iii. For which product of basic functions have you now found the antiderivative?

Reversing the Product Rule: Integration by Parts

Problem (c) in Preview Activity 5.4 provides a clue for how we develop the general technique
known as Integration by Parts, which comes from reversing the Product Rule. Recall that the
Product Rule states that

L F@)g()] = Fa)g (@) + () (@),

Integrating both sides of this equation indefinitely with respect to z, it follows that

/di @ dl’_/f dfﬁ+/g( )f'(x) da. (5.5)

On the left in Equation (5.5), we recognize that we have the indefinite integral of the derivative of
a function which, up to an additional constant, is the original function itself. Temporarily omitting
the constant that may arise, we equivalently have

/ F@)d (@) do + / (@) f(z) da. (5.6)

The most important thing to observe about Equation (5.6) is that it provides us with a choice of
two integrals to evaluate. That is, in a situation where we can identify two functions f and g, if we
can integrate f(x)¢'(z), then we know the indefinite integral of g(z) f/(x), and vice versa. To that
end, we choose the first indefinite integral on the left in Equation (5.6) and solve for it to generate
the rule

/ f(@)d (@) dz = f(z)g(x) — / o(0) ' (z) de. (5.7)

Often we express Equation (5.7) in terms of the variables u and v, where v = f(z) and v = g(x).
Note that in differential notation, du = f'(x) dx and dv = ¢'(x) dz, and thus we can state the rule
for Integration by Parts in its most common form as follows.

/udvzuv—/vdu.

To apply Integration by Parts, we look for a product of basic functions that we can identify as
w and dv. If we can antidifferentiate dv to find v, and evaluating [ v du is not more difficult than
evaluating [ u dv, then this substitution usually proves to be fruitful. To demonstrate, we consider
the following example.
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Example 5.3. Evaluate the indefinite integral

/ x cos(z) dz
using Integration by Parts.

Solution. Whenever we are trying to integrate a product of basic function through Integration by
Parts, we are presented with a choice for v and dv. In the current problem, we can either let u = z
and dv = cos(z) dx, or let u = cos(z) and dv = x dz. While there is not a universal rule for how
to choose u and dv, a good guideline is this: do so in a way that | v du is at least as simple as the
original problem [ udv.

In this setting, this leads us to choose’ u = z and dv = cos(z) dz, from which it follows that
du = 1dz and v = sin(z). With this substitution, the rule for Integration by Parts tells us that

/ 2 cos(x) dz = asin(z) — / sin(z) - 1da.

At this point, all that remains to do is evaluate the (simpler) integral [ sin(z) - 1 dz. Doing so, we
find
/x cos(z) dxr = xsin(x) — (—cos(x)) + C = wsin(x) + cos(z) + C.

There are at least two additional important observations to make from Example 5.3. First, the
general technique of Integration by Parts involves trading the problem of integrating the product
of two functions for the problem of integrating the product of two related functions. In particular,
we convert the problem of evaluating [ u dv for that of evaluating | v du. This perspective clearly
shapes our choice of u and v. In Example 5.3, the original integral to evaluate was [z cos(z) dz,
and through the substitution provided by Integration by Parts, we were instead able to evaluate
[ sin(z) - 1dz. Note that the original function x was replaced by its derivative, while cos(z) was
replaced by its antiderivative. Second, observe that when we get to the final stage of evaluating
the last remaining antiderivative, it is at this step that we include the integration constant, +C.

Activity 5.10.

Evaluate each of the following indefinite integrals. Check each antiderivative that you find by
differentiating.

®Observe that if we considered the alternate choice, and let u = cos(z) and dv = x dz, then du = — sin(x) dz and

v = %;cQ, from which we would write

/mcos(x) dx = %xZ cos(z) — / %mQ(— sin(z)) dz.

Thus we have replaced the problem of integrating « cos(z) with that of integrating 1z sin(z); the latter is clearly more
complicated, which shows that this alternate choice is not as helpful as the first choice.
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(@) [te tdt

(b) [ 4xsin(3z)dz
(©) [zsec?(z)dz
(d) [zn(z)dx

Some Subtleties with Integration by Parts

There are situations where Integration by Parts is not an obvious choice, but the technique is
appropriate nonetheless. One guide to understanding why is the observation that integration by
parts allows us to replace one function in a product with its derivative while replacing the other
with its antiderivative. For instance, consider the problem of evaluating

/ arctan(z) dz.

Initially, this problem seems ill-suited to Integration by Parts, since there does not appear to be
a product of functions present. But if we note that arctan(x) = arctan(z) - 1, and realize that we
know the derivative of arctan(x) as well as the antiderivative of 1, we see the possibility for the
substitution u = arctan(z) and dv = 1 dz. We explore this substitution further in Activity 5.11.

In a related problem, if we consider [ ¢3sin(¢?) dt, two key observations can be made about the
algebraic structure of the integrand: there is a composite function present in sin(¢?), and there is
not an obvious function-derivative pair, as we have ¢> present (rather than simply ¢) multiplying
sin(t?). This problem exemplifies the situation where we sometimes use both u-substitution and
Integration by Parts in a single problem. If we write t3 = ¢ - t? and consider the indefinite integral

/t -t - sin(t?) dt,

we can use a mix of the two techniques we have recently learned. First, let z = t? so that dz = 2t dt,
and thus t dt = 1 dz. (We are using the variable z to perform a “z-substitution” since u will be used
subsequently in executing Integration by Parts.) Under this z-substitution, we now have

1
/t -t sin(t?) dt = /z -sin(z) - B dz.

The remaining integral is a standard one that can be evaluated by parts. This, too, is explored
further in Activity 5.11.

The problems briefly introduced here exemplify that we sometimes must think creatively in
choosing the variables for substitution in Integration by Parts, as well as that it is entirely possible
that we will need use the technique of substitution for an additional change of variables within
the process of integrating by parts.

Activity 5.11.

Q020



5.4. INTEGRATION BY PARTS 289

Evaluate each of the following indefinite integrals, using the provided hints.

(a) Evaluate [ arctan(x) dz by using Integration by Parts with the substitution u = arctan(z)
and dv = 1dz.

(b) Evaluate [ In(z) dz. Consider a similar substitution to the one in (a).

(c) Use the substitution z = t? to transform the integral [ 3sin(#?) dt to a new integral in
the variable z, and evaluate that new integral by parts.

(d) Evaluate [ s° s’ ds using an approach similar to that described in (c).

(e) Evaluate [ e* cos(e’) dt. You will find it helpful to note that e?! = ¢’ - €.

Using Integration by Parts Multiple Times

We have seen that the technique of Integration by Parts is well suited to integrating the prod-
uct of basic functions, and that it allows us to essentially trade a given integrand for a new one
where one function in the product is replaced by its derivative, while the other is replaced by its
antiderivative. The main goal in this trade of [udv for [vdu is to have the new integral not be
more challenging to evaluate than the original one. At times, it turns out that it can be necessary
to apply Integration by Parts more than once in order to ultimately evaluate a given indefinite
integral.

For example, if we consider [ t2e’ dt and letu = t* and dv = €' dt, then it follows that du = 2t dt

and v = €t, thus
/ t2et dt = t2et — / otet dt.

The integral on the righthand side is simpler to evaluate than the one on the left, but it still requires
Integration by Parts. Now letting u = 2t and dv = €' dt, we have du = 2dt and v = €', so that

/ t2et dt = tet — <2tet - / 2¢t dt> )

Note the key role of the parentheses, as it is essential to distribute the minus sign to the entire
value of the integral [ 2te’ dt. The final integral on the right in the most recent equation is a basic
one; evaluating that integral and distributing the minus sign, we find

/t2et dt = t2e! — 2te! + 2¢ + C.

Of course, situations are possible where even more than two applications of Integration by
Parts may be necessary. For instance, in the preceding example, it is apparent that if the integrand
was t3e! instead, we would have to use Integration by Parts three times.
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Next, we consider the slightly different scenario presented by the definite integral | e’ cos(t) dt.
Here, we can choose to let u be either e’ or cos(t); we pick u = cos(t), and thus dv = e’ dt. With
du = —sin(t) dt and v = €, Integration by Parts tells us that

/et cos(t) dt = e’ cos(t) — /et(— sin(t)) dt,
or equivalently that
/et cos(t) dt = e’ cos(t) + / e! sin(t) dt (5.8)

Observe that the integral on the right in Equation (5.8), [ esin(t) dt, while not being more com-
plicated than the original integral we want to evaluate, it is essentially identical to [ e’ cos(t) dt.
While the overall situation isn’t necessarily better than what we started with, the problem hasn’t
gotten worse. Thus, we proceed by integrating by parts again. This time we let v = sin(¢) and
dv = €' dt, so that du = cos(t) dt and v = e!, which implies

/et cos(t) dt = e cos(t) + (et sin(t) — /et cos(t) dt> (5.9)

We seem to be back where we started, as two applications of Integration by Parts has led us back
to the original problem, [ efcos(t)dt. But if we look closely at Equation (5.9), we see that we can
use algebra to solve for the value of the desired integral. In particular, adding [ e’ cos(t) dt to both
sides of the equation, we have

2 / e' cos(t) dt = e' cos(t) + e’ sin(t),

and therefore )
/et cos(t) dt = 3 (€' cos(t) + e sin(t)) + C.

Note that since we never actually encountered an integral we could evaluate directly, we didn’t
have the opportunity to add the integration constant C' until the final step, at which point we
include it as part of the most general antiderivative that we sought from the outset in evaluating
an indefinite integral.

Activity 5.12.

Evaluate each of the following indefinite integrals.
(@) /x2 sin(z) dzx
(b) / t31n(t) dt
(c) /ez sin(z) dz
(d) / s%e® ds
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(e) /tarctan(t) dt

(Hint: At a certain point in this problem, it is very helpful to note that lfr% =1- H%.)

<

Evaluating Definite Integrals Using Integration by Parts

Just as we saw with u-substitution in Section 5.3, we can use the technique of Integration by Parts
to evaluate a definite integral. Say, for example, we wish to find the exact value of

w/2
/ tsin(t) dt.
0

One option is to evaluate the related indefinite integral to find that [ ¢sin(t) dt = —t cos(t)+sin(t)+
C, and then use the resulting antiderivative along with the Fundamental Theorem of Calculus to
find that
/2 /2
/ tsin(t)dt = (—tcos(t)+ sin(t))
0

0

. (_g cos(5) + sin(g)) — (~0cos(0) + sin(0))
= 1.

Alternatively, we can apply Integration by Parts and work with definite integrals throughout.
In this perspective, it is essential to remember to evaluate the product uv over the given limits
of integration. To that end, using the substitution v = ¢ and dv = sin(¢) dt, so that du = dt and

v = —cos(t), we write
/2 /2 /2
/ tsin(t)dt = —tcos(t) —/ (—cos(t)) dt
0 0 0

/2 w/2

= —tcos(t) + sin(t)
0 0

T T T :
= (—5 008(5) + SIH(§)> — (—0cos(0) + sin(0))

= 1

As with any substitution technique, it is important to remember the overall goal of the problem,
to use notation carefully and completely, and to think about our end result to ensure that it makes
sense in the context of the question being answered.

When u-substitution and Integration by Parts Fail to Help

As we close this section, it is important to note that both integration techniques we have discussed
apply in relatively limited circumstances. In particular, it is not hard to find examples of functions
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for which neither technique produces an antiderivative; indeed, there are many, many functions
that appear elementary but that do not have an elementary algebraic antiderivative. For instance,
if we consider the indefinite integrals

/em2 dzxr and /a:tan(a:) dx,

neither u-substitution nor Integration by Parts proves fruitful. While there are other integration
techniques, some of which we will consider briefly, none of them enables us to find an algebraic
antiderivative for e** or xtan(x). There are at least two key observations to make: one, we do
know from the Second Fundamental Theorem of Calculus that we can construct an integral an-
tiderivative for each function; and two, antidifferentiation is much, much harder in general than
differentiation. In particular, we observe that F(z) = [ ¢!’ dt is an antiderivative of f(z) = €**,
and G(z) = [ ttan(t) dt is an antiderivative of g(z) = x tan(z). But finding an elementary alge-
braic formula that doesn’t involve integrals for either F' or G turns out not only to be impossible
through u-substitution or Integration by Parts, but indeed impossible altogether.

Summary

In this section, we encountered the following important ideas:

e Through the method of Integration by Parts, we can evaluate indefinite integrals that involve
products of basic functions such as [z sin(z) dz and [ zIn(z)dz through a substitution that
enables us to effectively trade one of the functions in the product for its derivative, and the
other for its antiderivative, in an effort to find a different product of functions that is easier to
integrate.

e If we are given an integral whose algebraic structure we can identify as a product of basic
functions in the form [ f(z)¢'(x) dz, we can use the substitution v = f(z) and dv = ¢'(z)dz

and apply the rule
/udv:uv—/vdu

in an effort to evaluate the original integral [ f(z)¢'(z)dx by instead evaluating [vdu =
[ f'(@)g(x) da.

e When deciding to integrate by parts, we normally have a product of functions present in the
integrand and we have to select both u and dv. That selection is guided by the overall principal
that we desire the new integral [ vdu to not be any more difficult or complicated than the
original integral [ u dv. In addition, it is often helpful to recognize if one of the functions present
is much easier to differentiate than antidifferentiate (such as In(z)), in which case that function
often is best assigned the variable u. For sure, when choosing dv, the corresponding function
must be one that we can antidifferentiate.

Exercises
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1. Let f(t) =te * and F(z) = [ f(¢).
(a) Determine F’(x).
(b) Use the First FTC to find a formula for F' that does not involve an integral.
(c) Is F an increasing or decreasing function for x > 0? Why?

2. Consider the indefinite integral given by [ €2? cos(e®) dx.

(a) Noting that e2® = ¢% . ¢ use the substitution z = e* to determine a new, equivalent
integral in the variable 2.

(b) Evaluate the integral you found in (a) using an appropriate technique.

(c) How is the problem of evaluating [ e* cos(e?*) dx different from evaluating the integral
in (a)? Do so.

(d) Evaluate each of the following integrals as well, keeping in mind the approach(es) used
earlier in this problem:

o [e*sin(e®)dx
o [e3%sin(e3?) dx

o [z cos(e”)sin(e®”) da

3. For each of the following indefinite integrals, determine whether you would use u-substitution,
integration by parts, neither, or both to evaluate the integral. In each case, write one sentence
to explain your reasoning, and include a statement of any substitutions used. (That is, if you
decide in a problem to let u = e’ you should state that, as well as that du = 3e3% dz.) Finally,
use your chosen approach to evaluate each integral.

(@) [ 2 cos(z®)dx

(b) [z*cos(z®)dx (Hint: z* = 22 - 2?)
(©) [zIn(z?)dx

(d) [sin(z*)dz

(e) [a3sin(z?)dx

(f) [ 27 sin(z?) dz
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5.5 Other Options for Finding Algebraic Antiderivatives

Motivating Questions

In this section, we strive to understand the ideas generated by the following important questions:

e How does the method of partial fractions enable any rational function to be antidifferenti-
ated?

e What role have integral tables historically played in the study of calculus and how can a
table be used to evaluate integrals such as [ va? + u? du?

e What role can a computer algebra system play in the process of finding antiderivatives?

Introduction

In the preceding sections, we have learned two very specific antidifferentiation techniques: u-
substitution and integration by parts. The former is used to reverse the chain rule, while the
latter to reverse the product rule. But we have seen that each only works in very specialized cir-
cumstances. For example, while [ ze” dr may be evaluated by u-substitution and [ ze® dz by
integration by parts, neither method provides a route to evaluate f ¢®* dz. That fact is not a par-
ticular shortcoming of these two antidifferentiation techniques, as it turns out there does not exist
an elementary algebraic antiderivative for e*’. Said differently, no matter what antidifferentiation
methods we could develop and learn to execute, none of them will be able to provide us with a
simple formula that does not involve integrals for a function F(z) that satisfies F’(z) = ¢*”.

In this section of the text, our main goals are to better understand some classes of functions
that can always be antidifferentiated, as well as to learn some options for so doing. At the same
time, we want to recognize that there are many functions for which an algebraic formula for an
antiderivative does not exist, and also appreciate the role that computing technology can play
in helping us find antiderivatives of other complicated functions. Throughout, it is helpful to
remember what we have learned so far: how to reverse the chain rule through u-substitution,
how to reverse the product rule through integration by parts, and that overall, there are subtle
and challenging issues to address when trying to find antiderivatives.

Preview Activity 5.5. For each of the indefinite integrals below, the main question is to decide
whether the integral can be evaluated using u-substitution, integration by parts, a combination
of the two, or neither. For integrals for which your answer is affirmative, state the substitution(s)
you would use. It is not necessary to actually evaluate any of the integrals completely, unless the
integral can be evaluated immediately using a familiar basic antiderivative.

(@) /:U2 sin(z?) dz, /3:2 sin(z) dz, /sin(m3)dx, /x5 sin(z®) dz

1 T 2x + 3 e
b) | ——de, | —E—dr, [0 [ —C g,
()/1+x2 o /1+a:2 o /1+x2 o /1+(e~’v)2 v
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© / 2 In(z) da, / lnf) da, / In(1 + 22) dz, / rIn(1+ 2%) dz,

1 T 1
d V13