
© Copyright 2000-2006 GarageGames Product of Hall Of Worlds, LLC.

Appendix A. Quick References

© Copyright 2000-2006 GarageGames Product of Hall Of Worlds, LLC.

Table of Contents
A.1 TorqueScript Quick Reference... 5

A.1.1. Conventions.. 5
A.1.2. Syntax/Rules... 5
A.1.3. Literals.. 5
A.1.4. Operators in TGE.. 6
A.1.5. Keywords.. 8
A.1.5. Engine Interfacing.. 23

A.2 Console Objects Fields and Methods Quick Reference... 30
A.2.1. ActionMap... 30
A.2.2. AIConnection... 35
A.2.3. AIPlayer.. 37
A.2.4. AIWheeledVehicle.. 41
A.2.5. AudioDescription.. 43
A.2.6. AudioEmitter.. 44
A.2.6. AudioProfile (AP).. 45
A.2.8. Camera... 45
A.2.9. CameraData.. 47
A.2.10. ConsoleLogger... 47
A.2.11. Debris... 47
A.2.12. DebrisData.. 48
A.2.13. DecalData.. 49
A.2.14. DecalManager.. 49
A.2.15. EditManager.. 50
A.2.16. Explosion... 51
A.2.17. ExplosionData.. 51
A.2.18. FileObject.. 52
A.2.19. FlyingVehicle.. 55
A.2.20. FlyingVehicleData... 55
A.2.21. fxFoliageReplicator... 56
A.2.22. fxLight... 59
A.2.23. fxLightData.. 60
A.2.24. fxShapeReplicator.. 62
A.2.25. fxSunLight... 64
A.2.26. GameBase... 66
A.2.27. GameBaseData.. 67
A.2.28. GameConnection.. 67
A.2.29. HoverVehicle.. 76
A.2.30. HoverVehicleData... 77
A.2.31. InteriorInstance... 78
A.2.32. Item.. 81
A.2.33. ItemData... 84
A.2.34. Lightning... 85
A.2.35. LightningData.. 86
A.2.36. Marker.. 86

2

© Copyright 2000-2006 GarageGames Product of Hall Of Worlds, LLC.

A.2.37. MissionArea... 87
A.2.38. MissionMarker.. 87
A.2.39. NetConnection... 87
A.2.40. NetObject.. 91
A.2.41. ParticleData (PD) .. 92
A.2.42. ParticleEmitterData .. 93
A.2.43. ParticleEmitterNode.. 95
A.2.44. ParticleEmitterNodeData... 95
A.2.45. Path.. 95
A.2.46. PathCamera... 96
A.2.47. PhysicalZone.. 98
A.2.48. Player.. 100
A.2.49. PlayerData... 103
A.2.50. Precipitation... 106
A.2.51. PrecipitationData.. 107
A.2.53. Projectile... 108
A.2.53. ProjectileData... 108
A.2.54. SceneObject... 109
A.2.55. ScriptGroup.. 112
A.2.56. ScriptObject... 113
A.2.57. ShapeBase... 113
A.2.59. ShapeBaseData.. 144
A.2.60. ShapeBaseImageData... 147
A.2.61. SimDataBlock... 149
A.2.62. SimGroup... 149
A.2.63. SimObject.. 149
A.2.64. SimSet... 153
A.2.65. Sky.. 157
A.2.66. SpawnSphere... 160
A.2.67. Splash... 160
A.2.68. SplashData .. 160
A.2.69. StaticShape.. 162
A.2.70. StaticShapeData... 163
A.2.71. Sun... 163
A.2.72. TCPObject.. 163
A.2.73. TerrainBlock... 165
A.2.74. Trigger.. 166
A.2.75. TriggerData... 167
A.2.76. TSShapeConstructor... 167
A.2.77. TSStatic... 167
A.2.78. Vehicle.. 167
A.2.79. VehicleData.. 168
A.2.80. WaterBlock.. 170
A.2.81. WheeledVehicle.. 172
A.2.82. WheeledVehicleData... 175
A.2.83. WheeledVehicleSpring... 175
A.2.84. WheeledVehicleTire.. 175

3

© Copyright 2000-2006 GarageGames Product of Hall Of Worlds, LLC.

A.3 Console Functions Quick Reference... 178
A.3.1. OpenAL... 178
A.3.2. Debugging... 184
A.3.3. String Manipulation... 197
A.3.4. NETWORKING.. 217
A.3.5. CONSOLE.. 227
A.3.6. DEVICE IO... 232
A.3.7. FILE I/O.. 236
A.3.8. PACKAGES... 242
A.3.9. OBJECTS... 243
A.3.10. EVENT SCHEDULING.. 244
A.3.11. DATABLOCKS... 247
A.3.12. VIDEO / TEXTURING.. 247
A.3.13. SPECIAL.. 260
A.3.14. RESOURCE MANAGEMENT.. 264
A.3.15. SCENE... 265
A.3.16. CONTAINERS and RAYCASTS.. 265
A.3.17. EDITORS... 269
A.3.18. BUILD... 269
A.3.19. TIME... 271
A.3.20. GUIS... 271
A.3.21. MATH ... 272

A.4 GUI Controls Quick Reference... 286
A.4.1. Purpose... 286
A.4.2. GuiControlProfile Fields... 286
A.4.3. Standard GUI Controls (Alphabetical Listing)... 288

A.5 Callbacks Quick Reference... 355
A.5.1. Game Callbacks.. 355
A.5.2. GUI Callbacks.. 364
A.5.3. Other Callbacks.. 365

A.6 Scripted Systems Quick Reference.. 366
A.6.1. Simple Task Management System (SimpleTaskMgr).. 367
A.6.2. EGTGE Tasks Management Reference.. 375
A.6.3. Simple Inventory System (SimpleInventory)... 377
A.6.4. SimpleInventory:: Structure.. 378
A.6.5. Simple Inventory Console Functions... 378
A.6.6. SimpleInventory:: Console Methods... 379
A.6.7. ShapeBaseData:: Inventory Methods... 381
A.6.8. ItemData:: Inventory Methods.. 382
A.6.9. Item:: Inventory Globals... 384
A.6.10. Item:: Inventory Helper Methods... 384
A.6.11. GPGT Utilities .. 384

4

© Copyright 2000-2006 GarageGames Product of Hall Of Worlds, LLC.

A.1 TorqueScript Quick Reference

A.1.1. Conventions
Throughout this document, for succinctness, I will refer to the Torque Game Engine Scripting language

simply as Torque Script.

A.1.2. Syntax/Rules
Torque Script is a typeless script that is very similar in syntax to C/C++. You will find that most C/C++

operators function as expected in Torque Script. In addition to providing the strengths of C/C++, Torque Script
provides:

• Auto creation and destruction of local/global variables and their storage.

• String catenation, comparison, and auto-string-constant creation (see ‘Literals’ below).

• Function packaging.

A.1.3. Literals
Numbers 123 integer

1.23 floating-point

1.00E-003 scientific notation

0xabc hexadecimal

Strings "abcd" string

'abcd' tagged string

String Operators @ catenation

TAB tab catenation

SPC space catenation

NL newline catenation

Escape Sequences \n newline

\r carriage return

\t tab

\c0 .. \c9 colorize subsequent console output

\cr reset to default color

\cp push color from color stack

\co pop color from color stack

\xhh two-digit hex value ASCII code

\\ backslash

booleans TRUE 1

FALSE 0

5

© Copyright 2000-2006 GarageGames Product of Hall Of Worlds, LLC.

arrays $MyArray[n] single-dimension

$MyMultiArray[n,m] multi-dimension

$MyMultiArrayn_m multi-dimension

vectors "1.0 2.0 1.0 2.0" 4-element vector

A.1.4. Operators in TGE

Operator Name Example Explanation
Variable Operators

$ global $a $a is a global variable.

% local %b %b is a local variable.

Arithmetic Operators
* multiplication $a * $b Multiply $a and $b.

/ division $a / $b Divide $a by $b.

% modulo $a % $b Remainder of $a divided by $b.

+ addition $a + $b Add $a and $b.

- subtraction $a - $b Subtract $b from $a.

++ auto-increment
(post-fix only)

$a++ Increment $a after use.
Note: ++$a is illegal.

- - auto-decrement
(post-fix only)

$b-- Decrement $b after use.
Note: --$b is illegal.

Relations and Logical Operators
< Less than $a < $b 1 if $a is less than % b

0 otherwise.

> More than $a > $b 1 if $a is greater than % b
0 otherwise.

<= Less than or Equal to $a <= $b 1 if $a is less than or equal to % b
0 otherwise.

>= More than or Equal to $a >= $b 1 if $a is greater than or equal to % b
0 otherwise.

== Equal to $a == $b 1 if $a is equal to % b
0 otherwise.

!= Not equal to $a != $b 1 if $a is not equal to % b
0 otherwise.

! Logical NOT !$a 1 if $a is 0
0 otherwise.

&& Logical AND $a && $b 1 if $a and $b are both non-zero
0 otherwise.

|| Logical OR $a || $b 1 if either $a or $b is non-zero
0 otherwise.

Bitwise Operators
~ Bitwise complement ~$a flip bits 1 to 0 and 0 to 1.

 (i.e. ~10b == 01b)

& Bitwise AND $a & $b
composite of elements where bits in same
position are 1. (i.e. 1b & 1b == 1b)

6

© Copyright 2000-2006 GarageGames Product of Hall Of Worlds, LLC.

Operator Name Example Explanation

| Bitwise OR $a | $b
composite of elements where bits 1 in
either of the two elements. (i.e. 100b &
001b == 101b)

^ Bitwise XOR $a ^ $b
composite of elements where bits in same
position are opposite.
(i.e. 100b & 101b == 001b)

<< Left Shift $a << 3
element shifted left by 3 and padded with
zeros.
(i.e. 11b << 3d == 11000b)

>> Right Shift $a >> 3
element shifted right by 3 and padded with
zeros. (i.e. 11010b >> 3d == 00011b)

Operator Name Example Explanation
Assignment Operators

= Assignment $a = $b; Assign value of $b to $a.

op= Compound Assignment $a op= $b;
Equivalent to $a = $a op $b.
op can be any of:
* / % + - & | ^ << >>

String Operators / Constants

@ String catenation $c @ $d
Concatenates strings $c and $d into a
single string.
Numeric literals/variables convert to
strings.

NL New Line $c NL $d Same as catenation example with new-line
between $c and $d.

TAB Tab $c TAB $d Same as catenation example with tab
between $c and $d.

SPC Space $c SPC $d Same as catenation example with space
between $c and $d.

$= String equal to $c $= $d 1 if $c equal to $d .

!$= String not equal to $c !$= $d 1 if $c not equal to $d.

Miscellaneous Operators
? : Conditional x ? y : z Substitute y if x equal to 1, else substitute

z.

[] Array element $a[5] Sixth element or array $a

. Field/Method selection %obj.field
%obj.method()

Select a console method or field

() Grouping -- --

{ } Blocking -- --

, Listing -- --

:: Namespace Item::onCollision() This definition of the onCollision() function
is in the Item namespace.

“ “ String constant
(normal)

“Hello world” This is a normal string.

This is a tagged string. The value of a
tagged string is sent only once to a client

7

© Copyright 2000-2006 GarageGames Product of Hall Of Worlds, LLC.

Operator Name Example Explanation

‘ ‘ String constant
(tagged)

‘Torque Rocks’
from the server (across the network).
Subsequently, only the ‘tag’ is sent. All
clients will store the string at and index
identified by the ‘tag’ and can look up the
value instead of requiring it be sent
repeatedly.

// Single line comment // This is a comment Used to comment out a single line of TS.

/* */ Multi-line comment

/*
This is a a
multi-line
comment

*/

Used to comment out multiple consecutive
lines.
/* opens the comment
, and
*/ closes it.

A.1.5. Keywords
break case continue datablock

default else FALSE for
function if new or
parent return switch switch$
TRUE while

Note: Although keywords are not reserved, it is considered bad practice to use variables that have the same
spelling as a keyword.

break

Purpose
Use break to exit the innermost for or while loop. break can also be used to exit a
switch or switch$ statement.

%count = 0;
while(1)
{
 echo(%count++);
 if (%count > 2)
 break;
}

See Also
case, if, switch, switch$, while

8

© Copyright 2000-2006 GarageGames Product of Hall Of Worlds, LLC.

case

Purpose
Used to label cases in a switch or switch$ statement.

See switch and switch$ examples.

See Also
break, switch, switch$

continue

Purpose
The continue keyword causes the script to skip the remainder of the innermost loop in
which it appears;

%count = 0;
while(%count++ < 8)
{
 if (%count > 2) continue;
 echo(%count);
}

See Also:
for, while

datablock

Purpose
The datablock keyword is used to declare a new datablock. A datablock object is used in
the declaration and initialization of a special set of classes that take a datablock(s).
Datablocks are created on the server and ghosted to clients.

Syntax
datablock DatablockClass (NewDatablockName : InheritDatablock)
{
 className = “SomeName”;

 DataBlockBody
};

• DatablockClass – A predefined engine class which inherits from SimDataBlock or one of
it’s children.

• NewDatablockName – The name for this datablock. Must be unique.

• InheritDatablock – Previously defined datablock to inherit (copy) DataBlockBody values
from. Optional.

9

© Copyright 2000-2006 GarageGames Product of Hall Of Worlds, LLC.

• className – This is a special field which can be initialized with the name of a
previously defined [in Torque Script] datablock. In effect, this inserts the ‘SomeName’
name into the namespace calling sequence between NewDatablockName and DatablockClass.
For some datablock classes, className can be a non-datablock name, but it isn’t
guaranteed to work for all calling sequences or classes.

• DataBlockBody – Fields and the values they will be assigned for this datablock.

datablock SimDataBlock(myDataBlock)
{
 newField = "Hello";
 newField2 = 10;
};

Here we have declared a new SimDataBlock datablock named myDataBlock. Additionally, we
have given it a new field named newField, initialized to “Hello” and a new field named
newField2 initialized to 10. The namespace calling sequence for this datablock is:
myDataBlock -> SimDataBlock
datablock SimDataBlock(mySecondDataBlock : myDataBlock)
{
 className = “myDataBlock”;
 newField2 = 15;
};

Here we have declared a new SimDataBlock datablock named mySecondDataBlock that derives
from myDataBlock. Because it is deriving from a prior datablock, it will copy any fields
that were declared and/or initialized in the ‘parent’ datablock. However, because we are
re-declaring the field newField2. The new initialization value is taken in preference to
the copied value, meaning that newField has the value “Hello” and newField2 has the value
15. Finally, we have defined className as myDataBlock, making the namespace calling
sequence for mySecondDataBlock:

mySecondDataBlock -> myDataBlock -> SimDataBlock
See Also
new, Parent

10

© Copyright 2000-2006 GarageGames Product of Hall Of Worlds, LLC.

Current Datablock Classes and associated ObjectClasses
DataBlock Class Object Class

CameraData Camera

DebrisData Debris

ExplosionData Explosion

FlyingVehicleData FlyingVehicle

GameBaseData GameBase

HoverVehicleData HoverVehicle

ItemData Item

LightningData Lightning

MissionMarkerData MissionMarker

ParticleData Particle

ParticleEmitterData ParticleEmitter

ParticleEmitterNodeData ParticleEmitterNode

PathCameraData PathCamera

PlayerData Player

PrecipitationData Precipitation

ProjectileData Projectile

ShapeBaseData ShapeBase

SimDataBlock - none -

SplashData Splash

StaticShapeData StaticShape

TriggerData Trigger

VehicleData Vehicle

WheeledVehicleData WheeledVehicle

WheeledVehicleSpring WheeledVehicle

WheeledVehicleTire WheeledVehicle

11

© Copyright 2000-2006 GarageGames Product of Hall Of Worlds, LLC.

default

Purpose
This labels the default case in a switch or switch$ statement. i.e. the case that is
executed if no other cases matches the switch/switch$ value.

Note: The default keyword must be listed after all case keywords. It is a syntax error
to place it before subsequent case keywords.

See switch and switch$ examples.

See Also
break, switch, switch$

else

Purpose
The else keyword is used with the if keyword to control the flow of a script. The
general form of the well known if-then-else construct is as follows:

if (expression)
{
 statement(s);
}
else
{
 alternate statement(s);
}

Where the alternate statement(s) are executed if the expression evaluates to 0.

See if example.

See Also
if

false

Purpose
The false keyword is used for boolean comparison and evaluates to 0.

if(false == 0)
{
 echo(“false evaulates to” SPC 0);
}

See Also
if, true

12

© Copyright 2000-2006 GarageGames Product of Hall Of Worlds, LLC.

for

Purpose
The for keyword is a looping construct whose general form is:

for (expression0 ; expression1 ; expression2)
{
 statements(s);
}

• expression0 – usually of the form: variable = value
• expression1 – usually of the form: variable compare op value
• expression2 – usually of the form: variable op OR variable op value

The loop continues to execute statement(s) until expression0 evaluates to zero.

Note: expression0, expression1, and expression2 are all required. If you absolutely need
expression0 or expression2 to be empty just insert a 0.

Note2: Composite expressions of the form (sub_expression0 , sub_expression1 , …
sub_expressionN) are illegal.

// Example 1
for(%val = 0 ; %val < 3 ; %val++)
{
 echo(%val);
}

// Example 2 – ‘Empty’ expression 0 and 2
%value = 0;
for(0 ; %val < 3 ; 0)
{
 echo(%val);
 %val ++;
}

// Example 3 – Illegal sub-expressions
// This would produce an error while ‘compiling’
%val = 0;
for(%val0 = 0 , %val1 = 3 ; %val0 < 3 ; %val0++, %val1--)
{
 echo(%val0);
 echo(%val1);
}

See Also
break, continue, while

13

© Copyright 2000-2006 GarageGames Product of Hall Of Worlds, LLC.

function

Purpose
The function keyword is used to define a new console function or method. Unlike
procedural language, functions are not declared in one place and defined in another, but
defined only. Redeclaring a named function later in script over-rides the previous
definition. the format of a function takes one of two basic forms:

// function definition
function func_name([arg0] , … , [argn])
{
 statements;

 [return val;]
}

• func_name – Name by which this function will be subsequently called.
• [arg0] , … , [argn] – Optional arguments.
• statements – Any number of statements may be contained within the body of the function.
• val – Functions may optionally return a value;

// console method definition
function namespace::func_name(%this, [arg0] , … , [argn])
{
 statements;
 [return val;]
}

• namespace – The name of a datablock or object classname.
• :: – Namespace resolution operator.
• %this – The first argument of a console method is always the handle to the object which
is calling the method.

// A simple function
function test(%val)
{
 echo(“test(“ SPC %val SPC “)”);

 if(10 = %val) return true;

 return false;
}

// A simple console method
function Item::test(%this , %val)
{
 echo(“Item::test(“ SPC %this SPC “,” SPC %val SPC “)”);

 if(10 = %val) return true;

 return false;
}

...

14

© Copyright 2000-2006 GarageGames Product of Hall Of Worlds, LLC.

%obj = new Item()
{
 // ..
};
%obj.test(10); // Normal method of calling
Item::test(%obj, 10); // Alternate method of calling

See Also
none.

if

Purpose
The if keyword is used with or without the else keyword to control the flow of a script.
The general form of the well known if-then-else construct is as follows,

if (expression) {
 statement(s);
} else {
 alternate statement(s);
}

Where the statement(s) are executed if the expression evaluates to a non-zero value.

if(0)
{
 echo(“hello”);
}
else
{
 echo(“goodbye”);
}

if(5)
{
 echo(“hello”);
}
else
{
 echo(“goodbye”);
}

See Also
else

15

© Copyright 2000-2006 GarageGames Product of Hall Of Worlds, LLC.

new

Purpose
The new keyword is used to instantiate (create) a new copy of a conobject. A conobject
is:

• an engine class available in the console (Item(), Player(), etc.), or
• a datablock (derived or otherwise).

// New non-datablock (using) object
%obj = new ScriptObject();

//New datablock (using) object
datablock ItemData(GoldCoin)
{
...
};

%coin = new Item(myGoldCoin)
{
 // ...
 datablock = GoldCoin;
};

See Also
datablock

16

© Copyright 2000-2006 GarageGames Product of Hall Of Worlds, LLC.

package

Purpose
The package keyword tells the console that the subsequent block of code is to be declared
but not loaded. Packages provide dynamic function-polymorphism in TorqueScript. In
short, a function defined in a package will over-ride the prior definition of a same named
function when the is activated. When the package is subsequently deactivated, the
previous definition of any overridden functions will be re-asserted.

Packages have the following syntax:

package package_name
{

function function_definition0()
{

[statements;]
}
...
function function_definitionN()
{

[statements;]
}

};

Things to know:

• The same function can be defined in multiple packages.
• Only functions can be packaged.
• Datablocks cannot be packaged.
• Packages ‘stack’ meaning that deactivating packages activated prior to the currently
active (s) will deactivate all packages activated prior to the being deactivated (see
example below).

• Functions in a may activate and deactivate packages.

Activating
In order to use the functions in a package, the package must be activated:

ActivatePackage(_name);

Deactivating
Subsequently a package can be deactivated:

DeactivatePackage(_name);

function testFunction()
{
 echo(“testFunction() - unpackaged.”);
}

package MyPackage0
{
 function testFunction()
 {
 echo(“testFunction() - MyPackage0.”);
 }
};

17

© Copyright 2000-2006 GarageGames Product of Hall Of Worlds, LLC.

 MyPackage1
{
 function testFunction()
 {
 echo(“testFunction() – MyPackage1.”);
 }
};

...

testFunction();
// prints => testFunction() - unpackaged.

ActivatePackage(MyPackage0);

testFunction();
// prints => testFunction() - MyPackage0.

ActivatePackage(MyPackage1);

testFunction();
// prints => testFunction() – MyPackage1.

DeactivatePackage(MyPackage0);
// MyPackage1 is automatically deactivated.

testFunction();
// prints => testFunction() - unpackaged.

See Also
function, Parent

18

© Copyright 2000-2006 GarageGames Product of Hall Of Worlds, LLC.

Parent

Purpose
The Parent keyword is used with the namespace operator (::) to reference the previous
definition of a function what has been over-ridden either through inheritance or
packaging. The Parent keyword can only be used within specific contexts:

• From within a consoleMethod, or
• from within a packaged function.

// Calling an inherited parent
datablock ItemData(GoldCoin)
{
...
};

function ItemData::onAdd(%db, %obj)
{
 echo(“ItemData::onAdd()”);
}

function GoldCoin::onAdd(%db, %obj)
{
 Parent::onAdd(%db, %obj);

 echo(“GoldCoin::onAdd()”);
}

// Calling a parent
function testFunction()
{
 echo(“testFunction() - unpackaged.”);
}

 MyPackage0
{
 function testFunction()
 {
 Parent::testFunction();
 echo(“testFunction() - MyPackage0.”);
 }
};

...

testFunction();
// prints => testFunction() - unpackaged.

ActivatePackage(MyPackage0);

testFunction();
// prints => testFunction() - unpackaged.
// prints => testFunction() - MyPackage0.

See Also
datablock, function

19

© Copyright 2000-2006 GarageGames Product of Hall Of Worlds, LLC.

return

Purpose
The return keyword is used to return a value from a function

function equal_to(%arg0 , %arg1)
{
 return (%arg0 == %arg1);
}

echo(equal_to(10,11)); // prints 0

echo(equal_to(11,11)); // prints 1

See Also
function

switch

Purpose
The switch keyword is used to control the flow of a script. The general form of a
switch statement is as follows:

switch (expression) {
case value0:
 statement(s);
 break;
case value1:
 statement(s);
 break;
. . .
case valueN:
 statement(s);
 break;
default:
 statement(s);
}

Where expression is evaluated and the subsequently compared to the following case values.
If a case matches the evaluated expression, the statement(s) associated with that case are
executed. If no values match and a default statement exists, the statement(s) in the
default case will be executed.

switch is used ONLY for expressions that evaluate to a numeric value.

Note: Unlike C/C++, the break statements in switches are superfluous. Torque Script will
only execute matching cases and NOT automatically execute all subsequent cases. This is
shown in the example below.

20

© Copyright 2000-2006 GarageGames Product of Hall Of Worlds, LLC.

%tmp = 1;

switch(%tmp)
{
case 0:
 echo(0);
case 1:
 echo(1);
default:
 echo("proof");
}

See Also
break, case, default, switch$

switch$

Purpose
The switch$ keyword is used to control the flow of a script. The general form of a
switch statement is as follows:

switch (expression)
{
case string_value0:
 statement(s);
 break;
case string_value1:
 statement(s);
 break;
. . .
case string_valueN:
 statement(s);
 break;
default:
 statement(s);
}

Where expression is evaluated and subsequently compared to the following case values. If
a case string_value matches the evaluated expression, the statement(s) associated with
that case are executed. If no values match and a default statement exists, the
statement(s) in the default case will be executed.

switch$ is used ONLY for expressions that evaluate to a string value.

Note: Unlike C/C++, the break statements in switches are superfluous. Torque Script will
only execute matching cases and NOT automatically execute all subsequent cases.

21

© Copyright 2000-2006 GarageGames Product of Hall Of Worlds, LLC.

%tmp = “hi” ;

switch$(%tmp)
{
case “bye”:
 echo(“bye”);
case “hi”:
 echo(“hi”);
}

See Also
break, case, default, switch

true

Purpose
The true keyword is used for boolean comparison and evalulates to 1.

if(true == 1)
{
 echo(“true evaulates to” SPC 1);
}

See Also
if, true

while

Purpose
The while keyword is a looping construct whose general form is:

while (expression) {
 statements(s);
}

Where expression is usually of the form: variable compare op value, and the loop
continues to execute statement(s) until expression evaluates to false (i.e. 0).

%val=5;

while(%val)
{
 echo(%val--);
}

See Also
break, continue, for

22

© Copyright 2000-2006 GarageGames Product of Hall Of Worlds, LLC.

A.1.5. Engine Interfacing

The engine provides a concise set of tools to expose the core engine functionality and structures in the
console (to Torque Script). The following problem-solution matrix summarizes the things we may want to do
and how to do them.

Problem (Want to…) Solution
Expose Member

as Field.

addField()
addFieldV()

Expose Member

as Field.

addNamedField()
addNamedFieldV()

Expose/Remove
global C++ Variable or
static Member

as Local Variable

Con::addVariable()
Con::removeVariable()

Create Console Method from C++. ConsoleMethod()

Create Console Function from C++. ConsoleFunction()

addField() addFieldV() addNamedField() addNamedFieldV()
Con::addVariable() Con::removeVariable() ConsoleFunction() ConsoleMethod()

23

© Copyright 2000-2006 GarageGames Product of Hall Of Worlds, LLC.

addField

Purpose
The addField function provides a means to expose C++ class members as Torque Script
object fields. This function is normally called in a class’ initPersistFields() method.

Syntax
addField(const char * in_pFieldname,
 const U32 in_fieldType,
 const dsize_t in_fieldOffset,
 const char * in_pFieldDocs)

addField(const char* in_pFieldname,
 const U32 in_fieldType,
 const dsize_t in_fieldOffset,
 const U32 in_elementCount,
 EnumTable * in_table,
 const char * in_pFieldDocs)

• in_pFieldname - String specifying variable name as used in console.
• in_fieldType - The variable type. (Types specified in consoleTypes.h).
• in_fieldOffset - This is a numeric value calculated using the Offset() macro.
• in_elementCount - Number of elements at offset. The default value is 1, but if you are
referencing an array then this value will be the number of elements in the array.

• in_table - This argument is used when the field type is TypeEnum. In this special
case, you need to define an EnumTable containing a map of the ENUM values and the
strings to represent them in the console.

• in_pFieldDocs - A short string describing the field in plain English. This field is
used in Torque’s automatic Console documentation functionality.

class GuiCrossHairHud : public GuiBitmapCtrl
{

...
 ColorF mDamageFillColor; // C++ declaration

...
}

void GuiCrossHairHud::initPersistFields()
{

...
 // Added here
 addField("damageFillColor",
 TypeColorF,
 Offset(mDamageFillColor , GuiCrossHairHud));

...
}

See Also
addFieldV, addNamedField, addNamedFieldV

24

© Copyright 2000-2006 GarageGames Product of Hall Of Worlds, LLC.

addFieldV

Purpose
The addFieldV function serves the same purpose as addField, but introduces the concept of
a ‘Type Validator’ classes.

Type Validator Classes are used to restrict the values a field may be given. If illegal
values are assigned to a validated field, the validator function will print an error to
the console and set the field to a valid value.

The two most commonly used Type Validator Classes are FRangeValidator and
IRangeValidator. New validators may be derived from either of these, or their base class
TypeValidator.

Note: addFieldV does not support arrays or enumerated types.

Syntax
addFieldV(const char * in_pFieldname,
 const U32 in_fieldType,
 const dsize_t in_fieldOffset,
 TypeValidator * v)

• * in_pFieldname - String specifying variable name as used in console.
• in_fieldType - The variable type. (Types are specified in consoleTypes.h).
• in_fieldOffset - This is a numeric value calculated using the Offset() macro.
• * v - This is a pointer to a TypeValidator class instance of which there are several
derived types to choose from.

// from projectile.cc around line 126
// light radius is limited to between
// 1.0 and 20.0, inclusive.

addFieldV("lightRadius",
 TypeF32,
 ProjectileData,
 new FRangeValidator(1, 20));

See Also
addField, addNamedField, addNamedFieldV

25

© Copyright 2000-2006 GarageGames Product of Hall Of Worlds, LLC.

addNamedField

Purpose
The addNamedField is a macro that makes use of the simple version addField function and
provides a short-hand method of adding fields. It does not support enumerated types or
arrays. Also, it does not provide a means of adding documentation strings. It is worth
noting that the macro uses the same name for the field as the variable.

Syntax
addNamedField(fieldname , type , className) ;

• fieldname - Name of variable to expose. Will be used as name of field.
• type - The variable type. (Types are specified in consoleTypes.h).
• className - Name of C++ class containing variable.
addNamedField(isBallistic , TypeBool , ProjectileData);

See Also
addField, addFieldV, addNamedFieldV

addNamedFieldV

Purpose
The addNamedField is a macro that makes use of the addFieldV function and provides a
short-hand method of adding validated fields.

Syntax
addNamedFieldV(fieldname , type, className, validator);

• fieldname - Name of variable to expose. Will be used as name of field.
• type - The variable type. (Types are specified in consoleTypes.h).
• className - Name of C++ class containing variable.
• validator - This is a pointer to a TypeValidator class instance of which there are
several derived types to choose from.

addNamedFieldV(lightRadius,
 TypeF32,
 ProjectileData,
 new FRangeValidator(1 , 20));

See Also
addField, addFieldV, addNamedField

26

© Copyright 2000-2006 GarageGames Product of Hall Of Worlds, LLC.

Con::addVariable

Purpose
The Con::addVariable function provides a means to expose global C++ variables or static
class Members as Torque Script global variables. This function is normally called in a
class’ consoleInit () method.

Syntax
Con::addVariable(const char * name , t , void * dp);

• name - String specifying name of global variable (in console).
• t - The variable type. (Types are specified in consoleTypes.h).
• dp - A pointer to the global C++ variable, or static Member.
// From camera.cc
Con::addVariable("Camera::movementSpeed" , TypeF32 , &mMovementSpeed);

See Also
Con::removeVariable

Con::removeVariable

Purpose
The Con::removeVariable function provides a means to un-expose global C++ variables or
static class Members previously exposed as Torque Script global variables with
Con::addVariable.

This call is global. i.e. Once we remove a variable, we cannot put it back.

Syntax
removeField(const char* in_pFieldname);

• in_pFieldname - String specifying field to be removed.
// 1. TerrainBlock is inherited from SceneObject.
// 2. SceneObject links member mObjToWorld to the
// Torque Script field position.
// 3. TerrainBlock undoes this(in terrData.cc)

removeField("position");

See Also
Con::addVariable

27

© Copyright 2000-2006 GarageGames Product of Hall Of Worlds, LLC.

ConsoleFunction

Purpose
The ConsoleFunction macro provides a means to create function from C++ in the console.

Syntax
ConsoleFunction(name , returnType , minArgs , maxArgs , usage)
{

// Function body

}

• name - This is the name of the function as it will be used in the console.
• returnType - Is the return type of the function.
• minArgs - Minimum arguments this function can accept. 1 is the minimum, because the
name of the function is automatically passed as the first argument.

• maxArgs - Maximum arguments this function can accept. If you put 0 in this field, it
means any number of arguments may be passed to the function.

• usage - Is a string that will be printed as a help statement if someone later attempts
to use this function with the wrong number of arguments.

// From main.cc
ConsoleFunction(getSimTime , S32 , 1 , 1,
 "getSimTime() – Time since game started.")
{
 return Sim::getCurrentTime();
}

See Also
ConsoleMethod

ConsoleMethod

Purpose
The ConsoleMethod macro provides a means to create Console Method from C++ in the
console. The static variant of ConsoleMethod is for methods that you want to be able to
call call statically. For example:, GameConnection::getServerConnection().

Syntax
ConsoleMethod(className , scriptname , returnType ,
 minArgs , maxArgs , usage)
{

 // Method body
}

// or

ConsoleStaticMethod(className , scriptname , returnType ,
 minArgs , maxArgs , usage)
{
 // Method body
}

28

© Copyright 2000-2006 GarageGames Product of Hall Of Worlds, LLC.

• className - The name of the class the method is in.
• scriptname - The name the method will be given in the console (i.e. used by
TorqueScript).

• returntype - The return type of the method.
• minargs - The minimum arguments this method takes. The minimum is 2, because the name
of the console method is automatically passed as the first argument and the object’s
handle is automatically passed as the second argument.

• maxargs - The maximum number of args that can be passed to this method. If you put 0
in this field, it means any number of arguments may be passed to the method.

• usage - A string that will be printed as a help statement if someone later attempts to
use this method with the wrong number of arguments. This usage is also when you use the
obj.dump() command.

//From SimBase.cc
ConsoleMethod(SimObject , getId , S32 , 2 , 2 ,
 "obj.getId()")
{
 argc; argv;
 return object->getId();
}

See Also
ConsoleFunction

29

© Copyright 2000-2006 GarageGames Product of Hall Of Worlds, LLC.

A.2 Console Objects Fields and Methods Quick Reference

A.2.1. ActionMap

Console Method Summaries

 bind bindCmd getBinding
getCommand getDeadZone getScale

 isInverted pop push

Console Methods

bind(device , action , [modifier , mod...] , command)
Purpose
Use the bind method to associate a function to a keystroke or other device input.

Syntax
 device - Name of the device to bind the command to (see 'Device Table' below).
 action - Name of the action to watch for(see 'Action Table' below).
modifier – Special modifiers (mouse only), such as dead spot, etc.
command - The function to be called on make and break.

Returns
No return value.

Notes
The command bound via the bind function must be specified as a flat name with no elipses
or semi-colon termination and will be called on make and break events (i.e. key press and
release for a mapped key).

Args:

Warning: When a function is bound to a keystroke or other device input, and no other
versions of the binding are provided, the function will be called even if a modifier key
like CTRL, ALT, or SHIFT is also pressed. For clarification, see 'Bind Sample' example
below.

See Also
bindCmd, getBinding, unbind

bindCmd(device , action , makeCmd , breakCmd)
Purpose
Use the bindCmd method to associate up to two functions to a keystroke or other device
input.

Syntax
 device - Name of the device to bind the command to (see 'Device Table' below).
 action - Name of the action to watch for(see 'Action Table' below).
 makeCmd - The function to be called on make event.
breakCmd - The function to be called on break event.

30

© Copyright 2000-2006 GarageGames Product of Hall Of Worlds, LLC.

Returns
No return value.

Notes
The makeCmd is bound to the make event and the breakCmd is bound to the break event and
in both cases, the commands are specified as complete scripts, with all arguments,
elipses, and the terminating semi-colon. Either of these commands may be non-specified
(NULL strings). For clarification, see 'Bind Sample' example below.

See Also
bind, getBinding, unbind

getBinding(command)
Purpose
Use the getBinding method to get the binding for a specified command.

Syntax
command – The function to seek a binding for.

Returns
Returns a string containing the binding as a field (TAB separated string), or a NULL
string meaning 'no binding found'.

See Also
bind, bindCmd

getCommand(device , action)
Purpose
Use the getCommand method to get the function associated with a specific device + action
pair.

Syntax
device - Name of the device to bound to a command (see 'Device Table' below).
action - Name of the action to watch for (see 'Action Table' below).

Returns
Returns the function name or specification associated with the specified device + action
pair, or a NULL-string meaning 'no binding found'.

See Also
bind, bindCmd, getBinding

31

© Copyright 2000-2006 GarageGames Product of Hall Of Worlds, LLC.

getDeadZone(device , action)
Purpose
Use the getDeadZone method to get the dead-zone associated with a specific device +
action pair.

Syntax
device - Name of the device to bound to a command (see 'Device Table' below).
action - Name of the action to watch for (see 'Action Table' below).

Returns
Returns a dead-zone specification, or "0 0" meaning that there is no dead-zone, or a NULL
string meaning the mapping was not found.

See Also
bind, bindCmd

getScale(device , action)
Purpose
Use the getScale method to get the scale associated with a specific device + action pair.

Syntax
device - Name of the device to bound to a command (see 'Device Table' below).
action - Name of the action to watch for (see 'Action Table' below).

Returns
Returns 1 if no scale is associated with the specified device + action pair, or the
mapping was not found.

See Also
bind, bindCmd

isInverted(device , action)
Purpose
Use the Purpose method to determine if a specific device + action pair in inverted.

Syntax
device - Name of the device to bound to a command (see 'Device Table' below).
action - Name of the action to watch for (see 'Action Table' below).

Returns
Returns 1 if the mouse (or other scrolling device) is inverted, 0 otherwise.

Notes
This only applies to scrolling devices.

See Also
bind, bindCmd

32

© Copyright 2000-2006 GarageGames Product of Hall Of Worlds, LLC.

pop()
Purpose
Use the pop method to de-activate an ActionMap and remove it from non-global ActionMap
stack.

Returns
No return value.

See Also
push

push()
Purpose
Use the pop method to activate an ActionMap and place it at the top of the non-global
ActionMap stack.

Returns
No return value.

See Also
pop

save([fileName] [, append])
Purpose
Use the save method to save an entire action map specification to a file. If append is
not specified, or specified as false, fileName will be overwritten, otherwise the action
map will be appended to the file.

Syntax
fileName – Full path to file in which to store action map definition.
 append - If true, do not overwrite the file, else start from scratch.

Returns
No return value.

unbind(device , action)
Purpose
Use the unbind method to remove a previosly specified device + action pair from the
action map.

Syntax
device - Name of the device to bound to a command (see 'Device Table' below).
action - Name of the action to watch for (see 'Action Table' below).

Returns
No return value.

See Also
bind, bindCmd

33

© Copyright 2000-2006 GarageGames Product of Hall Of Worlds, LLC.

Device Table

Device Description
keyboardN This is the Nth keyboard hooked up to the system. For the first keyboard, either "keyboard" or

"keyboard0" is acceptable.

mouseN This is the Nth mouse hooked up to the system. For the first mouse, either "mouse" or "mouse 0" is
acceptable.

joystickN This is the Nth joystick or gamepad hooked up to the system.

unkownN This is the Nth unknown device up to the system. In other words, some devices has been sampled,
but TGE doesn't know what it is.

Action Table

Action Description
button0, buton1,

 ...
, button31

This is a mouse, joystick, or gamepad button press.
For the mouse, buttons 0,1, and 2 are left, right, and middle buttons respectively. See the appendix
for other button mappings.

a .. z
A .. Z
0..9

F1..F12

These are keyboard inputs. Because this list is so long and in order to accommodate possible variances
for special keyboards and other devices a same GUI has been provided with the kit that displays the
current action, be it keyboard, mouse, joystick/gamepad, or other device. Simple start the kit and click
SampleGUIs -> Input. Follow the instructions provided in the sample.

shift
ctrl
alt

These are modifiers and are not used standalone, but they are included in the action string, for
example: "shift p" is the shift key and the p key pressed at the same time.

lshift, rshift,
 lctrl, rctrl,

lalt, ralt

These are special modifier actions. Theye only register as 'break' events when one of these keys: left
shift, right shift, left ctrl, right ctrl, left alth, or right alt is released.

Mouse Modifiers

Action Modifiers Description
D %x %y Has dead zone. This is used to add a dead zone for the mouse. Motions in this zone will not be

recorded. This can be used to remove the jitter caused by a ‘nervous hand’.

S %s Has Scale. This is used to scale the mouse motion (by a multiple).

I Inverted. This is used to invert the mouse.

R %s Has Scale. Same as S.

34

© Copyright 2000-2006 GarageGames Product of Hall Of Worlds, LLC.

A.2.2. AIConnection
This is a derivative of the class GameConnection (described later) and thus inherits all of that objects methods.
Additionally, it adds features that allow this connection type to be driven by AI scripts.

Console Method Summaries

getAddress getFreeLook getMove
getTrigger setFreeLook setMove

Console Methods

getAddress()
Purpose
Use the getAddress method to get the address an AIConnection is currently connected to.

Returns
Returns the address of the current connection in the format: " A.B.C.D:Port ", where A ..
B are standard IP numbers between 0 and 255 and Port can be between 1000 and 65536.

getFreeLook()
Purpose
Use the getFreeLook method to check if the current connection is in free look mode.

Returns
Returns true if the current connection is free look mode.

See Also
setFreeLook

getMove(field)
Purpose
Use the getMove method to get the move setting for field.
Syntax
field – Move setting to check.

Returns
Returns a value between 0.0 and 1.0.

See Also
getTrigger, setMove, setTrigger

35

© Copyright 2000-2006 GarageGames Product of Hall Of Worlds, LLC.

getTrigger(trigger)
Purpose
Use the getTrigger method to get the current value for a trigger specified by the numeric
value trigger.

Syntax
trigger – An integer value between 0 and 6 representing on of the seven triggers.

Returns
Returns 1 if the trigger is active/depressed, and 0 if it is not.

See Also
getMove, setMove, setTrigger

setFreeLook(isFreeLook)
Purpose
Use the setFreeLook method to set the current connection to a free look mode.

Syntax
isFreeLook – A boolean value. If true, freelook will be enable, otherwise
 it will be disabled.

Returns
No return value.

See Also
getFreeLook

setMove(field , value)
Purpose
Use the setMove method to set a move type for the control-object connected to this
AIConnection.

Syntax
field – A string containing a move type. See 'move types' table below.
value – A value between 0.0 and 1.0.

Returns
No return value.

See Also
getMove, getTrigger, setTrigger

36

© Copyright 2000-2006 GarageGames Product of Hall Of Worlds, LLC.

setTrigger(trigger , set)
Purpose
Use the setTrigger method to set or un-set a trigger on the control-object connected to
this AIConnection.

Syntax
trigger – An integer value between 0 and 6 representing on of the seven triggers.
 set – A boolean value. If true, this trigger is enabled/set/depressed,
 otherwise, it is disabled/un-set/released.

Returns
No return value.

See Also
getMove, getTrigger, setMove

A.2.3. AIPlayer
This class is used to represent a basic AI driven player model. It has all the fields and methods of the player
class. It adds several new methods to allow basic navigation and aiming. Most AI behaviors come from scripts
using this small set of methods.

Console Method Summaries

clearAim getAimLocation getAimObject

getMoveDestination setAimLocation setAimObject

setMoveDestination setMoveSpeed stop

Console Methods

clearAim()
Purpose
Use the clearAim method to stop aiming at an object or a point.

Returns
No return value.

See Also
setAimObject, setAimLocation

37

© Copyright 2000-2006 GarageGames Product of Hall Of Worlds, LLC.

getAimLocation()
Purpose
Use the getAimLocation method to get the point the bot is currently aiming at. This will
reflect the position set by setAimLocation(), or the position of the object that the bot
is now aiming at, or if the bot is not aiming at anything, this value will change to
whatever point the bot's current line-of-sight intercepts.

Returns
Returns an XYZ vector containing the location of the bot's current aim.

See Also
setAimObject, setAimLocation

getAimObject()
Purpose
Use the getAimObject method to get the ID of the object the bot is currently aiming at.

Returns
Returns -1 if no object is being aimed at, or a non-zero positive integer ID of the
object the bot is aiming at.

See Also
getAimLocation, setAimObject, setAimLocation

getMoveDestination()
Purpose
Use the getMoveDestination method to get the last set move destination.

Returns
Returns a vector containing the <x y z> position of the bot's current move destination.
If no move destination has yet been set, this returns "0 0 0".

Notes
The bot will not look at its destination unless it is told to, which means it can aim at
one object or location while walking in another direction.

See Also
setMoveDestination

38

© Copyright 2000-2006 GarageGames Product of Hall Of Worlds, LLC.

setAimLocation(target)
Purpose
Use the setAimLocation method to set the bot's aim location to target.

Syntax
target – An XYZ vector representing a position in the game world.

Returns
No return value.

See Also
getAimLocation, getAimObject, setAimObject

setAimObject(obj [, offset])
Purpose
Use the setAimObject method to set the current object for the bot to aim at, using an
optional offset to modify that aim.

Syntax
 obj – A valid GameBase object ID or name.
offset – A three-element offset vector which will be added to the position of the
 aim object.

Returns
No return value.

See Also
getAimLocation, getAimObject, setAimLocation

setMoveDestination(goal [, slowDown])
Purpose
Use the setMoveDestination method to set the bot's current move destination top goal.
This will cause the bot to start moving immediately towards that destination.

Syntax
 goal – An XYZ vector containing the position for the bot to move to.
slowDown – A boolean value. If set to true, the bot will slow down when it gets
 within 5-meters of its move destination. If false, the bot will stop
 abruptly when it reaches the move destination. By default, this is true.

Returns
No return value.

Notes
Upon reaching a move destination, the bot will clear its move destination and calls to
getMoveDestination will return a NULL string.

See Also
getMoveDestination, setMoveSpeed, stop

39

© Copyright 2000-2006 GarageGames Product of Hall Of Worlds, LLC.

setMoveSpeed(speed)
Purpose
Use the setMoveSpeed method to modify the bot's movement rates between 0.0 (0%) and 1.0
(100%).

Syntax
speed – A speed multiplier between 0.0 and 1.0. This is multiplied by the bot's
 base movement rates (from its datablock).

Returns
No return value.

See Also
setMoveDestination, stop

stop()
Purpose
Use the stop method to stop the bot from moving.

Returns
No return value.

Notes
This does not clear the bot's move destination, so a call to getMoveDestination will be
able to get it.

See Also
setMoveDestination, setMoveSpeed

40

© Copyright 2000-2006 GarageGames Product of Hall Of Worlds, LLC.

A.2.4. AIWheeledVehicle

Fields

Field Name Description Sample or Range
disableMove If this value is set to true, the vehicle will not respond to any movement commands. [false , true]

Console Method Summaries

getMoveDestination setMoveDestination setMoveSpeed
setMoveTolerance stop

Console Methods

getMoveDestination()
Purpose
Use the getMoveDestination method to get the last set move destination.

Returns
Returns a vector containing the <x y z> position of the vehicle's current move
destination. If no move destination has yet been set, this returns "0 0 0".

Notes
The vechicle will not look at its destination unless it is told to, which means it can
aim at one object or location while walking in another direction.

See Also
setMoveDestination

setMoveDestination(goal [, slowDown])
Purpose
Use the setMoveDestination method to set the vehicle's current move destination top goal.
This will cause the vehicle to start moving immediately towards that destination.

Syntax
 goal – An XYZ vector containing the position for the vehicle to move to.
slowDown – A boolean value. If set to true, the vehicle will slow down when it gets
 within 5-meters of its move destination. If false, the vehicle
 will stop abruptly when it reaches the move destination. By default,
 this is true.

Returns
No return value.

41

© Copyright 2000-2006 GarageGames Product of Hall Of Worlds, LLC.

Notes
Upon reaching a move destination, the vehicle will clear its move destination and calls
to getMoveDestination will return a NULL string.

See Also
getMoveDestination, setMoveSpeed, setMoveTolerance, stop

Args:
 goal - A vector containing the <x y z> position for the vehicle to move to.
 slowDown – Slow down near destination?

setMoveSpeed(speed)
Purpose
Use the setMoveSpeed method to modify the vesicle's movement rates between 0.0 (0%) and
1.0 (100%).

Syntax
speed – A speed multiplier between 0.0 and 1.0. This is multiplied by the vesicle's
 base movement rates (from its datablock).

Returns
No return value.

See Also
setMoveDestination, setMoveTolerance, stop

setMoveTolerance(tolerance)
Purpose
Use the setMoveTolerance method to set the tolerance radius for an AIWheeled vehicle's
target position. In other words, how close to the target does the vehicle have to get
before it is considered 'on target'?

Syntax
tolerance – The maximum distance away from a move target the vehicle can be and still be
considered 'on target'.

Returns
No return value.

Notes
Because vehicles can have major variances in size, and because of the way 'on target' is
measured, this method is provided to make it easier for a wheeled vehicle to hit it's
movement destination.

See Also
getMoveSpeed, setMoveSpeed

42

© Copyright 2000-2006 GarageGames Product of Hall Of Worlds, LLC.

stop()
Purpose
Use the stop method to stop the vechicle from moving.

Returns
No return value.

Notes
This does not clear the vechicle's move destination, so a call to getMoveDestination will
be able to get it.

See Also
setMoveDestination, setMoveSpeed

A.2.5. AudioDescription

Fields

Field Name Description
coneInsideAngle Sweep angle of inner cone.

coneOutsideAngle Sweep angle of Outside cone.

coneOutsideVolume Maximum gain in Zone C (see above).

coneVector Audio emitter’s eye (pointing) vector.

environmentLevel Amount by which the audioEnvironment datablock used with this datablock will affect sound.

is3D Is this a 2D or a 3D sound?

isLooping If true, sound loops, otherwise sound plays only once.

isStreaming If true, sound source is streaming, otherwise sound is from file.

loopCount

Number of times to loop this sound.
• -1 – Loop infinitely.
• 0 – Loop once and only once.
• 1 – Loop once, possibly twice.
• (N > 1) – Loop N times.

maxDistance Outer boundary for 3D sound sphere. Sound turns on-off here at this distance from 3D emitter.

maxLoopGap Maximum delay between subsequent loop.

minLoopGap Minimum delay between subsequent loop.

ReferenceDistance Distance at which sound turns on to 100% of current maximum gain.

type Audio type. There can be multiple numeric audio types, each with its own globally controlled max gain.

volume Maximum gain for this source.

43

© Copyright 2000-2006 GarageGames Product of Hall Of Worlds, LLC.

A.2.6. AudioEmitter
Audio emitters are non-visible objects that can be placed in the game world and are used to produce 2D and

3D sound in game. All sounds produced by these emitters are networked. Therefore, all audio profiles, and
other sound entities used by emitters must use the datablock keyword (not new).

Fields

Field Name Description Sample or Range
coneInsideAngle Sweep angle of inner cone. [0..360]

coneOutsideAngle Sweep angle of Outside cone. [0..360]

coneOutsideVolume Maximum gain in Zone C (see above). [0.0, 1.0]

coneVector
Audio emitter’s eye (pointing) vector. information only

(use visual feedback
 to direct sound)

description Optional Audiodescription. AudioDescription

enableVisualFeedback Enable visual effects showing audio-cones, facing, and on-off
indication.

[false , true]

fileName Relative or absolute path to sound file. Filename

is3D Enables 3D sound. [false , true]

isLooping Enable looping. [false , true]

loopCount
• -1 – Loop infinitely.
• 0 – Loop once and only once.
• 1 – Loop once, possibly twice.
• (N > 1) – Loop N times.

See Description

maxDistance Outer boundary for 3D sound sphere. Sound turns on-off here at this
distance from 3D emitter.

[referenceDistance , inf)

maxLoopGap Maximum delay between subsequent loop. -

minLoopGap Minimum delay between subsequent loop. -

outsideAmbient If true, plays outside only (turns off when player is inside interior). [false , true]

position Optional audio profile. AudioProfile

Profile Maximum gain distance. Inner-cone gain is maxed when player is
within this distance of 3D emitter.

[0.0 , maxDistance]

ReferenceDistance Distance at which sound turns on to 100% of current maximum gain. [0.0 , inf.0)

type Audio type. There can be multiple numeric audio types, each with its
own globally controlled max gain.

[0 , inf)

useProfileDescription Use audio profile instead of values set via inspector. [false , true]

volume Emitter’s maximum gain. [0.0 , 1.0]

44

© Copyright 2000-2006 GarageGames Product of Hall Of Worlds, LLC.

A.2.6. AudioProfile (AP)
This is a special type of data block used to describe 2-D and 3-D sounds. It can be created using the new
keyword or the data block keyword. In the prior case, the audio description is intended to be used for 2-D
sounds usually for interfaces and other client-side sounds. Space In the latter case, the audio description is
intended to be used for networked sounds. This is a crucial difference.

Fields

Field Name Description Sample or Range
description AudioDescription to use with this AP. see type

environment - ignore - --

fileName Path to WAV or OGG file. ~/path/filename.wav

preload If set to true, file is pre-loaded, otherwise it is loaded on-demand. [false , true]

A.2.8. Camera
The camera class is a lightweight class use to represent the position in view of the camera in the game world. It
is derived from shape base, and adds no new fields of its own. It adds a few new methods, used to enable free
fly mode and orbiting mode.

Globals

Variable Name Description Sample or Range
Camera::movementSpeed Controls the free camera movement speed. [0 , inf)

Console Method Summaries

getPosition setFlyMode setOrbitMode

Console Methods

getPosition()
Purpose
Use the getPosition method to find the current world position of the camera.

Returns
Return a vector containing the XYZ position of the camera.

45

© Copyright 2000-2006 GarageGames Product of Hall Of Worlds, LLC.

setFlyMode()
Purpose
Use the setFlyMode method to toggle the camera between free fly mode and attached mode.
In the prior mode, the camera is able to move about the game world free of an avatar, it
is in effect the avatar. The latter mode, is when the camera is attached to another
object, the control object.

Returns
No return value.

Notes
When if fly-mode, $Camera::movementSpeed controls the movement rate of the camera.

setOrbitMode(orbitObject , transform , minDistance , maxDistance , curDistance ,
 ownClientObject)
Purpose
Use the setOrbitMode method to force the camera to orbit any particular game base object
with a starting position and orientation and at a fixed minimum and maximum distance.

Syntax
 orbitObject – The object to orbits about.
 transform – A matrix describing both the position and orientation of the
 camera.
 minDistance – The minimum distance the camera is allowed to be from the object
 it is orbiting about.
 maxDistance – The maximum distance the camera is allowed to be from the
 object it is orbiting about.
 curDistance – The starting position of the camera from the object it is
 orbiting about. Note, this overrides the position portion of
 the transform, forcing the camera to be at this distance from
 the object.
ownClientObject – Set this to true if the object the camera is orbiting is owned
 by the client that owns the camera, otherwise set to false.

Returns
No return value.

46

© Copyright 2000-2006 GarageGames Product of Hall Of Worlds, LLC.

A.2.9. CameraData
This is the data block that goes with the camera. Space It is used to do find any special attributes the camera
should have, if it is not in fact to deriving these attributes from the object that it is attached to.

A.2.10. ConsoleLogger
This class is supplied to allow us to capture the output of the console and redirected to a file. Is useful in a
variety of situations. it can be said to capture all output, only warnings, or only errors.

Fields

Field Name Description Sample or Range
level Logging level for this logger. normal, warning, error

A.2.11. Debris
Debris objects are used to represent the refuse left behind by an exploding or destroyed object. However,

this object is versatile enough to be used for various purposes, to include a rockfall that blocks the road, the
remains of a fallen building, etc.

Fields

Field Name Description Sample or Range
lifeTime Lifetime of debris in seconds. [0.0 , inf.0)

Console Methods

init()

init(position , velocity)
Purpose
Use the init method to set the initial position and velocity of a debris object.

Syntax
position – A three-element floating-point vector representing the starting
 location of the debris object in the game world.
velocity – A three-element floating-point vector representing the direction
 and magnitude of the debris object's original path.

Returns
Returns true on success or false on failure.

47

© Copyright 2000-2006 GarageGames Product of Hall Of Worlds, LLC.

A.2.12. DebrisData
The data block that goes with debris. This class is used to describe most of the behavior of the debris.

Fields

Field Name Description Sample or Range
baseRadius Debris starts at minimum of this distance from creation point. Requires

useRadiusMass to be true.
(0.2 , inf.0)

bounceVariance Total bounces == numBounces +/- bounceVariance. (0 , numBounces)

elasticity How bouncy is this debris? Values > 1.0 add energy to the system. [0.0 , inf.0)

emitters[0]
emitters[1]

ParticleEmitterData datablocks used to trail particles behind moving debris. ParticleEmitterData

explodeOnMaxBounce Does this debris explode when it hits maxBounce count? [false , true]

Explosion ExplosionData datablock used for exploding debris. ExplosionData

fade If set to true, the debris will start to fade from view in the last second of its
lifetime.

[false , true]

friction How much friction is applied when thid debris slides? [0.0 , 1.0]

gravModifier How much does gravity affect this debris? (-inf.0 , inf.0)

ignoreWater If set to false, debris will bounce off of water, else it will sink. [false , true]

lifetime Total life of particle == lifetime +/- lifetimeVariance in milliseconds. [0.0 , inf.0)

lifetimeVariance Total life of particle == lifetime +/- lifetimeVariance in milliseconds. [0.0 , lifetime)

maxSpinSpeed Maximum angular rotation of debris in degrees-per-second. (-inf.0 , inf.0)

minSpinSpeed Minimum angular rotation of debris in degrees-per-second. (-inf.0 , inf.0)

numBounces Total bounces == numBounces +/- bounceVariance. [0 , inf)

render2D If this field is set to true, debris will render a billboard using texture as the image
source.

[false , true]

shapeFile The file to be used for this debris' mesh. ~/path/filename

snapOnMaxBounce If set to to true, and staticOnMaxBounce is also true, this debris will 'stick' in its
last contact orientation on the surface it contacted.

[false , true]

staticOnMaxBounce If set to to true, the debris will be replaced (temporarily) with a static shape.
This shape will still be destroyed after the debris's total lifetime expires.

[false , true]

terminalVelocity Maximum velocity at which this debris will fall (or rise). [0.0 , inf.0)

texture A texture to be used for rendering a billboard, if render2D is set to true. ~/path/filename

useRadiusMass If set to true (and baseRadius > 0.2) , the initial rendering position of the debris
will be at a random position baseRadius from the creation point.

[false , true]

velocity Total initial velocity == velocity +/ velocityVariance. [0.0 , inf.0)

velocityVariance Total initial velocity == velocity +/ velocityVariance. [0 .0 , velocity)

48

© Copyright 2000-2006 GarageGames Product of Hall Of Worlds, LLC.

A.2.13. DecalData
A data block describing an individual decal.

Fields

Field Name Description Sample or Range
sizeX The horizontal width in meters. [0.0 , inf.0)

sizeY The vertical height in meters. [0.0 , inf.0)

textureName The full path to the texture to use this decal. ~/path/filename

A.2.14. DecalManager
All details are managed by the decal manager which provides a few global variables for managing the number
of decals that are visible at any one time and the lifetime of the decal. As well we can disable all decals.

Globals

Variable Name Description Sample or Range
$pref::decalsOn If set to true, decals are enabled, otherwise no decals will

render.
[false , true]

$pref::Decal::maxNumDecals
Maximum decals allowed at any one time. Once this limit is
breached, old decals start to be removed as new decals are
added.

[0 , inf)

$pref::Decal::decalTimeout Time in milliseconds it takes for a decal to be destroyed. [0 , inf)

49

© Copyright 2000-2006 GarageGames Product of Hall Of Worlds, LLC.

A.2.15. EditManager
While editing, it is possible to set bookmarks on the current position of the camera and then come back to that
position by going back to the bookmark. Up to 10 bookmarks can be set. Setting a previously set bookmark will
overwrite the old bookmark setting with a new bookmark setting. Bookmarks are not saved between sessions.

Console Method Summaries

setBookMark gotoBookmark

Console Methods

gotoBookmark(slot)
Purpose
Use the gotoBookmark method to move the camera to the bookmark specified by slot.

Syntax
slot – An integer between 0 and 9.

Returns
No return value.

See Also
setBookmark

setBookmark(slot)
Purpose
Use the setBookmark method to set a bookmark on the current position of the camera. To
bookmark is saved in a position specified by slot.

Syntax
slot – An integer value between zero and nine.

Returns
No return value.

See Also
gotoBookmark

50

© Copyright 2000-2006 GarageGames Product of Hall Of Worlds, LLC.

A.2.16. Explosion
The explosion class is used to represent various pyrotechnic displays. It is in fact a combination of multiple

other classes used simultaneously or in sequence to produce various special effects.

A.2.17. ExplosionData
This is the data block that goes with the explosion class. It is used to describe all of the action be its of an
individual explosion.

Fields

Field Name Description Sample or Range
camShakeAmp The camera shake amplitude for all three axes: X, Y, and Z. "1.0 2.0 3.0"

camShakeDuration Time in seconds the shaking will occur over. (-inf.0 , inf.0)

camShakeFalloff Magnitude by which shaking decreases over distance to camShakeRadius. (-inf.0 , inf.0)

camShakeFreq The camera shake frequency for all three axes: X, Y, and Z. "1.0 2.0 3.0"

camShakeRadius Radius about the explosion in which shaking will be applied. (-inf.0 , inf.0)

Debris DebrisData datablock to use for this explosion. see type

debrisNum Total debris produced == debrisNum +/- debrisNumVariance. (-inf , inf)

debrisNumVariance Total debris produced == debrisNum +/- debrisNumVariance. (-inf , inf)

debrisPhiMax Maximum degrees of angular debris projection about the Y axis. (-inf.0 , inf.0)

debrisPhiMin Minimum degrees of angular debris projection about the Y axis. (-inf.0 , inf.0)

debrisThetaMax Maximum degrees of angular debris projection about an arbitray axis in the X-
Z plane.

(-inf.0 , inf.0)

debrisThetaMin Minimum degrees of angular debris projection about an arbitray axis in the X-
Z plane.

(-inf.0 , inf.0)

debrisVelocity Initial debris projection velocity == debrisVelocity +/- debrisVelocityVariance. (-inf.0 , inf.0)

debrisVelocityVariance Initial debris projection velocity == debrisVelocity +/- debrisVelocityVariance. (-inf.0 , inf.0)

delayMS Delay explosion 'effect' by delayMS +/- delayVariance after explosion object is
created.

(-inf , inf)

delayVariance Delay explosion 'effect' by delayMS +/- delayVariance after explosion object is
created.

(-inf , inf)

emitter[0]
emitter[1]
emitter[2]
emitter[3]

ParticleEmitterData to play when explosion occurs.
Up to four are allowed. see type

explosionscale The scale of this explosion. "1.0 2.0 3.0"

explosionShape An optional shape that can be displayed at the time of the explosion with an
(also) optional 'ambient' animation.

~/path/filename

faceViewer Keep particles facing viewer. [false , true]

lifetimeMS Total life of explosion == lifetimeMS +/- lifetimeVariance. (-inf , inf)

lifetimeVariance Total life of explosion == lifetimeMS +/- lifetimeVariance. (-inf , inf)

lightEndColor Ending color of light (emitted by explosion). "1.0 0.5 0.5"

lightEndRadius Ending radius of light (emitted by explosion). (-inf.0 , inf.0)

51

© Copyright 2000-2006 GarageGames Product of Hall Of Worlds, LLC.

Field Name Description Sample or Range
lightStartColor Starting color of light (emitted by explosion). "1.0 0.5 0.5"

lightStartRadius Starting radius of light (emitted by explosion). (-inf.0 , inf.0)

offset Explosion effects offset from explosion creation point. (-inf.0 , inf.0)

particleDensity Total number of particles to eject. (-inf , inf)

particleEmitter The emitter description (ParticleEmitterData) for this explosion. see type

particleRadius Maximum radius from effect center at which particles will be randomly
created.

(-inf.0 , inf.0)

playSpeed Overall rate of this explosion. Scales all effects. (-inf.0 , inf.0)

shakeCamera If set to true, enables camera shaking. [false , true]

sizes[0]
sizes[1]
sizes[2]
sizes[3]

Key-framing size controls for particles.
"1.0 2.0 3.0"
"1.0 2.0 3.0"
"1.0 2.0 3.0"
"1.0 2.0 3.0"

soundProfile description see type

subExplosion[0]
subExplosion[1]
subExplosion[2]
subExplosion[3]
subExplosion[4]

Sub-explosions to play as part of this explosion.
Up to five sub-explosions are allowed.

Using parent explosions as sub-explosions or as children of sub-explosions will
create an infinte loop of explosions.

ExplosionData datablock

times[0]
times[1]
times[2]
times[3]

Key-framing time controls for particles.
[0.0, times[1]]
[times[0], times[2]]
[times[1], times[3]]
[times[2], 1.0]

A.2.18. FileObject
Fileobject is a class provided to allow us to read write and modify files on the disk.

Console Method Summaries

close isEOF openForAppend
openForRead openForWrite readLine

Console Methods

close()
Purpose
Use the close method to close the current file handle. If the file was opened for
writing, this flushes the contents of the last write to disk.

Returns
No return value.

See Also
openForAppend, openForRead, openForWrite

52

© Copyright 2000-2006 GarageGames Product of Hall Of Worlds, LLC.

isEOF()
Purpose
Use the isEOF method to check to see if the end of the current file (opened for read) has
been reached.

Returns
Returns true if the end of file has been reached, false otherwise.

See Also
openForRead

openForAppend(filename)
Purpose
Use the openForAppend method to open a previously created file for appending. If the
file specified by filename does not exist, the file is created first.

Syntax
filename – The path and filename of the file to open for appending.

Returns
Returns true if the file was successfully opened for appending, false otherwise.

See Also
close, openForRead, openForWrite

openForRead(filename)and
Purpose
Use the openForRead method to open a previously created file for reading.

Syntax
filename – The path and filename of the file to open for reading.

Returns
Returns true if the file was successfully opened for reading, false otherwise.

See Also
close, OpenForAppend, OpenForWrite

53

© Copyright 2000-2006 GarageGames Product of Hall Of Worlds, LLC.

openForWrite(filename)
Purpose
Use the openForWrite method to previously created or a new file for writing. In either
case, the file will be overwritten.

Syntax
filename – The path and filename of the file to open for writing.

Returns
Returns true if the file was successfully opened for writing, false otherwise.

See Also
close, OpenForAppend, openForRead

readLine()
Purpose
Use the readLine method to read a single line from a file previously opened for reading.

Returns
Returns the next line in the file, or a NULL string if the end-of-file has been reached.

Notes
Use isEOF to check for end of file while reading.

See Also
isEOF, openForRead

writeLine(text)
Purpose
Use the writeLine method to write a value (text) into a file that was previously opened
for appending or over-writing.

Syntax
text – The value to write to the file.

Returns
No return value.

See Also
openForAppend, openForWrite

54

© Copyright 2000-2006 GarageGames Product of Hall Of Worlds, LLC.

A.2.19. FlyingVehicle
This class is used represent the flying variety of vehicles. It can be used to represent any variety of flying
vehicle, including jets, biplanes, or rocket ships. If you do not actually need a flying vehicle, it is suggested that
you use the hover vehicle instead which will closely approximate many similar needs.

Fields

Field Name Description Sample or Range
disableMove If set to true, this vehicle will not be allowed to move. [false , true]

A.2.20. FlyingVehicleData

Fields

Field Name Description Sample or Range
autoAngularForce Angular stabilizer force.

This force levels you out when autostabilizer kicks in.
[0.0 , 0.inf)

autoInputDamping Amount by which input is damped to reduce oscillations caused
by too much input.

[0.0 , 1.0)

autoLinearForce Linear stabilzer force.
This slows you down when autostabilizer kicks in.

[0.0 , 0.inf)

backwardJetEmitter ParticleEmitterData datablock used for the thrust backward jet
emitter. Emitter will be attached at node: JetNozzleX.

--

createHoverHeight If set to true, uses hoverHeight to specify height to hover after
creation.

[false , true]

downJetEmitter
ParticleEmitterData datablock used for the downward thrust jet
emitter(s). Emitters will be attached at nodes: JetNozzle2 , and
JetNozzle3.

--

engineSound AudioProfile for engine ambient sound. --

forwardJetEmitter
ParticleEmitterData datablock used for the forward thrust jet
emitter(s). Emitters will be attached at nodes: JetNozzle0 , and
JetNozzle1.

--

horizontalSurfaceForce Wing thrust used in climbing and diving. [0.0 , 0.inf)

hoverHeight Height to hover at after creation if createHoverHeight is set to
true.

[0.0 , 0.inf)

jetSound AudioProfile for engine thrust sound. --

maneuveringForce Horizontal thrust force. [0.0 , 0.inf)

maxAutoSpeed Autostabilizer/AutoLinearForce are enabled when the vehicle's
velocity magnitude drops below this value.

[0.0 , 0.inf)

minTrailSpeed Minimum speed at which contrails turn on. [0.0 , 0.inf)

rollForce Automatically applied rolling force used to 'right' a tilted vehicle. [0.0 , 0.inf)

rotationalDrag Amount of drag applied to rotation about the vehicles up axis. [0.0 , 0.inf)

steeringForce Strength of turning thrust. [0.0 , 0.inf)

steeringRollForce How much you roll when turning. [0.0 , 0.inf)

55

© Copyright 2000-2006 GarageGames Product of Hall Of Worlds, LLC.

Field Name Description Sample or Range

trailEmitter
ParticleEmitterData datablock used for the contrail emitter(s).
Emitters will be attached at nodes: contrail0 , contrail1,
contrail2, and contrail3.

--

verticalSurfaceForce Wing thrust used in 'sliding' side to side during turns. [0.0 , 0.inf)

vertThrustMultiple TypeF32 [0.0 , 0.inf)

A.2.21. fxFoliageReplicator
This class was originally intended to represent foliage in the scene. In fact, it can be used to represent anything
that is displayed using a billboard. The value of this class is that all of the objects represented by a single foliage
replicator are tied to a single instance of the class. Thus, regardless of the number of objects which may be
displayed by any single foliage replicator the same network bandwidth is used. The billboards may be given a
variety of behaviors and attributes. They may be stretched, self lighted, they may sway, and they may be are
restricted to specific areas.

Fields

Field Name Description Sample or Range
Transform

position XYZ position of fx object. “10.0 20. 0.0”

rotation Values have no effect. --

scale Values have no effect. --

Debugging
useDebugInfo Enable debug feedback. Some features must be uncommented

in code to turn them on.
[false , true]

debugBoxHeight Quad-tree box heights. [0.0 , 0.inf)

HideFoliage Stop displaying foliage. [false , true]

showPlacementArea Show the placement feedback device. [false , true]

placementAreaHeight Changes height of feedback device. [0.0 , 0.inf)

placementColour Changes color of feedback device. “1.0 1.0 1.0 1.0”

Media/Replications
seed Value used to deterministically generate random object positions

and parameters.
[0 , inf)

foliageFile Texture file to use for foliage. Must be suitable for use as
billboard.

~/path/filename

foliageCount Number of billboards to replicate. [0 , inf)

foliageRetries
Determines how many times to attempt to place a billboard.
Retries are sometimes required in order to meet placement
criteria. Failed placement attempts result fewer objects placed.

[0 , inf)

Area/Placement Radius

innerRadiusX
X dimension of inner do-not-place ellipse.
Objects are not allowed in ellipse described by this and the
InnerRadiusY dimension.

[0.0 , 0.inf)

innerRadiusY
Y dimension of inner do-not-place ellipse.
Objects are not allowed in ellipse described by this and the
InnerRadiusX dimension.

[0.0 , 0.inf)

56

© Copyright 2000-2006 GarageGames Product of Hall Of Worlds, LLC.

Field Name Description Sample or Range

outerRadiusX
X dimension of outer do-not-place ellipse.
Objects are not allowed outside ellipse described by this and the
OuterRadiusY dimension.

[0.0 , 0.inf)

outerRadiuxY
Y dimension of outer do-not-place ellipse.
Objects are not allowed outside ellipse described by this and the
OuterRadiusX dimension.

[0.0 , 0.inf)

Dimension
minWidth If scaling enabled (FixSizeToMax == false), this defines the

billboard’s minimum width.
[0.0 , 0.inf)

maxWidth If scaling enabled (FixSizeToMax == false), this defines the
billboard’s maximum width.

[0.0 , 0.inf)

minHeight If scaling enabled (FixSizeToMax == false), this defines the
billboard’s minimum height.

[0.0 , 0.inf)

maxHeight If scaling enabled (FixSizeToMax == false), this defines the
billboard’s maximum height.

[0.0 , 0.inf)

fixAspectRatio Prevents texture stretching. [false , true]

fixSizeToMax Forces all billboards to use MaxWidth and MaxHeight as their
respective width and height.

[false , true]

offsetZ This allows you to assist placement by lowering or raising the
billboard by a fixed amount.

(-0.inf , 0.inf)

randomFlip Allows random horizontal flipping of billboards, increasing
variation for non-symmetric billboards.

[false , true]

Culling

<useCulling>
Enables culling algorithms. i.e. test whether a billboard is within
view before rendering it.
Warning: Computing overhead offsets value for small
placements. Only use for large placements if at all.

[false , true]

cullResolution

Determines size of culling quads.
Lower values of CullResolution take longer to cull but more
effectively removes non-visible billboards.
Higher values of CullResolution take less time, but end up
rendering more non-visible billboards.
Tradeoff: Culling Time vs. Fill Rate.

[8 , inf)

viewDistance When a billboards is at distance ViewDistance from the camera,
it will be completely visible.

[0.0 , 0.inf)

viewClosest Controls closest point at which billboards will begin to fade out. [0.0 , 0.inf)

fadeInRegion

fadeOutRegion

Together, these determine width of region between fade-in and
fade-out. [0.0 , 0.inf)

alphaCutoff Controls general alpha level for rendering billboards. [0.0 , 1.0]

groundAlpha Controls alpha in region near ground. For fixing artifacts
between billboard and ground.

[0.0 , 1.0]

Animation
swayOn Enables sway animation. [false , true]

swaySync All billboards sway in sync for this fx Object. [false , true]

swayMagSide Side-to-side swaying magnitude. [0.0 , 0.inf)

swayMagFront Back-and-forth swaying magnitude. [0.0 , 0.inf)

57

© Copyright 2000-2006 GarageGames Product of Hall Of Worlds, LLC.

Field Name Description Sample or Range

minSwayTime
Minimum sway time.
Sway times are randomly chosen between a min and max on a
per swing basis.

[0.0 , 0.inf)

maxSwayTime
Maximum sway time.
Sway times are randomly chosen between a min and max on a
per swing basis.

[0.0 , 0.inf)

Lighting
lightOn Turns on luminance (self lighting). [false ,true]

lightSync Light billboards in sync. [false , true]

minLuminance Minimum light value. [0.0 , maxLuminance]

maxLuminance Maximum light value. [minLuminance , 1.0]

lightTime Time required to transition from Min to Max and Max to Min. i.e.
each duration is equal to lightTime.

[0.0 , 0.inf)

Restrictions/Restraints
allowOnTerrain Allows objects to be placed on terrain. [false , true]

allowOnInteriors Allows objects to be placed on interiors. [false , true]

allowOnStatics Allows objects to be placed on static shapes. [false , true]

allowOnWater Allows objects to be placed in area covered by water. [false , true]

allowWaterSurface Place on surface of water. Otherwise will be placed on terrain
below water.

[false , true]

allowedTerrainSlope Maximum slope to place on. Slopes beyond this value will be
devoid of objects.

[false , true]

Console Functions

StartFoliageReplication()

startFoliageReplication()
Purpose
Use the startFoliageReplication function to start the foliage replication system.

Returns
No return value.

Notes
This can be called before be called after replication objects have been placed, but it
should only be called once, and if it is not called, replicators will not work.

See Also
startClientReplication

58

© Copyright 2000-2006 GarageGames Product of Hall Of Worlds, LLC.

A.2.22. fxLight
The fxLight object is used to represent in-game lights with and respective flares. This object casts (dynamic)

light in the scene. It renders both a representation of the light source flare, and casts light on terrain and other
objects.

Fields

Field Name Description Sample or Range
enable Boolean value enabling this light. [false , true]

iconSize Floating-point value specifying render size of flare. (-inf.0 , inf.0)

Console Method Summaries

attachToObject detachFromObject reset

Console Methods

attachToObject(obj)
Purpose
Use the attachToObject method to attach this fxLight object to GameBase object.

Syntax
obj – A GameBase derived object to attach to

Returns
No return value.

Notes
This method name is bit of a misnomer. When an fxLight object is attached to another
object, it doesn't mean the fxLight will move with the object, but rather that if the
object the fxLight is attached to is deleted, this object will be deleted. Also, the
fxLight will always be processed (for rendering) after the object it is attached to.

See Also
detachFromObject

detachFromObject()
Purpose
Use the detachFromObject method to detach this fxLight from the last object it was
attached to.

Returns
No return value.

See Also
attachToObject

59

© Copyright 2000-2006 GarageGames Product of Hall Of Worlds, LLC.

reset()
Purpose
Use the reset method to lighting, animation, and texture of the current fxLight.

Returns
No return value.

setEnable(enabled)
Purpose
Use the setEnable method to enable or disable an fxLight.

Syntax
enabled – A boolean value. If set to true, this fxLight will cast light and be rendered.

Returns
No return value.

A.2.23. fxLightData
The data block associated with fxLight. This data block describes nearly all of the attributes of the fxLight
object.Fields

Fields

Field Name Description Sample or Range
AnimBrightness Enable brightness animation. [false , true]

AnimColour Enable color animation. [false , true]

AnimOffsets Enable offset animation. [false , true]

AnimRadius Enable radius animation. [false , true]

AnimRotation Enable rotation animation. [false , true]

BlendMode
0 = GL_SRC_ALPHA, GL_ONE
1 = GL_SRC_ALPHA,
 GL_ONE_MINUS_SRC_ALPHA
2 = GL_ONE, GL_ONE

[0 , 2]

BlueKeys Key frame values for blue channel animation. “ABCDABCD”

Brightness Starting brightness. [0.0 , 1.0]

BrightnessKeys Key frame values for brightness animation. “ABCDABCD”

BrightnessTime Round-trip animation time for brightness. [0.0 , 0.inf)

Colour Initial light color. “0.5 0.5 0.7 1.0”

ColourTime Round-trip animation time for color. [0.0 , 0.inf)

ConstantSize Screen size for flare if not animated. [0.0 , 0.inf)

ConstantSizeOn Enable screen size animation for flare bitmap. [false , true]

EndOffset Ending offset for offset animations. [0.0 , 0.inf)

FadeTime Round-trip animation time for fade. [0.0 , 0.inf)

FarDistance Distance from light when flare achieves screen size of FarSize. [0.0 , 0.inf)

60

© Copyright 2000-2006 GarageGames Product of Hall Of Worlds, LLC.

Field Name Description Sample or Range
FarSize Screen size for flare at FarDistance and beyond. [0.0 , 0.inf)

FlareBitmap Bitmap used represent the light source. “~/data/flare.png”

FlareColour Starting color for flare bitmap. “0.5 0.5 0.7 1.0”

FlareOn Enable flare bitmap. [false , true]

FlareTP Turns flare off in third person. [false , true]

GreenKeys Key frame values for green channel animation. “ABCDABCD”

LerpBrightness Enable brightness interpolation. [false , true]

LerpColour Enable color interpolation. [false , true]

LerpOffset Enable offset interpolation. [false , true]

LerpRadius Enable radius interpolation. [false , true]

LerpRotation Enable rotation interpolation. [false , true]

LightOn Enable light. [false , true]

LinkFlare
Flag controlling whether the flare is linked to the light. If on
then the flare tracks the color & brightness settings of the light
to control its colorization.

[false , true]

LinkFlareSize

Flag controlling whether the flare is linked to the light by size. If
on then the flare tracks the color & brightness settings of the
light to control its size. The brighter the light, the larger the
flare. The flare is scaled according to it's current animation e.g.
it never gets any bigger than it would with this setting off.

[false , true]

MaxBrightness Maximum brightness when brightness animation is enabled. [0.0 , 0.inf)

MaxColour Maximum color when color animation is enabled. “0.5 0.5 0.7 1.0”

MaxRadius Maximum radius when radius animation is enabled. [0.0 , 0.inf)

MaxRotation Maximum rotation when rotation animation is enabled. [0.0 , 0.inf)

MinBrightness Minimum brightness when brightness animation is enabled. [0.0 , 0.inf)

MinColour Minimum color when color animation is enabled. “0.5 0.5 0.7 1.0”

MinRadius Minimum radius when radius animation is enabled. [0.0 , 0.inf)

MinRotation Minimum rotation when rotation animation is enabled. [0.0 , 0.inf)

NearDistance Distance from light when flare achieves screen size of NearSize. [0.0 , 0.inf)

NearSize Screen size for flare at NearDistance and closer. [0.0 , 0.inf)

OffsetKeys Key frame values for offset animation. “ABCDABCD”

OffsetTime Round-trip animation time for offset. [0.0 , 0.inf)

Radius Initial light sphere radius. [0.0 , 0.inf)

RadiusKeys Key frame values for radius animation. “ABCDABCD”

RadiusTime Round-trip animation time for radius. [0.0 , 0.inf)

RedKeys Key frame values for red channel animation. “ABCDABCD”

RotationKeys Key frame values for rotation animation. “ABCDABCD”

RotationTime Round-trip animation time for rotation. [0.0 , 0.inf)

SingleColourKeys Use RedKeys to animate all colors at the same time. “ABCDABCD”

StartOffset Starting offset for offset animation. [0.0 , 0.inf)

61

© Copyright 2000-2006 GarageGames Product of Hall Of Worlds, LLC.

A.2.24. fxShapeReplicator
This class is used to replicate any shape. It works in nearly the same way as the fxFoliageReplicator. Each of the
individual shapes may enable or disable a collision box allowing them to be interacted with or ignore it in
collision interactions.

Fields

Field Name Description Sample or Range
Transform

position XYZ position of fx object. “10.0 20. 0.0”

rotation Values have no effect. --

scale Values have no effect. --

Debugging
HideReplications Stop displaying shapes. [false , true]

ShowPlacementArea Show the placement feedback device. [false , true]

PlacementAreaHeight Changes height of feedback device. [0.0 , inf.0)

PlacementColour Changes color of feedback device. “1.0 0.5 0.5 1.0”

Media/Replications
Seed Value used to deterministically generate random object positions

and parameters.
[0 , inf)

shapeFile DTS file to replicate. “~/data/myshape.dts”

ShapeCount Number of shapes to replicate. [0 , inf)

ShapeRetries
Determines how many times to attempt to place a shape.
Retries are sometimes required in order to meet placement
criteria. Failed placement attempts result fewer objects placed.

[0 , inf)

Area/Placement Radius

InnerRadiusX
X dimension of inner do-not-place ellipse.
Objects are not allowed in ellipse described by this and the
InnerRadiusY dimension.

[0.0 , 0.inf)

InnerRadiusY
Y dimension of inner do-not-place ellipse.
Objects are not allowed in ellipse described by this and the
InnerRadiusX dimension.

[0.0 , 0.inf)

OuterRadiusX
X dimension of outer do-not-place ellipse.
Objects are not allowed outside ellipse described by this and the
OuterRadiusY dimension.

[0.0 , 0.inf)

OuterRadiuxY
Y dimension of outer do-not-place ellipse.
Objects are not allowed outside ellipse described by this and the
OuterRadiusX dimension.

[0.0 , 0.inf)

Restrictions/Restraints
AllowOnTerrain Allows objects to be placed on terrain. [false , true]

AllowOnInteriors Allows objects to be placed on interiors. [false , true]

AllowOnStatics Allows objects to be placed on static shapes. [false , true]

AllowOnWater Allows objects to be placed in area covered by water. [false , true]

AllowWaterSurface Place on surface of water. Otherwise will be placed on terrain
below water.

[false , true]

AllowedTerrainSlope Maximum slope to place on. Slopes beyond this value will be
devoid of objects.

[false , true]

62

© Copyright 2000-2006 GarageGames Product of Hall Of Worlds, LLC.

Field Name Description Sample or Range
AlignToTerrain Causes DTS shapes to align to up vector of terrain if placed on

terrain.
[false , true]

Interactions Enables collision boxes if DTS shape has one. [false , true]

TerrainAlignment Vector to adjust how shape aligns to terrain when
AlighnToTerrain is true.

“0.7 0.7 0.7”

Object Transforms
ShapeScaleMin Minimum randomly selected scale for DTS shape. [0.0 , 0.inf)

ShapeScaleMax Maximum randomly selected scale for DTS shape. [0.0 , 0.inf)

ShapeRotationMin Minimum random rotation for DTS shape. [0.0 , 0.inf)

ShapeRotationMax Maximum random rotation for DTS shape. [0.0 , 0.inf)

OffsetZ This allows you to assist placement by lowering or raising the
shape by a fixed amount.

“ 0.0 1.2 0.0 “

Console Functions

StartClientReplication()

StartClientReplication()
Purpose
Use the StartClientReplication function to start the shape replication system.

Returns
No return value.

Notes
This can be called before be called after replication objects have been placed, but it
should only be called once, and if it is not called, replicators will not work.

See Also
startFoliageReplication

63

© Copyright 2000-2006 GarageGames Product of Hall Of Worlds, LLC.

A.2.25. fxSunLight
This class is used to represent celestial bodies. You may defined as many fxSunlight objects as you need in your
seeing. Each object may be animated independently. As a whole, this class provides several features allowing us
to represent a variety of celestial bodies with many different behaviors.

Fields

Field Name Description Sample or Range
AnimAzimuth Enable azimuth animation. [false , true]

AnimBrightness Enable brightness animation. [false , true]

AnimColour Enable color animation. [false , true]

AnimElevation Enable elevation animation. [false , true]

AnimRotation Enable rotation animation. [false , true]

AnimSize Enable size animation. [false , true]

AzimuthKeys Key frame values for azimuth animation. “ABCDABCD”

AzimuthTime Round-trip animation time for azimuth. [0.0 , inf.0)

BlendMode

0 = GL_SRC_ALPHA, GL_ONE
1 = GL_SRC_ALPHA,
 GL_ONE_MINUS_SRC_ALPHA
2 = GL_ONE, GL_ONE

[0 , 2]

BlueKeys Key frame values for blue channel animation. “ABCDABCD”

Brightness Starting brightness. [0.0 , inf.0)

BrightnessKeys Key frame values for brightness animation. “ABCDABCD”

BrightnessTime Round-trip animation time for brightness. [0.0 , inf.0)

Colour Initial color. “1.0 1.0 0.0 1.0”

ColourTime Round-trip animation time for color. [0.0 , inf.0)

ElevationKeys Key frame values for elevation animation. “ABCDABCD”

ElevationTime Round-trip animation time for elevation. [0.0 , inf.0)

Enable Enable or disable fxSunlight object rendering. [false , true]

FadeTime Round-trip animation time for fade. [0.0 , inf.0)

FlareSize Size for flare bitmap. [0.0 , inf.0)

FlareTP If true, enables flare in third person. [false , true]

GreenKeys Key frame values for green channel animation. “ABCDABCD”

LerpAzimuth Enable azimuth interpolation. [false , true]

LerpBrightness Enable brightness interpolation. [false , true]

LerpColour Enable color interpolation. [false , true]

LerpElevation Enable elevation interpolation. [false , true]

LerpRotation Enable rotation interpolation. [false , true]

LerpSize Enable size interpolation. [false , true]

LinkFlareSize

Flag controlling whether the flare is linked to the light by size. If
on then the flare tracks the color & brightness settings of the
light to control its size. The brighter the light, the larger the
flare. The flare is scaled according to it's current animation e.g.
it never gets any bigger than it would with this setting off.

[false , true]

LocalFlareBitmap Lens flare texture. ~/path/filename.png

64

© Copyright 2000-2006 GarageGames Product of Hall Of Worlds, LLC.

Field Name Description Sample or Range
LockToRealSun Elevation and azimuth for this object follows elevation and

azimuth for Sun object.
[false , true]

MaxAzimuth Maximum azimuth setting. [0.0 , 360.0)

MaxBrightness Maximum brightness when brightness animation is enabled. [0.0 , inf.0)

MaxColour Maximum color when color animation is enabled.

MaxElevation Maximum elevation. [-90.0 , 90.0]

MaxRotation Maximum rotation when rotation animation is enabled. [0.0 , 360.0)

MaxSize Maximum size for flare. [0.0 , inf.0)

MinAzimuth Minimum azimuth setting. [0.0 , 360.0)

MinBrightness Minimum brightness when brightness animation is enabled. [0.0 , inf.0)

MinColour Minimum color when color animation is enabled. “0.0 0.0 1.0 1.0”

MinElevation Minimum elevation setting. [-90.0 90.0]

MinRotation Minimum rotation when rotation animation is enabled. [0.0 , 360.0)

MinSize Minimum flare size. [0.0 , inf.0)

NearDistance Distance from light when flare achieves screen size of NearSize. [0.0 , inf.0)

NearSize Screen size for flare at NearDistance and closer. [0.0 , inf.0)

OffsetKeys Key frame values for offset animation. “ABCDABCD”

OffsetTime Round-trip animation time for offset. [0.0 , inf.0)

RedKeys Key frame values for red channel animation. “ABCDABCD”

RemoteFlareBitmap The sun texture. ~/path/filename.png

RotationKeys Key frame values for rotation animation. “ABCDABCD”

RotationTime Round-trip animation time for rotation. [0.0 , inf.0)

SingleColourKeys Use RedKeys to animate all colors at the same time. “ABCDABCD”

SizeKeys Key frame values for size animation. “ABCDABCD”

SizeTime Round-trip animation time for size. [0.0 , inf.0)

SunAzimuth Initial azimuth setting. [0.0 , 360.0)

SunElevation Initial elevation setting. [-90.0 , 90.0]

Console Method Summaries

Long descriptions for these functions have not been supplied because the functions are very simple and their
names are quite descriptive.

reset() setAzimuthKeys(keys) setAzimuthTime(time)
setBlendMode(mode) setBlueKeys(keys) setBrightnessKeys(keys)

setBrightnessTime(time) setColourTime(time) setElevationKeys(keys)
setElevationTime(time) setEnable(status) setFadeTime(time)

setFlareBitmaps(local , remote) setFlareBrightness(brightness) setFlareColour(r , g , b)
setFlareSize(size) setFlareTP(status) setGreenKeys(keys)

setLerpAzimuth(status) setLerpBrightness(status) setLerpColour(status)
setLerpElevation(status) setLerpRotation(status) setLerpSize(status)
setLinkFlareSize(status) setMaxAzimuth(azimuth) setMaxBrightness(brightness)
setMaxColour(r , g , b) setMaxElevation(elevation) setMaxRotation(rotation)

setMaxSize(size) setMinAzimuth(azimuth) setMinBrightness(brightness)

65

© Copyright 2000-2006 GarageGames Product of Hall Of Worlds, LLC.

reset() setAzimuthKeys(keys) setAzimuthTime(time)
setMinColour(r , g , b) setMinElevation(elevation) setMinRotation(rotation)

setMinSize(size) setRedKeys(keys) setRotationKeys(keys)
setRotationTime(time) setSingleColourKeys(status) setSizeKeys(keys)

setSizeTime(time) setSunAzimuth(azimuth) setSunElevation(elevation)
setUseAzimuth(status) setUseBrightness(status) setUseColour(status)
setUseElevation(status) setUseRotation(status) setUseSize(status)

A.2.26. GameBase
This is the base class to all classes using or requiring a data block. This class can be considered virtual as you do
not create instances of it in the game world.

Fields

Field Name Description Sample or Range
dataBlock The corresponding data block for this object. GameBaseData datablock

Globals

Variable Name Description Sample or Range
$gameBase::boundingBox If true, objects will display their bounding boxes. [false , true]

Console Method Summaries

getDataBlock setDataBlock

Console Methods

getDataBlock()
Purpose
Use the getDataBlock method to get the datablock used by this object.

Returns
No return value.

See Also
setDataBlock

66

© Copyright 2000-2006 GarageGames Product of Hall Of Worlds, LLC.

setDataBlock(db)
Purpose
Use the setDataBlock method to change the datablock for this object to a new datablock
represented by db.

Syntax
db – A datablock name or ID.

Returns
Returns true if the datablock with successfully changed, otherwise it returns false.

Notes
The new datablock must be of a compatible type with the current class.

See Also
getDataBlock

A.2.27. GameBaseData
This class is the corresponding data block the gamebase. It can be considered virtual also.

Fields

Field Name Description Sample or Range
category Creator category to place this object in. “MyCategory”

className A new namespace to be inserted between the name of the data block
and the class name of the data block.

“SomeClassname”

A.2.28. GameConnection
A class connecting the client in the current executable to a server in the current executable or to a server and
external executable.

Console Method Summaries

activateGhosting chaseCam clearCameraObject
delete getCameraObject getControlCameraFov

getControlObject getServerConnection isAIControlled
isDemoPlaying isDemoRecording isFirstPerson

 listClassIDs play2D play3D
playDemo resetGhosting setBlackOut

setCameraObject setConnectArgs setControlCameraFov
setControlObject setFirstPerson setJoinPassword
setMissionCRC startRecording stopRecording

67

© Copyright 2000-2006 GarageGames Product of Hall Of Worlds, LLC.

Console Methods

activateGhosting()
Purpose
Use the activateGhosting method to GameConnection instance to start ghosting objects to
the client.

Returns
No return value.

Notes
This is called on each client connection by the server.

See Also
resetGhosting

chaseCam(delay)
Purpose
Use the chaseCam method to insert a delay in between translations and rotations of the
control object and the attached 3rd POV camera. That is, if delay is a positive non-zero
value, the camera will lag behind translations and rotations of the 3rd POV player.

Syntax
delay – An integer value equal to or greater than zero. If this value is greater than
zero, the camera will begin to lag the players translations and rotations.

Notes
This can quickly become disconcerting as it disconnects player input from the results.
Use this feature cautiously.

68

© Copyright 2000-2006 GarageGames Product of Hall Of Worlds, LLC.

delete([reason])
Purpose
Use the delete method to destroy and disconnect the current connection, giving an
optional reason. If reason is specified, it will be transmitted to the client/server on
the other end of the connection.

Syntax
reason – A string explaining while the connection is being severed.

Returns
No return value.

getCameraObject()
Purpose
Use the getCameraObject method to get the current camera object ID.

Returns
Returns the ID of the current camera object, or the control object if the POV is first
person.

See Also
setCameraObject()

getControlCameraFov()
Purpose
Use the getControlCameraFov method to FOV of the current control 'camera'.

Returns
Returns a FOV angle between 0.0 and 180.0.

Notes
This may not actually be the FOV of the camera object, but rather the FOV being used by
the camera. The difference is subtle, but if a camera is attached to an object and using
that object's FOV setting, then the FOV is actually coming from the object, not the
camera.

See Also
getCameraObject, setControlCameraFov

69

© Copyright 2000-2006 GarageGames Product of Hall Of Worlds, LLC.

getControlObject()
Purpose
Use the getControlObject method to get the ID of the current control-object for this
GameConnection.

Returns
Returns an integer value representing the ID of an object acting as the control-object
for this GameConnection. If no control-object was set up, this will return 0.

getServerConnection()
Purpose
Use the getServerConnection method to get the ID of the server this client-side
GameConnection is attached to.

Returns
Returns an integer representing the ID of a server-side GameConnection on the other end
of this client-side GameConnection. If no server is connected, or if this GameConnection
is a server-side connection, the return value is 0.

isAIControlled()
Purpose
Use the isAIControlled method to determine if this is an AIGameConnection.

Returns
Returns true if this is an AIGameConnection instance.

Notes
This will always return false for a GameConnection and always return true for an
AIGameConnection. It was defined here to allow scripts to call it universally on either
type of connection.

isDemoPlaying()
Purpose
Use the isDemoPlaying method to see if this GameConnection is playing a demo.

Returns
Returns true if a demo is being played, false otherwise.

See Also
isDemoRecording, playDemo, startRecording, stopRecording

70

© Copyright 2000-2006 GarageGames Product of Hall Of Worlds, LLC.

isDemoRecording()
Purpose
Use the isDemoRecording method to see if this GameConnection is recording a demo.

Returns
Returns true if a demo is being recorded, false otherwise.

See Also
isDemoPlaying, playDemo, startRecording, stopRecording

isFirstPerson()
Purpose
Use the isFirstPerson method to see if the camera attached to this GameConnection is in
1st POV.

Returns
Returns true if the camera attached to this GameConnection is in 1st POV, false otherwise.

See Also
setFirstPerson

listClassIDs()
Purpose
Use the listClassIDs method to dump a list of all class IDs that this GameConnection
knows about.

Returns
No return value.

Notes
This is a debug feature.

play2D(AP)
Purpose
Use the play2D method to play a 2D AudioProfile previously specified using the datablock
keyword.

Syntax
AP – A 2D AudioProfile previously specified using the datablock keyword.

Returns
Returns true if the sound can be played, false otherwise.

Notes
Be sure to use only AudioProfiles created using the datablock keyword.

See Also
play3D

71

© Copyright 2000-2006 GarageGames Product of Hall Of Worlds, LLC.

play3D(AP , position)
Purpose
Use the play2D method to play a 3D AudioProfile previously specified using the datablock
keyword.

Syntax
 AP – A 3D AudioProfile previously specified using the datablock keyword.
position – The position to play this sound at.

Returns
Returns true if the sound can be played, false otherwise.

Notes
Be sure to use only AudioProfiles created using the datablock keyword.

See Also
play2D

playDemo(demoFileName)
Purpose
Use the playDemo method to play a previously recorded demo on this GameConnection.

Syntax
demoFileName – A path and file name pointing to a previously recorded demo.

Returns
Returns true if the demo was successfully played, false otherwise.

See Also
isDemoPlaying, isDemoRecording, startRecording, stopRecording

resetGhosting()
Purpose
Use the resetGhosting method to reset ghosting. This in effect tells the server to resend
each ghost to insure that all objects which should be ghosts and are in fact ghosted.

Returns
No return value.

See Also
activateGhosting

72

© Copyright 2000-2006 GarageGames Product of Hall Of Worlds, LLC.

setBlackOut(doFade , timeMS)
Purpose
Use the setBlackOut method to fade (black) the screen out, or in.

Syntax
doFade – A boolean value. If set to true, the screen is blacked out, if false,
 the blackout is reversed.
timeMS – An integer value specifying the time it takes to fade-out or to fade back
 in.

Returns
No return value.

Notes
This is only called on the client-side GameConnection (from client to server), calling in
on a server-side connection (from server to client), will do nothing.

The GameBase class provides two similar features for whiting out the screen and causing
damage flashes.

setCameraObject(newCamera)
Purpose
Use the setCameraObject method to change the camera object associated with this
GameConnection to newCamera.

Syntax
newCamera – The ID of a valid camera object.

Returns
Returns true on success and false on failure.

Notes
This can only be called on the serer-side GameConnection.

See Also
getCameraObject

setConnectArgs(name [, arg1 , ... , arg15])
Purpose
Use the setConnectArgs method to set the connection arguments for this client-side
GameConnection. These values will be passed to the server upon establishing a connection.

Syntax
 name – Generally, the first argument is the name of the player.
arg1 , ... , arg15 – 15 additional arguments may be passed.

Returns
No return value.

See Also
setJoinPassword

73

© Copyright 2000-2006 GarageGames Product of Hall Of Worlds, LLC.

setControlCameraFov(newFOV)
Purpose
Use the setControlCameraFov method to change the FOV of the control object 'camera'.

Syntax
newFOV – A floating-point value between 0.0 and 180.0 representing the new
 field-of-view setting for any and all cameras attached to this connection.

Returns
No return value.

Notes
This setting is sticky. That is, as the camera object is changed, this value will be
retained. These values are however constrained by the datablock min and max FOV settings
that are currently in effect.

See Also
getControlCameraFov

setControlObject(object)
Purpose
Use the setControlObject method to change the control object for this server-side
GameConnection to the GameBase object specified by object.

Syntax
object – A valid GameBase object to make the new control object.

Returns
Returns true if the control object was successfully changed, otherwise returns false.

Notes
The same control object may NOT be used by more than one client connection.

See Also
getControlObject

74

© Copyright 2000-2006 GarageGames Product of Hall Of Worlds, LLC.

setFirstPerson(isFirstPerson)
Purpose
Use the setFirstPerson method to change the current point-of-view to first or third-
person, depending on the value of isFirstPerson.

Syntax
isFirstPerson – A boolean value. If set to true, the POV for this GameConnection is set
to 1st POV, otherwise it is set to 3rd POV.

Returns
No return value.

Notes
This will NOT override value specified in the control-object/camera datablocks enabling
or disabling a particular POV.

See Also
isFirstPerson

setJoinPassword(password)
Purpose
Use the setJoinPassword method to set the password required to connect to this server-
side GameConnection.

Syntax
password – A string representing the case insensitive password to use for this
 server-side GameConnection.

Returns
No return value.

Notes
Pass a NULL string to clear the password.

See Also
setConnectArgs

setMissionCRC(CRC)
Purpose
Use the setMissionCRC method to set the cyclic-redundancy-check (CRC) value for the
current mission. This allows clients to determine whether they need to relight a scene or
not. The CRC value of a mission file is used to calculate the signature of a mission
lighting file (.ml). If the signature does not match the current CRC, the mission will be
relit.

Syntax
CRC – An integer value representing the cyclic-redundancy-check code for the current
misssion file.

Returns
No return value.

75

© Copyright 2000-2006 GarageGames Product of Hall Of Worlds, LLC.

startRecording(fileName)
Purpose
Use the startRecording method to tell the GameConnection to start recording a demo. The
demo will be stored at the location specified by fileName.

Syntax
fileName – To location to store the demo file. This should be a complete filename,
 including path and file name.

Returns
No return value.

See Also
isDemoPlaying, isDemoRecording, playDemo, stopRecording

stopRecording()
Purpose
Use the stopRecording method to tell the GameConnection to stop recording a demo.

Returns
No return value.

See Also
isDemoPlaying, isDemoRecording, playDemo, startRecording

transmitDataBlocks(sequence)
Purpose
Use the transmitDataBlocks method to start sending datablocks to the client connected to
this GameConnection.

Syntax
sequence – A book-keeping value used by scripts.

Returns
No return value.

A.2.29. HoverVehicle
This class is used represent the hover variety of vehicles. Space A hover vehicle is any vehicle that must
maintain a specific distance between the vehicle and the ground at all times, which is not the same as a flying
vehicle which may change this distance.

76

© Copyright 2000-2006 GarageGames Product of Hall Of Worlds, LLC.

A.2.30. HoverVehicleData
The datablock associated with hover vehicle class. This class describes all of the behaviors of the hover vehicle.

Fields

Field Name Description Sample or Range
brakingActivationSpeed Minimum rate at which braking force will be activated. [0.0 , inf.0)

brakingForce A force used to bring a drifting hover vehicle to a halt. [0.0 , inf.0)

dragForce A percentage of the current velocity applied in the opposite
direction of the hover vehicles current motion.

[0.01 , 1]

dustTrailEmitter ParticleEmitterData datablock for dust trails. ParticleEmitterData datablock

dustTrailFreqMod Dust trail modulator. Lower values equal more dense trail,
higher values equal more sparse trail.

(0.0 , inf.0)

dustTrailOffset
A vector by which to offset the dust trail emitter from it's mount
node. By default the emitter plays directly beneath the center of
the vehicle.

“0.0 5.0 0.0”

engineSound Engine sound special effect. AudioProfile datablock

floatingGravMag Gravity modifier that is enabled while vehicle is in contact with
other objects.

[0.0 , 1.0]

floatingThrustFactor

When vehicle is NOT floatingFloating thrust is equal to:

(floatingThrustFactor * mainThrustForce)

, otherwise it is 100% of mainThrustForce.

[0.0 , 1.0]

floatSound Floating sound effect. AudioProfile datablock

forwardJetEmitter ParticleEmitterData datablock used for forward thrust jets,
attached at JetNozzle0 and JetNozzle1.

ParticleEmitterData datablock

gyroDrag Gyroscopic force that resists tilting. [0.0 , inf.0)

jetSound Jetting sound special effect. AudioProfile datablock

mainThrustForce Forward thrust factor. [0.0 , inf.0)

normalForce A force that attempts to right a tilted vehicle. [0.0 , inf.0)

pitchForce A force applied forward or backward, depending on the amount
of vehicle pitch.

[0.0 , inf.0)

restorativeForce Another minor force used to level a tilted vehicle. [0.0 , inf.0)

reverseThrustForce Reverse thrust factor. [0.0 , inf.0)

rollForce A force applied left or right, depending on the amount of vehicle
roll.

[0.0 , inf.0)

stabDampingConstant A value used to keep the vehicle from bouncing up-and down
with minor elevation changes.

[0.0 , 1.0]

stabLenMax

A limiting factor applied to the automatically generated
stabilizing 'box'. This box grows and shrinks as the velocity of
the hover vehicle increase and decreases. This phantom box will
collide with objects so limiting it's maximum size is a good idea.

[0.0 , inf.0)

stabLenMin

A limiting factor applied to the automatically generated
stabilizing 'box'. This box grows and shrinks as the velocity of
the hover vehicle increase and decreases. If the box becomes
too small, the vehicle will become unstable and prone to tilting.

[0.0 , inf.0)

77

© Copyright 2000-2006 GarageGames Product of Hall Of Worlds, LLC.

Field Name Description Sample or Range

stabSpringConstant
This value should be at least twice the mass of the hoverVehicle
and is used to keep the vehicle from sinking to the ground. [0.0 , inf.0)

steeringForce Controls strength of steering controls. [0.0 , inf.0)

strafeThrustForce Side to side thrust strength. [0.0 , inf.0)

triggerTrailHeight Height at which dust trail emitter is enabled. [0.0 , inf.0)

turboFactor A multiplier applied to thrustforce while jetting
($mvTriggerCount3 > 0).

[0.0 , inf.0)

vertFactor A multiplier to use to increase or decrease drag in the vertical
direction.

[0.0 , inf.0)

A.2.31. InteriorInstance
This class is used represent interiors. That is, objects/meshes use to represent buildings bridges and other large
objects in the world which can be entered. As the name would imply, interiors have an inside, and interior.
Interior instance utilizes a BSP collision algorithm, as well as portals and other features.

Fields

Field Name Description Sample or Range
interiorFile The DIF filename or for this interior. ~/path/filename.dif

showTerrainInside If false, and interior uses portals, terrain will not render inside the interior. [false , true]

useGLLighting If this is set to true, interiors wil have basic GL lighting as soon as they are
placed, otherwise a relight will be required to make textures show up.

[false , true]

Globals

Variable Name Description Sample or Range
pref::Interior::LightUpdatePeriod Millisecond between dynamic light updates for interiors.

Default is 66 milliseconds.
[1 , inf]

pref::Interior::ShowEnvironmentMaps Enables environmental mapping for all interiors. [false , true]

pref::Interior::DynamicLights Enable dynamic lights for all interiors. [false , true]

pref::Interior::VertexLighting Enable vertex lighting for all interiors. [false , true]

pref::Interior::TexturedFog Enables advanced fog rendering for all interiors. [false , true]

pref::Interior::lockArrays Advanced rendering feature. [false , true]

pref::Interior::detailAdjust LOD transition tolerance. [0.3 , 1.0]

pref::Interior::DontRestrictOutside Debug mode. [false , true]

78

© Copyright 2000-2006 GarageGames Product of Hall Of Worlds, LLC.

Console Method Summaries

activateLight deactivateLight echoTriggerableLights
getNumDetailLevels magicButton setAlarmMode

Console Methods

activateLight(lightName)
Purpose
Use the activateLight method to enable a named light in the current interior.

Syntax
lightName – A string containing the name of a light to be activated.

Returns
No return value.

See Also
deactivateLight, echoTriggerableLights

deactivateLight(lightName)
Purpose
Use the deactivateLight method to disable a named light in the current interior.

Syntax
lightName – A string containing the name of a light to be deactivated.

Returns
No return value.

See Also
activateLight, echoTriggerableLights

echoTriggerableLights()
Purpose
Use the echoTriggerableLights method to dump a list of all the triggerable lights this
interior contains to the console.

Returns
No return value.

Notes
This is a nice helper function for those of us who can't always remember our light names.

See Also
activateLight, deactivateLight

79

© Copyright 2000-2006 GarageGames Product of Hall Of Worlds, LLC.

getNumDetailLevels()
Purpose
Use the getNumDetailLevels method to determine the number of details that the current
interior has.

Returns
Returns an integer value representing the maximum number of detail levels present in this
interior.

Notes
Detail levels start from 0 and increment, where 0 has the most detail, 1 less than 0, 2
less than 1, et cetera.

See Also
setDetailLevel

setAlarmMode(mode)
Purpose
Use the setAlarmMode method to set the global alarm mode for this interior. This will
enable or disable all alarm mode lights.

Syntax
mode – A string. If this value is set to “On”, then all alarm mode lights will be
 enabled. Any other value disables all alarm mode lights.

Returns
No return value.

setDetailLevel(level)
Purpose
Use the setDetailLevel method to force the current interior to render at a specific LOD,
if the interior supports that level.

Syntax
level – An integer value greater than or equal to zero, representing a LOD to render this
interior at.

Returns
No return value.

Notes
Detail levels start from 0 and increment, where 0 has the most detail, 1 less than 0, 2
less than 1, et cetera.

See Also
getNumDetailLevels

80

© Copyright 2000-2006 GarageGames Product of Hall Of Worlds, LLC.

setSkinBase(basename)
Purpose
Use the setSkinBase method to switch skins on an interior.

Syntax
basename – Text string equivalent to new texture(s) prefix.

Notes
Currently not working.

A.2.32. Item
This class, derived from ShapeBase, is used to represent small object in the world which are intended to be
interacted with and/or picked up. That is coinscoins, grenades, rifles, gems, etc. This class of object does not
require a collision mass although having one is useful in certain circumstances, specifically for line of sight
collisions. By default the engine will supply a simple collision mesh for object to object collisions. This object
supplies a several physical as well as visible behaviors, including object specific gravity, elasticity, lighting, etc.

Fields

Field Name Description Sample or Range
collidable -- deprecated

rotate If set to a true, this item will auto-rotate. [false , true]

static if this value is set to true, the item will not move when placed.
Conversely, a non-static shape is allowed to move.

[false , true]

Console Method Summaries

getLastStickyNormal getLastStickyPos isRotating

81

© Copyright 2000-2006 GarageGames Product of Hall Of Worlds, LLC.

Console Methods

getLastStickyNormal()
Purpose
Use the getLastStickyNormal method to get the normal vector for the last sticky
collision. If the item is not set to sticky, that is the datablock field sticky is set to
false, this object will not track collisions.

Returns
Returns a string containing the XYZ values of the normal vector. If no normal vector is
available, or if the item is not sticky this method will return the NULL string.

Notes
To enable sticky collisions, set the ItemData.sticky field to true.

See Also
getLastStickyPos

getLastStickyPos()
Purpose
Use the getLastStickyPos method to get the position vector for the last sticky collision.
If the item is not set to sticky, that is the datablock field sticky is set to false, this
object will not track collisions.

Returns
Returns a string containing the XYZ coordinates of the last collision position. If no
normal vector is available, or if the item is not sticky this method will return the null
string ("").

Notes
To enable sticky collisions, set the ItemData.sticky field to true.

See Also
getLastStickyNormal

isRotating()
Purpose
Use the isRotating method to determine if this item is playing the built-in rotation
animation.

Returns
Returns true if the current item is rotating, that is if the rotate field was set to true
when this object was created.

Notes
To enable rotation, set the rotate field in the item instance to true.

82

© Copyright 2000-2006 GarageGames Product of Hall Of Worlds, LLC.

isStatic()
Purpose
Use the isStatic method to determine if this is a static item. A static item will not
change position as the result of the application of outside forces like gravity and
impulses.

Returns
Returns true if the current item is static, that is the static field was set to true when
this object was created.

Notes
To make an item static, set the static field in the item instance to true.
A static item can still play animations and auto-rotate.

See Also
isRotating

setCollisionTimeout(obj)
Purpose
Use the setCollisionTimeout method to disable collisions between a specific GameBase
derived object and this item. The default period for this timeout is 15 ticks (15 x 32ms
== 480ms) or roughly one-half second.

Syntax
obj – The name or ID of a GameBase derived object with which to ignore collisions
 for ~1/2 second.

Returns
Returns true if the collision timeout was successfully set.

Notes
To modify the default timeout duration, see sCollisionTimeout in item.cc. It should be
noted, that the colliding object is the one that is told to (temporarily) ignore
subsequent collisions, not the item.

83

© Copyright 2000-2006 GarageGames Product of Hall Of Worlds, LLC.

A.2.33. ItemData
This is the datablock associated with the item object. This class specifies most of the behavior of an item.

Fields

Field Name Description Sample or Range
Pickups

pickupName Message to be printed when this object is picked up. It is the
responsibility of scripts to print this message.

--

Physics

elasticity

A floating-point value specifying how 'bouncy' this object is. i.e.
How much of the shape's velocity is lost onCollision().

Note: Because of rounding errors between gravity and elasticity
calculations, an object with 1.0 elasticity that is bouncing up and
down will eventually bounce away.

Allowed: [0.0 , inf)

Suggested: [0.0 , 1.0)

friction A floating-point value specifying how much velocity is lost to
impact and sliding friction.

Allowed:(-inf , inf)
Suggested: [0.0 , 1.0]

gravityMod

A floating-point value specifying an individual variance of local
gravity for this item. In other words, an item can be told to
ignore gravity, or to be affected by 2x gravity, or even to float
upward.

Allowed:(-inf , inf)
Suggested:(-20.0 , 20.0)

maxVelocity

A floating-point value specifying a limit on this item's maximum
velocity. This can be used to keep the item from falling for flying
too fast. It is also helpful to limit the effects of other settings
like velocity, etc.

sticky

A boolean value specifying whether this object will arrest (stop)
on impact. Furthermore, if an object is sticky, it retains
information about the last location is hit which can be accessed
via console methods (see below).

[true, false]

Type
dynamicType An integer value which, if specified, is added to the value

returned by getType().
See dynamicType below

Light
lightColor A three-value floating-point vector containing the RGB

components of this item's light.
Individually: [0.0 , 1.0]

lightOnlyStatic A boolean value instructing the item to produce light, only in the
case that the object field 'isStatic' is true.

[false , true]

lightRadius A floating point value specifying the radius for this item's light. [0.0 , 20.0]

lightTime A floating point value specifying the time (in milliseconds) it
takes for a pulsing light to transition on-off-on.

(100 , inf)

lightType A string specifying the type of light, if any, this shape emits.
“NoLight”

“ConstantLight”
“PulsingLight”

84

© Copyright 2000-2006 GarageGames Product of Hall Of Worlds, LLC.

A.2.34. Lightning
This class is used to represent the special effect lightning. Lightning can be generated or rendered from a
bitmap. Lightning bolts start at the top of the specified lightning block and terminate somewhere at the bottom
or below the specified lightning block.

Fields

Field Name Description Sample or Range
boltStartRadius This field specifies the radius within which lightning bolts will start. (0.0 , inf)

chanceToHitTarget Defunct. [0.0 , 1.0]

color
This field is used to specify the color of lightning when it is created. Note,
this is the exact color for generated lightning but should be considered a
filter color for lightning that he uses bitmaps

"r g b a" (float)

fadeColor
This field is used to specify the color of lightning as it fades out. Note, this is
the exact color for generated lightning but should be considered a filter color
for lightning that he uses bitmaps

"r g b a" (float)

strikeRadius This value is used to specify the radius in which lightning will strike. (0.0 , inf)

strikesPerMinute
This value is used to specify the number of strikes permitted. Note, strikes
occur at random but engine guarantees that at least strikes per minute
strikes will occur space every minute.

[0 , inf]

strikeWidth This value specifies the width of the bitmap or generated lightning, at the
point of its strike.

(0.0 , inf)

useFog If such true this lightning will be affected by fog. Note, this only applies to
lightning generated using bitmaps.

[false , true]

Console Method Summaries

strikeObject strikeRandomPoint warningFlashes

Console Methods

strikeObject(obj)
Purpose
Use the strikeObject method to cause lightning to strike the object specified object.

Syntax
obj – The name or ID of a GameBase derived object to strike with lightning.

Returns
No return value.

Notes
Not working as of this time.

See Also
strikeRandomPoint

85

© Copyright 2000-2006 GarageGames Product of Hall Of Worlds, LLC.

strikeRandomPoint()
Purpose
Use the strikeRandomPoint method to generate a random lightning strike.

Returns
No return value.

See Also
strikeObject

A.2.35. LightningData
This is the datablock associated with the lightning object, it is used to specify the bitmap textures and the
sounds use with the lightning object.

Fields

Field Name Description Sample or Range
strikeSound Audio profile to play on strike. AudioProfile datablock

strikeTexture[0]
...

strikeTexture[7]
Texture data to use when using textured lightning. ~/path/filename.png

thunderSounds[0]
...

thunderSounds[7]
Audio profiles for thunder sounds. AudioProfile datablock

A.2.36. Marker
This marker is used for building paths used by the PathCamera and other path following objects.

Fields

Field Name Description Sample or Range
msToNext Milliseconds to next marker in sequence. (0 , inf)

seqNum Marker position in sequence of markers on this path. [0 , 40)

smoothingType Path smoothing at this marker/knot.
“Linear” means no smoothing, while “Spline” means to smooth.

“Linear”
“Spline”

type
Type of this marker/knot. A “normal” knot will have a smooth camera
translation/rotation effect. “Position Only” will do the same for
translations, leaving rotation un-touched. Lastly, a “Kink” means the
rotation will take effect immediately for an abrupt rotation change.

“Normal”
“Position Only”

“Kink”

86

© Copyright 2000-2006 GarageGames Product of Hall Of Worlds, LLC.

A.2.37. MissionArea
This object is used represent the outer bounds of the mission area. This is a reactive region in that, a callback
will be entered each time an object enters or leaves the mission area. Please see the callbacks quick reference
for information on these callbacks.

Fields

Field Name Description Sample or Range

Area
Four floating point values <Xc Yc Xw YD> representing:
- Center of mission area <Xc Yc> (in world).
- Size of mission area <Xw Yw>

“ 0.0 0.0 1024.0 512.0”

flightCeiling
This value is used to specify the elevation at which a flying vehicles
power. That is, when a flying vehicle reaches this elevation it will not be
able to thrust vertically any longer.

[0.0 , inf.0)

flightCeilingRange This value is used to specify a range below the flight ceiling at which a
flying vehicle's to thrust begins to taper off.

[0.0 , flightCeiling]

A.2.38. MissionMarker
This class is used to represent generic marker in the game world.

A.2.39. NetConnection
This is the parent object to GameConnection. We do not create instances of net connection, but it is important
to note that this class exists and provides several features which are available through the GameConnection
class.

Globals

Variable Name Description Sample or Range
 pref::Net::PacketRateToClient Limits the packet rate from server to client. [1 , 32]

 pref::Net::PacketRateToServer Limits the packet rate from client to server. [8 , 32]

 pref::Net::PacketSize Limits the size of any one packet. [100 , 450]

Console Method Summaries

checkMaxRate clearPaths connect
connectLocal getAddress getGhostID

getGhostsActive getPacketLoss getPing
resolveGhostID resolveObjectFromGhostIndex setSimulatedNetParams

87

© Copyright 2000-2006 GarageGames Product of Hall Of Worlds, LLC.

Console Methods

checkMaxRate()
Purpose
Use the checkMaxRate method to retrieve the current maximum packet rate for this
connection.

Returns
Returns an integer value representing the maximum number of packets that can be
transmitted by this connection per transmission period.

Notes
The period may not neccesarily be one second.
To adjust packet rates, see the preference variables above.

clearPaths()
Purpose
Use the clearPaths method to mark this connection as NOT having received any paths.

Returns
No return value.

See Also
transmitPaths

connect(remoteAddress)
Purpose
Use the connect method to request a connection to a remote server at the address
remoteAddress.

Syntax
remoteAddress – A string containing an address of the form: “A.B.C.D:Port”, where
 A .. B are standard IP numbers between 0 and 255 and Port can be
 between 1000 and 65536.

Returns
No return value.

See Also
connectLocal, getAddress

88

© Copyright 2000-2006 GarageGames Product of Hall Of Worlds, LLC.

connectLocal()
Purpose
Use the connectLocal method to connect the current client-side connection to a local
NetConnection, that is to create an internal connection from this client to the internal
server. This is accomplished through the use of a back door mechanism and has an
extremely high bandwidth.

Returns
No return value.

See Also
connect, getAddress

getAddress()
Purpose
Use the getAddress method to get the address and port that this NetConnection is
currently attached to.

Returns
Returns the address and port that this NetConnection is currently attached to, where the
addres will be of the form: “A.B.C.D:Port”. A .. B are standard IP numbers between 0 and
255 and Port can be between 1000 and 65536.

If the connection is local, the string “local” will be returned.

If a this NetConnection is not currently connected the method will return a NULL string.

See Also
connect, connectLocal

getGhostsActive()
Purpose
Use the getGhostsActive method to determine how many ghosts are active on a particular
connection.

Returns
Returns an integer value between 0 and inf, specifying how many objects are being ghosted
to a client on the other side of a specific connection.

getPacketLoss()
Purpose
Use the getPacketLoss method to determine the current packetLoss count for this
connection.

Returns
Returns an integer value between 0 and inf, indicating the number of packets that have
been lost to date on this net connection.

See Also
getPing

89

© Copyright 2000-2006 GarageGames Product of Hall Of Worlds, LLC.

getPing()
Purpose
Use the getPing method to determine the round-trip travel time from this connection to
the agent on the other end and back again.

Returns
Returns an integer value representing the total time in milliseconds it takes for a ping
request to travel to the agent on the other end of a connection and back to this agent.

See Also
getPacketLoss

setSimulatedNetParams(packetLoss , delay)
Purpose
Use the setSimulatedNetParams method to force a connection to experience a certain degree
of packet-loss and/or latency. This is a debug feature to allow us to see how a
distributed game will behave in the face of poor connection quality.

Syntax
packetLoss – A floating-point value between 0.0 (0%) and 1.0 (100%) dictating
 the percentage of packets to be artificially lost.
 delay – An integer value specifying the number of milliseconds to insert
 into transmission latencies.

Returns
No return value.

See Also
getPacketLoss, getPing

transmitPaths()
Purpose
Use the transmitPaths method to send Interior path information to a client on this
connection.

Returns
No return value.

Notes
Only called on client connections from the server.

See Also
clearPaths

90

© Copyright 2000-2006 GarageGames Product of Hall Of Worlds, LLC.

A.2.40. NetObject

Console Method Summaries

clearScopeToClient getGhostID scopeToClient

Console Methods

clearScopeToClient(client)
Purpose
Use the clearScopeToClient method to undo the effects of a previous call to scopeToClient.

Syntax
client – The ID of the client to stop forcing scoping this object for.

Returns
No return value.

See Also
scopeToClient

scopeToClient(client)
Purpose
Use the scopeToClient method to force this object to be SCOPE_ALWAYS on client.

Syntax
client – The ID of the client to force this object to be SCOPE_ALWAYS for.

Returns
No return value.

Notes
When an object is SCOPE_ALWAYS it is always ghosted. Therefore, if you have an object
that should always be ghosted to a client, use this method.

See Also
clearScopeToClient, setScopeAlways

91

© Copyright 2000-2006 GarageGames Product of Hall Of Worlds, LLC.

setScopeAlways()
Purpose
Use the setScopeAlways method to force an object to be SCOPE_ALWAYS for all clients.

Returns
No return value.

Notes
When an object is SCOPE_ALWAYS it is always ghosted. Therefore, if you have an object
that should always be ghosted to all clients, use this method.

See Also
scopeToClient

A.2.41. ParticleData (PD)
This is the datablock used to represent individual particles. This datablock is subsequently used by particle
emitter data to produce particle effects. Torque provides a variety of particle effects. Particles may be animated
sequences of textures, a single fixed texture, a colorized or non-colorized texture.

Fields

Field Name Description Sample or Range
animateTexture Use textures beyond [false , true]

animTexName[0]
...

animTexName[49]

Textures used when animating textures.

Note: animTexName[0] == textureName
~/path/filename.png

colors[0]
colors[1]
colors[2]
colors[3]

Key-framing color controls for particles. "1.0 0.5 0.5 1.0"

constantAcceleration Acceleration applied to particle per second over particle lifetime. (-inf.0 , inf.0)

dragCoefficient Drag multiplier (total drag == particle velocity * dragCoefficient). (-inf.0 , inf.0)

framesPerSec Texture animation frames per second. (-inf , inf)

gravityCoefficient Gravity multiplier. (-inf.0 , inf.0)

inheritedVelFactor Velocity multiplier
(inherited velocity == emitter velocity * inheritedVelFactor).

(-inf.0 , inf.0)

lifetimeMS Time this particle lives in milliseconds.
(Total lifetime == lifetimeMS +/- rand(lifetimeVarianceMS)).

(-inf , inf)

lifetimeVarianceMS Random amount by which lifetime varies. (-inf , inf)

sizes[0]
sizes[1]
sizes[2]
sizes[3]

Key-framing size controls for particles. (-inf.0 , inf.0)

spinRandomMax Maximum degrees for randomized angular spin about billboard's normal. (-inf.0 , inf.0)

spinRandomMin Minimum degrees for randomized angular spin about billboard's normal. (-inf.0 , inf.0)

spinSpeed Degrees-per-second spin rate about billboard's normal. (-inf.0 , inf.0)

textureName Texture to use for non-animated particles. ~/path/filename.png

92

© Copyright 2000-2006 GarageGames Product of Hall Of Worlds, LLC.

Field Name Description Sample or Range
times[0]
times[1]
times[2]
times[3]

Key-framing time controls for particles.
[0.0, times[1]]
[times[0], times[2]]
[times[1], times[3]]
[times[2], 1.0]

useInvAlpha Invert alpha components in texture(s). [false , true]

windCoefficient Amount by which wind effects particle velocity. (-inf.0 , inf.0)

A.2.42. ParticleEmitterData

Fields

Field Name Description Sample or Range

ejectionOffset

Each particle is given an ejection direction at which to be emitted, and
ejectionOffset specifies the distance in this direction from the particle emitter a
particle will be emitted at. This field's value must be non-negative, otherwise a
console warning is generated and the value is forced to 0.0. The actual
ejectionOffset value used is only guaranteed to be within 0.01 of the value used,
and values greater than 655 are not possible.

(-inf.0 , inf.0)

ejectionPeriodMS

Used along with periodVarianceMS to determine the frequency with which to emit
particles. See the periodVarianceMS field for more details. Stored with only 10
bits of precision, so values above 1023 are not possible. If value is less than 1, a
console warning is generated and the value is forced to 1.

(-inf , inf)

ejectionVelocity

Used along with velocityVariance to determine the initial velocity at which a
particle is emitted. See the velocityVariance field documentation for more details.
This field's value must be non-negative, otherwise a console warning is generated
and the value is forced to 0.0. The actual value used is only guaranteed to be
within 0.01 of the value specified, and values larger than 655 are not valid.

(-inf.0 , inf.0)

lifetimeMS

Used with lifetimeVarianceMS to determine the total life-time of each emitted
particle. Measured in milliseconds. This field's value must be greater than zero,
otherwise a console warning is generated and the value is forced to one. To save
network transmission bandwidth, the value of lifetimeMS is shifted-right 5 bits,
implying a loss of precision. Thus, the lifetime value used may be up to 31
milliseconds less than the value specified. After being shifted, the value is
clamped to 10-bits of precision as well; thus, values of more than about 32000
milliseconds will not behave as expected.

(-inf , inf)

lifetimeVarianceMS

Used with lifetimeMS to determine the total life-time of each emitted particle.
Measured in milliseconds. Each time a particle is created, a random number
between -1*lifetimeVarianceMS and lifetimeVarianceMS is generated and added
to lifetimeMS to determine the particle's total lifetime. This field's value must be
no greater than that of lifetimeMS, otherwise a console warning is generated and
the value is clamped. The lifetimeVarianceMS value is shifted and stored with 10-
bit precision in the exact manner that lifetimeMS's value is.

(-inf , inf)

orientOnVelocity

Only applicable when orientParticles is True. Specifies whether emitted particles
will be checked for velocity. If True, and the particle has no velocity, it will not be
rendered. If True, and the particle has a velocity, the velocity magnitude will
affect the particle's rendered size. False means that the particle's velocity will not
affect the rendered size.

[false , true]

orientParticles

Specifies whether emitted particles should be oriented as billboards (always face
directly towards the camera), or if they should face the emission direction (see
the field documentation for thetaMin, thetaMax, phiReferenceVel, and phiVariance
for more information on emission direction). True means the particles should be
oriented toward the emission direction, False means particles should be oriented
as billboards.

[false , true]

93

© Copyright 2000-2006 GarageGames Product of Hall Of Worlds, LLC.

Field Name Description Sample or Range

overrideAdvance
Specifies whether a newly created particle's acceleration, color, and other settings
should begin being updated immediately after it is created. If false, the new
particle is updated immediately. If true, the particle's time advancement system is
initially deferred.

[false , true]

particles

String containing a tab-delimited list of ParticleData datablock names. When a
particle is emitted from the emitter, its datablock is randomly selected from the
list of valid datablocks supplied in the particles field string. The string must be
non-empty and at least one token must evaluate to a valid ParticleData datablock
name. String must also be less than 256 characters long. If either of these
conditions is not met, a console warning will be produced and the datablock's
onAdd() method will fail.

see type

periodVarianceMS

Used along with ejectionPeriodMS to determine the frequency with which to emit
particles. Each time a particle is emitted, a random value between
-1*periodVarianceMS and periodVarianceMS is generated and added to
ejectionPeriodMS to determine the time at which to emit the next particle. So,
with the default values ejectionPeriodMS = 100 and periodVarianceMS = 0,
particles would be emitted exactly 10 times per second. This field's value is
stored with only 10 bits of precision, so values above 1023 are not possible.
Value must be less than the value of ejectionPeriodMS, otherwise a console
warning is generated and the value is set to ejectionPeriodMS - 1.

(-inf , inf)

phiReferenceVel

Each time a particle is emitted, it is given an ejection direction, see the thetaMin
field documentation for more information. phiReferenceVel and phiVariance
determine the particle's ejection angle about the z-axis. Particles are emitted
starting at 0 degrees, and the emission angle is rotated over time, according to
the velocity specified in phiReferenceVel, as well as random numbers generated
from phiVariance. See the phiVariance field documentation. This field's value is
measured in degrees per second and may range from 0.0 to 360.0; if it lies
outside this range, a console warning is generated and the value is clamped.

(-inf.0 , inf.0)

phiVariance

Used along with phiReferenceVel to determine the angle relative to the z-axis at
which to eject a particle. Each time a particle is generated, a new ejection
direction is determined for it. The ejection angle about the z-axis is defined by
adding a random variable between 0.0 and phiVariance to the angle determined
by phiRefVelocity. See the phiRefVelocity field documentation for more
information. This field's value is measured in degrees and must lie in the range of
0.0 to 360.0; if it does not, a console warning is generated and the value is
clamped.

(-inf.0 , inf.0)

thetaMax

Each time a particle is emitted, it is given an ejection direction. See the thetaMin
field documentation for more information. thetaMax defines the maximum
ejection direction angle relative to the x-axis. This field's value is measured in
degrees. The value may range from 0.0 to 180.0; if it lies outside this range, a
console warning is generated and the value is clamped.

(-inf.0 , inf.0)

thetaMin

Each time a particle is emitted, it is given an ejection direction. This direction is
defined by the thetaMin, thetaMax, phiReferenceVel, and phiVariance fields. A
random angle between thetaMin and thetaMax is generated and provides the
ejection direction angle relative to the x-axis. This field's value is measured in
degrees. The value may range from 0.0 to 180.0, and must be less than
thetaMax. If one of these conditions is not met, a console warning is generated
and the value is clamped accordingly.

(-inf.0 , inf.0)

useEmitterColors
Specifies whether the particle's datablock colors array field should be over-ridden
by the colors array provided by the ParticleEmitter object. True implies that the
particle's datablock should be over-ridden.

[false , true]

useEmitterSizes
Specifies whether the particle's datablock sizes array field should be over-ridden
by the sizes array provided by the ParticleEmitter object. True implies that the
particle's datablock should be over-ridden.

[false , true]

94

© Copyright 2000-2006 GarageGames Product of Hall Of Worlds, LLC.

Field Name Description Sample or Range

velocityVariance

Used along with ejectionVelocity to determine the speed at which a particle will
be emitted. Each particle gets a new velocity, which is calculated by adding a
random number between -1*velocityVariance and velocityVariance to
ejectionVelocity. This field's value must be non-negative and must not be greater
than ejectionVelocity, otherwise a console warning is generated and the value is
clamped appropriately. The actual value used is only guaranteed to be within
0.01 of the value specified, and values larger than 163 are not valid.

(-inf.0 , inf.0)

A.2.43. ParticleEmitterNode

Fields

Field Name Description Sample or Range
emitter ParticleEmitterData datablock used by this emitter node ParticleEmitterData datablock

velocity Velocity at which to emit particles. [0.0 , inf.0)

A.2.44. ParticleEmitterNodeData

Fields

Field Name Description Sample or Range
timeMultiple A multiplier that will affect the behavior or the emitter node and the

particles it emits.
[0.0 , inf.0)

A.2.45. Path

Fields

Field Name Description Sample or Range
isLooping If this is true, the loop is closed, otherwise it is open. [false , true]

Console Method Summaries

getPathID

Console Methods

getPathID()
Purpose
Use the getPathID method to get the path ID (not the object ID) of this path.

Returns
Returns an integer value representing the path index for this path as stored by the path
manager.

95

© Copyright 2000-2006 GarageGames Product of Hall Of Worlds, LLC.

A.2.46. PathCamera
This object is a special version of the camera that can be placed on a path. The camera can then be made to
travel along this path. This feature can be used for many purposes, including cut-scenes, in-game movies,
demos, etc.

Console Method Summaries

popFront pushBack pushFront
reset setPosition setState

Console Methods

popFront()
Purpose
Use the popFront method to remove a knot from the front of the camera's knot queue.

Returns
No return value.

Notes
Removes first node in path, does not affect node base or position.

See Also
pushBack, pushFront

pushBack(transform , speed , type , path)
Purpose
Use the pushBack method to add a new knot to the back of a path camera's path.

Syntax
transform – Transform vector for new knot.
 speed – Speed setting for knot.
 type – Knot type. (“Normal”, “Position Only”, “Kink”)
 path – Path type. (“Linear”, “Spline”)

Returns
No return value.

See Also
pushFront

96

© Copyright 2000-2006 GarageGames Product of Hall Of Worlds, LLC.

pushFront(transform , speed , type , path)
Purpose
Use the pushFront method to add a new knot to the front of a path camera's path.

Syntax
transform – Transform vector for new knot.
 speed – Speed setting for knot.
 type – Knot type. (“Normal”, “Position Only”, “Kink”)
 path – Path type. (“Linear”, “Spline”)

Returns
No return value.

See Also
pushBack

reset([speed = 0])
Purpose
Use the reset method to move the camera back to the beginning of the path and optionally
give it a new travel speed.

Syntax
speed – A positive floating-point value corresponding to the rate of travel for the
 camera.

Returns
No return value.

See Also
setState

setPosition(pos)
Purpose
Use the setPosition method to set the position of the camera on a path as a percentage.

Syntax
pos – A floating point value equal to the position on the current camera path.
 Between 0.0 and 1.0.

Returns
No return value.

See Also
setState, setTarget

97

© Copyright 2000-2006 GarageGames Product of Hall Of Worlds, LLC.

setState(state)
Purpose
Use the setState method to set the camera's current movement state.

Syntax
state – A string containing either:
 forward – moving from front of path to back of path.
 backward – moving from back of path to front of path.
 stop - not moving.

Returns
No return value.

See Also
reset, setPosition

setTarget(pos)
Purpose
Use the setTarget method to set the next position target for this path camera. A path
camera will travel along the path until it reaches the current target. This target is set
as a percentage of the entire path.

Syntax
pos – A floating point value represent the next target on this path camera's path.
 Between 0.0 and 1.0.

Returns
No return value.

Notes
Setting a target position behind the current path camera position will not make the
camera travel in reverse unless the moving state is backward.

See Also
setPosition, setState

A.2.47. PhysicalZone

Fields

Field Name Description Sample or Range

appliedForce
Three-element floating point value representing forces in three axes to
apply to objects entering pzone.

“x y z”
Each value in range:
[-40000 , 40000]

gravityMod Gravity in pzone. Multiplies against standard gravity. (-inf.0 , inf.0)

polyhedron Floating point values describing outer bounds of pzone. -

velocityMod Multiply velocity of objects entering zone by this value every tick. [-40000 , 40000]

98

© Copyright 2000-2006 GarageGames Product of Hall Of Worlds, LLC.

Console Method Summaries

activate deactivate

Console Methods

activate()
Purpose
Use the activate method to enable this physicalZone. Once enabled, all of the
physicalZone attributes will be in effect.

Returns
No return value.

See Also
deactivate

deactivate()
Purpose
Use the deactivate method to disable this physicalZone. Once disabled, none of the
physicalZone attributes will be in effect.

Returns
No return value.

See Also
activate

99

© Copyright 2000-2006 GarageGames Product of Hall Of Worlds, LLC.

A.2.48. Player

Console Method Summaries

checkDismountPoint clearControlObject getControlObject
getDamageLocation getState setActionThread

Console Methods

checkDismountPoint(oldPos , pos)
Purpose
Use the checkDismountPoint method to see if dismounting a player from one position to
another will cause a collision, or a cohabitation of space.

Syntax
oldPos – Original position of player.
 pos – Intended position of player.

Returns
Returns true if the new position does not result in any collisions, false otherwise.

Notes
This can be used for a variety of things besides dismounting checks. Basically, any time
you want to check if a player can be moved into a new position, you may use this.

clearControlObject()
Purpose
Use the clearControlObject method to undo the results of a call to
player.setControlObject, re-establishing this player as the control object.

Returns
No return value.

Notes
It is possible to temporarily make another player receive move commands that would
normally be sent to this player, while leaving this player in place. Unless moved, the
camera will stay mounted to this player, while the other player receives movement inputs.

See Also
getControllingObject, setControlObject

Description

100

© Copyright 2000-2006 GarageGames Product of Hall Of Worlds, LLC.

getControllingObject()
Purpose
Use the getControllingObject method to determine if this player object is receiving input
commands from another player.

Returns
Returns 0 if this object is not being controlled by another player object, or it will
return a non-zero positive integer specifying the ID of the player object that is
controlling this player.

Notes
It is possible to temporarily make another player receive move commands that would
normally be sent to this player, while leaving this player in place. Unless moved, the
camera will stay mounted to this player, while the other player receives movement inputs.

See Also
clearControlObject, setControlObject

Description

Returns float

getDamageLocation(damagePosition)
Purpose
Use the getDamageLocation method to get the named damage location and modifier for a
given damagePosition. The player object can differentiate 'hit' locations based on a pre-
defined set of datablock settings. You may modify these settings, to vary the percentage
of area given over to any body region.

Syntax
damagePosition – A position for which to retrieve a body region on this player.

Returns
Returns a string containing two words (space separated strings), where the first is a
location and the second is a modifier:

 Posible locations
 - legs
 - torso
 - head

 Head modifiers
 - front_left
 - front_right
 - back_left
 - back_right

101

© Copyright 2000-2006 GarageGames Product of Hall Of Worlds, LLC.

 Legs/Torso modifiers
 - middle_back
 - right_back
 - left_middle
 - middle_middle
 - right_middle
 - left_front
 - middle_front
 - right_front

Notes
Positions do not need to be on or even near the player. The engine will calculate which
body location and modifier best fit any position relative to the player.

getState()
Purpose
Use the getState method to get the current state of this player.

Returns
Returns a string specifying the current state of the player:

 Possible states
 Dead – Damage >= disabledLevel
 Mounted – Mounted to another object.
 Move - Alive and able to move.
 Recover – Recovering from a long fall or hard impact (unable to move).

Notes
The most important fact to note is that your player is considered dead at the
disabledLevel, not the destroyedLevel.

setActionThread(string sequenceName , hold , fps)
Purpose
Use the setActionThread method to play a specific animation. This is similar to the
playThread method that comes with all ShapeBase objects, but it is designed for full body
animations and comes with a few different options. Optionally, a player may be told to
play a thread and then to hold at the last frame of that animation until another over-
rides it.

Syntax
sequenceName – A string containing the name of the animation to play.

Returns
No return value.

102

© Copyright 2000-2006 GarageGames Product of Hall Of Worlds, LLC.

setControlObject(obj)
Purpose
Use the setControlObject method to have this player object 'control' another player
object. Doing so will re-direct movement inputs from this player object to the controlled
player object. This can be used when you want one player to act as a mount for another
player.

Syntax
obj – The ID of the surrogate player that should now receive movement inputs previously
destined for this player.

Returns
Returns true on success, and false on failure.

Notes
It is possible to temporarily make another player receive move commands that would
normally be sent to this player, while leaving this player in place. Unless moved, the
camera will stay mounted to this player, while the other player receives movement inputs.

See Also
clearControlObject, getControllingObject

A.2.49. PlayerData

Fields

Field Name Description Sample or Range
Rendering

renderFirstPerson If true, render the player mesh while in 1st POV. [false , true]

Pickups
pickupRadius Can be used to increase the size of the player box for item collisions ONLY. [0.0 , inf.0)

Looking
maxFreelookAngle Maximum free-look angle in radians. [-3.14159 , 3.14159]

maxLookAngle Maximum look angle in radians. [-3.14159 , 3.14159]

minLookAngle Minimum look angle in radians. [-3.14159 , 3.14159]

Time Scaling
maxTimeScale Limits animation scaling. Animations will scale up to this amount when

matching ground velocity.
[0.0 , inf.0)

Step Height --

maxStepHeight Maximum height player will be able to step up. Heights larger than this will
stop a walking player.

[0.0 , inf.0)

Forces and Factors
horizMaxSpeed Maximum horizontal velocity on ground, in air, or in water. --

horizResistFactor Delta factor used to determine how much of 'horizResistspeed' is removed
from current velocity.

--

horizResistSpeed Velocity at which horizontal resistance kicks in. --

jumpDelay Forced delay between jumps (in ticks). --

jumpEnergyDrain Drain this many energy points for every jump. --

jumpForce Force applied to player on jump. Should be less than 40000 * mass. --

103

© Copyright 2000-2006 GarageGames Product of Hall Of Worlds, LLC.

Field Name Description Sample or Range
jumpSurfaceAngle Cannot jump if surface angle equal to or greater to this many degrees. --

maxJumpSpeed Cannot jump if running faster than this. --

minJumpEnergy Cannot jump if energy lower than this. --

minRunEnergy Cannot run if energy lower than this. --

recoverDelay Number of ticks that player stays in 'recovery mode' after hard impact. [0 , inf]

recoverRunForceScale Run force is multiplied by this amount during 'recovery'. [0.0 , 1.0]

runEnergyDrain Drain this much energy per tick while running. --

runForce Accelerate player by this much per tick as a result of a move (command).
Should be less than 40000 * mass.

--

runSurfaceAngle Cannot accelerate if surface angle equal to or greater to this many degrees. --

upMaxSpeed Maximum velocity allowed in the positive Z direction. --

upResistFactor Delta factor used to determine how much of 'upResistSpeed' is removed
from current velocity.

--

upResistSpeed Velocity at which vertical resistance kicks in. --

Velocity
maxBackwardSpeed Maximum backward velocity in m/s. --

maxForwardSpeed Maximum forward velocity in m/s. --

maxSideSpeed Maximum sideway velocity in m/s. --

maxUnderwaterBackwardSpeed Maximum underwater backward velocity in m/s. --

maxUnderwaterForwardSpeed Maximum underwater forward velocity in m/s. --

maxUnderwaterSideSpeed Maximum underwater sideway velocity in m/s. --

Impacts
groundImpactMinSpeed The velocity at which a collision with the ground is registered as an impact. [0.0 , inf.0)

groundImpactShakeAmp Camera shake amplitude when a ground impact is registered. “1.0 1.0 10.0“

groundImpactShakeDuration Camera shake duration when a ground impact is registered. [0.0 , inf.0)

groundImpactShakeFalloff a multiplier determining at what rate the shaking from an impact is reduced
over time.

[0.0 , inf.0)

groundImpactShakeFreq Camera shake frequency when a ground impact is registered. “4.0 4.0 4.0“

minImpactSpeed The velocity at which a collision with the any object is registered as an
impact.

[0.0 , inf.0)

Hit Boxes
boundingBox A vector containing the radius values for each dimension of the unscaled

player's bounding box. (Will be multiplied by scale.)
“1.6 1.6 2.3”

boxHeadBackPercentage
In conjunction with boxHeadBackPercentage, used to determine whether
the front, middle, or back side of the player's torso or legs was hit. Note:
this functionality is difficult to properly change; it is recommended that
default values be used.

0

boxHeadFrontPercentage
In conjunction with boxHeadBackPercentage, used to determine whether
the front, middle, or back side of the player's torso or legs was hit. Note:
this functionality is difficult to properly change; it is recommended that
default values be used.

1

boxHeadLeftPercentage
In conjunction with boxHeadRightPercentage, used to determine whether
the left, middle, or right side of the player's torso or legs was hit. Note: this
functionality is difficult to properly change; it is recommended that default
values be used

0

104

© Copyright 2000-2006 GarageGames Product of Hall Of Worlds, LLC.

Field Name Description Sample or Range

boxHeadPercentage
The distance from the bottom of the player's bounding box, to the beginning
of the area considered to bound the player's head. Measured as a raw
percentage.

[0.0 , 1.0]

boxHeadRightPercentage
In conjunction with boxHeadRightPercentage, used to determine whether
the left, middle, or right side of the player's torso or legs was hit. Note: this
functionality is difficult to properly change; it is recommended that default
values be used

1

boxTorsoPercentage Like boxHeadPercentage, but specifies where the torso area begins. [0.0 , 1.0]

Footprints and -puffs
decalData DecalData datablock used for footprints.

decalOffset
The offset from the player's center by which the decal should be displayed;
should correlate with the distance from player's center, to the player's right
foot center.

dustEmitter -- Not Used

footPuffEmitter The ParticleEmitterData datablock will be used to emit particles at footstep
locations.

footPuffNumParts Number of dust particles to be generated for foot puffs. [0 , inf)

footPuffRadius The radius of dust spread from foot steps. [0.0 , inf.0)

Sounds and Modifiers
exitingWater The AudioProfile used to produce sounds when emerging from water. --

exitSplashSoundVelocity The minimum velocity at which the exit splash sound will be played when
emerging from water.

--

FootBubblesSound The AudioProfile used to produce sounds for bubbles produced by
footsteps.

--

FootHardSound The AudioProfile used to produce sounds for hard footsteps. --

FootMetalSound The AudioProfile used to produce sounds for soft footsteps. --

FootShallowSound The AudioProfile used to produce sounds for shallow water footsteps. --

FootSoftSound The AudioProfile used to produce sounds for soft footsteps. --

FootUnderWater AudioProfileThe AudioProfile used to produce sounds for underwater
footsteps.

--

Footwading The AudioProfile used to produce sounds for wading footsteps. --

hardSplashSoundVelocity The minimum velocity at which the hard splash sound will be played when
entering or leaving water.

--

impactHardSound The AudioProfile used to produce sounds for hard impacts. --

impactMetal The AudioProfile used to produce sounds for metal impacts. --

impactSnowSound The AudioProfile used to produce sounds for snow impacts. --

impactSoftSound The AudioProfile used to produce sounds for soft impacts. --

impactWaterEasy The AudioProfile used to produce sounds for soft impacts against water. --

impactWaterHard The minimum velocity at which the hard water impact sound will be played
when entering or leaving water.

--

impactWaterMedium The AudioProfile used to produce sounds for medium impacts against water. --

mediumSplashSoundVelocity The minimum velocity at which the medium water impact sound will be
played when entering or leaving water.

--

movingBubblesSound The AudioProfile used to produce sounds for underwater bubble while the
player is moving.

--

waterBreathSound The AudioProfile used to produce sounds for underwater breathing. --

Splashes and Bubbles
bubbleEmitTime The length of time to continue emitting bubbles. --

105

© Copyright 2000-2006 GarageGames Product of Hall Of Worlds, LLC.

Field Name Description Sample or Range
footstepSplashHeight The maximum height at which to play the shallow footstep effect. --

splash The SplashData datablock used to emit splashes. --

splashAngle The mimimum verticle angle at which a player must be traveling in order to
generate a splash effect.

--

splashEmitter[0]
splashEmitter[1]

Array of pointers to ParticleEmitterData datablocks which will be used to
generate splash effect particles.

--

splashFreqMod
The simulated frequency modulation of a splash generated by this player.
Multiplied along with player speed and time elapsed when determining
splash emission rate.

--

splashVelEpsilon The threshold speed at which we consider the player's movement to have
stopped when updating splash effects.

--

splashVelocity The minimum velocity a player needs in order to generate a splash effect. --

A.2.50. Precipitation

Fields

Field Name Description Sample or Range
boxHeight Height of box (around camera) where precipitation occurs. (0.0 , inf)

boxWidth Width of box (around camera) where precipitation occurs. (0.0 , inf)

doCollision Allow precipitation to collide with objects vs. fall through. [false , true]

maxMass Maximum mass per drop. [minMass , inf)

maxSpeed Maximum speed per drop. [minSpeed , inf)

maxTurbulence Max turbulence to apply per drop. [0.0 , inf)

minMass Minimum mass per drop. [0.0 , maxMass]

minSpeed Minimum speed per drop. [0.0 , maxSpeed]

numDrops Approximate number of drops allowed to exist at any one time. (0 , inf)

rotateWithCamVel Drops rotate to face camera. [false , true]

turbulenceSpeed Velocity (of drops) at which turbulence kicks in. [0.0 , inf)

useTurbulence Enable turbulence effect. [false , true]

Console Method Summaries

modifyStorm setPercentage

106

© Copyright 2000-2006 GarageGames Product of Hall Of Worlds, LLC.

Console Methods

modifyStorm(percentage , time)
Purpose
Use the modifyStorm method to adjust the percentage of raindrops falling over time period.

Syntax
percentage – Percent of raindrops to render. [0.0 , 1.0]
 time – Period of transition in seconds.(0.0 , inf)

Returns
No return value.

See Also
setPercentage

setPercentage(percentage)
Purpose
Use the setPercentage method to immediately adjust the percentage of raindrops falling.

Syntax
percentage – Percent of raindrops to render. [0.0 , 1.0]

Returns
No return value.

See Also
modifyStorm

A.2.51. PrecipitationData

Fields

Field Name Description Sample or Range
dropSize Render size for drops. (0.0 , inf)

dropTexture Texture file (4 x 4 bitmap array) to use for drops. texture Path

soundProfile Looping 2D audio profile to play with precipitation. Audio Profile Name

splashMS Life of splashes in milliseconds. (0 , inf)

splashSize Size of splashes. (0.0 , inf)

splashTexture Texture to use for splashes (4 x 4 bitmap array). texture path

useTrueBillboards Drops behave like true (non axis-aligned) billboards. [false , true]

107

© Copyright 2000-2006 GarageGames Product of Hall Of Worlds, LLC.

A.2.53. Projectile

Fields

Field Name Description Sample or Range
initialPosition Position that projectile starts at. "1.0 2.0 3.0"

initialVelocity Starting velocity of projectile. "1.0 2.0 3.0"

sourceObject description (-inf , inf)

sourceSlot description (-inf , inf)

A.2.53. ProjectileData

Fields

Field Name Description Sample or Range

armingDelay
The number of ticks that must pass after the Projectile is created before it
can explode. Valid range is 0 to Projectile::MaxLivingTicks (4095 by
default).

(-inf , inf)

bounceElasticity
Used to simulate the Projectile's bounce elasticity, if it collides with
something but does not explode. The bounce elasticity scales the velocity
from a bounce, after friction is taken into account.

[0.0 , 0.999]

bounceFriction On bounce, reduce projectile velocity by this factor and a multiple of the
tangent to impact.

(-inf.0 , inf.0)

decals[0]
...

decals[5]

Array of pointers to DecalData datablocks. A non-NULL decal object will be
randomly chosen from the array when the Projectile collides with the
terrain or an interior.

DecalData datablock

explosion ExplosionData datablock used when the Projectile object blows up out of
water.

see type

fadeDelay

The number of ticks that must pass after the Projectile is created before it
will begin becoming transparent. Projectile's opacity will follow a linear
degression starting fadeDelay number of ticks after it is creating and
ending at lifetime number of ticks. Valid range is 0 to
Projectile::MaxLivingTicks (4095 by default).

(-inf , inf)

gravityMod If isBallistic is true, scales the effect of gravity on the Projectile. Valid
range is 0.0 to 1.0.

(-inf.0 , inf.0)

hasLight
Specifies whether the Projectile object sheds light when not in water. If so,
a point light object is used with the radius and color specified in the
lightRadius and lightColor fields.

[false , true]

hasWaterLight
Specifies whether the Projectile object sheds light when in water. If so, a
point light object is used with the radius and color specified in the
lightRadius and waterLightColor fields.

[false , true]

isBallistic Specifies whether the Projectile will be affected by gravity, and whether it
can bounce before exploding.

[false , true]

lifetime

The number of ticks the Projectile should survive for. Also used along with
fadeDelay to determine the transparency of the Projectile object at a given
time. See the fadeDelay field documentation for more information. The
valid range for lifetime values is 0 to Projectile::MaxLivingTicks (4095 by
default).

(-inf , inf)

lightColor The projectile's point light color for use when not in water. "1.0 0.5 0.5"

lightRadius The projectile's point light radius. Valid range is 1.0 to 20.0 (-inf.0 , inf.0)

108

© Copyright 2000-2006 GarageGames Product of Hall Of Worlds, LLC.

Field Name Description Sample or Range

muzzleVelocity
Note: this field currently has no tangible effect in the engine simulation
itself, but it is useful in script, and its valid range is checked by the engine.
Valid range is from 0.0 to 10,000.0

(-inf.0 , inf.0)

particleEmitter ParticleEmitter datablock used to generate particles for the projectile when
it is out of water, and when entering or leaving water.

see type

particleWaterEmitter ParticleEmitter datablock used to generate particles for the projectile when
it is under water, and when it is entering or leaving water.

see type

projectileShapeName The name of the shape file for the Projectile object. Must adhere to the
semantics associated with the Filename datatype as defined in the engine.

~/path/filename.dts

sound AudioProfile used to generate the Projectile object's sound. see type

Splash SplashData datablock used in the generation of splash effects when the
Projectile is entering or leaving water.

see type

velInheritFactor
Note: this field currently has no tangible effect in the engine simulation
itself, but it is useful in script, and its valid range is checked by the engine.
Valid range is from 0.0 to 1.0.

(-inf.0 , inf.0)

waterExplosion ExplosionData datablock used when the Projectile object blows up in the
water.

see type

waterLightColor The projectile's point light color for use when in water. "1.0 0.5 0.5"

A.2.54. SceneObject

Console Method Summaries

getForwardVector getObjectBox getPosition
getScale getTransform getWorldBox

getWorldBoxCenter setScale setTransform

Console Methods

getForwardVector()
Purpose
Use the getForwardVector method to get the three-element floating-point vector
representing the direction the object is facing.

Returns
Returns a three-element floating-point vector representing the direction the object is
facing.

Notes
Forward for all SceneObjects is positive-Y. So, this vector represents the direction the
SceneObject's positive-Y axis is pointing.

109

© Copyright 2000-2006 GarageGames Product of Hall Of Worlds, LLC.

getObjectBox()
Purpose
Use the getObjectBox method to get the six-element floating-point vector containing two
three-space points representing the unscaled and unrotated bounding box for this object.

Returns
Returns a six-element floating-point vector containing two three-space points
representing the bounds of this box:

"minX minY minZ maxX maxY maxZ"

Notes
This box is unscaled and represents the bounding box of the exported, pre-scaled object.

See Also
getWorldBox

getPosition()
Purpose
Use the getPosition method to get the current position of this object.

Returns
A three-element vector containing the XYZ world position of this SceneObject.

See Also
getTransform, setTransform

getScale()
Purpose
Use the getScale method to get the scale of this SceneObject.

Returns
Returns a three-element vector containing the XYZ scale of this SceneObject.

See Also
setScale

110

© Copyright 2000-2006 GarageGames Product of Hall Of Worlds, LLC.

getTransform()
Purpose
Use the getTransform method to get the transform matrix for this SceneObject.

Returns
Returns a seven-element matrix/vector containing the following information:

“ PosX PosY PoxZ RotX RotY RotZ theta “

, where theta is a rotation about the axis formed by “ RotX RotY RotZ “.

Notes
Use the getWord(), getWords(), and setWord() string functions for parsing the transform
vector.

See Also
setTransform

getWorldBox()
Purpose
Use the getWorldBox method to get the six-element floating-point vector containing two
three-space points representing the scaled and unrotated bounding box for this object.

Returns
Returns a six-element floating-point vector containing two three-space points
representing the bounds of this box:

"minX minY minZ maxX maxY maxZ"

Notes
This box is scaled such that it will contain all points on the current object, regardless
of scaling and rotation. Thus, as an irregularly shaped object rotates, its world box
will change.

See Also
getObjectBox

getWorldBoxCenter()
Purpose
Use the getWorldBoxCenter method to get the centroid of this objects world box.

Returns
Returns a three-element position vector representing the centroid of this objects's world
box.

See Also
getWorldBox

111

© Copyright 2000-2006 GarageGames Product of Hall Of Worlds, LLC.

setScale(scale)
Purpose
Use the setScale method to set the XYZ scaling factor for this object.

Syntax
scale – An XYZ vector containing the new scaling factor for this object.

Returns
No return value.

See Also
getScale

setTransform(transform)
Purpose
Use the setTransform method to apply a new transform to this object.

Syntax
transform – A seven-element matrix/vector containing the following information:

“ PosX PosY PoxZ RotX RotY RotZ theta “

, where theta is a rotation about the axis formed by “ RotX RotY RotZ “.

Returns
No return value.

Notes
This will both translate and rotate the object.

See Also
getTransform

A.2.55. ScriptGroup

Fields

Field Name Description Sample or Range
class A new namespace to place after the object's name and before ScriptObject in

the namespace chain.
“Rectangle”

superClass A new namespace to place after class and before ScriptObject in the
namespace chain.

“Polyhedron”

112

© Copyright 2000-2006 GarageGames Product of Hall Of Worlds, LLC.

A.2.56. ScriptObject

Fields

Field Name Description Sample or Range
class A new namespace to place after the object's name and before ScriptObject in

the namespace chain.
“Rectangle”

superClass A new namespace to place after class and before ScriptObject in the
namespace chain.

“Polyhedron”

A.2.57. ShapeBase

Globals

Variable Name Description Sample or Range
SB::DFDec Damage flash reduced by this amount per tick. (0.0, 1.0]

SB::WODec Whiteout reduced by this amount per tick. (0.0, 1.0]

pref::environmentMaps Enables environmental mapping for all shapes. [false , true]

Console Functions

setShadowDetailLevel()

setShadowDetailLevel(level)
Purpose
Use the setShadowDetailLevel function to modify the detail level of dynamically cast
shadows.

Syntax
level – A floating-point value between 0.0 and 1.0, where 0.0 is low-quality and
 1.0 is high quality.

Returns
No return value.

113

© Copyright 2000-2006 GarageGames Product of Hall Of Worlds, LLC.

Console Method Summaries

applyDamage applyImpulse applyRepair
canCloak getAIRepairPoint getCameraFov

getControllingClient getControllingObject getDamageFlash
getDamageLevel getDamagePercent getDamageState
getEnergyLevel getEnergyPercent getEyePoint

getEyeTransform getEyeVector getImageAmmo
getImageLoaded getImageSkinTag getImageState
getImageTrigger getMountedImage getMountedObject

getMountedObjectCount getMountedObjectNode getMountNodeObject
getMountSlot getMuzzlePoint getMuzzleVector

getObjectMount getPendingImage getRechargeRate
getRepairRate getShapeName getSkinName

getSlotTransform getVelocity getWhiteOut
isCloaked isDestroyed isDisabled
isEnabled isHidden isImageFiring

isImageMounted isMounted mountImage
mountObject pauseThread playAudio
playThread setCameraFov setCloaked

setDamageFlash setDamageLevel setDamageState
setDamageVector setEnergyLevel setHidden
setImageAmmo setImageLoaded setImageTrigger

setInvincibleMode setRechargeRate setRepairRate
setShapeName setSkinName setThreadDir

setVelocity setWhiteOut startFade
stopAudio stopThread unmount

Console Methods

Cloaking

canCloak isCloaked setCloaked

canCloak()
Purpose
Use the canCloak method to determine if this shape is able to cloak.

Returns
Returns true if this shape is allowed to cloak, false otherwise.

See Also
isCloaked, setCloaked

114

© Copyright 2000-2006 GarageGames Product of Hall Of Worlds, LLC.

isCloaked()
Purpose
Use the isCloaked method to determine if this shape is currently cloaked.

Returns
Returns true if the shape is currently cloaked.

See Also
canCloak, setCloaked

setCloaked(isCloaked)
Purpose
Use the setCloaked method to cloak or uncloak the current shape.

Syntax
isCloaked – A boolean value. If set to true, this shape will be cloaked, otherwise it
will be uncloaked.

Returns
No return value.

See Also
canCloak, isCloaked

Hiding and Fading

isHidden setHidden startFade

isHidden()
Purpose
Use the isHidden method to see if this shape is currently hidden.

Returns
Returns true if the object is hidden, false otherwise.

See Also
setHidden

Returns ID of this object's datablock.

setHidden(isHidden)
Purpose
Use the setHidden method to hide or unhide this shape.

Syntax
isHidden – A boolean value. If set to true, this shape will be hidden, otherwise it
will be un-hidden.

Returns
No return value.

115

© Copyright 2000-2006 GarageGames Product of Hall Of Worlds, LLC.

Notes
When an object is hidden it is temporarily removed from the scene and therefore will not
render or be collided with.

See Also
isHidden

startFade(time , delay , fadeOut)
Purpose
Use the startFade method to fade this shape in and out of view without removing it from
the scene.

Syntax
 time – specifies the timeit takes (in milliseconds) for the fade to complete.
 delay – specifes the time to wait (in milliseconds) before starting to fade.
fadeOut – If true, shape fades out, else shape fades in.

Returns
No return value.

Notes
Items have the ability to light their surroundings. When an Item with an active light is
fading out, the light it emits is correspondingly reduced until it goes out. Likewise,
when the item fades in, the light is turned-up till it reaches it's normal brightness.
A faded out object is still in the scene and can still be collided with, so if you want
to disable collisions for this shape after it fades out use setHidden to temporarily
remove this shape from the scene.

See Also
setHidden

Re-Skinning

getSkinName setSkinName

getSkinName()
Purpose
Use the getSkinName method to determine which skin this shape is currently using.
Returns
Returns a string containing the name of the skin this shape is using, or if this shape is
not set up to use multiple skins, it returns the NULL string.

Notes
Shapes must be skinned with specially named set of textures in order to enable re-
skinning. Please see GPGT volume 1 for more details.

See Also
setSkinName

116

© Copyright 2000-2006 GarageGames Product of Hall Of Worlds, LLC.

setSkinName(skinName)
Purpose
Use the setSkinName method to change the current skin for this shape.

Syntax
skinName – A string containing a valid skin name, as set up in the shapes set of
 skins. If this skin name does not match any of the textures used by
 this object, the object will not change skins.

Returns
No return value.

Notes
Shapes must be skinned with specially named set of textures in order to enable re-
skinning. Please see GPGT volume 1 for more details.

See Also
getSkinName

Damage

applyDamage applyRepair getAIRepairPoint getDamageLevel
getDamagePercent getDamageState isEnabled isDisabled

isDestroyed setDamageLevel setDamageState setDamageVector
setInvincibleMode setRepairRate

applyDamage(damage)
Purpose
Use the applyDamage method to apply the specified amount of damage to this shape.

Syntax
damage – A floating-point value specifying a positive amount of damage to apply to
 this shape.

Returns
No return value.

See Also
applyRepair, getDamageLevel

117

© Copyright 2000-2006 GarageGames Product of Hall Of Worlds, LLC.

applyRepair(repair)
Purpose
Use the applyRepair method to apply repair amount or repair to shape.

Syntax
repair – A positive number of repair points to apply to this shape.

Returns
No return value.

Notes
Before this will work, the self-repair must at least temporarily be disabled, by calling
setRepairRate with an argument of 0.

See Also
applyDamage, getDamageLevel, setRepairRate

getAIRepairPoint()
Purpose
Use the getAIRepairPoint method to get the the position of a specially named mesh node:
"AIRepairNode". It is used as a helper when deciding where an AI should 'stand' to repair
this shape.

Returns
Returns a three-element floating-point vector containing the position of a specially
named mesh node: "AIRepairNode". It is used as a helper when deciding where an AI should
'stand' to repair this shape.

Notes
If this node is not present in the shape, the position of the shape's centroid will be
returned instead.

getDamageLevel()
Purpose
Use the getDamageLevel method to determine the current level of damage this shape has
sustained.

Returns
Returns a floating point value between 0.0 and maxDamage (as specified in the shape's
datablock). 0.0 is equal to 'no damage'.

See Also
applyDamage, applyRepair, getDamagePercent, getDamageState

118

© Copyright 2000-2006 GarageGames Product of Hall Of Worlds, LLC.

getDamagePercent()
Purpose
Use the getDamagePercent method to get a relative percentage of damage for this shape,
where the equation for this percent is currentDamage / maxDamage.

Returns
Returns a floating point value between 0.0 (0%) and 1.0 (100%).

See Also
applyDamage, applyRepair, getDamageLevel, getDamageState

getDamageState()
Purpose
Use the getDamageState method to determine this shape's current damage state.

Returns
Returns a string specifying the current damage state for this shape:

 Enabled – Damage < Disabled Level
 Disabled – Disabled Level <= Damage < Destroyed Level
 Destroyed – DestroyedLevel <= Damage

See Also
applyDamage, applyRepair, getDamageLevel, getDamagePercent

isEnabled()
Purpose
Use the isEnabled method to determine if this shape's damage is less than its disabled
level.

Returns
Returns true as long as this shape's damage level is less than its disabled level.

See Also
getDamageLevel, getDamagePercent, getDamageState, isDisabled

isDisabled()
Purpose
Use the isDisabled method to determine if this shape's damage is greater than or equal to
its disabled level.

Returns
Returns true as long as this shape's damage level is greater than or equal to its
disabled level.

See Also
getDamageLevel, getDamagePercent, getDamageState, isEnabled

119

© Copyright 2000-2006 GarageGames Product of Hall Of Worlds, LLC.

isDestroyed()
Purpose
Use the isDestroyed method to determine if this shape's damage is greater than or equal
to its destroyed level.

Returns
Returns true as long as this shape's damage level is greater than or equal to its
destroyed level.

See Also
getDamageLevel, getDamagePercent, getDamageState, isEnabled, isDisabled

setDamageLevel(level)
Purpose
Use the setDamageLevel method to set the shape's damage to a new level.

Syntax
level – A floating-point value between 0.0 and inf.0, representing this shape's new
damage level.

Returns
No return value.

Notes
If level is greater than this shape's maxDamage, the damage level will be capped at
maxDamage. Setting this value will also update the shape's damage state.

See Also
getDamageLevel, getDamagePercent, getDamageState

setDamageState(state)
Purpose
Use the setDamageState method to change this shape's damage state.

Syntax
state – A string containing one of the allowed damage states: enabled, disabled,
 or destroyed.

Returns
Returns true on success, false otherwise.

Notes
Setting this value will NOT affect the shape's damage level, furthermore the next time
this shape's damage level is updated, the shape's damage state will change to match it.

See Also
setDamageLevel

120

© Copyright 2000-2006 GarageGames Product of Hall Of Worlds, LLC.

setDamageVector(damageOrigin)
Purpose
Use the setDamageVector method to establish the direction from which to be applied damage
will be coming. This will subsequently be used to correctly setup any explosion or debris
scatter that occcurs as a result of the damage.

Syntax
damageOrigin – An XYZ vector specifying the direction from which some to be applied
damage originated.

Returns
No return value.

Notes
Generally, this should be done before applying damage, but it can be done afterward.
However results may vary.

See Also
applyDamage

setInvincibleMode(time , speed)
Purpose
Use the setInvincibleMode method to temporarily make this shape invincible. i.e. Not able
to take damage. While the player is invincible, the screen will flicker blue with a
varying rate and a varying intensity.

Syntax
 time – A floating-point value specifying the time in seconds for this shape to
 remain invincible.
speed – A floating-point value between 0.0 and 1.0 controlling the rate at which
 the blue flickering effect occurs.

Returns
No return value.

Notes
The flickering effect is used to indicated to a player that his (or her) avatar is
invincible. Furthermore, this flicker rate will change and the flicker will become
increasingly translucent as the time elapses. If speed set to 1.0, the flickering is a bit
obscene. Generally, lower values are nicer.

121

© Copyright 2000-2006 GarageGames Product of Hall Of Worlds, LLC.

setRepairRate(rate)
Purpose
Use the setRepairRate method to allow this shape to auto-repair.

Syntax
rate – A floating-point value specifying the number of points to heal per tick, where a
tick is by default 1/32 of a second.

Returns
No return value.

Notes
If you wish to manually repair a shape using applyRepair, you will temporarily have to
disable auto-repair by calling this method with an argument of 0.

See Also
applyRepair

Damage Flashes & Whiteouts

getDamageFlash getWhiteOut setDamageFlash setWhiteOut

getDamageFlash()
Purpose
Use the getDamageFlash method to get the current level of damage flash occuring, if any.

Returns
Returns a floating-point value between 0.0 and 1.0 specifying the current level of damage
flash occuring.

Notes
A damage flash is a translucent red overlay that can be used to inform the player that
their avatar has taken damage. When a damage flash is applied, it will fade slowly over
time. This method merely lets us know how far along that fade has progressed.

See Also
setDamageFlash

122

© Copyright 2000-2006 GarageGames Product of Hall Of Worlds, LLC.

getWhiteOut()
Purpose
Use the getWhiteOut method to get the current level of whiteout occurring, if any.

Returns
Returns a floating-point value between 0.0 and 1.0 specifying the current level of
whiteout occurring.

Notes
A whiteout is a translucent white overlay that can be used to temporarily blind the
player. Usually this is done as a response to the player viewing a bright light of some
sort, but it must be done manually if we want this effect.

See Also
setWhiteOut

setDamageFlash(level)
Purpose
Use the setDamageFlash method to set the current damage flash level. When this level is
> 0.0 the screen is rendered with an an additive red overlay, which is limited to 76%
regardless of level. The value of level is auto-decremented over a few seconds.

Syntax
level – A floating-point value specifying the level of damage flash to apply.
 This value can be between 0.0 (0%) and 1.0 (100%).

Returns
No return value.

Notes
A damage flash is a translucent red overlay that can be used to inform the player that
their avatar has taken damage.

See Also
getDamageFlash

123

© Copyright 2000-2006 GarageGames Product of Hall Of Worlds, LLC.

setWhiteOut(level)
Purpose
Use the setWhiteOut method to set the current whiteout level. When this level is > 0.0
the screen is rendered with an additive white overlay. At 1.0, rendering is saturated
and the screen is entirely white. i.e. it is whited out. The value of level is auto-
decremented over a few seconds.

Syntax
level – A floating-point value specifying the level of whiteout to apply.
 This value can be between 0.0 (0%) and 1.0 (100%).

Returns
No return value.

Notes
A whiteout is a translucent white overlay that can be used to temporarily blind the
player.

See Also
getWhiteOut

Energy

getRechargeRate getEnergyLevel getEnergyPercent setRechargeRate
setEnergyLevel

getRechargeRate()
Purpose
Use the getRechargeRate method to get the current rechargeRate setting for this shape.

Returns
Returns a floating-point value between 0.0 and inf.0, equivalent to the number of energy
points this shape will auto-recharge every tick, where a tick is by default 1/32 of a
second.

See Also
setRechargeRate

getEnergyLevel()
Purpose
Use the getEnergyLevel method to return the current energy level of this shape.

Returns
Returns a floating-point value between 0.0 and maxEnergy.

See Also
getEnergyPercent, setEnergyPercent

124

© Copyright 2000-2006 GarageGames Product of Hall Of Worlds, LLC.

getEnergyPercent()
Purpose
Use the getEnergyPercent method to return the current energy level as a percentage.

Returns
Returns a floating-point value between 0.0 (0%) and 1.0 (100%), where this percentage is
calculated as: currentEnergy / maxEnergy.

See Also
getEnergyPercent, setEnergyLevel

setRechargeRate(rate)
Purpose
Use the setRechargeRate method to enable auto-recharging at rate points per tick.
Syntax
rate – A floating-point value between 0.0 and inf.0 equivalent to the number of energy
points to recharge this shape by each tick, where a tick is by default 1/32 of a second.

Returns
No return value.

Notes
Having auto-rechage enabled does not prevent manual application of recharge values, as is
the case with auto-repair and manual repairs.

See Also
getRechargeRate

setEnergyLevel(level)
Purpose
Use the setEnergyLevel method to set the shape's current energy level to a value between
0.0 and maxEnergy.

Syntax
level – A floating-point value between 0.0 and maxEnergy.

Returns
No return value.

Notes
If level is greater than maxEnergy, maxEnergy is used instead.

See Also
getEnergyLevel

125

© Copyright 2000-2006 GarageGames Product of Hall Of Worlds, LLC.

Eye Transform and Vectors

getEyePoint getEyeTransform getEyeVector

getEyePoint()
Purpose
Use the getEyePoint method to get the positions of this shape's 'eye' node.

Returns
If this shape has a node in it's mesh named 'eye', the position of that node will be
returned as a three-element floating-point vector. If no 'eye' node is present in this
shape's mesh, the position of the shape's centroid is returned instead.

See Also
getEyeTransform, getEyeVector

getEyeTransform()
Purpose
Use the getEyeTransform method to get the transform of this shape's 'eye' node.

Returns
Returns a transform, "posX posY posZ rotX rotY rotZ rotTheta", representative of a
shape's eye postion, orientation vector, and the rotation about that vector in radians.
If not 'eye' node is present in this shape's mesh, the transform of the shape itself is
returned.

See Also
getEyePoint, getEyeVector

getEyeVector()
Purpose
Use the getEyeVector method to retrieve a vector representing the direction the shape's
'eye' node is facing.

Returns
Returns a vector representing the direction a shape is looking. If this shape's mesh
contains no 'eye' node, the shape's forward vector will be returned instead.

Notes
Unless this shape is being observed through (i.e. the camera is hooked up to this shape
and using its transforms for viewing), this will default to getForwardVector().

See Also
getEyePoint, getEyeTransform

126

© Copyright 2000-2006 GarageGames Product of Hall Of Worlds, LLC.

Image/Weapons Specifics

getImageAmmo getImageLoaded getImageSkinTag getImageState
getImageTrigger getMuzzlePoint getMuzzleVector getPendingImage

isImageFiring setImageAmmo getImageLoaded setImageTrigger

getImageAmmo(slot)
Purpose
Use the getImageAmmo method to determine if the image mounted at slot has ammo.

Syntax
slot – An integer value between 0 and 7 representing a mount slot on this shape.

Returns
Returns true if there is an image mounted at slot and it has ammo, false otherwise.

Notes
Do not confuse slots with mount nodes. A shape can have up to 32 mount nodes, but only
has eight mount slots. Mount nodes are points on the mesh used by the shape while slots
are used to track how many objects and images are mounted to a shape.

See Also
setImageAmmo

getImageLoaded(slot)
Purpose
Use the getImageLoaded method to determine if the image mounted at slot is loaded.

Syntax
slot – An integer value between 0 and 7 representing a mount slot on this shape.

Notes
Do not confuse slots with mount nodes. A shape can have up to 32 mount nodes, but only
has eight mount slots. Mount nodes are points on the mesh used by the shape while slots
are used to track how many objects and images are mounted to a shape.

Returns
Returns true if there is an image mounted at slot and it is loaded, false otherwise.

Notes
Do not confuse slots with mount nodes. A shape can have up to 32 mount nodes, but only
has eight mount slots. Mount nodes are points on the mesh used by the shape while slots
are used to track how many objects and images are mounted to a shape.

See Also
setImageLoaded

127

© Copyright 2000-2006 GarageGames Product of Hall Of Worlds, LLC.

getImageSkinTag(slot)
Purpose
Use the getImageSkinTag method to get the skin tag for the image mounted at slot on this
shape.

Syntax
slot – An integer value between 0 and 7 representing a mount slot on this shape.

Returns
Returns an integer representing the tag number for the texture the image mounted at slot
is using.

Notes
Do not confuse slots with mount nodes. A shape can have up to 32 mount nodes, but only
has eight mount slots. Mount nodes are points on the mesh used by the shape while slots
are used to track how many objects and images are mounted to a shape.
Skin tags are selected when mounting an image to a shape.

See Also
mountImage

getImageState(slot)
Purpose
Use the getImageState method to determine state name that an image mounted in slot is at.
i.e. If an image is mounted in slot, what state is its state-machine currently in?

Syntax
slot – An integer value between 0 and 7 representing a mount slot on this shape.

Returns
Returns a string representing the state name that the image mounted at slot is currently
at. If there is not state machine defined for the image at slot, or if there no image at
slot, or if slot is > 7, this method returns “Error”.

Notes
Do not confuse slots with mount nodes. A shape can have up to 32 mount nodes, but only
has eight mount slots. Mount nodes are points on the mesh used by the shape while slots
are used to track how many objects and images are mounted to a shape.

128

© Copyright 2000-2006 GarageGames Product of Hall Of Worlds, LLC.

getImageTrigger(slot)
Purpose
Use the getImageTrigger method to get the trigger value for the image mounted at slot.

Syntax
slot – An integer value between 0 and 7 representing a mount slot on this shape.

Returns
Returns a boolean value specifying whether the trigger for the image at slot is active
(true), or inactive (false). If no image is mounted at slot or if slot is > 7, this
method returns 0.

Notes
Do not confuse slots with mount nodes. A shape can have up to 32 mount nodes, but only
has eight mount slots. Mount nodes are points on the mesh used by the shape while slots
are used to track how many objects and images are mounted to a shape.

See Also
setImageTrigger

getMuzzlePoint(slot)
Purpose
Use the getMuzzlePoint method to get the position of the 'muzzlePoint' node for the image
mounted at slot.

Syntax
slot – An integer value between 0 and 7 representing a mount slot on this shape.

Notes
Do not confuse slots with mount nodes. A shape can have up to 32 mount nodes, but only
has eight mount slots. Mount nodes are points on the mesh used by the shape while slots
are used to track how many objects and images are mounted to a shape.

Returns
If an image is mounted at slot, and if it specifies the node 'muzzlePoint', this method
will return the XYZ position of the node. If there is an image mounted at slot, and that
image does not contain a 'muzzlePoint' node, this method returns the position of the
image's centroid. In all other cases, this method returns “0 0 0”.

See Also
getMuzzleVector

129

© Copyright 2000-2006 GarageGames Product of Hall Of Worlds, LLC.

getMuzzleVector(slot)
Purpose
Use the getMuzzleVector method to get the direction the 'muzzlePoint' node for the image
mounted at slot is pointing.

Syntax
slot – An integer value between 0 and 7 representing a mount slot on this shape.

Returns
If an image is mounted at slot, and if it specifies the node 'muzzlePoint', this method
will return the XYZ pointing vector of the node. If there is an image mounted at slot,
and that image does not contain a 'muzzlePoint' node, this method returns the equivalent
of a forward vector for the weapon itself. In all other cases, this method returns “0 0
0”.

The returned vector can be modified by setting the image.correctMuzzleVector field. If
this value is set to true, the vector will point from its origin to the position the
player's eye is looking, otherwise, it will point in the true direction the weapon or
weapon's muzzlePoint is facing, which may not be exactly where the player is looking.

Notes
Do not confuse slots with mount nodes. A shape can have up to 32 mount nodes, but only
has eight mount slots. Mount nodes are points on the mesh used by the shape while slots
are used to track how many objects and images are mounted to a shape.

See Also
getMuzzlePoint

getPendingImage(slot)
Purpose
Use the getPendingImage method to determine if any images are pending for the specified
slot.

Syntax
slot – An integer value between 0 and 7 representing a mount slot on this shape.

Returns
Returns 0 if no images are pending or an integer representing the image datablock ID if
an image is pending.

Notes
A pending image is an image that is waiting to mount a slot but is prevented from doing
so by the presence of another 'blocking' image.

Do not confuse slots with mount nodes. A shape can have up to 32 mount nodes, but only
has eight mount slots. Mount nodes are points on the mesh used by the shape while slots
are used to track how many objects and images are mounted to a shape.

130

© Copyright 2000-2006 GarageGames Product of Hall Of Worlds, LLC.

isImageFiring(slot)
Purpose
Use the isImageFiring method to determine if this image's state machine is currently in a
state with the stateFire field set to true.

Syntax
slot – An integer value between 0 and 7 representing a mount slot on this shape.

Returns
Returns true if this image's state machine is currently in a state with the stateFire
field set to true, false otherwise.

Notes
Do not confuse slots with mount nodes. A shape can have up to 32 mount nodes, but only
has eight mount slots. Mount nodes are points on the mesh used by the shape while slots
are used to track how many objects and images are mounted to a shape.

See Also
getImageState

setImageAmmo(slot , hasAmmo)
Purpose
Use the setImageAmmo method to give an image in slot ammo, or to remove ammo from an
image in slot.

Syntax
 slot – An integer value between 0 and 7 representing a mount slot on this shape.
hasAmmo – A boolean value. If set to true, this image is set has having ammo,
 otherwise it is set as not having ammo.

Returns
Returns true on success, and false on failure.

Notes
Weapons support both 'ammo' and 'loaded' as distinct concepts.

Do not confuse slots with mount nodes. A shape can have up to 32 mount nodes, but only
has eight mount slots. Mount nodes are points on the mesh used by the shape while slots
are used to track how many objects and images are mounted to a shape.

See Also
setImageLoaded

131

© Copyright 2000-2006 GarageGames Product of Hall Of Worlds, LLC.

setImageLoaded(slot , loaded)
Purpose
Use the setImageLoaded method to set an image in slot as loaded or unloaded.

Syntax
 slot – An integer value between 0 and 7 representing a mount slot on this shape.
hasAmmo – A boolean value. If set to true, this image is set has being loaded,
 otherwise it is set as not being loaded.

Returns
Returns true on success, and false on failure.

Notes
Weapons support both 'ammo' and 'loaded' as distinct concepts.

Do not confuse slots with mount nodes. A shape can have up to 32 mount nodes, but only
has eight mount slots. Mount nodes are points on the mesh used by the shape while slots
are used to track how many objects and images are mounted to a shape.

See Also
setImageAmmo

setImageTrigger(slot , triggered)
Purpose
Use the setImageTrigger method to set the trigger state for an image in slot.

Syntax
 slot – An integer value between 0 and 7 representing a mount slot on
 this shape.
triggered – A boolean value. If set to true, this image is triggered (firing),
 otherwise it is un-triggered (not firing).

Returns
Returns true on success, and false on failure.

Notes
Do not confuse slots with mount nodes. A shape can have up to 32 mount nodes, but only
has eight mount slots. Mount nodes are points on the mesh used by the shape while slots
are used to track how many objects and images are mounted to a shape.

132

© Copyright 2000-2006 GarageGames Product of Hall Of Worlds, LLC.

Velocity

getVelocity() setVelocity()

getVelocity()
Purpose
Use the getVelocity method to get the current velocity of this shape.

Returns
Returns an XYZ vector equivalent to the magnitude and direction of this shape's movement.

See Also
applyImpulse, setVelocity

setVelocity(velocity)
Purpose
Use the setVelocity method to set this shape's current velocity.

Syntax
veclocity – An XYZ vector equivalent to the new magnitude and direction of this
 shape's movement.

Returns
Returns true on success, false on failure.

Notes
It is sometimes nicer to use this method than applyImpluse because with this we can
ignore a shape's mass while with applyImpluse mass directly affects the end velocity of
the shape.

See Also
appyImpulse, getVelocity

133

© Copyright 2000-2006 GarageGames Product of Hall Of Worlds, LLC.

Impulses

applyImpulse

applyImpulse(position , impulseVector)
Purpose
Use the applyImpulse method to apply an instantaneous acceleration to a shape at world
position.

Syntax
 position – An XYZ vector specifying the position at which to apply the impulse.
impulseVector – An XYZ vector encoding the magnitude and direction of the impulse.

Returns
No return value.

Notes
To apply an impulse, the shape must have a non-zero positive mass, or applying an impulse
will crash the engine. Also, applying an impulse whose magnitude is >= about 40 times the
mass of a shape may cause the engine to lock up temporarily.

See Also
setVelocity

Camera Settings

getCameraFOV setCameraFOV

getCamerFOV()
Purpose
Use the getCamerFOV method to get the current field-of-view FOV.

Returns
Returns the current FOV setting, a value between 0.0 and 180.0

See Also
setCameraFOV

134

© Copyright 2000-2006 GarageGames Product of Hall Of Worlds, LLC.

setCamerFOV(FOV)
Purpose
Use the setCamerFOV method to set the current field-of-view (FOV) if this is a camera
shape, or if a camera shape is using this shape to get it's FOV setting.

Syntax
FOV – Field-of-view. A floating-point value between 0.0 and 180.0.

Returns
No return value.

Notes
Changing the FOV will make the view zoom in and out, depending on the setting. i.e. If
we start at an default FOV of 90.0 and increase it to 270.0, the scene will zoom out. If
we change it to 35.0 it will zoom in.

See Also
getCameraFOV

Animations

pauseThread playThread setThreadDir stopThread

pauseThread(thread)
Purpose
Use the pauseThread method to pause a currently playing animation.

Syntax
thread – An integer value between 0 and 3 specifying a previously started
 animation sequence.

Returns
Returns true if there was a previous thread playing, false otherwise.

See Also
playThread, stopThread

135

© Copyright 2000-2006 GarageGames Product of Hall Of Worlds, LLC.

playThread(thread , sequenceName)
Purpose
Use the playThread method to play a new sequence specified by sequenceName in the
animation thread.

Syntax
 thread – An integer value between 0 and 3 specifying a thread/slot to start
 this animation in.
sequenceName – A valid animation name for the mesh this shape is using.

Returns
Returns true if the thread was successfully started, otherwise returns false.

Notes
Playing an new animation in a thread that already has an active animation will stop the
active animation and reset affected nodes to their pre-animation positions.

See Also
pauseThread, setThreadDir, stopThread

setThreadDir(thread , forward)
Purpose
Use the setThreadDir method to set the direction a specific thread should be played in.

Syntax
 thread – An integer value between 0 and 3 specifying a previously started
 animation sequence.
forward – A boolean value. If set to true, the animation will play forward,
 otherwise it will play in reverse.

Returns
Returns true if the direction could be set for the specified thread, otherwise returns
false.

Notes
A thread needs to have already been started for this to work, but after that this will
work on any sequence whether it be already completed, or a cyclic animation that never
ends.

See Also
pauseThread, playThread, stopThread

136

© Copyright 2000-2006 GarageGames Product of Hall Of Worlds, LLC.

stopThread(thread)
Purpose
Use the stopThread method to stop a previously started sequence from playing.

Syntax
 thread – An integer value between 0 and 3 specifying a previously started
 animation sequence.

Returns
Returns true if the thread was successfully stopped, otherwise returns false.

See Also
pauseThread, playThread, setThreadDir

Sound

playAudio stopAudio

playAudio(thread , audioProfile)
Purpose
Use the playAudio method to play a sound specified by audioProfile in the slot specified
by thread.

Syntax
 thread – An integer value between 0 and 3 specifying a slot to play the
 sound in.
audioProfile – An audioprofile datablock previously created using the datablocks
 keyword, not the new keyword.

Returns
Returns true if the sound was successfully started, otherwise returns false.

Notes
Be sure to only use audioProfiles made using the datablock keyword or the sounds will not
play on remote clients.

See Also
stopAudio

137

© Copyright 2000-2006 GarageGames Product of Hall Of Worlds, LLC.

stopAudio(thread)
Purpose
Use the stopAudio method to stop a previously started audio thread.

Syntax
thread – An integer value between 0 and 3 specifying a slot in which a sound was
 previously started.

Returns
Returns true if the sound was successfully stopped, otherwise returns false.

See Also
playAudio

Mounting

getMountedImage getMountedObjectCount getMountedObjectNode
getMountNodeObject getMountSlot getMountedObject

getObjectMount getPendingImage getSlotTransform
isImageMounted isMounted mountImage

mountObject unmount unmountImage
unmountObject

getMountedImage(slot)
Purpose
Use the getMountedImage method to get the datablock ID of the image mounted in slot.

Syntax
slot – An integer value between 0 and 7 representing a mount slot on this shape.

Returns
Returns the datablock ID of the image mounted in slot, or zero if no image is mounted.

Notes
Do not confuse slots with mount nodes. A shape can have up to 32 mount nodes, but only
has eight mount slots. Mount nodes are points on the mesh used by the shape while slots
are used to track how many objects and images are mounted to a shape.

See Also
isImageMounted, mountImage, unmountImage

getMountedObjectCount()
Purpose
Use the getMountedObjectCount method to determine how many objects are currently mounted
to this shape.

Returns
Returns an integer between 0 and 8 representing the number of objects that are mounted to
this shape.

138

© Copyright 2000-2006 GarageGames Product of Hall Of Worlds, LLC.

Notes
A shape may have at most eight objects mounted to it at any one time.

This method does not count images that are mounted to the shape.

See Also
mountObject, unmountObject

getMountedObjectNode(slot)
Purpose
Use the getMountedObjectNode method to determine the mount node index of an object
mounted in slot.
Syntax
slot – An integer value between 0 and 7 representing a mount slot on this shape.

Returns
Returns a numeric value between 0 and 31 if an object is mounted is slot, otherwise
returns -1.

Notes
Do not confuse slots with mount nodes. A shape can have up to 32 mount nodes, but only
has eight mount slots. Mount nodes are points on the mesh used by the shape while slots
are used to track how many objects and images are mounted to a shape.

See Also
getMountNodeObject
Return the mount node used by the object/image mounted at slot.

getMountNodeObject(node)
Purpose
Use the getMountNodeObject method to get the ID of the object mounted at mount node.

Syntax
node – A node value between 0 and 31 representing a mount node in the mesh used
 by this shape.

Returns
Returns an integer value equal to the ID of the object mounted on node. If not object is
mounted at node, this method returns -1.

Notes
Do not confuse slots with mount nodes. A shape can have up to 32 mount nodes, but only
has eight mount slots. Mount nodes are points on the mesh used by the shape while slots
are used to track how many objects and images are mounted to a shape.

See Also
getMountedObjectNode

139

© Copyright 2000-2006 GarageGames Product of Hall Of Worlds, LLC.

getMountSlot(imageHandle)
Purpose
Use the getMountSlot method to determine what slot the image datablock specified by
imageHandle is mounted in.

Syntax
imageHandle – The name of ID of a ShapeBaseImageData datablock.

Returns
Returns a value between 0 and 7 if imageHandle is mounted to this shape, or -1 if it is
not.

getMountedObject(slot)
Purpose
Use the getMountedObject method to get the ID of the object mounted at mount slot.

Syntax
slot – An integer value between 0 and 7 representing a mount slot on this shape.

Returns
Returns an integer value equal to the ID of object mounted is slot. If not object is
mounted in this slot, the method returns -1.

Notes
Do not confuse slots with mount nodes. A shape can have up to 32 mount nodes, but only
has eight mount slots. Mount nodes are points on the mesh used by the shape while slots
are used to track how many objects and images are mounted to a shape.

See Also
getMountedObjectNode

getObjectMount()
Purpose
Use the getObjectMount method to get the ID of the object this object is mounted to.

Returns
Returns an integer value representing the ID of an object that this shape is mounted to,
or 0 if this object is not mounted to another object.

getPendingImage(slot)
Purpose
Use the getPendingImage method to get the ID of an image that is pending for slot.

Syntax
slot – An integer value between 0 and 7 representing a mount slot on this shape.

Returns
Returns an integer value representing the ID of a shapeBaseImageData object that is
pending for slot. If no image is pending, returns 0.

140

© Copyright 2000-2006 GarageGames Product of Hall Of Worlds, LLC.

Notes
Do not confuse slots with mount nodes. A shape can have up to 32 mount nodes, but only
has eight mount slots. Mount nodes are points on the mesh used by the shape while slots
are used to track how many objects and images are mounted to a shape.

getSlotTransform(slot)
Purpose
Use the getSlotTransform method to get the transform the specified slot.

Syntax
slot – An integer value between 0 and 7 representing a mount slot on this shape.

Returns
Returns a seven-element floating-point vector representing the transform of the node that
an object tracked in slot is mounted to. i.e. Once we have a shape mounted to another
shape, we can determine what slot the shape is tracked in and then get the transform for
the node that is being used for the mount.

Notes
Do not confuse slots with mount nodes. A shape can have up to 32 mount nodes, but only
has eight mount slots. Mount nodes are points on the mesh used by the shape while slots
are used to track how many objects and images are mounted to a shape.

isImageMounted(imageHandle)
Purpose
Use the isImageMounted method to determine if the shapeBaseImageData specified by
imageHandle is mounted on this shape.

Syntax
imageHandle – The datablock ID of a shapeBaseImageData object to check for.

Returns
Returns true if the specified image is mounted to this shape, otherwise returns false.

isMounted()
Purpose
Use the isMounted method to see if this object is mounted to another shape.

Returns
Returns true if this shape is mounted to another shape, otherwise returns false.

141

© Copyright 2000-2006 GarageGames Product of Hall Of Worlds, LLC.

mountImage(imageHandle, slot [, loaded [, skinName]])
Purpose
Use the mountImage method to mount the image specified by imageHandle to this image,
using slot. Optionally, this image can be set to the 'loaded' state and given an
alternate skinName.

Syntax
imageHandle – The ID or name of a valid shapeBaseImageData datablock.
 slot – An integer value between 0 and 7 representing a mount slot on
 this shape.
 loaded – A boolean value. If set to true, the image the image's loaded
 state will be true.
 skinName – A optional skin tag used to specify a specialized 'team' skin for
 the image.

Returns
Returns true on success, false otherwise.

Notes
Do not confuse slots with mount nodes. A shape can have up to 32 mount nodes, but only
has eight mount slots. Mount nodes are points on the mesh used by the shape while slots
are used to track how many objects and images are mounted to a shape.

Don't forget. Images specify the node that the mount to in their 'mountPoint' field.

See Also
mountObject

mountObject(objectHandle , node)
Purpose
Use the mountObject method to mount the shape specified by objectHandle to this shape at
mount node.

Syntax
objectHandle – The ID or name of the shape to mount to this shape.
 node – The mount node on this shape's mesh upon which to mount the shape.

Returns
Returns true on a successful mount, otherwise returns false.

Notes
Do not confuse slots with mount nodes. A shape can have up to 32 mount nodes, but only
has eight mount slots. Mount nodes are points on the mesh used by the shape while slots
are used to track how many objects and images are mounted to a shape.

See Also
mountImage

142

© Copyright 2000-2006 GarageGames Product of Hall Of Worlds, LLC.

unmount()
Purpose
Use the unmount method to force this object to be unmounted from a shape it is mounted to.

Returns
No return value.

See Also
unmountImage, unMountObject

unmountImage(slot)
Purpose
Use the unmountImage method to unmount an image mounted to this shape in slot.

Syntax
slot – An integer value between 0 and 7 representing a mount slot on this shape.

Returns
Returns true if the image was unmounted successfully, otherwise returns false if no image
was present in that slot. Images cannot 'resist' unmounting.

Notes
Do not confuse slots with mount nodes. A shape can have up to 32 mount nodes, but only
has eight mount slots. Mount nodes are points on the mesh used by the shape while slots
are used to track how many objects and images are mounted to a shape.

See Also
unmountObject

unmountObject(objectHandle)
Purpose
Use the unmountObject method to cause the object specified by objectHandle to unmount
from this shape.

Syntax
objectHandle – The ID or name of an object mounted to this shape.

Returns
Returns true if objectHandle is in fact mounted to this shape and is then unmounted by
this method. Returns false if objectHandle is not mounted to this shape.

See Also
unmountImage

143

© Copyright 2000-2006 GarageGames Product of Hall Of Worlds, LLC.

The Control Object

getControllingClient() getControllingObject()

getControllingClient()
Purpose
Use the getControllingClient method to get the ID of the client controlling this shape.
Returns
Returns the ID of the GameConnection (client) controlling this shape, or 0 if no client
is controlling this shape.

See Also
getControllingObject

getControllingObject()
Purpose
Use the getControllingObject method to get the ID of the object controlling this object.
Shapes may controlled by other shapes by having the controlling shape pass commands sent
to it from the client to a surrogate object instead. i.e. Object A can be controlled by
the client and send movement inputs to object B, in effect controlling object B.

Returns
Returns the ID of the shape controlling this object, otherwise if no object is
controlling this shape returns 0.

The playe class has methods for setting up control of other shapes.

A.2.59. ShapeBaseData

Fields

Field Name Description Sample or Range
Rendering
cloakTexture Path to texture to be used when shape is cloaked. See lesson samples.

emap A boolean value specifying whether to render environmental map
or not.

false

shapeFile Path to DTS file containing the model for this shape. See lesson samples.

Physics
density The density of this shape. Affects whether this shape will sink or

float in water (relative to water density).
See lesson samples.

drag Drag presented by this shape as it moves through the air. 0

mass Mass for this shape. 100

Damage
debris DebrisData datablock to use for post-destruction debris. See lesson samples.

debrisShapeName Path to DTS file containing the model for this shape which is to
be rendered post destruction.

See lesson samples.

144

© Copyright 2000-2006 GarageGames Product of Hall Of Worlds, LLC.

Field Name Description Sample or Range
explosion ExplosionData datablock to use for an explosion when this

shape is destroyed
See lesson samples.

isInvincible If this boolean value is true, this shape does not take damage. false

maxDamage Maximum damage this shape can accrue. 100

renderWhenDestroyed Boolean value specifying whether to render this shape or not
once it's damageState is 'Destroyed'.

false

underwaterExplosion ExplosionData datablock to use for an explosion when this shape
is destroyed and submerged in water.

See lesson samples.

Damage
Reference Values

These values do not change engine functions and are meant to
be used by scripts.

destroyedLevel Damage level at which this shape will be considered destroyed. 100

disabledlevel Damage level at which this shape will be considered disabled. 50

repairRate Rate (in points per tick) at which this shape is repaired when
current damage > 0.

0.03125
(== 1 point per second)

Energy
inheritEnergyFromMount When mounted, use mount's energy. false

maxEnergy Maximum energy this object can have. 50

Energy Reference Values These values do not change engine functions and are meant to
be used by scripts.

rechargeRate Rate (in points per tick) at which this shape is recharged when
current energy < maxEnergy.

0.03125
(== 1 point per second)

Camera Settings
cameraDefaultFOV Initial field of view for the camera. [0.0 , 180]

cameraMaxDist Maximum distance from camera to observing object. [cameraMinDist , inf)

cameraMaxFOV Maximum field of view for the camera. [0.0 , 180]

cameraMinDist Minimum distance from camera to observing object. [0.0 , cameraMaxDist]

cameraMinFOV Minimum field of view for the camera. [0.0 , 180]

firstPersonOnly Render shape when in first person (only applies to shapes that
are observed through.

[false , true]

observeThroughObject If true, camera will use this shape's camera parameters, when
this is the controlled object

[false , true]

useEyePoint Use the eye node specified by this shape instead. [false , true]

Miscellaneous
aiAvoidThis A boolean hit to be used by AI scripts to determine if an AI

agent should 'avoid' this object. Scripts are responsible for
dealing with this.

[false , true]

computeCRC Calculate a cyclic-redundancy-code for this shape. [false , true]

Console Method Summaries

checkDeployPos getDeployTransform

145

© Copyright 2000-2006 GarageGames Product of Hall Of Worlds, LLC.

Console Methods

Deployment Helpers

getDeployTransform(position , normal)
Purpose
Use the getDeployTransform method to retrieve the transform that would result from
deploying an unscaled object using this datablock at position with the specified normal.

Syntax
position – The postion to create the transform for.
 normal – A vector representing the object's UP vector. This can be thought of
 as an object's tilt or leaning vector. If the object is to be placed at
 an angle, pass in a unit-vector that has the same orientation as a
 vector starting at position and aligning with the required angle.

Returns
Returns a deployment (placement) transform for an un-scaled and un-rotated datablock
derived shape placed at the required location with an optional tilt.

See Also
checkDeployPos

checkDeployPos(transform)
Purpose
Use the checkDeployPos method to determine if placing an unscaled version of an object
using this datablock will cause that shape to be embedded in a staticShape or an
InteriorInstance.

Syntax
transforms – A normal transform, or a transform calculated using getDeployTransform.

Returns
Returns false if the placement will result in the new shape being embedded in a
staticShape or an InteriorInstance. Otherwise, it will return true.

Notes
This check doesn't examine the area for all possible object, just staticShapes and
Interiors. To include more objects you will need to edit the engine and add them to the
list of 'interesting' objects.

See Also
getDeployTransform

146

© Copyright 2000-2006 GarageGames Product of Hall Of Worlds, LLC.

A.2.60. ShapeBaseImageData
ShapeBaseImageData has no associated class as other xyzData classes do. This special class is used to

represent geometry that can only be mounted to an existing ShapeBase object. ShapeBaseImageData objects
cannot otherwise be instantiated like other Shape objects.

Fields

Field Name Description Sample or Range
Rendering

emap A boolean value specifying whether to render environmental map or
not.

--

firstPerson If true, render this image in 1st POV. --

shapeFile Path to DTS file containing the model for this shape. --

Projectile
projectile ProjectileData datablock --

Cloaking
cloakable A boolean value specifying whether this image cloaks

when the shape it is mounted to is cloaked.
--

Mounting
eyeOffset Rendering position offset (only affects 1st POV). --

eyeRotation Rendering rotation offset (only affects 1st POV). --

mountPoint Named mount node to mount to on the receiving shape. [0 , 31]

offset Position offset from mount point. --

rotation Rotation offset from mount point. --

Lighting
lightColor Three-element floating-point vector specifying RGB components of

light.
“r g b a”

In range [0.0 , 1.0]

lightRadius Floating-point value specifying radius for light emission. [0.0 , 20.0]

lightTime Integer value specifying time (in milliseconds) for light to pulse on-
off-on.

[0 , inf)

lightType String specifying type of light does this image emits.
“NoLight”
“ConstantLight”
”PulsingLight”

Physics
mass Floating-point value specifying mass for this image. --

Weapons
accuFire Has no effect. --

casing DebrisData datablock to use for ejected casings.

correctMuzzleVector Boolean value specifying that the muzzle vector should be
calculated from the players eyeVector, not from the muzzleVector of
the image.

[false , true]

minEnergy Floating-point value specifying minimum energy required to 'fire'
this weapon.

--

shellExitDir Ejection vector for ejected casings. --

shellExitVariance Floating-point value specifying variance in ejection vector direction. [0.0 , 180.0]

shellVelocity Floating-point value specifying shell ejection velocity. [0.0 , inf]

usesEnergy Boolean value specifying that this weapon uses energy. [false , true]

147

© Copyright 2000-2006 GarageGames Product of Hall Of Worlds, LLC.

Field Name Description Sample or Range
State Machine

stateAllowImageChange[] If false, will temporarily block other images from mounting while the
state machine is executing the tasks in this state.

[false , true]

stateDirection[] Direction of animation. true is forward. [false , true]

stateEjectShell[] Eject shell in this state. [false , true]

stateEmitter[] Play this particle emitter (at muzzle point or specified node).

stateEmitterNode[] Integer value specifying node to attach emitter to. Default is to
mount to named node 'muzzlepoint'

stateEmitterTime[] Floating-point value specifying time to run emitter.

stateEnergyDrain[] Floating-point value specifying

stateFire[] First state with this a true is the state entered by the client when it
receives the 'fire' event.

stateIgnoreLoadedForReady[] If set to true, and both ready and loaded transitions are true, the
ready transition will be taken instead of the loaded transition.

[false , true]

stateLoadedFlag[] Set loaded state of shape to specified value.
“Ignore”
“Loaded”
“Empty”

stateName Name of this state.

stateRecoil[] Play specified recoil animation.
“NoRecoil”

“LightRecoil”
“MediumRecoil” “HeavyRecoil”

stateScript[] Method to execute on entering this state. Scoped to this image
class name, then shapeBaseImageData, ...

stateSequenceRandomFlash[] Play random flash animation. [false , true]

stateSequence[] Play this animation.

stateSound[] Play sound specified by this audio file.

stateSpinThread[] Play this spin animation (blended).

“Ignore”
“Stop”

“SpinUp”
”SpinDown”
“FullSpeed”

stateTimeoutValue[] Time in seconds for this state to time out. [0.0 , inf)

stateTransitionOnNotLoaded[] Transition to this named state if the state of loaded is 'Empty'. someStateName

stateTransitionOnTriggerDown[] Transition to this named state if the fire button is pressed. someStateName

stateTransitionOnTriggerUp[] Transition to this named state if the fire button is released. someStateName

stateTransitionOnAmmo[] Transition to this named state when the ammo the image has
ammo.

someStateName

stateTransitionOnLoaded[] Transition to this named state when the loaded state of the image is
'Loaded'.

someStateName

stateTransitionOnNoAmmo[] Transition to this named state when the the image has no ammo. someStateName

stateTransitionOnNoTarget[] Transition to this named state when the image has no target. someStateName

stateTransitionOnNotWet[] Transition to this named state when the image is not underwater. someStateName

stateTransitionOnWet[] Transition to this named state when image is underwater. someStateName

stateTransitionTarget[] Transition to this named state when the image has a target. someStateName

stateTransitionTimeout[] Transition to this named state when the current state transition
timeout time has elapsed.

someStateName

stateWaitForTimeout[] If false, this state ignores timeout and transitions immediately if
other tests are met.

[false , true]

148

© Copyright 2000-2006 GarageGames Product of Hall Of Worlds, LLC.

Field Name Description Sample or Range
Miscellanous
computeCRC Verify that the CRC of the client's image matches the server's CRC

for the image on load by client.
[false , true]

A.2.61. SimDataBlock
This class is the root class for all datablock classes. It does not define any fields or console methods of it’s

own.

A.2.62. SimGroup
Same fields as SimSet.

A.2.63. SimObject

Console Method Summaries

delete dump getClassName
getGroup getId getName
getType save schedule

Console Methods

delete()
Purpose
Use the delete method to delete this object.

Returns
No return value.

Notes
When an object is deleted, it automatically:
• Unregisters its ID and name (if it has one) with the engine.
• Removes itself from any SimGroup or SimSet it may be a member of.
• (eventually) returns the memory associated with itself and its non-dynamic members.
• Cancels all pending %obj.schedule() events.

For objects in the GameBase, ScriptObject, or GUIControl hierarchies, an object will
first:
• Call the onRemove() method for the object's namespace.

149

© Copyright 2000-2006 GarageGames Product of Hall Of Worlds, LLC.

dump()
Purpose
Use the dump method to display the following information about this object:

• All engine registered console methods (including parent methods) for this object.
• All script registered console methods (including parent methods) for this object.
• All Non-Dynamic Fields
• All Dynamic Fields

Returns
No return value.

getClassName()
Purpose
Use the getClassName method to get the ConObject class name of this object.

Returns
Returns a string containing the ConObject registered name of this object's class.

Some Possible Returns:
• SimObject
• WheeledVehicle
• Player
• ...

See Also
getType

getGroup()
Purpose
Use the getGroup method to determine if this object is contained in a SimGroup and if so,
which one.

Returns
Returns the ID of the SimGroup this shape is in or zero if the shape is not contained in
a SimGroup.

getId()
Purpose
Use the getId method to get the numeric ID of this shape.

Returns
Returns the unique numeric ID of this shape.

See Also
getName, setName

150

© Copyright 2000-2006 GarageGames Product of Hall Of Worlds, LLC.

getName()
Purpose
Use the getName method to get the name (if any) for this shape.

Returns
Returns a string containing the name of this shape, or the NULL string if this shape was
never given a name (either when created or subsequently).

See Also
getID, setName

getType()
Purpose
Use the getType method to get the type for this object. This type is an integer value
composed of bitmasks. For simplicity, these bitmasks are defined in the engine and
exposed for our use as global variables.

Returns
Returns a bit mask containing one or more set bits.

Notes
To simplify the writing of scripts, a set of globals has been provided containing the bit
setting for each class corresponding to a particular type. For a complete list of the bit
masks, see the 'Shape Type Bitmasks' table.

-$TypeMasks::GameBaseObjectType
-- $TypeMasks::EnvironmentObjectType
-- $TypeMasks::ExplosionObjectType
-- $TypeMasks::ProjectileObjectType
-- $TypeMasks::ShapeBaseObjectType
--- $TypeMasks::CameraObjectType
--- $TypeMasks::ItemObjectType
--- $TypeMasks::MarkerObjectType
--- $TypeMasks::PlayerObjectType
--- $TypeMasks::StaticShapeObjectType
--- $TypeMasks::VehicleObjectType
-- $TypeMasks::TriggerObjectType
- $TypeMasks::InteriorObjectType
- $TypeMasks::StaticObjectType
- $TypeMasks::TerrainObjectType
- $TypeMasks::VehicleBlockerObjectType
- $TypeMasks::WaterObjectType

Two interesting general masks are:
• $TypeMasks::EnvironmentObjectType – Matches sky, sun, lightning, particle emitter
nodes.

• $TypeMasks::StaticObjectType – Matches – fxFoliageReplicator, fxLight,
fxShapeReplicator, fxSunlight, interiorInstance, lightning, mirrorSubObject,
missionMarker, staticShape, terrain, tsStatic

See Also
getClassName

151

© Copyright 2000-2006 GarageGames Product of Hall Of Worlds, LLC.

$TypeMasks::StaticObjectType $TypeMasks::EnvironmentObjectType

$TypeMasks::TerrainObjectType $TypeMasks::InteriorObjectType

$TypeMasks::WaterObjectType $TypeMasks::TriggerObjectType

$TypeMasks::MarkerObjectType $TypeMasks::GameBaseObjectType

$TypeMasks::ShapeBaseObjectType $TypeMasks::CameraObjectType

$TypeMasks::StaticShapeObjectType $TypeMasks::PlayerObjectType

$TypeMasks::ItemObjectType $TypeMasks::VehicleObjectType

$TypeMasks::VehicleBlockerObjectType $TypeMasks::ProjectileObjectType

$TypeMasks::ExplosionObjectType

Shape Type Bitmasks

schedule(time , command , <arg1 ... argN>)
Purpose
Use the schedule method to schedule an action to be executed upon this object time
milliseconds in the future.

Syntax
 time – Time in milliseconds till action is scheduled to occur.
 command – Name of the command to execute. This command must be scoped to this
 object (i.e. It must exist in the namespace of the object), otherwise
 the schedule call will fail.
arg1...argN – These are optional arguments which will be passed to command. This
 version of schedule automatically passes the ID of %obj as arg0 to
 command.

Returns
Returns an integer schedule ID.

Notes
The major difference between this and the schedule console function is that if this
object is deleted prior to the scheduled event, the event is automatically canceled.

times should not be treated as exact since some 'simulation delay' is to be expected.
The minimum resolution for a scheduled event is ~32 ms, or one tick.

schedule does not validate the existence of command. i.e. If you pass an invalid console
method name, the schedule() method will still return a schedule ID, but the subsequent
event will fail silently.

See Also
See the schedule console function and its corresponding helper functions.

152

© Copyright 2000-2006 GarageGames Product of Hall Of Worlds, LLC.

setName(name)
Purpose
Use the setName method to give this shape a new name.

Syntax
name – A string containing the new name for this shape, or a NULL string to un-name this
shape.

Returns
No return value.

Notes
Names can be compose of non-alphanumeric symbols, but be careful when doing this.

See Also
getID, getName

A.2.64. SimSet
This is a generic container class for SimObjects. It provides a basic set of console methods for storing and

accessing SimObjects contained in the set. Any SimObject may be contained in multiple SimSets

Console Methods

add bringToFront clear getCount
getObject isMember listObjects pushToBack

remove

add(obj1 , ...)
Purpose
Use the add method to add one or more objects to this SimSet.

Syntax
obj1 – The ID or name of an object to add to the SimSet.
 ... - A comma separated list of as many names and object IDs as you wish,
 all of which will be added to this SimSet.

Returns
No return value.

See Also
clear, bringToFront, getCount, getObject, isMember, listObjects, pushToBack.

Add new object to SimSet. Objects are validated on addition. i.e. If you pass an invalid
ID an error will be printed and the add will fail.

obj1 – A object ID to add to the SimSet.
... - A list of comma separated IDs may be passed.

153

© Copyright 2000-2006 GarageGames Product of Hall Of Worlds, LLC.

bringToFront(object)
Purpose
Use the bringToFront method to move object to front of SimSet (queue). This is useful
for sorting and later when this class is used as the base to the GUIControl class.

Syntax
object – The ID or name of an object already in the set.

Returns
No return value.

Notes
Do not attempt to call this for objects that are not in the SimSet as you can crash the
engine.

See Also
pushToBack

clear()
Purpose
Use the clear method to remove all entries from SimSet.

Notes
This does not cause the entries to be deleted.

See Also
add, remove

getCount()
Purpose
Use the getCount method to determine how many objects are currently being tracked by this
SimSet.

Returns
Returns an integer value between 0 and inf equal to the number of objects currently being
tracked by this SimSet.

See Also
add, clear, remove

154

© Copyright 2000-2006 GarageGames Product of Hall Of Worlds, LLC.

getObject(index)
Purpose
Use the getObject method to get the ID of an object stored in this SimSet at position
index.

Syntax
index – The queue position of the object to look for/get.

Returns
Returns ID of object at index in SimSet. If no object is found at that index, 0 is
returned.

isMember(object)
Purpose
Use the isMember method to determine if object is being tracked by this SimSet.

Syntax
object – An object name or ID to check for in this set.

Returns
Returns true if object is in this SimSet, otherwise returns false.

Notes
Unless you are absolutely sure about membership be sure to use this method prior to using
bringToFront or pushToBack.

See Also
bringToFront, pushToBack

listObjects()
Purpose
Use the listObjects method to dump a list of all objects in this SimSet to the console.

Returns
No return value.

Notes
This is a helpful debug tool.

155

© Copyright 2000-2006 GarageGames Product of Hall Of Worlds, LLC.

pushToBack(object)
Purpose
Use the pushToBack method to push an object (already in the SimSet) to then back of the
queue.

Syntax
object – The ID or name of an object already in the set.

Returns
No return value.

Notes
Do not attempt to call this for objects that are not in the SimSet as you can crash the
engine.

See Also
bringToFront

remove(obj1 , ...)
Purpose
Use the remove method to remove one or more objects from this SimSet.

Syntax
obj1 – The ID or name of an object already in the SimSet.
 ... - A comma separated list of objects already in this SimSet.

Returns
No return value.

Notes
Attempting to remove an object from this SimSet which is not in the SimSet will have no
effect.

See Also
add, clear

156

© Copyright 2000-2006 GarageGames Product of Hall Of Worlds, LLC.

A.2.65. Sky

Fields

Field Name Description Sample or Range
cloudHeightPer0 Relative height of layer 0 clouds. [0.0 , cloudHeightPer1]

cloudHeightPer1 Relative height of layer 1 clouds. [cloudHeightPer0 ,
cloudHeightPer2]

cloudHeightPer2 Relative height of layer 2 clouds. [cloudHeightPer1 , 1.0]

cloudSpeed1 Cloud scrolling vs. windVelocity multiplier for layer 0 clouds. [0.0 , inf.0)

cloudSpeed2 Cloud scrolling vs. windVelocity multiplier for layer 1 clouds. [0.0 , inf.0)

cloudSpeed3 Cloud scrolling vs. windVelocity multiplier for layer 2 clouds. [0.0 , inf.0)

cloudText[0,2] -- Not used

fogColor Color of general fog. "1.0 0.5 0.5 1.0"

fogDistance Affects fog density as a ratio of visibleDistance. [0.0 , inf.0)

fogStorm1 Enables fog storm fading of layer 0. [false , true]

fogStorm2 Enables fog storm fading of layer 1. [false , true]

fogStorm3 Enables fog storm fading of layer 2. [false , true]

fogVolume1 Layer 0 fog definition. "dist low-elev high-elev"

fogVolume2 Layer 1 fog definition. "dist low-elev high-elev"

fogVolume3 Layer 2 fog definition. "dist low-elev high-elev"

fogVolumeColor[1:3] -- Not used

materialList Path to sky DML file. dml file path

noRenderBans If set to true, the sky box is not allowed to be fogged out. [false , true]

renderBottomTexture If set to true, the bottom texture in the DML file will be rendered. [false , true]

SkySolidColor The color for the untextured sky box. "r g b a"
(float)

useSkyTextures Enables sky box texture rendering. [false , true]

visibleDistance Maximum render distance. [0.0 , inf)

windEffectPrecipitation If set to true, wind will blow precipitation. [false , true]

windVelocity Magnitude and direction of wind. “1.5 2.0 0.0”

Globals

Variable Name Description Sample or Range
pref::CloudOutline Enable or disable cloud outlining. [false , true]

pref::CloudsOn Enables cloud rendering. [false , true]

pref::NumCloudLayers Limits number of cloud layers that are rendered. [0 , 3]

pref::SkyOn Enables the sky. [false , true]

Console Methods

getWindVelocity() realFog() setWindVelocity() stormClouds()
stormCloudsShow() stormFog() stormFogShow()

157

© Copyright 2000-2006 GarageGames Product of Hall Of Worlds, LLC.

getWindVelocity()
Purpose
Use the getWindVelocity method to get the current wind velocity vector.

Returns
Returns a three-element floating point vector representing the direction and velicity of
the wind.

setWindVelocity(x , y , z)
Purpose
Use the setWindVelocity method to modify the current wind velocity.

Syntax
x – A floating-point value representing the X component of the wind velocity.
y – A floating-point value representing the Y component of the wind velocity.
z – A floating-point value representing the Z component of the wind velocity.

Returns
No return value.

stormClouds(show , duration)
Purpose
Use the stormClouds method to show or hide all defined cloud layers over duration seconds.

Syntax
 show – Boolean value specifying whether to show (true), or hide (false) clouds.
duration – Time in seconds within which to achieve results.

Returns
No return value.

Notes
• duration cannot be zero
• Layers fade in top-to-bottom and fade out bottom-to-top

See Also
stormCloudsShow, stormFog, stormFogShow

158

© Copyright 2000-2006 GarageGames Product of Hall Of Worlds, LLC.

stormCloudsShow(show)
Purpose
Use the stormCloudsShow method to show or hide all defined cloud layers instantly.

Syntax
show – Boolean value specifying whether to show (true), or hide (false) clouds.

Returns
No return value.

See Also
stormClouds, stormFog, stormFogShow

stormFog(percent , duration)
Purpose
Use the stormFog method to show or hide all stormFog enabled fog layers over duration
seconds.

Syntax
 percent – Floating-point value specifying ending fade level for fog layers.
duration – Time in seconds within which to achieve results.

Returns
No return value.

Notes
• duration cannot be zero
• Layers fade in bottom to top and fade out top-to-bottom
• stormFogn – Must be checked for that layer to be affected by this method.
• percent – Must be in range [0.0 , 1.0]

See Also
stormClouds, stormCloudsShow, stormFogShow

stormFogShow(show)
Purpose
Use the stormFogShow method to show or hide all stormFog enabled fog layers instantly.

Syntax
show – Boolean value specifying whether to show (true), or hide (false) fog.

Returns
No return value.

See Also
stormClouds, stormCloudsShow, stormFog

159

© Copyright 2000-2006 GarageGames Product of Hall Of Worlds, LLC.

A.2.66. SpawnSphere
Mission marker used to mark drop points. Can be used for many things. The fields in this object are only

used by scripts, not the engine.

Fields

Field Name Description Sample or Range
indoorWeight Only used by scripts. any float

outdoorWeight Only used by scripts. any float

radius Only used by scripts. any float

sphereWeight Only used by scripts. any float

A.2.67. Splash
No fields or methods to discus.

A.2.68. SplashData

Fields

Field Name Description Sample or Range

acceleration
The acceleration of the splash, as used in the physical simulation. Affects
the splash's velocity over time, along with the gravitational force acting in
the system.

(-inf.0 , inf.0)

colors[0]
colors[1]
colors[2]
colors[3]

Array of colors. Specifies what colors are to be used for splash rings at
each time value specified in the times array field. First entry in the colors
array corresponds to the initial ring color, and is interpolated with
colors[1] until times[0] time has elapsed, at which time colors[1] is the
draw color and it begins being interpolated with colors[2]. See the times
and ringLifetime field documentation for more information.

"1.0 0.5 0.5"

delayMS Note: this field currently has no tangible effect in the engine's simulation. --

delayVariance Note: this field currently has no tangible effect in the engine's simulation. --

ejectionAngle The angle at which new splash rings should be ejected, specified in
degrees.

(-inf.0 , inf.0)

ejectionFreq The frequency with which new splash rings should be created. (-inf.0 , inf.0)

emitter[0]
emitter[1]
emitter[2]

Array of pointers to ParticleEmitterData datablocks which specify the
particle emissions to be used for the Splash object. see type

explosion ExplosionData datablock, which will be used to spawn an explosion for
the splash.

see type

height This field currently has no tangible effect in the engine's simulation. --

lifetimeMS Used along with lifetimeVariance to determine the maximum time the
Splash object persists in the world. Measured in whole milliseconds.

(-inf , inf)

lifetimeVariance

Used along with lifetime to determine the maximum time the Splash
object persists in the world. The Splash object's actual life-time is
calculated by adding the lifetime field with a random integer from
-1*lifetimeVariance to lifetimeVariance. A Splash object will be marked as
dead once it's life-time expires, but a Splash object will not delete itself
until its ring life-time has expired as well; see the documentation for the

(-inf , inf)

160

© Copyright 2000-2006 GarageGames Product of Hall Of Worlds, LLC.

Field Name Description Sample or Range
ringLifetime field for more information. Using lifetimeVariance, separate
Splash objects sharing the same SplashData datablock can be given
varied behavior.

numSegments

The number of segments used to generate each ring of the splash. Each
segment has an associated splash ring texture u-coordinate, which is
calculated by dividing the segment's position in the splash ring's segment
list by the total number of the ring's segments, and then multiplying this
result by the scalar value in the texWrap field.

(-inf , inf)

ringLifetime

The life-time, in seconds, of splash rings generated by the Splash object.
Also used during the rendering of splash rings to determine the opacity of
the ring; the ring starts out fully transparent, and follows a linear
progression to become fully opaque at the mid-point of its life-time, after
which time a linear fall-off in opacity occurs until the end of the ring's life-
time, at which point it is once again fully transparent. a Splash object will
not delete itself until all ring's it has generated have expired.

(-inf.0 , inf.0)

scale Note: this field currently has no tangible effect in the engine's simulation. --

soundProfile Note: this field currently has no tangible effect in the engine's simulation. --

startRadius The inital radius with which to eject splash rings, affected by velocity over
time.

(-inf.0 , inf.0)

texFactor

Scalar value used to translate the v-coordinate value of texture reads
from the splash rings texture during their rendering. texFactor is not
applied directly to scale v-coordinate reads, as the texWrap field is.
Rather, texFactor is multiplied with the non-integer portion of the elapsed
time (elapsedTime - int(elapsedTime)) to determine the v-coordinate
texture position to be read for the splash ring.escription

(-inf.0 , inf.0)

texture The texture file to be used for the splash rings. ~/path/filename.png

texWrap
Scalar value used along with numSegments to determine the u-coordinate
value of texture reads from the splash rings texture during their
rendering. See the numSegments field documentation for more
information.

(-inf.0 , inf.0)

times[0]
times[1]
times[2]
times[3]

Array of time values. Each entry is used to help determine the color used
in rendering splash rings, as described in the colors field documentation. (-inf.0 , inf.0)

velocity

The velocity of the splash, as used in physical simulation. Affects the
radius of the splash over time, and the velocity of splash rings. Velocity
changes over time in accordance with the value specified with the
acceleration field, and the gravity affecting the physical simulation.

(-inf.0 , inf.0)

width Note: this field currently has no tangible effect in the engine's simulation. --

161

© Copyright 2000-2006 GarageGames Product of Hall Of Worlds, LLC.

A.2.69. StaticShape
A concrete class derived from ShapeBase used to reprsent world objects.

Console Methods

getPoweredState() setPoweredState()

getPoweredState()
Purpose
Use the getPoweredState method to get the shape's current 'powered' state.

Syntax
state – Is the shape powered? [false , true]

Returns
No return value.

Notes
This feature does not modify any engine behaviors and is purely for scripted use.

See Also
setPoweredState

setPoweredState(isPowered)
Purpose
Use the setPoweredState method to set shape's current 'powered' state.

Syntax
state – Is the shape powered? [false , true]

Returns
No return value.

Notes
This feature does not modify any engine behaviors and is purely for scripted use.

See Also
getPoweredState

162

© Copyright 2000-2006 GarageGames Product of Hall Of Worlds, LLC.

A.2.70. StaticShapeData
Datablock associated with StaticShape object class.

Fields

Field Name Description Sample or Range
dynamicType An integer value which, if specified, is added to the value

returned by getType().
See dynamicType below

noIndividualDamage Boolean value used as a hint to scripts, to NOT apply damage to
this shape.

--

A.2.71. Sun
Mission object representing mission lighting parameters.

Fields

Field Name Description Sample or Range
ambient Color / Intensity of ambient light. "r g b i" (float)

azimuth Azimuth of sun. [0, 360]

color Color / Intensity of direct light. "r g b i" (float)

elevation Inclination (elevation) of sun. [0, 360]

A.2.72. TCPObject

Console Method Summaries

connect disconnect listen

Console Methods

connect(addr)
Purpose
Use the connect method to request a connection to a remote agent at the address addr.

Syntax
addr – A string containing an address of the form: “A.B.C.D:Port”, where A .. B
 are standard IP numbers between 0 and 255 and Port can be between 1000 and
 65536.

Returns
No return value.

See Also
disconnect

163

© Copyright 2000-2006 GarageGames Product of Hall Of Worlds, LLC.

disconnect()
Purpose
Use the disconnect method to close a previously opened connection without destroying the
requesting TCPOpbject.

Returns
No return value.

Notes
This will close any open connection, but not destroy this object. Thus, the object can
be used to open a new connection.

See Also
connect

listen(port)
Purpose
Use the listen method to allow this TCPObject to accept connections on the specified port.

Syntax
port – A value between 1000 and 65536.

Returns
No return value.

send(...)
Purpose
Use the send method to send any number of parameters, as strings, one at a time to the
agent at the other end of the connection.

Syntax
... – Any number of arguments, as strings. Each string is sent separately. i.e.
 The arguments are not concatenated.

Returns
No return value.

164

© Copyright 2000-2006 GarageGames Product of Hall Of Worlds, LLC.

A.2.73. TerrainBlock
Mission object representing terrain. Default terrain in Torque measures 2 x 2 km and repeats forever. See
EGTGE Volume I – Mission Objects chapter for usage.

Fields

Field Name Description Sample or Range
bumpOffset Offset between bumpmap textures. [0.0 , inf)

bumpScale Scale of bumpmap texture. [1 , inf)

bumpTexture Path to texture to use for bump map textures. --

detailTexture Path to texture to use for terrain detailing. --

emptySquares List of empty squares in terrain. --

squareSize Vertical and horizontal distance between terrain verticies in
meters. Default is 8 meters. Affects water rendering.

1 , 2 , 4 , 8 (default) ,
16 , 32 , 64 , 128

terrainFile Path to file used for terrain. --

zeroBumpScale Value controlling bumpmap rendering distance. [1 , inf)

tile Enables and disables tiling of terrain. [false , true]

Globals

Variable Name Description Sample or Range
$farDistance Distance to far render plane (where rendering stops). Modify in sky object.

$pref::Terrain::dynamicLights --

$pref::Terrain::enableDetails Enable/Disable detailTexture rendering. --

$pref::Terrain::enableEmbossBumps Enable/Disable bump map rendering. --

$pref::Terrain::screenError
Terrain screen error metrics. The higher this value is, the
smoother terrain slopes will become (within limits). Lowering
this value can increase render speed on old systems.

[0 , inf)

$pref::Terrain::texDetail This value modifies the texturing LOD. Higher numbers equal
LOWER LOD. For best results leave this at 0.

[0 , 10]

$pref::Terrain::textureCacheSize --

$screenSize --

$T2::dynamicTextureCount Grand total newly rendered textures count for the terrain. --

$T2::staticTextureCount Grand total rendered textures count for the terrain. --

Console Methods

getHeightfieldScript() getTextureScript() save() setHeightfieldScript()
setTextureScript()

These methods are used by the editors and should not be used for general scripting purposes. Please see
EditorGui.cs if you want to see these method in use.

165

© Copyright 2000-2006 GarageGames Product of Hall Of Worlds, LLC.

A.2.74. Trigger
Mission object representing a re-active zone in the game. This object senses the entry, exit, and presence of
objects within it's bounds.

Fields

Field Name Description Sample or Range
polyhedron List of (relative) coordinates representing bounds of area. --

Console Methods

getNumObjects() getObject()

getNumObjects()
Purpose
Use the getNumObjects method to determine how many GameBase objects are within the bounds
of this trigger.

Returns
Returns an integer value specifying the number of objects that are currently within the
boundaries of this trigger.

See Also
getObject

getObject(index)
Purpose
Use the getObject method to retrieve the ID of an object, at index, within this trigger's
object list.

Syntax
index – An integer value between 0 and numObjects, where numObjects can be retrieved
 with getNumObjects.

Returns
Returns an object ID, or 0 if no object is found at the specified index.

See Also
getNumObjects

166

© Copyright 2000-2006 GarageGames Product of Hall Of Worlds, LLC.

A.2.75. TriggerData
Datablock associated with the trigger mission object.

Fields

Field Name Description Sample or Range

tickPeriodMS
Period in milliseconds describing time to next trigger tick.
Trigger checks for current contents on each tick. Does not affect
sensing of onEnter/onLeave.

[0 , inf)

A.2.76. TSShapeConstructor

Fields

Field Name Description Sample or Range
baseShape The DTS file used by this shape constructor. ~/path/filename.dts

sequence[0:126] Up to 127 sequences that can be associated with this shape constructor. ~/path/filename.dsq

A.2.77. TSStatic

Fields

Field Name Description Sample or Range
position The object's placement position, not necessarily the current position. "1.0 2.0 3.0"

rotation The object's placement rotation, not necessarily the current rotation. "1.0 2.0 3.0"

scale The object's placement scale, not necessarily the current scale. "1.0 2.0 3.0"

shapeName DTS file for this shape ~/path/filename.dts

A.2.78. Vehicle

Fields

Field Name Description Sample or Range
disableMove Used to disable a vehicle's ability to move [false , true]

167

© Copyright 2000-2006 GarageGames Product of Hall Of Worlds, LLC.

A.2.79. VehicleData

Fields

Field Name Description Sample or Range

bodyFriction
The vehicle's rigid body friction coefficient. Used in the physical
simulation during contacts and collisions. Higher friction values
dampen contact and collision forces.

(-inf.0 , inf.0)

bodyRestitution
The vehicle's rigid body restitution. Used in the physical simulation
during collisions. The scalar restitution value affects the strength of
the body's rebound resulting from collisions with objects. Higher
restitution values yield more powerful rebound reactions.

(-inf.0 , inf.0)

cameraDecay Scalar rate at which the third person camera offset decays, per tick. (-inf.0 , inf.0)

cameraLag Scalar amount by which the third person camera lags the vehicle,
relative to the vehicle's linear velocity.

(-inf.0 , inf.0)

cameraOffset The vertical offset of the vehicle's camera. (-inf.0 , inf.0)

cameraRoll Specifies whether the camera's rotation matrix, and the render eye
transform are multiplied during camera updates.

[false , true]

collDamageMultiplier Note: this field currently has no tangible effect in the engine's
simulation..

(-inf.0 , inf.0)

collDamageThresholdVel Note: this field currently has no tangible effect in the engine's
simulation.

(-inf.0 , inf.0)

collisionTol
The minimum collision velocity required to trigger a full collision.
Collisions with velocities less than the collisionTol value will be treated
as collision contacts or constraints.

(-inf.0 , inf.0)

contactTol
The minimum collision velocity required to trigger a collision contact.
Collisions with velocities less than the contactTol value will be treated
as collision constraints.

(-inf.0 , inf.0)

damageEmitter[0]
damageEmitter[1]
damageEmitter[2]

Array of pointers to ParticleEmitterData datablocks which will be used
to emit particles for damage effects (smoke). see type

damageEmitterOffset[0]
damageEmitterOffset[1]

Offset point at which to display damage effects. "1.0 2.0 3.0"

damageLevelTolerance[0]
damageLevelTolerance[1]

Array of floats specifying damage level thresholds. Each entry is
specified as a decimal percentage of maxDamage (defined in
ShapeBaseData). Each damage level is used to determine what
damage effect to play.

(-inf.0 , inf.0)

dustEmitter Array of pointers to ParticleEmitterData datablocks which will be used
to emit particles at vehicle/terrain contact point.

see type

dustHeight Height of dust effects. (-inf.0 , inf.0)

exitingWater The AudioProfile will be used to produce sounds when emerging from
water.

see type

exitSplashSoundVelocity The minimum velocity at which the exit splash sound will be played
when emerging from water.

(-inf.0 , inf.0)

hardImpactSound The AudioProfile used to produce sounds for hard impacts. see type

hardImpactSpeed Minimum speed at which the vehicle must be traveling for the hard
impact sound to be played.

(-inf.0 , inf.0)

hardSplashSoundVelocity The minimum velocity at which the hard splash sound will be played
when impacting water.

(-inf.0 , inf.0)

impactWaterEasy The AudioProfile will be used to produce sounds when a soft impact
with water occurs.

see type

168

© Copyright 2000-2006 GarageGames Product of Hall Of Worlds, LLC.

Field Name Description Sample or Range
impactWaterHard The AudioProfile will be used to produce sounds when a hard impact

with water occurs.
see type

impactWaterMedium The AudioProfile will be used to produce sounds when a medium
impact with water occurs.

see type

integration The number of discrete steps with which to process physics data per
tick.

(-inf , inf)

jetEnergyDrain Energy drained per tick by use of the vehicle's jet, if it has one. (-inf.0 , inf.0)

jetForce Force generated by the vehicle's jet, if it has one. This field is only
used by derived classes.

(-inf.0 , inf.0)

massCenter The vehicle's rigid body center of mass. "1.0 2.0 3.0"

maxDrag Intended to clamp the maximum drag available. Note: this field
currently has no tangible effect in the engine's simulation.

--

maxSteeringAngle Maximum attainable steering angle, measured in radians. Steering
angles are clamped to this maximum value.

(-inf.0 , inf.0)

mediumSplashSoundVelocity The minimum velocity at which the medium splash sound will be
played when impacting water.

(-inf.0 , inf.0)

minDrag
The minimum drag acting on the vehicle at all times. At present, this
field is only used by FlyingVehicleData and helps determine it's
maxSpeed and movement force.

(-inf.0 , inf.0)

minImpactSpeed Minimum speed at which the vehicle must be traveling for the
OnImpact script function to be called.

(-inf.0 , inf.0)

minJetEnergy Minimum energy required in order to use the vehicle's jet, if it has
one.

(-inf.0 , inf.0)

minRollSpeed Note: this field currently has no tangible effect in the engine's
simulation.

--

numDmgEmitterAreas The number of areas on the vehicle that can display damage effects. (-inf.0 , inf.0)

softImpactSound The AudioProfile used to produce sounds for soft impacts. see type

softImpactSpeed Minimum speed at which the vehicle must be traveling for the soft
impact sound to be played.

(-inf.0 , inf.0)

softSplashSoundVelocity The minimum velocity at which the soft splash sound will be played
when impacting water.

(-inf.0 , inf.0)

splashEmitter[0]
splashEmitter[1]

Array of pointers to ParticleEmitterData datablocks which will generate
splash effects.

see type

splashFreqMod
The simulated frequency modulation of a splash generated by this
vehicle. Multiplied along with vehicle speed and time elapsed when
determining splash emission rate.

(-inf.0 , inf.0)

splashVelEpsilon The threshold speed at which we consider the vehicle's movement to
have stopped when updating splash effects.

(-inf.0 , inf.0)

triggerDustHeight Maximum height from the ground at which the vehicle will generate
dust.

(-inf.0 , inf.0)

waterWakeSound The AudioProfile will be used to produce sounds when a water wake is
displayed.

see type

169

© Copyright 2000-2006 GarageGames Product of Hall Of Worlds, LLC.

A.2.80. WaterBlock

Fields

Field Name Description Sample or Range

density
The default water density is one. Meanwhile, the default character density
is 10. This means the character will sink upon entering the water.
Therefore, if you want the character to be more buoyant, you can adjust
either or both parameters.

[0.0 , inf.0)

DepthGradient
Controls the slope between MinAlpha and MaxAlpha. In older versions of
the engine, Melvin implemented this as a sigmoid function, but since
version 1.2, it has been implemented using the (more involved) gamma-
correction function.

[0.0 , inf.0)

DistortGridScale
This allows you to adjust distortion such that the effect is the same
between a large water block and a small water block. There are not set
rules really. You’ll just have to experiment.

[0.0 , inf.0)

DistortMag
If this vale is not zero, distortion is enabled. Generally, the magnitude of
this value should be less than one or the distortion behaves…strangely.
Both positive and negative values are legal.

[0.0 , inf.0)

DistortTime

As you might guess, this period of the distort function. It is inversely
proportional to the distortion’s rate of change. In other words, larger
values mean slower distortions and smaller values mean faster distortions.
A value of zero (0) is illegal and will cause the texture rendering to fail
gracefully.

[0.0 , inf.0)

envMapIntensity description [0.0 , inf.0)

envMapOverTexture
If environmental mapping (see .Reflections and Specular Masks’ below) is
enabled, this texture is rendered when looking down onto the water from
above. This represents an environmental reflection on the water’s surface.

~/path/filename.png

envMapUnderTexture As with envMapOverTexture, this represents an environmental reflection,
but this is the texture you will see if looking up from beneath the water.

~/path/filename.png

FlowAngle This parameter (in degrees) determines the direction of the translation. [0.0 , 360.0)

FlowRate If this value is non-zero, water flow will be enabled. The higher the value,
the more quickly textures will translate.

[0.0 , inf.0)

liquidType These are leftover values from Tribes 2. You may use them for your own
purposes.

Water, OceanWater,
RiverWater, StagnantWater,
Lava, HotLava, CrustyLava,
Quicksand

MaxAlpha
As might be intuited, this parameter determine the maximum alpha to use
while rendering shoreTexture. This directly affects the multi-texturing
equation involving the surfaceTexture and shoreTexture.

[0.0 , 1.0]

MinAlpha
As might be intuited, this parameter determine the minimum alpha to use
while rendering shoreTexture. This directly affects the multi-texturing
equation involving the surfaceTexture and shoreTexture.

[0.0 , 1.0]

position The object's placement position, not necessarily the current position. "1.0 2.0 3.0"

removeWetEdges
Setting this value true, tells the engine to (attempt to) clip the edges of
water that protrude from beneath terrain features. Results will vary when
using this feature.

[false , true]

rotation The object's placement rotation, not necessarily the current rotation. "1.0 2.0 3.0"

scale The object's placement scale, not necessarily the current scale. "1.0 2.0 3.0"

170

© Copyright 2000-2006 GarageGames Product of Hall Of Worlds, LLC.

Field Name Description Sample or Range

ShoreDepth

Shore rendering is determined by a ray-cast at distinct points across the
surface of the water block. The result of this ray-cast returns the distance
between the top of the water and the terrain directly below that point on
the surface. If this value is greater than or equal to ShoreDepth, the
engine is instructed to render the shoreTexture. If you choose to set this
value to zero, the shoreTexture will not render at all.

[0.0 , inf.0)

ShoreTexture
We’ll talk more about shorelines in a moment, but Torque has the ability to
render shorelines differently. When it renders the shoreline, it blends this
texture with surfaceTexture, giving a nice visual effect.

~/path/filename.png

specularColor This can be used to change both the color of the resultant highlight and its
intensity. This parameter takes a 4-tuple floating-point vector “r g b a”.

"1.0 0.5 0.5"

specularMaskTex
This texture is used to make the surface of the water look as if it is
reflecting light. Again, this should be some kind of caustic grayscale. The
engine does take into account the position and elevation of the sun when
rendering the specular effect.

~/path/filename.png

specularPower
This determines how large an area is shiny. Lower values cause more of
the specular map to be rendered, versus larger values that will tend to
show just a spot of highlighting.

[0 , inf)

submergeTexture[0]

submergeTexture[1]

These two textures are only used when liquidType is one of the Lava types
(Lava, HotLava, or CrustyLava). These two textures are rendered
perpendicular to the viewing plane. Additionally they are animated. A
suggestion I was given, which I’ll pass along, is to use two high quality (say
512x512 instead of the normal 256x256) grayscale caustics for these.

~/path/filename.png

surfaceOpacity
This affects how opaque the combination of surfaceTexture and
shoreTexture is. That is it. A value of zero is not transparent, just very
translucent. A value of one is quite opaque. You’ll have to adjust this meet
your needs.

[0.0 , 1.0]

SurfaceParallax

When FlowRate is non-zero, the flow-rate of the oriented surfaceTexture is
controlled by this value as follows:

> 1 - Non-oriented surfaceTexture flows more slowly than
 oriented surfaceTexture.

 1 - Non-oriented surfaceTexture and oriented surfaceTexture flow
 at same rate.

< 1 - Oriented surfaceTexture flows more slowly than non-oriented
 surfaceTexture.
 Oriented surfaceTexture counter-flows.

 0 - Oriented surfaceTexture remains stationary.

[0.0 , inf.0)

surfaceTexture
This texture is used to define the base water layer(s). This texture is
rendered in two layers, with one layer re-oriented at a 45-degree angle
(about Z of course). This makes the water more interesting.

~/path/filename.png

TessShore Controls shore 'detail level'. [0 , inf)

TessSurface Controls surface 'detail level' [0 , inf)

tile Enable/disable tiling. [false , true]

UseDepthMask If this value is false, only the envMapOverTexture will be rendered on the
top of the water. All other ‘surface’ textures will be disabled.

[false , true]

171

© Copyright 2000-2006 GarageGames Product of Hall Of Worlds, LLC.

Field Name Description Sample or Range

viscosity

In addition to choosing whether a character will float or sink in water, we
can indirectly adjust how quickly this occurs by changing the viscosity of
the water. A thicker fluid like, say honey, has a high viscosity, whereas
plain water will have a low viscosity. By increasing this value, you create
an effect where the player will require more time to float or sink.

(-inf.0 , inf.0)

waveMagnitude description (-inf.0 , inf.0)

A.2.81. WheeledVehicle
Class used to represent wheeled vehicles.

Console Methods

getwheelCount setWheelPowered setWheelSpring setWheelSteering
setWheelTire

getWheelCount()
Purpose
Use the getWheelCount method to determine how many wheels (hubs) this wheeledVehicle has
in it's mesh.

Returns
Returns a value between 0 and 8, specifying the number of hubs the mesh has of the name:
hub0, hub1, ... hub7.

Notes
When creating a wheeledVehicle mesh, always create hubs using the name hubX, where X is a
value between 0 and 7. Furthermore, always create these hubs in order and in pairs
(opposite each other).

For example, If you are creating a four-wheeled vehicle, the hubs should be:

 hub0 – front left tire
 hub1 – front right tire
 hub2 – rear left tire
 hub3 – rear right tire

See Also
setWheelPowered, setWheelSpring, setWheelSteering, setWheelTire

172

© Copyright 2000-2006 GarageGames Product of Hall Of Worlds, LLC.

setWheelPowered(wheelNum , isPowered)
Purpose
Use the setWheelPowered method to set the powered state for the specified wheel (hub).
Syntax
 wheelNum – A value between 0 and 7, specifying a specific wheel/hub.
isPowered – A boolean value. If set to true, this wheel will contribute to the
 powered motion of the vehicle, otherwise it will only affect non-
 powered motion such as rolling and steering.

Returns
Returns true if wheelNum was successfully set to powered or un-powered. Will return
false if wheelNum does not specify a valid hub.

Notes
By default, all wheels/hubs are powered.

See Also
getWheelCount

setWheelSpring(wheelNum , springDB)
Purpose
Use the setWheelSpring method to assign a WheeledVehicleSpring datablock to the specified
hub.

Syntax
wheelNum – A value between 0 and 7, specifying a specific wheel/hub.
springDB – The name of ID of a previously specified WheeledVehicleSpring datablock.

Returns
Returns true if wheelNum was successfully assigned a new spring datablock, otherwise
returns false.

Notes
You may change the springs on a wheeled tire at any time, allowing you to enhance
vehicles or make them subject to damage.

Each tire can have its own customized spring datablock.

See Also
getWheelCount

173

© Copyright 2000-2006 GarageGames Product of Hall Of Worlds, LLC.

setWheelSteering(wheelNum, steerAngle)
Purpose
Use the setWheelSteering method to set that maximum steering angle (away from center) as
steerAngle (radians) for wheel wheelNum.

This limits the turning angle for the vehicle.

Syntax
 wheelNum – A value between 0 and 7, specifying a specific wheel/hub.
steerAngle – An angular value between 0.0 and 1.57 radians specifying maximum
 turning angle this wheel can take.

Returns
Returns true if wheelNum was successfully set the requested steerAngle, otherwise returns
false.

See Also
getwheelCount

setWheelTire(wheelNum , tireDB)
Purpose
Use the setWheelTire method to assign a previously specified WheeledVehicleTire datablock
to the requested hub.

Syntax
wheelNum – A value between 0 and 7, specifying a specific wheel/hub.
 tireDB – The name of ID of a previously specified WheeledVehicleTire datablock.
Returns
Returns true if wheelNum was successfully assigned a new WheeledVehicleTire datablock.

Notes
Tires may be changed at any time during the game.

See Also
getWheelCount

174

© Copyright 2000-2006 GarageGames Product of Hall Of Worlds, LLC.

A.2.82. WheeledVehicleData
Datablock associated with wheeledvehicle object class.

Fields

Field Name Description Sample or Range
engineBrake Floating-point value specifying how much the engine brakes when the

engine is not engaged (i.e. when the forward key is pressed).
--

engineSound AudioProfile specifying sound to play when engine is engaged. --

engineTorque Floating-point value specifying the power of the engine. --

jetSound AudioProfile specifying sound to play when jets are engaged. --

maxWheelSpeed Floating-point value specifying maximum rotational velocity for tires. --

squealSound AudioProfile specifying sound to play when tires break friction. --

tireEmitter ParticleEmitterData datablock for tire emitters. --

wheelImpactSound AudioProfile specifying sound to play when tires impact 'ground'. --

brakeTorque Floating-point value specifying the power of the brakes. --

A.2.83. WheeledVehicleSpring
Datablock used to describe vehicle suspension(s).

Fields

Field Name Description Sample or Range
antiSwayForce Force which acts to dampen lateral sway introduced when

wheels opposite each other are extended at different lengths.
 [0.0 , inf.0)

damping Dampening force which counter-acts the spring's force. [0.0 , inf.0)

force
The force of the spring. Spring forces act straight up and are
applied at the spring's root position, which is defined in the
vehicle's shape.

 [0.0 , inf.0)

length The length of suspension travel from the root position. [0.0 , inf.0)

A.2.84. WheeledVehicleTire
Summary of object.

Fields

Field Name Description Sample or Range
kineticFriction Used in the physical simulation to represent the tire's surface

friction when it is slipping (has no traction).
 [0.0 , inf.0)

lateralDamping
Measures the dampening force applied against lateral forces
generated by the tire. See the lateralForce field documentation
for more information on vehicle physics as they relate to wheel
forces.

 [0.0 , inf.0)

175

© Copyright 2000-2006 GarageGames Product of Hall Of Worlds, LLC.

Field Name Description Sample or Range

lateralForce

Used in the physical simulation to represent the tire's lateral
force. Lateral force can in simple terms be considered left/right
steering force. WheeledVehicles are acted upon by forces
generated by their tires and the lateralForce measures the
magnitude of the force exerted on the vehicle when the tires are
deformed along the x-axis. With real wheeled vehicles, tires are
constantly being deformed and it is the interplay of deformation
forces which determines how a vehicle moves. In Torque's
simulation of vehicle physics, tire deformation obviously can't be
handled with absolute realism, but the interplay of a vehicle's
velocity, its engine's torque and braking forces, and its wheels'
friction, lateral deformation, lateralDamping, lateralRelaxation,
longitudinal deformation, longitudinalDamping, and
longitudinalRelaxation forces, along with its wheels' angular
velocity are combined to create a robust real-time physical
simulation. For this field, the larger the value supplied for the
lateralForce, the larger the effect steering moves can have. In
Torque tire forces are applied at a vehicle's wheel hubs.

 [0.0 , inf.0)

lateralRelaxation

Measures the relaxing force applied against lateral forces
generated by the tire. The lateralRelaxation force measures how
strongly the tire effectively un-deforms. See the lateralForce field
documentation for more information on vehicle physics as they
relate to wheel forces.

 [0.0 , inf.0)

logitudinalRelaxation

(yes, an engine typo)

Measures the relaxing force applied against longitudinal forces
generated by the tire. The longitudinalRelaxation force measures
how strongly the tire effectively un-deforms. See the
longitudinalForce field documentation for more information on
longitudinal tire forces, and the laterForce field documentation
for more information on general vehicle physics as they relate to
wheel forces.

 [0.0 , inf.0)

longitudinalDamping

Measures the dampening force applied against longitudinal
forces generated by the tire. See the longitudinalForce field
documentation for more information on longitudinal tire forces,
and the laterForce field documentation for more information on
general vehicle physics as they relate to wheel forces.

 [0.0 , inf.0)

longitudinalForce

Used in the physical simulation to represent the tire's longitudinal
force. Longitudinal force can in simple terms be considered
forward/backward movement force. WheeledVehicles are acted
upon by forces generated by their tires and the longitudinalForce
measures the magnitude of the force exerted on the vehicle
when the tires are deformed along the y-axis. See the
lateralForce field documentation for more information on
wheeled vehicle physics. For this field, the larger the value
supplied for the longitudinalForce, the larger the effect
acceleration/deceleration moves can have.

 [0.0 , inf.0)

mass
The mass of the entire wheel. Used in the physics simulation,
see the documentation for the WheeledVehicleData datablock for
more information. The wheel's mass does not need to be
specified in script.

 [0.0 , inf.0)

radius
The tire's radius. The radius is determined from the bounding
box of the shape provided in the shapefile field, and does not
need to be specified in script. The tire should be built with it's
hub axis along the object's Y-axis.

 [0.0 , inf.0)

176

© Copyright 2000-2006 GarageGames Product of Hall Of Worlds, LLC.

Field Name Description Sample or Range
restitution Note: this field currently has no tangible effect in the engine's

simulation.
--

shapeFile
The path and file name of a shape file to be used for the wheel.
Must adhere to the semantics associated with the Filename
datatype, as defined in the engine.

~/path/filename.dts

staticFriction Used in the physical simulation to represent the tire's surface
friction when it is not slipping (has traction).

 [0.0 , inf.0)

177

© Copyright 2000-2006 GarageGames Product of Hall Of Worlds, LLC.

A.3 Console Functions Quick Reference

A.3.1. OpenAL
The following functions are for the most part wrappers on OpenAL functions. Many of these functions use

enumerated values. The following table includes the string equivalents to the OpenAL enums as well as
information on flags associated with them:

ALEnum OpenAL Enum (C++) Flags

AL_CONE_INNER_ANGLE AL_CONE_INNER_ANGLE (Source|Get|Set|Int)

AL_CONE_OUTER_ANGLE AL_CONE_OUTER_ANGLE (Source|Get|Set|Int)

AL_CONE_OUTER_GAIN AL_CONE_OUTER_GAIN (Source|Get|Set|Float)

AL_DIRECTION AL_DIRECTION (Source|Get|Set|Float3)

AL_EXTENSIONS AL_EXTENSIONS (Context|Get)

AL_GAIN_LINEAR AL_GAIN_LINEAR (Source|Listener|Get|Set|Float)

AL_GAIN AL_GAIN (Source|Listener|Get|Set|Float)

AL_LOOPING AL_LOOPING (Source|Get|Set|Int)

AL_MAX_DISTANCE AL_MAX_DISTANCE (Source|Get|Set|Float)

AL_ORIENTATION AL_ORIENTATION (Listener|Set|Float6)

AL_PITCH AL_PITCH (Source|Get|Set|Float)

AL_POSITION AL_POSITION (Source|Listener|Get|Set|Float3)

AL_REFERENCE_DISTANCE AL_REFERENCE_DISTANCE (Source|Get|Set|Float)

AL_RENDERER AL_RENDERER (Context|Get)

AL_VELOCITY AL_VELOCITY (Source|Listener|Get|Set|Float3)

AL_VENDOR AL_VENDOR (Context|Get)

AL_VERSION AL_VERSION (Context|Get)

alxGetChannelVolume(channelID)
Purpose
Use the alxGetChannelVolume function to get the volume setting for a specified channel.

Syntax
channelID – An integer value, equal to or greater than 0, corresponding to a valid audio
channel.

Returns
Returns volume [0.0, 1.0] for channel specified by channelID.

See Also
alxSetChannelVolume

178

© Copyright 2000-2006 GarageGames Product of Hall Of Worlds, LLC.

alxGetListenerf(ALEnum)
alGetListener3f(ALEnum)
alGetListeneri(ALEnum)
Purpose
Use the al*GetListener* function to get the current value of a listener parameter, as
specified by ALEnum.

Syntax
ALEnum – A string containing an OpenAL enumerated type name. See (above) table of ALEnum
values for legal values.

Returns
Returns a float (alxGetListenerf), a vector of three floats (alGetListener3f), or an
integer value respectively (alGetListeneri).

Notes
Depending on the ALEnum you need to acquire, be sure to use the correct version (i.e.
correct return type) of al*GetListener*.

See Also
alxGetSource*

alxGetSourcef(handle , ALEnum)
alxGetSourcei(handle , ALEnum)
alxGetSource3f(handle , ALEnum)
Purpose
Use the alxGetSource* function to get the current value of a source parameter, as
specified by ALEnum.

Syntax
handle – The ID (a non-negative integer) corresponding to a previously set up sound
source.
ALEnum – A string containing an OpenAL enumerated type name. See (above) table of ALEnum
values for legal values.

Returns
Returns current value of parameter specified by ALEnum for source identified by handle.

Notes
Depending on the ALEnum you need to acquire, be sure to use the correct version (i.e.
correct return type) of alxGetSource*.

See Also
alxSource*, al*GetListener*

179

© Copyright 2000-2006 GarageGames Product of Hall Of Worlds, LLC.

alxGetStreamDuration(handle)
Purpose
Use the alxGetStreamDuration function to determine the length of a previously set up
sound in seconds.

Syntax
handle – The ID (a non-negative integer) corresponding to a previously set up sound
source.

Returns
Returns -1 for invalid handle, and 0.0 to N.M for valid handle indicating length of
scheduled sound in seconds.

See Also
alxGetStreamPosition

alxGetStreamPosition(handle)
Purpose
Use the alxGetStreamPosition function to get the current play position for a playing
sound. Note, this value is a percentage equivalent to the percent of the sound that as
already played.

Syntax
handle – The ID (a non-negative integer) corresponding to a previously set up sound
source.

Returns
Returns -1 for invalid handle, and 0.0 to 1.0 for valid handle indicating what percentage
of the sound file has been played.

See Also
alxGetStreamDuration

alGetString(ALEnum)
Purpose
Use the alGetString function to get the string equivalent to the specified OpenAL
enumerated value.

Syntax
ALEnum – A string containing an OpenAL enumerated type name. See (above) table of ALEnum
values for legal values.

Returns
Returns a string corresponding to the passed ALEnum.

180

© Copyright 2000-2006 GarageGames Product of Hall Of Worlds, LLC.

alGetWaveLen(fileName)
Purpose
Use the alGetWaveLen function to get the play-length of a specified sound file in
milliseconds.

Syntax
fileName – A full path to legally formatted sound file.

Returns
Returns play-length of the WAV file specified by filename in milliseconds.

See Also
alxGetStreamDuration, alxGetStreamPosition

alListener3f(ALEnum , x , y , z)
alxListenerf(AlEnum , value)
Purpose
Use the al*Listener* function to set a listener parameter(s) as specified by the OpenAL
enumerated type ALEnum.

Syntax
ALEnum – A string containing an OpenAL enumerated type name. See (above) table of ALEnum
values for legal values.
 x,y,z – XYZ floating-point coordinates.
 value – An ALEnum type specific value corresponding to the new value for this enumerated
parameters.

Returns
No return value.

See Also
al*GetListener*, alxSource*

alxIsPlaying(handle)
Purpose
Use the alxIsPlaying function to determine if the sound associated with a previously set-
up sound handle is playing or not.

Syntax
handle – The ID (a non-negative integer) corresponding to a previously set up sound
source.

Returns
Returns 1 if specified handle is being played, 0 otherwise.

See Also
alxPlay, alxStop, alxStopAll

181

© Copyright 2000-2006 GarageGames Product of Hall Of Worlds, LLC.

alxPlay(handle)
alxPlay(profile)
alxPlay(profile , x , y , z)
Purpose
Use the alxPlay function to start playing a sound specified by either a previously set up
sound (handle), or a previously defined audio profile. For 3D sounds, you must specify a
XYZ coordinate for the source to play at.

Syntax
 handle – The ID (a non-negative integer) corresponding to a previously set up sound
source.
profile – The ID (a non-negative integer) corresponding to a previously set up audio
profile.
 x,y,z – XYZ floating-point coordinates.

Returns
Returns handle to playing sound, or 0 on failure.

See Also
alxIsPlaying, alxStop, alxStopAll

alxSetChannelVolume(channelD , volume)
Purpose
Use the alxSetChannelVolume function to set a volume [0.0, 1.0] for the channel
specified by channelID.

Syntax
channelID – An integer value, equal to or greater than 0, corresponding to a valid audio
channel.
 volume – A value between 0.0 and 1.0 specifying the new volume for the specified
channel.

Returns
Returns true on success and false on failure.

See Also
alxGetChannelVolume

182

© Copyright 2000-2006 GarageGames Product of Hall Of Worlds, LLC.

alxSourcef(handle , ALEnum , value)
alxSourcei(handle , ALEenum , value)
alxSource3f(handle , ALEnum , x , y , z)
Purpose
Use the alxSource* function to set a source parameter(s) as specified by the OpenAL
enumerated type ALEnum.

Syntax
handle – The ID (a non-negative integer) corresponding to a previously set up sound
source.
ALEnum – A string containing an OpenAL enumerated type name. See (above) table of ALEnum
values for legal values.
 value – An ALEnum type specific value corresponding to the new value for this enumerated
parameters.
 x,y,z – XYZ floating-point coordinates.

Returns
No return value.

See Also
alxGetSource*, al*Listener*

alxStop(handle)
Purpose
Use the alxStop function to stop a currently playing sound as specified by handle.

Syntax
handle – The ID (a non-negative integer) corresponding to a previously set up sound
source.

Returns
No return value.

See Also
alxIsPlaying, alxPlay, alxStopAll

alxStopAll()
Purpose
Use the alxStopAll function to stop all currently playing sounds associated with
registered handles.

Returns
No return.

See Also
alxIsPlaying, alxPlay, alxStop

183

© Copyright 2000-2006 GarageGames Product of Hall Of Worlds, LLC.

OpenALInitDriver()
Purpose
Use the OpenALInitDriver function to initialize the OpenAL driver.

Returns
Returns true on successful initialization, false otherwise.

Notes
This must be done before all other OpenAL operations.

See Also
OpenALShutdownDriver

OpenALShutdownDriver()
Purpose
Use the OpenALShutdownDriver function to stop/shut down the OpenAL driver.

Returns
No return value.

Notes
After this is called, you must restart the driver with OpenALInitDriver to execute any
new sound operations.

See Also
OpenALInitDriver

A.3.2. Debugging
This category of console functions includes functions used to debug or to otherwise examine the scripting

environment, the 3D world, engine performance, et cetera.

General

debug()
Purpose
Use the debug function to cause the engine to issue a debug break and to break into an
active debugger.

Returns
No return value.

Notes
For this to work, the engine must have been compiled with either TORQUE_DEBUG, or
INTERNAL_RELEASE defined.

184

© Copyright 2000-2006 GarageGames Product of Hall Of Worlds, LLC.

dumpConsoleClasses()
Purpose
Use the dumpConsoleClasses function to prints all registered classes and the console
methods associated with them to the console.

Returns
No return value.

Notes
This will dump all classes and methods that were registered from within the engine, AND
from the console via scripts.

See Also
dumpConsoleFunctions

dumpConsoleFunctions()
Purpose
Use the dumpConsoleFunctions function to prints all registered functions to the console.

Returns
No return value.

Notes
This will dump all funtions that were registered from within the engine, AND from the
console via scripts.

See Also
dumpConsoleMethods

setEchoFileLoads(enable)
Purpose
Use the setEchoFileLoads function to enable/disable echoing of file loads (to console).

Syntax
enable – A boolean value. If this value is true, extra information will be dumped to the
console when files are loaded.

Notes
This does not completely disable message, but rather adds additional methods when echoing
is set to true. File loads will always echo a compile statement if compiling is required,
and an exec statement at all times.

Interiors

setInteriorRenderMode(mode)
Purpose
Use the setInteriorRenderMode function to enable various interior rendering modes used
for mesh debugging.

Syntax

185

© Copyright 2000-2006 GarageGames Product of Hall Of Worlds, LLC.

mode – A numeric value between 0 and 16. Please see the 'Interior Render Modes'
 table below.

Returns
No return value.
Notes
For this to work, the engine must have been compiled with TORQUE_DEBUG defined.

See Also
GLEnableOutline

Render Mode Mode Name Meaning
0 Normal Normal.

1 Render Lines Render interior brush outlines only.

2 Detail Render interior brushes with flat coloration. White colored blocks indicate brushes
that do not change with LOD changes. Red colored blocks will change.

3 Ambiguous Shows ambiguous polygons. (Good models have none.)

4 Orphan Shows orphaned polygons. (Good models have none.)

5 Light Map Shows lightmaps on flat (white) shaded model.

6 Textures Only Shows textures without lightmaps.

7 Portal Zones Colorizes portalized zones to make them distinct and easily identifiable.

8 Outside Visible Marks insides of interiors as white and outsides as red.
Tip: An interiors with no portals is marked as all RED.

9 Collision Fans Displays calculated (by exporter) collision fans with axes showing face directions.

10 Strips
Shows surfaces divided into colorized triangle strips. Each strip has a distinct color
from adjacent strips.
Tip: Large triangles generally give best performance, but strips can be too large in
some instance.

11 NULL Surfaces
Renders all faces with NULL texture applied as RED.
Tip: Excluding portals, no red surfaces should be visible without taking the camera
into walls, or you will have a hole/gap in your surface.

12 Large Textures

All textures large textures will be rendered with a colorized shading:

Blue – Width or Height Equal to 256 pixels
Green – Width or Height Equal to 512 pixels
Red – Width or Height Equal to greater than pixels

13 Hull Surfaces Renders HULL surfaces with distinct flat colors.

14 Vechile Hull Surfaces Renders specialized Vechicle HULL surfaces with distinct flat colors.

15 Vertex Colors -- Currently Unavailable --

16 Detail Levels Renders entire interior at current LOD coloration. (See LOD colors below).

186

© Copyright 2000-2006 GarageGames Product of Hall Of Worlds, LLC.

Level Of Deail (LOD) Debug Color
0 White

1 Blue

2 Greeen

3 Red

4 Yellow

... Please see source code.

Journalling

playJournal(namedFile , doBreak)
Purpose
Use the playJournal function to play back a journal from namedFile and to optionally
break (into an active debugger) after loading the Journal. This allow us to debug engine
bugs by reproducing them consistently repeatedly.

Syntax
namedFile – A full path to a valid journal file. Usually, journal names end with the
extension .jrn.
 doBreak – A boolean value. If true, the engine will load the journal and then assert a
break (to break into an active debugger). If not true, the engine will play back the
journal with no break.

Returns
No return value.

Notes
The journaling system is a vital tool for debugging complex or hard to reproduce engine
and script bugs.

See Also
saveJournal

playJournal("~/myJournal.jrn" , true); // Break after loading journal.

playJournal("~/myJournal.jrn"); // Just play journal

187

© Copyright 2000-2006 GarageGames Product of Hall Of Worlds, LLC.

saveJournal(namedFile)
Purpose
Use the saveJournal function to save a new journal of the current game.

Syntax
namedFile – A full path specifying the file to save this journal to. Usually, journal
names end with the extension .jrn.

Returns
No return value.

See Also
playJournal

saveJournal("~/myJournal.jrn");

Logging

inputLog(fileName)
Purpose
Use the inputLog function to enables/disable logging of DirectInput events to a log file
specified by fileName.

Syntax
fileName – A valid path to a file in which to store a log of DirectInput events.

Returns
For this to work, the engine must have been compiled with LOG_INPUT defined.
Notes
Once started, input logging cannot be stopped, so only apply this in debug scenarios.

See Also
setLogMode

inputLog("DirectInput.log");

188

© Copyright 2000-2006 GarageGames Product of Hall Of Worlds, LLC.

setLogMode(mode)
Purpose
Use the setLogMode function to set the logging level based on bits that are set in the
mode argument.

Syntax
mode – A bitmask enabling various types of logging. See 'Logging Modes' table below.

Returns
No return value.

Notes
This is a general debug method and should be used in all but release cases and perhaps
even then.

See Also
intputLog

SetLogMode(6); // Dump console output before this to file and leave file open.

mode bitmasks Description
1 Open file and append. Close file on each log write. This allows us to edit the file in a

separate editor without having to quit and without getting a file lock conflict.

2
Open file and leave it open. This is more efficient for lots of logging, but we may not
be able to view the file till we exit the game.
(Note: *NIX users can just tail the file: 'tail -fn 100 filename')

4
Dump anything that has been printed to the console so far. This is needed because
the console doesn't get turned on right away, and some output would otherwise be
missed.

Memory

dumpUnflaggedAllocs(fileName)
Purpose
Use the dumpUnflaggedAllocs function to dump all allocations that were made subsequent to
a call to flagCurrentAllocs. This function, in association with flagCurrentAllocs, is
used for detecting memory leaks and analyzing memory usage in general.

Syntax
filename – A valid path and filename in which to dump the current memory allocation
information.

Returns
No return value.

Notes
For this to work, the engine must have been compiled with DEBUG_GUARD defined.
See Also
flagCurrentAllocs

189

© Copyright 2000-2006 GarageGames Product of Hall Of Worlds, LLC.

flagCurrentAllocs()
Purpose
Use the flagCurrentAllocs function to mark all current memory allocations in preparation
for a subsequent call or calls to dumpUnflaggedAllocs. This function, in association with
dumpUnflaggedAllocs, is used for detecting memory leaks and analyzing memory usage in
general.

Returns
No return value.

Notes
For this to work, the engine must have been compiled with DEBUG_GUARD defined.
See Also
dumpUnflaggedAllocs

freeMemoryDump()
Purpose
Use the freeMemoryDump function to dump the current 'memory free' statistics to the
console.

Returns
No return value.

Notes
This does not print how much memory is free, but rather an analysis of 'free
chunks' of memory.

Metrics

GLEnableLogging(enable)
Purpose
Use the GLEnableLogging function to enable/disable the gathering of OpenGL metrics.

Syntax
enable – A boolean value. If set to true, the engine will gather various OpenGL metrics
and dump them to a file named gl_log.txt. If set to false, logging is stopped, the last
writes to the log are flushed, and the file is closed.

Returns
No return value.

Notes
For this to work, the engine must have been compiled with either TORQUE_DEBUG or
INTERNAL_RELEASE defined. Always be sure to do a disable after an enable to flush
the last log data to the log file.
See Also
GLEnableMetrics, metrics

190

© Copyright 2000-2006 GarageGames Product of Hall Of Worlds, LLC.

GLEnableMetrics(enable)
Purpose
Use the GLEnableMetrics function to enable or disable logging of OpenGL texture and video
metrics.

Syntax
enable – A boolean value. When this is set to true, texture and video (triangles and
primitives) logging is enabled and dumped as part of calls to certain metrics.

Returns
No return value.

Notes
For this to work, the engine must have been compiled with either TORQUE_DEBUG or
INTERNAL_RELEASE defined. Use the metrics function to get at this information.
Also, once this feature is enabled, the following globals will be available for
inspection/examination:
 OpenGL::triCount0 – Terrain triangles
 OpenGL::triCount1 – DIF triangles
 OpenGL::triCount2 – DTS triangles
 OpenGL::triCount3 – Uncategorized triangles
OpenGL::primCount0 - Terrain primitives
OpenGL::primCount1 – DIF primitives
OpenGL::primCount2 – DTS primitives
OpenGL::primCount3 – Uncategorized primitives

See Also
GLEnableLogging, metrics

metrics(metric)
Purpose
Use the metrics function to enable a display of specified metric information in upper
left corner of screen.

Syntax
metric – The class of metrics to display. Please see the 'metric' table below for
specific metrics.

Returns
No return value.

Notes
For this to work, the engine must have been compiled with TORQUE_DEBUG defined.
See Also
GLEnableMetrics

191

© Copyright 2000-2006 GarageGames Product of Hall Of Worlds, LLC.

metric Measures

audio

fps metrics +
OH: Open Handles
OLH: Open Looping Handles
AS: Active Streams
NAS: Null Active Streams
LAS: Active Looping Streams
LS: Total Looping Streams
ILS: Inactive Looping Streams
CLS: Culled Looping Streams

debug

fps metrics +
NTL: Texels Loaded.
TRP: Percentage of resident memory (on card) used by textures.
NP: Number of primitives being rendered.
NT: Number of textures in use.
NO: Number of objects being rendered.

interior

fps metrics +
NTL: Texels Loaded.
TRP: Percentage of resident memory (on card) used by textures.
INP: Number of primitives being rendered, for interiors only.
INT: Number of textures in use, for interiors only.
INO: Number of objects being rendered, for interiors only.

fps FPS: Frames Per Second
mspf: Milliseconds per frame

time
fps metrics +
Sim Time: Sim time to date. Time since engine started.
Mod: Ticks since engine started.

terrain

fps metrics +
L0: Numer of terrain blocks rendering at level zero.
FMC: Full mipmap count.
DTC: Dynamic texture count.
UNU: Unused texture count.
STC: Static texture count.
DTSU: Dynamic texture space used.
STSU: Static texture space used.
FRB: Terrain blocks not rendered due to full fogging.

texture

Requires:
GLEnableMetrics(true);

fps metrics +
NTL: Number of texels loaded.
TRP: Percentage of resident memory (on card) used by textures.
TCM: Texture cache misses.

video

Requires:
GLEnableMetrics(true);

fps metrics +
TC: Total triangle count.
PC: Total primitive count.
T_T: Terrain triangle count.
T_P: Terrain primitive count.
I_T: Interiors triangle count.
I_P: Interiors primitive count.
TS_T: Shape (DTS) triangle count.
TS_P: Shape (DTS) primitive count.
?_T: Uncategorized triangle count.
?_P: Uncategorized primitive count.

vehicle

fps metrics +
R: Integration retry count.
C: Search count.
P: Polygon count for vehicles.
V: Vertex count for vehicles.

192

© Copyright 2000-2006 GarageGames Product of Hall Of Worlds, LLC.

metric Measures

water
fps metrics +
Tri#: Water triangle count.
Pnt#: Water point (vertex) count.
Hz#: Water haze point count.

193

© Copyright 2000-2006 GarageGames Product of Hall Of Worlds, LLC.

Networking

dbgSetParameters (port , password)
Purpose
Use the dbgSetParameters function to set the debug connection password for a specific
port.

Syntax
 port – The IP port to set the password on.
password – The password for this port. Set this to a NULL string to clear
 the password for the port.

Returns
No return value.

dbgSetParameters(1130 , “edochi”);

dNetSetLogging(enable)
Purpose
Use the dNetSetLogging function to enable (or disable) network packet logging to the
console.

Syntax
enable – A boolean value. If set to true, network packet logging is enabled,
 otherwise it is disabled.

Returns
No return value.

dnetSetLogging(1);

194

© Copyright 2000-2006 GarageGames Product of Hall Of Worlds, LLC.

Profiling

profilerDump()
Purpose
Use the profilerDump function to dump engine profile statistics to the console.

Returns
No return value.

Used to dump NetStringTable statistics to the console

profilerDump();

profilerDumpToFile(filename)
Purpose
Use the profilerDumpToFile function to dump engine profile statistics to a file.

Syntax
filename – A string value specifying a full or partial path to a file for writing the
profiler statistics to.

Returns
No return value.

profilerEnable(enable)
Purpose
Use the profileEnable function to enable (or disable) engine profiling.

Syntax
enable – A boolean value. If set to true and the engine was compiled with DEBUG
 specified, engine profiling is enabled, otherwise it is disabled.

Returns
No return value.

Note
TGE has predefined profiling areas surrounded by markers, but you may need to define
additional markers (in C++) around areas you wish to profile, by using the PROFILE_START(
markerName); and PROFILE_END(); MACROS.

Please read GPGTGE Volume 2 to learn more about this.

profilerEnable(false);

195

© Copyright 2000-2006 GarageGames Product of Hall Of Worlds, LLC.

profilerMarkerEnable(markerName , enable)
Purpose
Use the profilerMarkerEnable function to enable (or disable) specific profiling markers.

Syntax
markerName – The name of a marker (as specified using the C++ MACRO PROFILER_START)
 to be enabled/disabled.
 enable – A boolean value. If set to true, the specified marker will be enabled
 for profiling, otherwise it will be disabled.

Returns
No return value.

profilerMarkerEnable(mark , true);

profilerReset()
Purpose
Use the profilerReset function to reset the profile gathering mechanism. This clears the
current counters, but all markers retain their current enable/disable status.

Returns
No return value.

Tracing

backtrace()
Purpose
Use the backtrace function to print the current callstack to the console. This is used
to trace functions called from withing functions and can help discover what functions were
called (and not yet exited) before the current point in your scripts.

Returns
No return value.

trace(enable)
Purpose
Use the trace function to enable (or disable) function call tracing. If enabled, tracing
will print a message every time a function is entered, showing what arguments it received,
and it will print a message every time a function is exited, showing the return value (or
last value of last statement) for that function.

Syntax
enable – A boolean value. If set to true, tracing is enabled, otherwise it is
 disabled.
Returns
No return value.

196

© Copyright 2000-2006 GarageGames Product of Hall Of Worlds, LLC.

A.3.3. String Manipulation

Bad Word Filtering

Torque includes a bad word filtering feature that can be used process strings and to replace any words
matching words on the list of known bad works. This list is build manually. Bad words are replaced with a
user-defined set of random characters. Please note, a small but common list of bad words is already included in
the engine. Please refer to the engine source code for this list as a would-be tasteless the list of words here.
addBadWord(aBadWord)
Purpose
Use the addBadWord function to add new 'bad words' to the current 'bad word' list. Once
a word is added to the list, it may not be removed. Also, adding a word more than once
has no additional effect.

Syntax
aBadWord – A word to be considered as foul language and to be looked for when the
containsBadWords and/or filterString functions are called.

Returns
No return value.

Notes
Several bad words are already added by the engine. Please refer to the source code for a
full listing.

See Also
containsBadWords, filterString

containsBadWords(string)
Purpose
Use the containsBadWords function to check string for any previously specified 'bad
words'.

Syntax
string – Any string to be checked for bad words.

Returns
Returns true if any words on the bad word list are found in the string. Returns false
otherwise.

Notes
This function will catch whole words and variants as long as the variant contains the
full spelling of the bad word. For example, if 'wack' where defined as a bad word, this
function would return true if the word 'wacko' were included in a sentence.

See Also
addBadWord, filterString

Returns true if string contains any known bad words.

197

© Copyright 2000-2006 GarageGames Product of Hall Of Worlds, LLC.

string filterString(baseString [, replacementChars])
Purpose
Use the filterString function to parse baseString for words on the 'bad word' list and to
then replace those words with random characters.

Syntax
 baseString – The original string, possibly containing bad words.
replacementChars – This optional argument can be used to supply a single character or a
list of chracters to use for the replacement of characters the bad words.
 If no replacement characters are specified, the engine will choose
randomly from lower-case alpha-characters (a..z).

Returns
Returns a 'cleaned' string. This string will contain all the original words, except that
any words which were deemed 'bad' will have had each character in the word replaced with a
random replacement character.

Notes
This function will catch whole words and variants as long as the variant contains the
full spelling of the bad word. For example, if 'wack' where defined as a bad word, this
function would return true if the word 'wacko' were included in a sentence.

See Also
addBadWord, containsBadWords

Bad Word Filtering Sample

function badWordTest()
{
 addBadWord("poop");

 %testPhrase = "This is the poop!";

 %filteredPhrase = filterString(%testPhrase , "@#$*");

 echo("Contains bad words? ==> " , containsBadWords(%testPhrase));

 echo("Before filtering: ", %testPhrase);

 echo("After filtering: ", %filteredPhrase);

}

badWordTest();

Contains bad words? ==> 1
Before filtering: This is the poop!
After filtering: This is the $@@*!

198

© Copyright 2000-2006 GarageGames Product of Hall Of Worlds, LLC.

Comparison

strcmp(string1 , string2)
Purpose
Use the strcmp function to do a lexicographic case sensitive string comparison between
string1 and string2.

Syntax
string1 – String to be compared to string2.
string2 – String to be compared to string1.

Returns
Returns a numeric value:

 - 1 – string1 is less than string2, including case.
 0 – string1 is equal to string2, including case.
 1 – string1 is greater than string2, including case.

See Also
see stricmp, strstr

stricmp(string1 , string2)
Purpose
Use the stricmp function to do a lexicographic case in-sensitive string comparison
between string1 and string2.

Syntax
string1 – String to be compared to string2.
string2 – String to be compared to string1.

Returns
Returns a numeric value:

 - 1 – string1 is less than string2, ignoring case.
 0 – string1 is equal to string2, ignoring case.
 1 – string1 is greater than string2, ignoring case.

See Also
see strcmp, strstr

199

© Copyright 2000-2006 GarageGames Product of Hall Of Worlds, LLC.

Comparison Sample

function strcmptest()
{
 echo("Lexicographic comparisons are not the same as arithmetic comparisons...");

 echo("100 - 10 == 90, but strcmp(\"100\" , \"10\") == " ,
 strcmp("100" , "10"));

 echo("\n", "Don't forget about case-sensitivity...");

 echo("strcmp(\"ABC\" , \"abc\") == " ,
 strcmp("ABC" , "abc") , "\n\n, but \n");

 echo("stricmp(\"ABC\" , \"abc\") == " ,
 stricmp("ABC" , "abc"));
}

strcmptest();

Lexicographic comparisons are not the same as arithmetic comparisons...
100 - 10 == 90, but strcmp("100" , "10") == 1

Don't forget about case-sensitivity...
strcmp("ABC" , "abc") == -1

, but

stricmp("ABC" , "abc") == 0

Conversion

strlwr(sourceString)
Purpose
Use the strlwr function to convert all alpha characters in sourceString to lower-case
equivalents.

Syntax
sourceString – The string to be modified.

Returns
Returns a copy of sourceString in which all upper-case characters have been converted to
lower-case letters.

See Also
strupr

echo(strlwr("ABCD123")); // Prints abcd123

200

© Copyright 2000-2006 GarageGames Product of Hall Of Worlds, LLC.

strupr(sourceString)
Purpose
Use the strupr function to convert all alpha characters in sourceString to upper-case
equivalents.

Syntax
sourceString – The string to be modified.

Returns
Returns a copy of sourceString in which all lower-case characters have been converted to
upper-case letters.

See Also
strlwr

echo(strlwr("abcd123")); // Prints ABCD123

Fields (Newline or Tab Separated String)

A field is a sub-string withing a larger string, where each field is delimted by a NEWLINE character or a
TAB character. A newline can be represented as either "\n" or the keyword NL, and a tab can be represented
by hitting the TAB key, or by the keyword TAB.
getField(sourceString , index)
Purpose
Use the getField function to get the field at index in sourceString.

Syntax
sourceString – A string containing one or more fields.

Returns
Returns field at index in sourceString, or null string if no field exists at that index.

See Also
getFields, setField

// Prints Torque
echo(getField("GPGTGE + " NL "AND" TAB "Torque" TAB "Rocks" , 2));

201

© Copyright 2000-2006 GarageGames Product of Hall Of Worlds, LLC.

getFieldCount(sourceString)
Purpose
Use the getFieldCount function to get the number of fields in sourceString.

Syntax
sourceString – A string containing one or more fields.

Returns
Returns number of fields in sourceString or 0 if no fields are present.

%fields = "You" TAB "must" TAB "buy" TAB "GPGTGE";

echo(getFieldsCount(%fields)); // Prints 4

getFields(sourceString , index [, endindex])
Purpose
Use the getFields function to retrieve a set of fields from a sourceString.

Syntax
sourceString – A string containing one or more fields.
 index – The index of the first field to retrieve.
 endindex – The index of the final field to retrieve.

Returns
Returns all fields (separated by current delimiter) from sourceString, starting at index
and ending at endIndex or end of string, whichever comes first. If no endIndex is
specified, all remaining fields are returned.

See Also
getField, setField

// Prints Torque^Rocks (^ is printed TAB in console)
echo(getFields("GPGTGE + " NL "AND" TAB "Torque" TAB "Rocks" , 2 , 3));

// Also prints Torque^Rocks
echo(getFields("GPGTGE + " NL "AND" TAB "Torque" TAB "Rocks" , 2));

202

© Copyright 2000-2006 GarageGames Product of Hall Of Worlds, LLC.

removeField(sourceString , index)
Purpose
Use the removeField function to remove a single indexed field from a sourceString.

Syntax
sourceString – A string containing one or more fields.
 index – The index of the field to remove.

Returns
Returns sourceString minus the removed field. If the index is greater than the number of
fields in sourceString, the original string is returned.

See Also
setField

%fields = "Torque" TAB "So" TAB "Totally" TAB "Rocks!";

// %fields will contain three fields: "Torque", "Totally", and "Rocks!".
%fields = removeField(%fields, 1);

setField(sourceString , index , replace)
Purpose
Use the setField function to replace an existing field with a new field(s), or to add
field(s) to a string..

Syntax
sourceString – A string containing one or more fields.
 index – The index of the field to remove.
 replace – The new field(s) to replace the field at index with.

Returns
There are multiple return cases:
 - In the first case, a simple one-to-one replacement, the field at index in sourceString
will be replaced with the value in replace, and the new string will be returned.

 - In the first case, a multi-to-one replacement, the field at index in sourceString will
be replaced with the value in replace, which can be two or more fields, and the new string
will be returned.

 - In the thrid and final case, new records, empty or filled, can be appended to the end
of sourceString. If index is beyond the end of the sourceString, that is, the index is
greater than the total count of fields in sourceString, the requisite number of empty
(null-string) fields will be appended to the end of sourceString and the value in replace
will be appended to the end of this new string. This entire resultant string will be
returned.

See Also
getField, getFields, removeField

203

© Copyright 2000-2006 GarageGames Product of Hall Of Worlds, LLC.

// %fields will contain two fields, "Torque" and "Rocks!",
%fields = setField("Torque" TAB "Rock" , 1 , "Rocks!");

 Metrics

strlen(string)
Purpose
Use the strlen function to determine how many characters there are in string.

Syntax
string – The string to count characters for.

Returns
Returns the number of characters in string, or 0 if string is invalid or a NULL string.

// Prints 10
echo(strlen("0123456789"));

Records (Newline Separated String)

A record is a sub-string withing a larger string, where each record is delimted by a NEWLINE character. A
newline can be represented as either "\n" or the keyword NL.

getRecord(sourceString , index)
Purpose
Use the getRecord function to get the record at index in sourceString.

Syntax
sourceString – A string containing one or more records.

Returns
Returns record at index in sourceString, or NULL string if no record exists at that
index.

See Also
getRecords, setRecord

// Prints Torque
echo(getRecord("GPGTGE + " NL "AND" TAB "Torque" TAB "Rocks" , 2));

204

© Copyright 2000-2006 GarageGames Product of Hall Of Worlds, LLC.

getRecordCount(sourceString)
Purpose
Use the getRecordCount function to get the number of records in sourceString.

Syntax
sourceString – A string containing one or more records.

Returns
Returns number of records in sourceString or 0 if no records are present.

%records = "You" TAB "must" TAB "buy" TAB "GPGTGE";

echo(getRecordsCount(%records)); // Prints 4

getRecords(sourceString , index [, endindex])
Purpose
Use the getRecords function to retrieve a set of records from a sourceString.

Syntax
sourceString – A string containing one or more records.
 index – The index of the first record to retrieve.
 endindex – The index of the final record to retrieve.

Returns
Returns all records (separated by current delimiter) from sourceString, starting at index
and ending at endIndex or end of string, whichever comes first. If no endIndex is
specified, all remaining records are returned.

See Also
getRecord, setRecord

// Prints Torque^Rocks (^ is printed TAB in console)
echo(getRecords("GPGTGE + " NL "AND" TAB "Torque" TAB "Rocks" , 2 , 3));

// Also prints Torque^Rocks
echo(getRecords("GPGTGE + " NL "AND" TAB "Torque" TAB "Rocks" , 2));

205

© Copyright 2000-2006 GarageGames Product of Hall Of Worlds, LLC.

removeRecord(sourceString , index)
Purpose
Use the removeRecord function to remove a single indexed record from a sourceString.

Syntax
sourceString – A string containing one or more records.
 index – The index of the record to remove.

Returns
Returns sourceString minus the removed record. If the index is greater than the number
of records in sourceString, the original string is returned.

See Also
setRecord

%records = "Torque" TAB "So" TAB "Totally" TAB "Rocks!";

// %records will contain three records: "Torque", "Totally", and "Rocks!".
%records = removeRecord(%records, 1);

setRecord(sourceString , index , replace)
Purpose
Use the setRecord function to replace an existing record with a new record(s), or to add
record(s) to a string..

Syntax
sourceString – A string containing one or more records.
 index – The index of the record to remove.
 replace – The new record(s) to replace the record at index with.

Returns
There are multiple return cases:
 - In the first case, a simple one-to-one replacement, the record at index in
sourceString will be replaced with the value in replace, and the new string will be
returned.

 - In the first case, a multi-to-one replacement, the record at index in sourceString
will be replaced with the value in replace, which can be two or more records, and the new
string will be returned.

 - In the thrid and final case, new records, empty or filled, can be appended to the end
of sourceString. If index is beyond the end of the sourceString, that is, the index is
greater than the total count of records in sourceString, the requisite number of empty
(null-string) records will be appended to the end of sourceString and the value in replace
will be appended to the end of this new string. This entire resultant string will be
returned.

See Also
getRecord, getRecords, removeRecord

206

© Copyright 2000-2006 GarageGames Product of Hall Of Worlds, LLC.

// %records will contain two records, "Torque" and "Rocks!",
%Records = setRecord("Torque" TAB "Rock" , 1 , "Rocks!");

Replacing

strreplace(sourceString , from , to)
Purpose
Use the strreplace function to replace every instance of from in sourceString with to.

Syntax
sourceString – The string to do replacement operations on.
 from – The old value to be replaced.
 to – The new value to replace old values with.

Returns
Returns a new version of sourceString in which every instance of the value in from was
replaced with the value in to.

Notes
This function is case-sensitive and only does exact matching.

// Prints Torque rocks!
echo(strreplace("Torque is cool!" , "is cool" , "rocks"));

Searching

getSubStr(sourceString , start , count)
Purpose
Use the getSubStr function to get a sub-string of sourceString, starting at character
index start and ending at character index start + count, or the end-of-string, which ever
comes first.

Syntax
sourceString – The string from which to extract a sub-string.
 start – The character index at which the extraction starts.
 count – The length of the sub-string to extract.

Returns
Returns a string made up of the character at start in sourceString and ending at the end
of the original sourceString, or start + count, whichever comes first.

Notes
If start + count is greater than the length of sourceString, the extraction will return a
string shorter than count.

See Also
strchr

207

© Copyright 2000-2006 GarageGames Product of Hall Of Worlds, LLC.

// Prints 2345
echo(getSubStr("0123456789" , 2 , 4));

strchr(sourceString , char)
Purpose
Use the strchr function to extract a sub-string of sourceString, where the sub-string is
equal to the first occurence of char in sourceString followed by the remainder of
sourceString.

Syntax
sourceString – The string from which to extract a sub-string.
 char – The character to search for in sourceString.

Returns
Returns a string composed of first instance of char in sourceString, and all of the
characters after it. If char is not found, a NULL string is returned.

See Also
getSubStr

// Prints 3456789
echo(strchr("0123456789" , "3"));

strpos(sourceString , searchString [, offset])
Purpose
Use the strPos function to locate the first instance of searchString in sourceString,
starting at character 0, or at an optional offset.

Syntax
sourceString – The string in which to search for searchString.
searchString – The string for which to search for in sourceString.
 offset – An optional non-negative integer value representing the character offset
within sourceString at which to begin the search.

Returns
Returns a numeric character index representing the postion in sourceString at which
searchString was found, or -1 to indicate that no instance of searchString was found.

See Also
strstr

// Prints 2
echo(strpos("This is a test" , "is"));

// Prints 5
echo(strpos("This is a test" , "is" , 3));

208

© Copyright 2000-2006 GarageGames Product of Hall Of Worlds, LLC.

strstr(sourceString , searchString)
Purpose
Use the strstr function to locate the first instance of searchString in sourceString.

Syntax
sourceString – The string in which to search for searchString.
searchString – The string for which to search for in sourceString.

Returns
Returns a numeric character index representing the position in sourceString at which
searchString was found, or -1 to indicate that no instance of searchString was found.

See Also
strpos

// Prints -1
echo(strstr("This is a test" , "IS"));

// Prints 2
echo(strstr("This is a test" , "is"));

Stripping and Trimming

stripChars(sourceString , chars)
Purpose
Use the stripChars function to remove chars from sourceString.

Syntax
sourceString – The string to be modified.
 chars – The character or characters to search for and remove.

Returns
Returns a copy of sourceString, from which all instances of chars have been removed.
This may be the original sourceString, if chars was not found.

See Also
stripMLControlChars, stripTrailingSpaces

// Prints WowThisIsCool
echo(stripChars("WowxThisy*IsCoolz!" , "*xyz"));

stripMLControlChars(sourceString)
Purpose
Use the stripMLControlChars function to remove all Torque Markup-Language (ML) symbols
from sourceString.

Syntax
sourceString – The string to be modified.

209

© Copyright 2000-2006 GarageGames Product of Hall Of Worlds, LLC.

Returns
Returns a copy of sourceString with all the ML symbols removed, or the original string if
no ML symbols were present.

Caution
This may not remove
 correctly, so check before you trust this function.

See Also
stripChars, stripTrailingSpaces

stripTrailingSpaces(sourceString)
Purpose
Use the stripTrailingSpaces function to remove all spaces and underscores from
sourceString.

Syntax
sourceString – The string to be modified.

Returns
Returns modified string, or original string if no trailing spaces found found.

Notes
This function DOES NOT remove TAB characters, only a space " ", or underline "_" are
considered spaces.

See Also
stripChars, stripMLControlChars, ltrim, rtrim, trim

// Prints This is a test.
echo(stripTrailingSpaces("This is a ") SPC "test.");

210

© Copyright 2000-2006 GarageGames Product of Hall Of Worlds, LLC.

ltrim(sourceString)
Purpose
Use the ltrim function to strip the leading white space from sourceString.

Syntax
sourceString – The string to be trimmed.

Returns
Returns sourceString with all the leading white spaces removed.

Notes
White space is any character in this set: spaces, TABs, and NULL strings.

See Also
stripChars, stripMLControlChars, stripTrailingSpaces, rtrim, trim

// Prints This is a test.
echo(ltrim(" " TAB " " SPC "This is a test."));

rtrim(sourceString)
Purpose
Use the rtrim function to strip the trailing white space from sourceString.

Syntax
sourceString – The string to be trimmed.

Returns
Returns sourceString with all the trailing white spaces removed.

Notes
White space is any character in this set: spaces, TABs, and NULL strings.

See Also
stripChars, stripMLControlChars, stripTrailingSpaces, ltrim, trim

// Prints This is a test.
echo(rtrim("This is a ") SPC "test.");

211

© Copyright 2000-2006 GarageGames Product of Hall Of Worlds, LLC.

trim(sourceString)
Purpose
Use the trim function to strip the leading and trailing white space from sourceString.

Syntax
sourceString – The string to be trimmed.

Returns
Returns sourceString with all the leading and trailing white spaces removed.

Notes
White space is any character in this set: spaces, TABs, and NULL strings.

See Also
stripChars, stripMLControlChars, stripTrailingSpaces, ltrim, rtrim

// Prints This is a test.
echo(trim(" " TAB " " SPC "This is a ") SPC "test.");

Tokens

nextToken(tokenList , tokenVar , delimeter)
Purpose
Use the nextToken function to get the first token found in tokenList, where tokens are
separated by the character(s) specified in delimeter. The token itself is stored in a
variable whose name is specified in tokenVar. This function provides complex power in a
simple package. Please read the notes below, they are very important.

Syntax
tokenList – The string containing token(s).
 tokenVar – The 'name' of the variable to store the token in.
delimeter – The character(s) to use as a delimeter. A delimeter may be a single
character, or a sequence of characters.

Returns
Returns a copy of tokenList, less the first token and the first delimiter. If there are
no more tokens, a NULL string is returned.

Notes
This function is scope-smart. That is, when we specify the name of the variable to store
a token in by passing a value in tokenVar, we do not include either a local symbol (%), or
a global symbol ($). We just pass in an un-adorned name, let's say "George". Then,
depending on where this function is called, "George" will become a local (%George), or a
global ($George) variable. If this function is called within a function or method
definition, "George" will be local (%George). If this function is called from the file-
scope (executed as part of a file and not within the scope of a function or method),
"George" will become a global ($George). There is one additional special case. If you
attempt to use this from the console command line, the token will vaporize and no variable
will be created.

212

© Copyright 2000-2006 GarageGames Product of Hall Of Worlds, LLC.

function testTokens()
{

 %myTokens = "A,E,I,O,U";

 while("" !$= %myTokens)
 {
 %myTokens = nextToken(%myTokens , "theToken" , ",");

 echo(%theToken);
 }
}

testTokens();
A
E
I
O
I

Words (Space separated strings)

A word is a sub-string withing a larger string, where each word is delimted by a SPACE character. A space
can be represented as either " " or the keyword SPC.

firstWord(sourceString)
Purpose
Use the firstWord function to retrieve the first word found in sourceString.

Syntax
sourceString – A string containing one or more words.

Returns
Returns the first word found in sourceString, or a NULL string, if no words are found.

See Also
restWords

// a target in range was found so select it
if (%scanTarg)
{
 %targetObject = firstWord(%scanTarg);
 %client.setSelectedObj(%targetObject);
}

213

© Copyright 2000-2006 GarageGames Product of Hall Of Worlds, LLC.

getWord(sourceString ,index)
Purpose
Use the getWord function to get the word at index in sourceString.

Syntax
sourceString – A string containing one or more words.

Returns
Returns word at index in sourceString, or null string if no word exists at that index.

See Also
getWords, setWord

function TerrainEditor::offsetBrush(%this, %x, %y) {
 %curPos = %this.getBrushPos();
 %this.setBrushPos(getWord(%curPos, 0) + %x, getWord(%curPos, 1) + %y);
}

getWordCount(sourceString)
Purpose
Use the getWordCount function to get the number of words in sourceString.

Syntax
sourceString – A string containing one or more words.

Returns
Returns number of words in sourceString or 0 if no words are present.

if (%pos != -1) {
 %wordCount = getWordCount(%action);
 %mods = %wordCount > 1 ? getWords(%action, 0, %wordCount - 2) @ " " : "";
 %object = getWord(%action, %wordCount - 1);
 switch$ (%object) {
 case "upov": %object = "POV1 up";
 case "dpov": %object = "POV1 down";
 case "lpov": %object = "POV1 left";
 case "rpov": %object = "POV1 right";
 case "upov2": %object = "POV2 up";
 case "dpov2": %object = "POV2 down";
 case "lpov2": %object = "POV2 left";
 case "rpov2": %object = "POV2 right";
 default: %object = "??";
 }
 return(%mods @ %object);
} else {
 error("Unsupported Joystick input object passed to getDisplayMapName!");
}

214

© Copyright 2000-2006 GarageGames Product of Hall Of Worlds, LLC.

getWords(sourceString ,index [,endindex])
Purpose
Use the getWords function to retrieve a set of words from a sourceString.

Syntax
sourceString – A string containing one or more words.
 index – The index of the first word to retrieve.
 endindex – The index of the final word to retrieve.

Returns
Returns all words (separated by current delimiter) from sourceString, starting at index
and ending at endIndex or end of string, whichever comes first. If no endIndex is
specified, all remaining words are returned.

See Also
getWord, setWord

%pos = getWords(%obj.getTransform(), 0, 2);

removeWord(sourceString ,index)
Purpose
Use the removeWord function to remove a single indexed word from a sourceString.

Syntax
sourceString – A string containing one or more words.
 index – The index of the word to remove.

Returns
Returns sourceString minus the removed word. If the index is greater than the number of
words in sourceString, the original string is returned.

See Also
setWord

%cam = removeWord(%cam, 0, getWord(%pos, 0));

215

© Copyright 2000-2006 GarageGames Product of Hall Of Worlds, LLC.

restWords(sourceString)
Purpose
Use the restWords function to retrieve all words after the first word in sourceString.

Syntax
sourceString – A string containing one or more words.

Returns
Returns a string containing all the words after the first word found in sourceString, or
a NULL string if no words remain after the first word (or if no words at all remain).

See Also
firstWord

function Heightfield::showTab(%id)
{
 Heightfield::hideTab();
 %data = restWords(Heightfield_operation.getRowTextById(%id));
 %tab = getField(%data,1);
 echo("Tab data: " @ %data @ " tab: " @ %tab);
 %tab.setVisible(true);
}

setWord(sourceString ,index,replace)
Purpose
Use the setWord function to replace an existing word with a new word(s), or to add
word(s) to a string..

Syntax
sourceString – A string containing one or more words.
 index – The index of the word to remove.
 replace – The new word(s) to replace the word at index with.

Returns
There are multiple return cases:
 - In the first case, a simple one-to-one replacement, the word at index in sourceString
will be replaced with the value in replace, and the new string will be returned.

 - In the first case, a multi-to-one replacement, the word at index in sourceString will
be replaced with the value in replace, which can be two or more words, and the new string
will be returned.

 - In the third and final case, new records, empty or filled, can be appended to the end
of sourceString. If index is beyond the end of the sourceString, that is, the index is
greater than the total count of words in sourceString, the requisite number of empty
(null-string) words will be appended to the end of sourceString and the value in replace
will be appended to the end of this new string. This entire resultant string will be
returned.

See Also
getWord, getWords, removeWord

216

© Copyright 2000-2006 GarageGames Product of Hall Of Worlds, LLC.

function WorldEditor::dropCameraToSelection(%this) {
 if(%this.getSelectionSize() == 0) return;

 %pos = %this.getSelectionCentroid();
 %cam = LocalClientConnection.camera.getTransform();
 // set the pnt
 %cam = setWord(%cam, 0, getWord(%pos, 0));
 %cam = setWord(%cam, 1, getWord(%pos, 1));
 %cam = setWord(%cam, 2, getWord(%pos, 2));
 LocalClientConnection.camera.setTransform(%cam);
}

A.3.4. NETWORKING

Tags (NetStringTable)

addTaggedString(string)
Purpose
Use the addTaggedString function to tag a new string and add it to the NetStringTable.

Syntax
string – The string to tagged and placed in the NetStringTable. Tagging ignores case, so
tagging the same string (excluding case differences) will be ignored as a duplicated tag.

Returns
Returns a string (containing a numeric value) equivalent to the string ID for the newly
tagged string.

buildTaggedString(format , <arg1, ...arg9>)
Purpose
Use the buildTaggedString function to build a tagged string using the specified format.

Syntax
enable – A boolean value. If set to true, network packet logging is enabled,
 otherwise it is disabled.

Returns
No return value.

detag(tagID)
Purpose
Use the detag function to convert a tag to a string. This can only be used in the proper
context, i.e. to parse values passed to a client command or to a server command. See
'Remote Procedure Call Samples' below.

Syntax
tagID – A numeric tag ID corresponding to a previously tagged string.

217

© Copyright 2000-2006 GarageGames Product of Hall Of Worlds, LLC.

Returns
Returns the string associated with the tag ID.

See Also
commandToClient(), commandToServer().

dumpNetStringTable()
Purpose
Use the dumpNetStringTable function to dump a list of all the currently registered
NetStringTable entries, including the times each has been referenced, the total entry
count, and the current 'highest' reference string.

Returns
No return value.

Notes
For this to work, the engine must have been compiled with TORQUE_DEBUG defined.

getTag(taggedString)
Purpose
Use the getTag function to retrieve the tag ID associated with a previously tagged string.

Syntax
taggedString – A previously tagged string.

Returns
Returns the tag ID of the string. If the string was not previously tagged, it gets
tagged and the new tag ID is returned.

getTaggedString(tag)
Purpose
Use the getTaggedString function to convert a tag to a string. This is not the same a
detag() which can only be used within the context of a function that receives a tag. This
function can be used any time and anywhere to convert a tag to a string.

Syntax
tag – A numeric tag ID.

Returns
Returns the string corresponding to the tag ID.

218

© Copyright 2000-2006 GarageGames Product of Hall Of Worlds, LLC.

removeTaggedString(tag)
Purpose
Use the removeTaggedSTring function to remove a previously tagged string from the
NetStringTable.

Syntax
tag – A number tag ID.

Returns
No return value.

Telnet

gotoWebPage(address)
Purpose
Use the gotoWebPage function to open a browser and go to the specified URL address.

Syntax
address – A complete and valid URL.

Returns
No return value.

219

© Copyright 2000-2006 GarageGames Product of Hall Of Worlds, LLC.

setNetPort(port)
Purpose
Use the setNetPort function to set the netport that the server will listen on.

Syntax
port – A numeric port ID.

Returns
Returns true if the set worked, false otherwise.

telnetSetParameters(port, consolePass, listenPass [, remoteEcho])
Purpose
Use the telnetSetParameters function to setup and accept telnet requests on a specific
port.

Syntax
 port – A numeric port ID.
consolePass – Password for read/write access to the console.
 listenPass – Password for read access to the console.
 remoteEcho – A boolean value to enable echoing to the client, false by default.

Returns
No return value.

220

© Copyright 2000-2006 GarageGames Product of Hall Of Worlds, LLC.

Client-Server Communications

commandToClient(client, func [, arg1, ... , argn])
Purpose
Use the commandToClient function to issue a remote procedure call on a client.

Syntax
 client – The numeric ID of a client gameConnection.
 func – The suffix of the remote procedure name to be executed on the client.
arg1 .. argn – Optional arguments to be passed to the remote procedure.

Returns
No return value.

Notes
All arguments (excluding client) may be in tagged or non-tagged format. See 'Remote
Procedure Call Samples' below.

commandToServer(func [, arg1, ... , argn])
Purpose
Use the commandToServer function to issue a remote procedure call the server.

Syntax
 func – The suffix of the remote procedure name to be executed on the client.
arg1 .. argn – Optional arguments to be passed to the remote procedure.

Returns
No return value.

Notes
All arguments may be in tagged or non-tagged format. See 'Remote Procedure Call Samples'
below.

221

© Copyright 2000-2006 GarageGames Product of Hall Of Worlds, LLC.

Game Server

allowConnections(enable)
Purpose
Use the allowConnections to enable (or disable) remote connections to the local game
server.

Syntax
enable – A boolean value enabling, or disabling connections to the local server.

Returns
No return value.

cancelServerQuery()
Purpose
Use the cancelServerQuery function to cancel a previous query*() call.

Returns
No return value.

See Also
queryLANServers(), queryMasterServer(), querySingleServer()

getServerCount()
Purpose
Use the getServerCount function to determine the number of game servers found on the last
queryLANServers() or queryMasterServer() call.

Returns
Returns a numeric value equal to the number of game servers found on the last
queryLANServers() or queryMasterServer() call. Returns 0 if the function was not called,
or none were found.

Notes
This value is important because it allows us to properly index when calling
setServerInfo().

See Also
queryLANServers, queryMasterServer, setServerInfo()

222

© Copyright 2000-2006 GarageGames Product of Hall Of Worlds, LLC.

queryLANServers(port , flags , gametype , missiontype , minplayers , maxplayers ,
 maxbots , regionmask , maxping , mincpu , filterflags)
Purpose
Use the queryLANServers function to establish whether any game servers of the required
specification(s) are available on the local area network (LAN).

Syntax
 port – Look for any game servers advertising at this port. Set to 0 if you
 don't care what port the game server is using.
 flags - Look for any game servers with these special flags set. Set to 0 for
 no flags.
 gametype - Look for any game servers playing a game type that matches this
 string. Set to the NULL string to look for any game type.
missiontype - Look for any game servers playing a mission type that matches this
 string. Set to the NULL string to look for any mission type.
 minplayers - Look for any game servers with this number of players or more.
 Set to 0 for no lower limit.
 maxplayers - Look for any game servers with this number of players or fewer.
 Set to 0 for no upper limit.
 maxbots - Look for any game servers with this number of AI controlled players
 or fewer. Set to 0 for no limit.
 regionmask - Look for any master servers, on our master server list, in this
 region. Set to 0 to examine all regions.
 maxping - Look for any game servers with a PING rate equal to or lower
 than this. Set to 0 for no upper PING limit.
 mincpu - Look for any game servers with a CPU (clock speed) equal or greater
 than this. Set to 0 for no CPU (clock speed) limit.
filterflags - Look for any game servers with this game version number or higher.
 Set to 0 to find all versions.

Returns
No return value.

See Also
getServerCount, queryMasterServer, setServerInfo, stopServerQuery

queryMasterServer(flags , gametype , missiontype , minplayers , maxplayers ,
 maxbots , regionmask , maxping , mincpu , filterflags)
Purpose
Use the queryMasterServer function to query all master servers in the master server list
and to establish if they are aware of any game servers that meet the specified
requirements, as established by the arguments passed to this function.

Syntax
 flags - Look for any game servers with these special flags set. Set to 0
 for no flags.
 gametype - Look for any game servers playing a game type that matches this
 string. Set to the NULL string to look for any game type.
missiontype - Look for any game servers playing a mission type that matches
 this string. Set to the NULL string to look for any mission type.
 minplayers - Look for any game servers with this number of players or more.
 Set to 0 for no lower limit.
 maxplayers - Look for any game servers with this number of players or fewer.
 Set to 0 for no upper limit.

223

© Copyright 2000-2006 GarageGames Product of Hall Of Worlds, LLC.

 maxbots - Look for any game servers with this number of AI controlled players
 or fewer. Set to 0 for no limit.
 regionmask - Look for any master servers, on our master server list, in this
 region. Set to 0 to examine all regions.
 maxping - Look for any game servers with a PING rate equal to or lower than
 this. Set to 0 for no upper PING limit.
 mincpu - Look for any game servers with a CPU (clock speed) equal or greater
 than this. Set to 0 for no CPU (clock speed) limit.
filterflags - Look for any game servers with this game version number or higher.
 Set to 0 to find all versions.

Returns
No return value.

Notes
In order for this function to do anything, a list of master servers must have been
previously specified. This list may contain one or more server addresses. A call to this
function will search all servers in the list. To specify a list, simply create a set of
array entries like this:

$pref::Master[0] = "2:192.168.123.15:28002";
$pref::Master[1] = "2:192.168.123.2:28002";
...

The format of these values is ==> Region Number : IP Address : Port Number
These values should be specified in either the client's or the server's preferences file
(prefs.cs). You may specifiy it elsewhere, however be sure that it is specified prior to
this function being called and before any other functions that rely on it.

See Also
getServerCount, queryLANServers, setServerInfo, startHeartbeat, stopServerQuery

querySingleServer(address [, flags])
Purpose
Use the querySingleServer function to re-query a previously queried lan server, OR a game
server found with queryLANServers or with queryMasterServer and selected with
setServerInfo. This will refresh the information stored by TGE about this server. It
will not however modify the values of the $ServerInfo::* global variables.

Syntax
address – The IP address and Port to re-query, i.e. "192.168.123.2:28000".
 flags – No longer used.
Returns
No return value.

See Also
getServerCount, queryLANServers, queryMasterServer, setServerInfo, stopServerQuery

224

© Copyright 2000-2006 GarageGames Product of Hall Of Worlds, LLC.

setServerInfo(index)
Purpose
Use the setServerInfo function to set the values of the $ServerInfo::* global variables
with information for a server found with queryLANServers or with queryMasterServer.

Syntax
index – The index of the server to get information about.

Returns
Will return true if the information was successfully set, false otherwise.

See Also
getServerCount, queryLANServers, queryMasterServer, querySingleServer

startHeartbeat()
Purpose
Use the startHeartbeat function to start advertising this game serer to any master
servers on the master server list.

Returns
No return value.

Notes
In order for this function to do anything, a list of master servers must have been
previously specified. This list may contain one or more server addresses. Once this
function is called, the game server will re-advertise itself to all the master servers on
its master server lits every two minutes. To specify a list, simply create a set of array
entries like this:

$pref::Master[0] = "2:192.168.123.15:28002";
$pref::Master[1] = "2:192.168.123.2:28002";
...

The format of these values is ==> Region Number : IP Address : Port Number
These values should be specified in either the client's or the server's preferences file
(prefs.cs). You may specifiy it elsewhere, however be sure that it is specified prior to
this function being called and before any other functions that rely on it.

See Also
queryMasterServer, stopHeartbeat

225

© Copyright 2000-2006 GarageGames Product of Hall Of Worlds, LLC.

stopHeartbeat()
Purpose
Use the startHeartbeat function to stop advertising this game serer to any master servers
on the master server list.

Returns
No return value.

See Also
queryMasterServer, startHeartbeat

stopServerQuery()
Purpose
Use the stopServerQuery function to cancel any outstanding server queries.

Returns
No return value.

See Also
queryLANServers, queryMasterServer, querySingleServer

Statistics/Metrics

getMaxFrameAllocation()
Purpose
Use the getMaxFrameAllocation function to determine the largest amount of memory that has
ever been allocated in the process of rendering a single frame.

Returns
Returns a non-negative integer representing the largest number of bytes temporarily
allocated during the rendering of a single frame.

Notes
For this to work, the engine must have been compiled with TORQUE_DEBUG defined. During
frame rendering, the engine will dynamically allocate and deallocate memory for
various tasks. This function allows us to get a peek at the largest amount of
allocation that has occured to date. If this number is very large, we may have a
bug or be facing a serious performance issue of one form or another. We want
this number to be small.

226

© Copyright 2000-2006 GarageGames Product of Hall Of Worlds, LLC.

A.3.5. CONSOLE

call(funcName [, args ...])
Purpose
Use the call function to dynamically build and call a function.

Syntax
funcName – A string containing the unadorned name of a function to be executed.
args ... - Any arguments that should be passed to the function.

Returns
Returns a string containing the results from the function that is built and called.

See Also
eval

// Prints Hello World
call("echo" , "Hello" , " ", "World");

cls()
Purpose
Use the cls function to clear the console output.

Returns
No return value.

collapseEscape(text)

Purpose
Use the collapseEscape function to replace all escape sequences ('\\xx') with a collapsed
version ('\xx').

Syntax
text – A string, possibly containing escape sequences.

Returns
Returns a copy of text with all escape sequences converted to an encoding.

See Also
expandEscape

echo("edo\\t"); // Prints edo\t

echo(collapseEscape("edo\\t")); \\ Prints edo^

227

© Copyright 2000-2006 GarageGames Product of Hall Of Worlds, LLC.

compile(fileName)
Purpose
Use the compile function to pre-compile a script file without executing the contents.

Syntax
fileName – A path to the script to compile.

Returns
Returns 1 if the script compiled without errors and 0 if the file did not compile
correctly or if the path is wrong. Also, ff the path is invalid, an error will print to
the console.

See Also
exec

compile("./main.cs");

deleteVariables(wildCard)
Purpose
Use the deleteVariables function to delete any global variable matching the wildCard
statement.

Syntax
wildCard – A string identifying what variable(s) to delete. All characters used to
 create a global are allowed and the special symbol "*", meaning 0 or
 more instances of any character.

Returns
No return value.

$edo = "cool";

echo($edo); // Prints cool

deleteVariables("$ed*"); // Delete all globals starting with $ed

echo($edo); // Prints "" because $edo was deleted

228

© Copyright 2000-2006 GarageGames Product of Hall Of Worlds, LLC.

echo(text [, ...])
Purpose
Use the echo function to print messages to the console.

Syntax
text – Any valid text string.
... - Any additional valid text string(s).

Returns
No return value.

See Also
error, warn

// Prints This is a test
echo("This is a test");

enableWinConsole(enable)
Purpose
Use the enableWinConsole function to tell TGE to create an external console window,
either as a separate DOS window or as a new window under OSX/Linux/*NIX.

Syntax
enable – A boolean. If this value is set to true, a new console window will be created.

Returns
No return value.

Notes
Subsequent calls to this function do nothing. Only one external console is allowed.

 enableWinConsole(true); // Open an external console.

error(text [, ...])
Purpose
Use the error function to print error messages to the console. These messages usually
print in red.

Syntax
text – Any valid text string.
... - Any additional valid text string(s).

Returns
No return value.

See Also
echo, warn

// Prints This is a test
error("This is a test");

229

© Copyright 2000-2006 GarageGames Product of Hall Of Worlds, LLC.

eval(script)
Purpose
Use the eval function to execute any valid script statement.

Syntax
script – A string containing a valid script statement. This may be a single line
statement or multiple lines concatenated together with new-line characters.

Returns
Returns the result of executing the script statement.

Notes
If you choose to eval a multi-line statement, be sure that there are no comments or (\\)
comment blocks (**\) embedded in the script string.

See Also
call

exec(fileName [, nocalls [, journalScript]])
Purpose
Use the exec function to compile and execute a normal script, or a special journal script.

Syntax
 fileName – A string containing a path to the script to be compiled and
 executed.
 nocalls – A boolean value. If this value is set to true, then all function
 calls encountered while executing the script file will be skipped
 and not called. This allows us to re-define function definitions
 found in a script file, without re-executing other worker scripts
 in the same file.
journalScript – A boolean value. If this value is set tot true, and if a
 journal is being played, the engine will attempt to read this
 script from the journal stream. If no journal is playing, this
 field is ignored.

Returns
Returns true if the file compiled and executed w/o errors, false otherwise.

Notes
If $Pref::ignoreDSOs is set to true, the system will use .cs before a .dso file if both
are found.

See Also
compile

exec("./main.cs");

230

© Copyright 2000-2006 GarageGames Product of Hall Of Worlds, LLC.

expandEscape(text)
Purpose
Use the collapseEscape function to replace all escape sequences ('\xx') with an expanded
version ('\\xx').

Syntax
text – A string, possibly containing escape sequences.

Returns
Returns a copy of text with all escape sequences expanded.

See Also
collapseEscape

echo("edo\t"); // Prints edo^

echo(expandEscape("edo\t")); \\ Prints edo\t

export(wildCard [, fileName [, append]])
Purpose
Use the export function to save all global variables matching the specified name pattern
in wildCard to a file, either appending to that file or over-writing it.

Syntax
wildCard – A string identifying what variable(s) to export. All characters used to
 create a global are allowed and the special symbol "*", meaning 0 or
 more instances of any character.
fileName – A string containing a path to a file in which to save the globals and
 their definitions.
 append – A boolean value. If this value is true, the file will be appended to if
 it exists, otherwise it will be created/over-written.

Returns
No return value.

echo("Exporting server prefs");
export("$Pref::Server::*", "./server/prefs.cs", False);

quit()
Purpose
Use the quit function to stop the engine and quit to the command line.

Returns
No return value.

quit();

231

© Copyright 2000-2006 GarageGames Product of Hall Of Worlds, LLC.

warn(text [, ...])
Purpose
Use the warn function to print warning messages to the console. These messages usually
yellow or orange.

Syntax
text – Any valid text string.
... - Any additional valid text string(s).

Returns
No return value.

See Also
warn, error

// Prints This is a test
warn("This is a test");

A.3.6. DEVICE IO
activateDirectInput()
Purpose
Use the activateDirectInput function to activate polling of direct input devices
(keyboard, mouse, joystick, et cetera).

Returns
No return value.

See Also
deactivateDirectInput

activateDirectInput();

activateKeyboard()
Purpose
Use the activateKeyboard function to enable directInput polling of the keyboard.

Returns
Returns a true if polling was successfully enabled.

See Also
deactivateKeyboard

if(activateKeyboard())
echo(“Keyboard has been activated”);

232

© Copyright 2000-2006 GarageGames Product of Hall Of Worlds, LLC.

deactivateDirectInput()
Purpose
Use the deactivateDirectInput function to de-activate polling of direct input devices
(keyboard, mouse, joystick, et cetera).

Returns
No return value.

See Also
activateDirectInput

deactivateDirectInput();

deactivateKeyboard()
Purpose
Use the deactivateKeyboard function to disable directInput polling of the keyboard.

Returns
No return value.

See Also
activateKeyboard

deactivateKeyboard();

disableJoystick()
Purpose
Use the disableJoystick function to disable joystick input.

Returns
No return value.

See Also
enableJoystick, getJoystickAxes, isJoystickEnabled

disableMouse()
Purpose
Use the disableMouse function to disable mouse input.

Returns
No return value.

See Also
enableMouse

disableMouse();

233

© Copyright 2000-2006 GarageGames Product of Hall Of Worlds, LLC.

echoInputState()
Purpose
Use the echoInputState function to dump the input state of the mouse, keyboard, and
joystick to the console.

Returns
No return value.

See Also
activateDirectInput, deactivateDirectInput, activateKeyboard, deactivateKeyboard,
disableJoystick, enableJoystick, enableMouse, disableMouse

echoInputState();

DirectInput is enabled but inactive.
- Keyboard is enabled and inactive.
- Mouse is disabled and inactive.
- Joystick is disabled and inactive.

enableJoystick()
Purpose
Use the enableJoystick function to enable joystick input if it is present.

Returns
Will return true if the joystick is present and was successfully enabled, false otherwise.

See Also
disableJoystick, getJoystickAxes, isJoystickDetected

enableJoystick();

enableMouse()
Purpose
Use the enableMouse function to enable mouse input.

Returns
Returns true if a mouse is present and it was enabled, false otherwise.

See Also
disableMouse

enableMouse();

234

© Copyright 2000-2006 GarageGames Product of Hall Of Worlds, LLC.

getJoystickAxes(instance)
Purpose
Use the getJoystickAxes function to get the current axes position (x and y) of any
intance of a joystick.

Syntax
instance – A non-negative number value selecting a specific joystick instance
 attached to this computer.

Returns
Returns a string containing the "x y" position of the joystick.

See Also
disableJoystick, enableJoystick, isJoystickDetected

Used to get the current axes of the joystick pointed to by instance, where instance is a
numeric value specifying the joystick number.

%joyAxes = getJoystickAxes(3);

isJoystickDetected()
Purpose
Use the isJoystickDetected function to determine if one or more joysticks are connected
to the system.

Returns
Returns true if one or more joysticks are attached and detected, false otherwise.

Notes
This doesn't tell us how many joysticks there are, just that there are joysticks. It is
our job to find out how many and to attach them.

See Also
disableJoystick, enableJoystick, getJoystickAxes

if(!isJoystickDetected()) echo("No Joystick was detected");

235

© Copyright 2000-2006 GarageGames Product of Hall Of Worlds, LLC.

lockMouse(isLocked)
Purpose
Use the lockMouse function to un/lock the mouse.

Syntax
isLocked – A boolean value

Returns
No return value.

function cursorOff()
{
 if ($cursorControlled)
 lockMouse(true);
 Canvas.cursorOff();
}

A.3.7. FILE I/O
TGE provides a file manager maintains a list of all files in the game directory and all sub-directories. The

followings functions are used to access this list. In order manipulate (read/write) the contents of a file, see the
console object 'fileObject', listed in the 'ConObjects Quick Reference' or refer to the 'TGE I/O' chapter of EGTGE.

modpath

When a Torque game starts up a call, or calls are made to setModPaths(). This function is passed a game
directories, separated by semi-colons (;). The file manager will examine each of these game paths and their
sub-directories, building up a list of known files. This information is used later for relative pathing and file
searching.

Pathing

Torque supports both direct pathing and relative pathing.

Direct paths start with a slash (/). For example, "/starter.fps/main.cs" points to the file "main.cs" under the
game directory "starter.fps", where "starter.fps" is in the root directory (the directory where the executable is
started from.

Relative pathing can be accomplished in three basic ways.

In the first method, if an unadorned name is used as the first part of a directory ("starter.fps/test.cs"), the
engine will assume that this first name is the name game directory, but then if the unadorned name does not
match the game directory, the file match/search will fail. In general, you should not use unadorned names.

In the second method, if a tilde (~) is used as the first part of a directory ("~/test.cs"), the engine will
assume that the tilde should be replaced by the root-child this file lives in. For example, the root child of
"starter.fps/client/doit.cs" is "starter.fps". Therefore, if we use this path "~/somefile.cs" in a command within
the file "doit.cs", the path will be expanded to be "starter.fps/somefile.cs".

In the third and final relative pathing method, if a dot (.) is used as the first part of a directory ("./test.cs"),
then the dot is expanded to be the root- path that the current file resides in. For example, the root-path of
"starter.fps/client/doit.cs" is "starter.fps/client". Therefore, if we use this path "./somefile.cs" in a command
within the file "doit.cs", the path will be expanded to be "starter.fps/client/somefile.cs".

236

© Copyright 2000-2006 GarageGames Product of Hall Of Worlds, LLC.

Wildcards

Torque supports a single wildcard, the asterisk (*). This wild card can be interpreted to mean "zero or more
instances of any chracter(s)".

expandFilename(filename)
Purpose
Use the expandFilename function to convert a relative path name to a full path name.

Syntax
filename – A string containing the relative or full path and file name of an
 existing or new file.

Returns
Returns a string containing the expanded path to the specified file.

expandFilename("~/data/sound/testing.wav");

fileBase(filename)
Purpose
Use the fileBase function to get the name of a file from a relative or full path, not
including the file extension.

Syntax
filename – A string containing the relative or full path and file name of an
 existing or new file.

Returns
Returns an unadorned file name without a path or file extension.

See Also
fileExt, fileName, filePath

fileBase(“egt/main.cs”); // will return “main”

fileExt(filename)
Purpose
Use the fileExt function to get the extension of a file from a relative or full path, not
including the file extension.

Syntax
filename – A string containing the relative or full path and file name of an
 existing or new file.

Returns
Returns a file extension, including the dot (.).

Notes
If asterisks are present in an extension, as passed in filename, they will not be
expanded in the return value.

237

© Copyright 2000-2006 GarageGames Product of Hall Of Worlds, LLC.

See Also
fileBase, fileName, filePath
Returns the file extension (suffix) for the file specified by filename.

fileExt(“script.cs”); // will return “.cs”

fileName(filename)
Purpose
Use the fileName function to get the filename and extension of a file from a relative or
full path, not including the file extension.

Syntax
filename – A string containing the relative or full path and file name of an
 existing or new file.

Returns
Returns a string containing the full name of a file less any path before the name.

Notes
If asterisks are present in an file name, as passed in filename, they will not be
expanded in the return value.

See Also
fileBase, fileExt, filePath

fileName(“egt/main.cs”); // will return “main.cs”

filePath(filename)
Purpose
Use the fileBase function to get all parts of a path up to, but not including the last
slash (/).

Syntax
filename – A string containing the relative or full path and file name of an
 existing or new file.

Returns
Returns a string containing the relative or full path portion of filename.

Notes
If asterisks are present in any part of the path, as passed in filename, they will not be
expanded in the return value.

See Also
fileBase, fileExt, fileName

filePath(“common/ui/defaultProfiles.cs”); // Will return “common/ui”

238

© Copyright 2000-2006 GarageGames Product of Hall Of Worlds, LLC.

findFirstFile (pattern)
Purpose
Use the findFirstFile function to find the first file matching pattern.

Syntax
pattern – A full or partial path, followed by a full or partial filename, or any
 combination of these two elements.

Returns
Returns a full path to the first file name matching pattern. Returns a NULL string, when
no matches are found.

Notes
This function will search all directories in the modpath, as created by setModPaths. Each
time this function is called it will reset an internal variable tracking the current
position in the file list. So, multiple routines calling this in an overlapping fashion
will clobber each other.

See Also
findNextFile, getFileCount, getModPaths, setModPaths

findFirstFile(“*.cs”);

findNextFile (pattern)
Purpose
Use the findNextFile function to find the next file matching pattern.

Syntax
pattern – A full or partial path, followed by a full or partial filename, or any
 combination of these two elements.

Returns
Returns a full path to the next file name matching pattern. Returns a NULL string, when
no matches are found.

Notes
This function will search all directories in the modpath, as created by a call to
setModPaths. Also, this function requires that findNextFile be called at least with the
same pattern, some time prior to calling this function.

See Also
findFirstFile, getFileCount, getModPaths, setModPaths

findNextFile(“*.cs”);

239

© Copyright 2000-2006 GarageGames Product of Hall Of Worlds, LLC.

getFileCount (pattern)
Purpose
Use the getFileCount function to determine how many files exist in modpaths that match
the specified pattern.

Syntax
pattern – A full or partial path, followed by a full or partial filename, or any
 combination of these two elements.
Returns
Returns a zero if no matches are found, or a positive integer value specifying how many
matches there were.

See Also
findFirstFile, findNextFile

getFileCount(“*.cs”);

getFileCRC(filename)
Purpose
Use the getFileCRC function to calculate the Cyclic-Redundancy-Check (CRC) value for a
file as specified by the partial or full path in filename.

Syntax
filename – A string containing the relative or full path and file name of an
 existing or new file.

Returns
Returns a non-zero positive integer value corresponding to this file's CRC.

Notes
CRC values are useful for checking to see if two same named files are actually the same.
If a client file of the same path and name as a file on the server has a different CRC
from the server version, then the files are NOT the same, otherwise they highly likely to
be the same. Although it is theoretically possible for two non-matching files to have
matching CRCs, the odds are very much against it.

getFileCRC(“/fps/client/scripts/script/cs”);

240

© Copyright 2000-2006 GarageGames Product of Hall Of Worlds, LLC.

isFile(filename)
Purpose
Use the isFile function to determine whether the value in filename is in fact an existing
file.

Syntax
filename – A string containing the relative or full path and file name of an
 existing file.
Returns
Returns true if the file exists, false otherwise.

See Also
isWriteableFileName

isFile(“/fps/client/scripts/script.cs”);

isWriteableFileName(filename)
Purpose
Use the isWriteableFileName function to determine whether the value in filename is in
fact an existing file and it can be written to.

Syntax
filename – A string containing the relative or full path and file name of an
 existing file.
Returns
Returns true if the file exists and can be written to, false otherwise.

See Also
isFile

isWriteableFileName(“/fps/client/scripts/script.cs”);

241

© Copyright 2000-2006 GarageGames Product of Hall Of Worlds, LLC.

A.3.8. PACKAGES
activatePackage(packageName)
Purpose
Use the activatePackage function to activate a package definition and to re-define all
functions named within this package with the definitions provided in the package body.

Syntax
packagename – The name or ID of an existing package.

Returns
No return value.

Notes
This pushes the newly activated package onto the top of the package stack.

See Also
deactivatePackage, isPackage

activatePackage(Show);

deactivatePackage(packageName)
Purpose
Use the deactivatePackage function to deactivate a package definition and to pop any
definitions from this package off the package stack.

Syntax
packagename – The name or ID of an existing package.

Returns
No return value.

Notes
This also causes any subsequently stacked packages to be popped. i.e. If any packages
were activated after the one specified in packageName, they too will be deactivated and
popped.

See Also
activatePackage, isPackage

deactivePackage(Show);

242

© Copyright 2000-2006 GarageGames Product of Hall Of Worlds, LLC.

isPackage(packageName)
Purpose
Use the isPackage function to check if the name or ID specified in packageName is a valid
package.

Syntax
packagename – The name or ID of an existing package.

Returns
Returns true if packageName is a valid package, false otherwise.

See Also
activatePackage, deactivatePackage

isPackage(Show);

A.3.9. OBJECTS
An object is in the class instance created by the engine or by scripts and available for access in the console.
isObject(handle)
Purpose
Use the isObject function to check if the name or ID specified in handle is a valid
object.

Syntax
handle – A name or ID of a possible object.

Returns
Returns true if handle refers to a valid object, false otherwise.

isObject(%player);

nameToID(objectName)
Purpose
Use the nameToID function to convert an object name into an object ID.

Syntax
objectName – A string containing the name of an object.

Returns
Returns a positive non-zero value if the name corresponds to an object, or a -1 if it
does not.

Notes
This function is a helper for those odd cases where a string will not covert properly,
but generally this can be replaced with a statement like: ("someName")

243

© Copyright 2000-2006 GarageGames Product of Hall Of Worlds, LLC.

nameToId(%player);

strToPlayerName(playerName);
Purpose
Use the strToPlayerName function to convert a string into a valid player name. It will
remove various characters to include: comma (,), dot (.), back-slash (\), and tick (').

Syntax
playerName – A string containing a candidate player name.

Returns
Returns a cleaned version of playerName that is suitable for networking and use by the
engine in various instances.

%name = stripTrailingSpaces(strToPlayerName(%name));

A.3.10. EVENT SCHEDULING
cancel(eventID)
Purpose
Use the cancel function to cancel a previously scheduled event as specified by eventID.

Syntax
eventID – The numeric ID of a previously scheduled event.

Returns
No return value.

See Also
getEventTimeLeft, getScheduleDuration, getTimeSinceStart, isEventPending, schedule,
obj.schedule

getEventTimeLeft(eventID)
Purpose
Use the getEventTimeLeft function to determine how much time remains until the event
specified by eventID occurs.

Syntax
eventID – The numeric ID of a previously scheduled event.

Returns
Returns a non-zero integer value equal to the milliseconds until the event specified by
eventID will occur. However, if eventID is invalid, or the event has passed, this
function will return zero.

See Also
cancel, getScheduleDuration, getTimeSinceStart, isEventPending, schedule, obj.schedule

244

© Copyright 2000-2006 GarageGames Product of Hall Of Worlds, LLC.

getScheduleDuration (eventID)
Purpose
Use the getScheduleDuration function to determine how long the event associated with
eventID was scheduled for.

Syntax
eventID – The numeric ID of a previously scheduled event.

Returns
Returns a non-zero integer value equal to the milliseconds used in the schedule call that
created this event. However, if eventID is invalid, this function will return zero.

See Also
cancel, getEventTimeLeft, getTimeSinceStart, isEventPending, schedule, obj.schedule

Returns the time in milliseconds of the event denoted by eventID as it was originally
scheduled.

Returns 0 if eventID is past or invalid.

getTimeSinceStart(eventID)
Purpose
Use the getTimeSinceStart function to determine how much time has passed since the event
specified by eventID was scheduled.

Syntax
eventID – The numeric ID of a previously scheduled event.

Returns
Returns a non-zero integer value equal to the milliseconds that have passed since this
event was scheduled. However, if eventID is invalid, or the event has passed, this
function will return zero.

See Also
cancel, getEventTimeLeft, getScheduleDuration, isEventPending, schedule, obj.schedule

isEventPending(eventID)
Purpose
Use the isEventPending function to see if the event associated with eventID is still
pending.

Syntax
eventID – The numeric ID of a previously scheduled event.

Returns
Returns true if this event is still outstanding and false if it has passed or eventID is
invalid.

245

© Copyright 2000-2006 GarageGames Product of Hall Of Worlds, LLC.

Notes
When an event passes, the eventID is removed from the event queue, becoming invalid, so
there is no discnerable difference between a completed event and a bad event ID.

See Also
cancel, getEventTimeLeft, getScheduleDuration, getTimeSinceStart, schedule, obj.schedule

$Game::Schedule = schedule($Game::EndGamePause * 1000, 0, "onCyclePauseEnd");

if(isEventPending($Game::Schedule)) echo(“got a pending event);

schedule(t , objID || 0 , functionName, arg0, ... , argN)
Purpose
Use the schedule function to schedule functionName to be executed with optional arguments
at time t (specified in milliseconds) in the future. This function may be associated with
an object ID or not. If it is associated with an object ID and the object is deleted
prior to this event occurring, the event is automatically canceled.

Syntax
 t – The time to wait (in milliseconds) before executing functionName.
 objID – An optional ID to associate this event with.
 functionName – An unadorned (flat) function name.
arg0, ... , argN – Any number of optional arguments to be passed to functionName.

Returns
Returns a non-zero integer representing the event ID for the scheduled event.

See Also
cancel, getEventTimeLeft, getScheduleDuration, getTimeSinceStart, isEventPending,
obj.schedule

$Game::Schedule = schedule($Game::EndGamePause * 1000, 0, "onCyclePauseEnd");

objID.schedule(t , methodName, arg0, ... , argN)

Purpose
Use the objID.schedule method to schedule methodName to be executed with optional
arguments at time t (specified in milliseconds) in the future on the object objID. This
event is automatically associated with the object objID, and if that object is deleted
prior to this event occuring, the event is automatically cancelled.

Syntax
 t – The time to wait (in milliseconds) before executing methodName.
 objID – An ID to associate this event with.
 methodName – An unadorned (flat) function name.
arg0, ... , argN – Any number of optional arguments to be passed to methodName.

Returns
Returns a non-zero integer representing the event ID for the scheduled event.

246

© Copyright 2000-2006 GarageGames Product of Hall Of Worlds, LLC.

Note
This is one of those rare cases where a method is described in the function appendix, but
it really needed to be defined here for clarity.

See Also
cancel, getEventTimeLeft, getScheduleDuration, getTimeSinceStart, isEventPending, schedule

$Game::Schedule = schedule($Game::EndGamePause * 1000, 0, "onCyclePauseEnd");

A.3.11. DATABLOCKS
deleteDataBlocks()
Purpose
Use the deleteDataBlocks function to cause a server to delete all datablocks that have
thus far been loaded and defined.

Returns
No return value.

deleteDataBlocks();

A.3.12. VIDEO / TEXTURING
addMaterialMapping(materialName, map0 [, ... , map97])
Purpose
Use the addMaterialMapping function to create a new material map instance. These maps
are used by terrain and interiors for creating proper footstep sounds and dust puffs when
an avatar treads upon a terrain block or interior surface using the associated texture.

Syntax
materialName – The unadorned texture name this map is associated with. For example,
 "sand.jpg" would have a materialName of "sand".
 map0 – At least one (required) map. See map chart below for format of
 these maps.
 ... , map97 – Up to 96 additional maps.
Returns
No return value.

Notes
There are fewer mapping types than the maximum number of maps this function will accept.

addMaterialMapping("sand" , "sound: 0" , "color: 0.46 0.36 0.26 0.4 0.0");

247

© Copyright 2000-2006 GarageGames Product of Hall Of Worlds, LLC.

Map Type Format Purpose
Sound Type "sound: #" Map this surface to the numeric sound type #: 0 – Soft,

1 – Hard, 2 – Metal, 3 – Snow.

Detail Texture "detail: texture" A texture name to be used for a detail texture on
surfaces using this material map.

Environment Map "environment: texture reflect"
This material map has an environment map and it
should use texture for the mapping and give it a
reflective factor of reflect, where reflect is in the
range [0.25, 1.0].

Smoke Puff Color "color: R G B StartA EndA"

When a player treads on this surface and has smoke
puffs enabled, the smoke will have the color specified in
R, G, and B, where these values are floating point
values in the range [0.0, 1.0]. StartA is a floating
point value in the range [0.0, 1.0] specifying the puff's
starting alpha. EndA is of the same format and
specifies the puff's ending Alpha.

clearTextureHolds()
Purpose
Use the clearTextureHolds function to free and release any held textures, returning the
size of the held textures free.

Returns
Returns the space freed.

Notes
As long as a texture is not currently in use, it will be released.

See Also
dumpTextureStats, flushTextureCache, purgeResources

clearTextureHolds();

248

© Copyright 2000-2006 GarageGames Product of Hall Of Worlds, LLC.

dumpTextureStats()
Purpose
Use the dumpTextureStats function to dump information about each texture currently in use
to the console. This information will be printed in this format:

aaa type: (refCount, holding) textureSpace (filename)

Output Syntax
 type: - Type of this texture. See 'Texture Types' list below.
 refCount – Number of references to this texture.
 holding – Is this texture being held? "yes" or "no"
textureSpace – Bytes used by this texture.
 filename – Full path to this texture.

Returns
No return value.

Notes
For this to work, the engine must have been compiled with TORQUE_DEBUG defined.
See Also
clearTextureHolds, flushTextureCache

dumpTextureStats();

flushTextureCache()
Purpose
Use the flushTextureCache function to flush the texture cache.

Returns
No return value.

See Also
clearTextureHolds, dumpTextureStats, purgeResources

flushTextureCache();

249

© Copyright 2000-2006 GarageGames Product of Hall Of Worlds, LLC.

getDesktopResolution()
Purpose
Use the getDesktopResolution function to determine the current resolution of the desktop
(not the application).

Returns
Returns a string containing the current desktop resolution, including the width height
and the current bits per pixel.

Notes
To get the current resolution of a windowed display of the torque game engine, simply
examine the global variable '$pref::Video::resolution'.

See Also
getDisplayDeviceList, getResolutionList, nextResolution, prevResolution,
setDisplayDevice, setRes, setScreenMode, switchBitDepth

%res = getDesktopResolution():

getDisplayDeviceList()
Purpose
Use the getDisplayDeviceList function to get a list of valid display devices.

Returns
Returns a tab separated list of valid display devices.

See Also
getDesktopResolution, getResolutionList, setRes, setScreenMode, switchBitDepth

echo(“Display Device(s) :” @ getDisplayDeviceList());

250

© Copyright 2000-2006 GarageGames Product of Hall Of Worlds, LLC.

getResolutionList(devicename)
Purpose
Use the getResolutionList function to get a semicolon separated list of legal resolutions
for a specified device.

Syntax
deviceName – A string containing a supported display device.

Returns
Returns a tab separated list of valid display resolutions for devicename.

Notes
Resolutions are always in the form: width height bpp, where width and height are in
pixels and bpp is bits-per-pixel.

See Also
getDesktopResolution, getDisplayDeviceList, setRes, setScreenMode, switchBitDepth

echo("Possible resolutions :” @ getResolutionList("OpenGL"));

getVideoDriverInfo()
Purpose
Use the getVideoDriverInfo function to dump information on the video driver to the
console.

Returns
No return value.

echo(“Device driver info :” @ getVideroDriverInfo());

isDeviceFullScreenOnly(devicename)
Purpose
Use the isDeviceFullScreenOnly function to determine if the device specified in
devicename is for full screen display only, or whether it supports windowed mode too.

Syntax
deviceName – A string containing a supported display device.

Returns
Returns true if the device can only display full scree, false otherwise.

See Also
getResolutionList

251

© Copyright 2000-2006 GarageGames Product of Hall Of Worlds, LLC.

isFullScreen()
Purpose
Use the isFullScreen function to determine if the current application is displayed in
full-screen mode.

Returns
Returns true if the engine is currently displaying full-screen, otherwise returns false.

nextResolution()
Purpose
Use the nextResolution function to switch to the next valid (higher) resolution for the
current display device.

Returns
Returns true if switch was successful, false otherwise.

See Also
getDesktopResolution, prevResolution, getResolutionList, setRes, setScreenMode,
switchBitDepth

png2jpg(pngFilename [, quality])
Purpose
Use the png2jpg function to save a PNG file specified by pngFilename as a similarly named
JPEG file with the optionally specified quality.

Syntax
pngFilename – The path and file name of the PNG file to convert.
 quality – An optional quality between 0 and 100. The default quality is 90.

Returns
Returns -1 if the file could not be opened, 0 on other failures, and 1 if the conversion
worked.

prevResolution()
Purpose
Use the prevResolution function to switch to the previous valid (lower) resolution for
the current display device.

Returns
Returns true if switch was successful, false otherwise.

See Also
getDesktopResolution, nextResolution, getResolutionList, setRes, setScreenMode,
switchBitDepth

252

© Copyright 2000-2006 GarageGames Product of Hall Of Worlds, LLC.

screenShot(filename , format)
Purpose
Use the screenShot function to capture a screen shot and store it in the file specified
by filename.

Syntax
filename – Path to file in which to save screenshot.
format – The format to save the file in, PNG or JPG.

Returns
No return value.

See Also
panoramaScreenShot

screenshot("capture0.png", "PNG");

setDefaultFov(defaultFOV)
Purpose
Use the setDefaultFov function to set the default field-of-view (FOV).

Syntax
defaultFOV – A FOV value between 0.0 and 180.0.

Returns
No return value.

See Also
SetFOV

253

© Copyright 2000-2006 GarageGames Product of Hall Of Worlds, LLC.

setDisplayDevice(deviceName [, width [, height [, bpp [, fullScreen]]]])
Purpose
Use the setDisplayDevice function to select a display device and to set the initial
width, height and bits-per-pixel (bpp) setting, as well as whether the application is
windowed or in fullScreen.

Syntax
deviceName – A supported display device name.
 width – Resolution width in pixels.
 height - Resolution height in pixels.
 bpp – Pixel resolution in bits-per-pixel (16 or 32).
fullScreen – A boolean value. If set to true, the application displays in full-
 screen mode, otherwise it will attempt to display in windowed mode.

Returns
Returns true on success, false otherwise.

Notes
If no resolution information is specified, the first legal resolution on this device's
resolution list will be used. Furthermore, for each optional argument if the subsequent
arguments are not specified, the first matching case will be used. Lastly, if the
application is not told to display in full screen, but the device only supports windowed,
the application will be forced into windowed mode.

See Also
getDesktopResolution, getDisplayDeviceList, getResolutionList, nextResolution,
prevResolution, setRes, setScreenMode, switchBitDepth

setFov(FOV)
Purpose
Use the setFov function to set the current field-of-view (FOV).

Syntax
FOV – A FOV value between 0.0 and 180.0.

Returns
No return value.

See Also
setDefaultFov

254

© Copyright 2000-2006 GarageGames Product of Hall Of Worlds, LLC.

setOpenGLAnisotropy(0.0 .. max.f)
Purpose
Use the setOpenGLAnisotropy function to enable or disable anisotropic filtering.

Syntax
0.0 .. max.f - A value between 0.0 and the maximum anisotropic level supported by the
current machine. Selecting a value higher than max.f results in max.f.

Returns
No return value.

Notes
Anisotropic filtering is somewhat 'expensive' filtering technique that uses more texels
than your average filtering technique (bilinear or trilinear) for determining the color of
a pixel for cases where more than one texel may be responsible for that pixels color.

setOpenGLInteriorMipReduction(reductionVal)
Purpose
Use the setOpenGLInteriorMipReduction function to set the texture quality for interiors.

Syntax
reductionVal – An integer value between 0 and 5, with 0 being the lowest quality
 and 5 being the highest quality.

Returns
No return value.

See Also
setOpenGLMipReduction ,setOpenGLSkyMipReduction

setOpenGLMipReduction(reductionVal)
Purpose
Use the setOpenGLMipReduction function to control shape texture detail

Syntax
reductionVal – An integer value between 0 and 5, with 0 being the lowest quality
 and 5 being the highest quality.

Returns
No return value.

See Also
setOpenGLInteriorMipReduction, setOpenGLSkyMipReduction

255

© Copyright 2000-2006 GarageGames Product of Hall Of Worlds, LLC.

setOpenGLSkyMipReduction(reductionVal)
Purpose
Use the setOpenGLSkyMipReduction function to control texture detail for the skybox and
clouds.

Syntax
reductionVal – An integer value between 0 and 5, with 0 being the lowest quality
 and 5 being the highest quality.

Returns
No return value.

See Also
setOpenGLInteriorMipReduction, setOpenGLMipReduction

setOpenGLTextureCompressionHint (hint)
Purpose
Use the setOpenGLTextureCompressionHint function to select the OpenGL texture compression
method.

Syntax
hint - "GL_DONT_CARE", "GL_FASTEST", or "GL_NICEST". (Please refer to an OpenGL
 text for information on what these mean.)

Returns
No return value.

setOpenGLTextureCompressionHint(GL_NICEST);

setRes(width , height , bpp)
Purpose
Use the setRes function to set the screen to the specified width, height, and bits-per-
pixel (bpp).

Syntax
 width – Resolution width in pixels.
height - Resolution height in pixels.
 bpp – Pixel resolution in bits-per-pixel (16 or 32).

Returns
Returns true if successful, otherwise false.

See Also
getDesktopResolution, getDisplayDeviceList, getResolutionList, nextResolution,
prevResolution, setDisplayDevice, setScreenMode, switchBitDepth

256

© Copyright 2000-2006 GarageGames Product of Hall Of Worlds, LLC.

setScreenMode(width , height , bpp , fullScreen)
Purpose
Use the setScreenMode function to set the screen to the specified width, height, and
bits-per-pixel (bpp). Additionally, if fullScreen is set to true the engine will attempt
to display the application in full-screen mode, otherwise it will attempt to used windowed
mode.

Syntax
 width – Resolution width in pixels.
 height - Resolution height in pixels.
 bpp – Pixel resolution in bits-per-pixel (16 or 32).
fullScreen – A boolean value. If set to true, the application displays in full-
 screen mode, otherwise it will attempt to display in windowed mode.

Returns
Returns true if successful, otherwise false.

See Also
getDesktopResolution, getDisplayDeviceList, getResolutionList, nextResolution,
prevResolution, setDisplayDevice, setRes, switchBitDepth

setScreenMode(1024 , 768 , 32 , false); // 1024x768 32bpp windowed mode

setVerticalSync(enable)
Purpose
Use the setVerticalSync function to force the framerate to sync up with the vertical
refresh rate.

Syntax
enable – A boolean value. If set to true, the engine will only swap front and
 back buffers on or before a vertical refresh pass.

Returns
Returns true on success, false otherwise.

Notes
This is used to reduce excessive swapping/rendering. There is generally no purpose in
rendering any faster than the monitor will support. Those extra 'ergs' can be used for
something else.

257

© Copyright 2000-2006 GarageGames Product of Hall Of Worlds, LLC.

switchBitDepth()
Purpose
Use the switchBitDepth function to toggle the bits-per-pixel (bpp) pixel resolution
between 16 and 32.

Returns
Returns true on success, false otherwise.

See Also
getDesktopResolution, getDisplayDeviceList, getResolutionList, nextResolution,
prevResolution, setDisplayDevice, setRes,

toggleFullScreen()
Purpose
Use the toggleFullScreen function to switch from full-screen mode to windowed, or vice
versa.

Returns
Returns true on success, false otherwise.

videoSetGammaCorrection(gamma)
Purpose
Use the videoSetGammaCorrection function to adjust the gamma for the video card.

Syntax
gamma – A floating-point value between 0.0 and 1.0.

Returns
No return value.

Notes
The card will revert to it's default gamma setting as long as the application closes
normally.

videoSetGammaCorrection($pref::OpenGL::gammaCorrection);

258

© Copyright 2000-2006 GarageGames Product of Hall Of Worlds, LLC.

Texture Types

 Type Description
0 Regular bitmap

1 Same as 1, but the data will be kept after creation

2 Same as 1 except data will not be loaded to OpenGL and cannot be "bound"

3 Internal ONLY.

4 Same as 1, but has "small textures"

5 Terrain texture.

6 Sky Texture

7 Interior Texture

8 Bump Texture

9 Inverted Bump Texture

10 Detail Texture

11 Zero Border Texture

259

© Copyright 2000-2006 GarageGames Product of Hall Of Worlds, LLC.

A.3.13. SPECIAL

calcExplosionCoverage(source, targetObject , coverageMask)
Purpose
Use the calcExplosionCoverage function to calculate the total exposure for targetObject
to an explosion located at source position and blocked by all objects having a tight as
specified by coverageMask. In other words, this function will calculate how much of an
explosive force is applied to an object if intervening objects block portions of the
explosion.

Syntax
 source – A position vector.
targetObject – The name of ID of the object to check coverage for.
coverageMask – A bitmask containing object type masks for all objects that can
 block this explosion. 0 For none, and -1 for all. For specific
 types, please see the "Object Types Table" below.

Returns
Returns a value between 0.0 and 1.0, where 0.0 is no coverage and therefore no damage,
and when 1.0 is full coverage.

%coverage = calcExplosionCoverage(%position, %targetObject,
 $TypeMasks::InteriorObjectType | $TypeMasks::TerrainObjectType |
 $TypeMasks::ForceFieldObjectType | $TypeMasks::VehicleObjectType);

if (%coverage == 0) continue;

$TypeMasks::StaticObjectType $TypeMasks::EnvironmentObjectType

$TypeMasks::TerrainObjectType $TypeMasks::InteriorObjectType

$TypeMasks::WaterObjectType $TypeMasks::TriggerObjectType

$TypeMasks::MarkerObjectType $TypeMasks::GameBaseObjectType

$TypeMasks::ShapeBaseObjectType $TypeMasks::CameraObjectType

$TypeMasks::StaticShapeObjectType $TypeMasks::PlayerObjectType

$TypeMasks::ItemObjectType $TypeMasks::VehicleObjectType

$TypeMasks::VehicleBlockerObjectType $TypeMasks::ProjectileObjectType

$TypeMasks::ExplosionObjectType

Object Types Table

260

© Copyright 2000-2006 GarageGames Product of Hall Of Worlds, LLC.

getControlObjectAltitude()
Purpose
Use the getControlObjectAltitude function to determine how high above the terrain the
control object.

Returns
Returns a floating-point value equal to the distance above the terrain for the current
control object. If the object is below the terrain, a zero is returned.

See Also
getControlObjectSpeed, getTerrainHeight

getControlObjectAltitude();

getControlObjectSpeed()
Purpose
Use the getControlObjectSpeed function to determine how fast the control object is
currently moving.

Returns
Returns a floating-point value equal to the magnitude of the current control objects
velocity in the game world in meters-per-second.

See Also
getControlObjectAltitude, getTerrainHeight

%player.getControlObjectSpeed();

getClipboard()
Purpose
Use the getClipboard function to get the contents of the GUI clipboard.

Returns
Returns a string equal to the current contents of the copy the clipboard, or a NULL
strain if the copy clipboard is empty.

See Also
setClipboard

261

© Copyright 2000-2006 GarageGames Product of Hall Of Worlds, LLC.

getModPaths()
Purpose
Use the getModPaths function to get the current mod path information.

Returns
Returns a string equivalent to the complete current mod path, that is all pads that are
visible to the file manager.

See Also
setModPaths

getTerrainHeight(position)
Purpose
Use the getTerrainHeight function to determine the height of the terrain at an XY
position in the game world.

Syntax
position – An XY position vector in the game world.

Returns
Returns the terrain height at XY position.

See Also
getControlObjectAltitude, getControlObjectSpeed

%TerHeight = getTerrainHeight(%pos);

isPointInside(position)
Purpose
Use the isPointInside function to determine if an XYZ point is in side an interior.

Syntax
position – An XYZ position vector in the game world.

Returns
Returns true if the XYZ position is inside an interior, otherwise returns false.

Notes
This will only work if the interior at position is using portals, otherwise inside and
outside are equivalent.

isPointInside(“143 34 567”);

262

© Copyright 2000-2006 GarageGames Product of Hall Of Worlds, LLC.

pathOnMissionLoadDone()
Purpose
Use the pathOnMissionLoadDone function to load all path information from the currently
loaded interiors.

Returns
No return value.

pathOnMissionLoadDone();

setModPaths(path)
Purpose
Use the setModPaths function to set the current mod path to the value specified in path.

Syntax
path – A string containing a semi-colon (;) separated list of game and mod paths.

Returns
No return value.

See Also
getModPaths

// Set the mod path which dictates which directories will be visible
// to the scripts and the resource engine.
$modPath = pushback($userMods, $baseMods, ";");
setModPaths($modPath);

setClipboard(string)
Purpose
Use the setClipboard function to Set value on clipboard to string.

Syntax
string – The new value to place in the GUI clipboard.

Returns
Returns true if successful, false otherwise.

See Also
getClipoard

263

© Copyright 2000-2006 GarageGames Product of Hall Of Worlds, LLC.

setZoomSpeed(delay)
Purpose
Use the setZoomSpeed function to set the current zoom speed to the value specified in
delay, where delay is the time it takes to transition across 90-degrees of field-of-view
specified in milliseconds. The maximum delay is 2000 ms.

Syntax
delay – An integer value between 0 and 2000, equal to the time it takes the camera
 across 90-degrees of FOV.

setZoomSpeed($pref::Player::zoomSpeed);

A.3.14. RESOURCE MANAGEMENT
dumpResourceStats()
Purpose
Use the dumpResourceStats function to dump a listing of the currently in-use resources to
the console. This will include such things as sound files, font files, etc.

Returns
No return value.

Notes
For this to work, the engine must have been compiled with TORQUE_DEBUG defined.
See Also
purgeResources

dumpResourceStats();

purgeResources()
Purpose
Use the purgeResources function to purge all game resources.

Returns
No return value.

See Also
clearTextureHolds, dumpResourceStats, dumpTextureStats, flushTextureCache

purgeResources();

264

© Copyright 2000-2006 GarageGames Product of Hall Of Worlds, LLC.

A.3.15. SCENE
lightScene([completeCallback [, force])
Purpose
Use the lightScene function to relight a currently open mission.

Syntax
completeCallback – A unadorned function name to execute when the re-light is done.
 force – Optionally either "forceAlways" (always relights) , or
 "forceWritable" (only relight file is writeable).

Returns
No return value.

resetLighting()
Purpose
Use the resetLighting function to reset the OpenGL lighting model.

Returns
No return value.

A.3.16. CONTAINERS and RAYCASTS
ContainerBoxEmpty(mask , location , xRadius [, yRadius , zRadius])
Purpose
Use the ContainerBoxEmpty function to check for any objects of type mask within a box of
variable size located at

Syntax
 mask – A bitmask corresponding to the type of objects to check for. See the
 'Object Types Table' above.
location – An XYZ position vector in the game world, pinpointing the centroid of
 the bounding box.
 xRadius – The radius of the bounding box in the X-axis.
 yRadius – The optional radius of the bounding box in the Y-axis.
 zRadius – The optional radius of the bounding box in the Z-axis.

Returns
Returns true, if not objects were found, and false if objects were found.

Notes
If the yRadius and zRadius values are not supplied, they are assumed to be equal to
xRadius.

See Also
containerFindFirst, containerFindNext, ContainerRayCast

265

© Copyright 2000-2006 GarageGames Product of Hall Of Worlds, LLC.

containerFindFirst(mask , location, , xRadius , yRadius , zRadius)
Purpose
Use the containerFindFirst function to find the first instance of an object matching the
type mask within the specified bounding box.

Syntax
 mask – A bitmask corresponding to the type of objects to check for. See the
 'Object Types Table' above.
location – An XYZ position vector in the game world, pinpointing the centroid of
 the bounding box.
 xRadius – The radius of the bounding box in the X-axis.
 yRadius – The optional radius of the bounding box in the Y-axis.
 zRadius – The optional radius of the bounding box in the Z-axis.

Returns
Returns 0 if no objects are found, otherwise returns an integer representing the ID of
the first object found.

See Also
ContainerBoxEmpty, containerFindNext, ContainerRayCast

containerFindNext()
Purpose
Use the containerFindNext function to find the next instance of an object in a bounding
box search previously initiated with containerFindFirst.

Returns
Returns 0 if no objects are found, otherwise returns an integer representing the ID of
the next object found.

See Also
ContainerBoxEmpty, containerFindFirst, ContainerRayCast

266

© Copyright 2000-2006 GarageGames Product of Hall Of Worlds, LLC.

ContainerRayCast (startPos , endPos , mask [, exempt])
Purpose
Use the ContainerRayCast function to see if an object matching the specified mask type is
positioned along a ray starting at startPos and ending at endPos. One object may be
marked for expemption from ray cast collisions.

Syntax
startPos – An XYZ vector containing the tail position of the ray.
 endPos – An XYZ vector containing the head position of the ray.
 mask – A bitmask corresponding to the type of objects to check for. See the
 'Object Types Table' above.
 exempt – An optional ID for a single object that ignored for this raycast.

Returns
Returns 0 if no objects were struck by the ray, or a non-zero integer representing the ID
of the object that was struck.

Notes
The exempt field is used to keep ray casts originating at an object from hitting the
object itself.

See Also
ContainerBoxEmpty, containerFindFirst, containerFindNext

ContainerSearchCurrDist()
Purpose
Use the ContainerSearchCurrDist function when using InitContainerRadiusSearch and
ContainerSearchNext functions to find objects to determine the distance of the center of
the last object found from the center of the current search container.

Returns
Returns a floating point value equal to the distance between center the last found
container search item and the center of the container search box.

Notes
Caution! Do not call this function without first setting up a search container or the
engine will crash.

See Also
ContainerSearchCurrRadiusDist, ContainerSearchNext, InitContainerRadiusSearch

267

© Copyright 2000-2006 GarageGames Product of Hall Of Worlds, LLC.

ContainerSearchCurrRadiusDist()
Purpose
Use the ContainerSearchCurrDist function when using InitContainerRadiusSearch and
ContainerSearchNext functions to find objects to determine the distance of the closest
point of the last object found from the center of the current search container.

Returns
Returns a floating point value equal to the distance between center of the container
search box and the point on the last found item that is closest to the container center.

Notes
Caution! Do not call this function without first setting up a search container or the
engine will crash.

See Also
ContainerSearchCurrDist, ContainerSearchNext, InitContainerRadiusSearch

%rad = ContainerSearchCurrRadiusDist();

ContainerSearchNext()
Purpose
Use the ContainerSearchNext function to find the next object in the currently defined
search container.

Returns
Returns non-zero integer value equal to the ID of an object, or zero if no objects were
found.

Notes
Caution! Do not call this function without first setting up a search container or the
engine will crash.

See Also
ContainerSearchCurrDist, ContainerSearchCurrRadiusDist, InitContainerRadiusSearch

268

© Copyright 2000-2006 GarageGames Product of Hall Of Worlds, LLC.

InitContainerRadiusSearch (centerPos , radius , mask)
Purpose
Use the InitContainerRadiusSearch function to find all objects matching the specified
mask type within a bounding radius centered at centerPos.

Syntax
centerPos – An XYZ vector specifying the world position of the search container's
 centroid.
 radius – A floating-point value specifying the radius of the search container.
 mask – A bitmask corresponding to the type of objects to check for. See the
 'Object Types Table' above.

Returns
No return value.

Notes
This search is static. That is it will find all objects within the specified radius and
then the found objects can be retrieved with ContainerSearchNext. To find new objects,
you will have to re-initialize the search.

See Also
ContainerSearchCurrDist, ContainerSearchCurrRadiusDist, ContainerSearchNext

A.3.17. EDITORS
snapToggle()
Purpose
Use the snapToggle function to enable object placement toggling in the World Editor.

Returns
No return value.

Notes
With toggling enabled, objects will snap to the horizontal world grid when moved with the
mouse.

A.3.18. BUILD
getBuildString()
Purpose
Use the getBuildString function to determine if this build is a "Debug" release, or a
"Release" build.

Returns
Returns a string, either "Debug" for a debug build, or "Release" for a release build.

See Also
getCompileTimeString, getVersionNumber, getVersionString, isDebugBuild

269

© Copyright 2000-2006 GarageGames Product of Hall Of Worlds, LLC.

getCompileTimeString()
Purpose
Use the getCompileTimeString function to determine when the currently running engine was
built.

Returns
Returns a string containing "Month Day Year at Hour:Minute:Second" showing when this
executable was built.

See Also
getBuildString, getVersionNumber, getVersionString, isDebugBuild

getVersionNumber()
Purpose
Use the getVersionNumber function to get the version number of the currently executing
engine.

Returns
Returns an integer representing the engine's version number.

See Also
getBuildString, getCompileTimeString, getVersionString, isDebugBuild

getVersionString()
Purpose
Use the getVersionString function to get the version name and number for the currently
executing engine.

Returns
Returns a string containing a name and an integer representing the engine's version type
and version number.

See Also
getBuildString, getCompileTimeString, getVersionNumber, isDebugBuild

isDebugBuild()
Purpose
Use the isDebugBuild function to determine if this is a debug build.

Returns
Returns true if this is a debug build, otherwise false.

See Also
getBuildString, getCompileTimeString, getVersionNumber, getVersionString

270

© Copyright 2000-2006 GarageGames Product of Hall Of Worlds, LLC.

A.3.19. TIME
getRealTime()
Purpose
Use the getRealTime function to the computer time in milliseconds.

Returns
Returns the current real time in milliseconds.

See Also
getSimTime

Used to get the real time (in milliseconds)
Returns a numeric

echo(“Time in milliseconds: “ @ getRealTime());

getSimTime()
Purpose
Use the getSimTime function to get the time, in ticks, that has elapsed since the engine
started executing.

Returns
Returns the time in ticks since the engine was started.

See Also
getRealTime

function timeMetricsCallback()
{
 return fpsMetricsCallback() @
 " Time -- " @
 " Sim Time: " @ getSimTime() @
 " Mod: " @ getSimTime() % 32;
}

A.3.20. GUIS
createCanvas(WindowTitle)
Purpose
Use the createCanvas function to initialize the canvas.

Returns
Returns true on success, false on failure.

See Also
createEffectCanvas

271

© Copyright 2000-2006 GarageGames Product of Hall Of Worlds, LLC.

createEffectCanvas(WindowTitle)
Purpose
Use the createEffectCanvas function to initialize the effects canvas.

Returns
Returns true on success, false on failure.

See Also
createCanvas

A.3.21. MATH
getBoxCenter(box)
Purpose
Use the getBoxCenter function to find the centroid of a cube (box).

Syntax
box – A vector containing two three-element floating-point position vectors:
 "X1 Y1 Z1 X2 Y2 Z2".

Returns
Returns a vector containing a three-element floating-point position vector equal to the
centroid of the area defined by box.

%pos = getBoxCenter(%this.getWorldBox());

getRandom()
getRandom(max)
getRandom(min , max)
Purpose
Use the getRandom function to get a random floating-point or integer value. This
function comes in three forms.

The first getRandom() takes no arguments and will return a random floating-point value in
the range of 0.0 to 1.0.

The second getRandom(max) takes one argument representing the max integer value this
will return. It will return an integer value between 0 and max.

The third getRandom(min , max) takes two arguments representing the min and max integer
values this will return. It will return an integer value between min and max.

Syntax
min – Minimum inclusive integer value to return.
max - Maximum inclusive integer value to return.

272

© Copyright 2000-2006 GarageGames Product of Hall Of Worlds, LLC.

Returns
If no arguments are passed, will return a floating-point value between 0.0 and 1.0. If
one argument is passed, will return an integer value between 0 and max inclusive. If two
arguments are passed, will return an integer value between min and max inclusive.

Notes
Be sure to recognize the difference between the three variants of getRandom. Only the
no-args version will return a floating point.

See Also
getRandomSeed

getRandomSeed()
Purpose
Use the getRandomSeed function to get the current seed for the random generator.

Returns
Returns an integer value representing the current seed of the random generator.

Notes
You can re-seed the generator with this value to allow you to recreate a random sequence.
Merely save the seed and execute your random sequence. Later, to reproduce this sequence
re-seed the generator with setRandomSeed and your saved value. Then, the generator will
produce the same random sequence that followed the call to getRandomSeed.

See Also
getRandom, setRandomSeed

%seed = getRandomSeed();

mAbs(val)
Purpose
Use the mAbs function to get the magnitude of val.

Syntax
val – An integer or a floating-point value.

Returns
Returns the magnitude of val.

%abs = mAbs(76.3);

273

© Copyright 2000-2006 GarageGames Product of Hall Of Worlds, LLC.

mAcos(val)
Purpose
Use the mAcos function to get the inverse cosine of val in radians.

Syntax
val – A value between -1.0 and 1.0 equal to the cosine of some angle theta.

Returns
Returns the inverse cosine of val in radians. This value will be in the range [0 ,
3.14159].

See Also
mCos

%acos = mAcos(-8,3);

mAsin(val)
Purpose
Use the mAsin function to get the inverse sine of val in radians.

Syntax
val – A value between -1.0 and 1.0 equal to the sine of some angle theta.

Returns
Returns the inverse sine of val in radians. This value will be in the range
[- 3.14159/2 , 3.14159/2].

See Also
mSin

mAtan(val)
Purpose
Use the mAtan function to get the inverse tangent of val in radians.

Syntax
val – A value between -inf.0 and inf.0 equal to the tangent of some angle theta.

Returns
Returns the inverse tangent of val in radians. This value will be in the range
[- 3.14159/2 , 3.14159/2].

See Also
mTan

274

© Copyright 2000-2006 GarageGames Product of Hall Of Worlds, LLC.

mathInit(extention)
Purpose
Use the MathInit function to install a specified math extensions, or to detect and enable
all extensions.

Syntax
extension – Can be any of these:
 detect – Detect all supported extensions and enable.
 C - Enable standard C extensions.
 FPU - Enable floating-point-unit extensions.
 MMX - Enable Intel MMX extensions.
 3DNOW - Enable AMD 3DNOW extensions.
 SSE - Enable Intel SSE extensions.

Returns
No return value.

Notes
Generally speaking, the best extension choice is to used detect. This will automatically
detected and enable all extensions supported by the current processor. It will also print
out a list of the extension that were enabled to the console.

mathInit(detect);

matrixCreate(posVec , rotVec)
Purpose
Use the matrixCreate function to create a transform matrix from a three-element floating-
point translation vector and a four-element floating-point rotation vector.

Syntax
posVec - A three-element floating-point translation vector: "PosX PosY PosZ".
rotVec - A four-element floating-point rotation vector: "RotX RotY RotZ".
 These are rotations about the specified axes.

Returns
Returns a transform matrix of the form "PosX PosY PosZ RotX RotY RotZ theta".

See Also
MatrixCreateFromEuler

275

© Copyright 2000-2006 GarageGames Product of Hall Of Worlds, LLC.

MatrixCreateFromEuler (rotVec)
Purpose
Use the MatrixCreateFromEuler function to calculate a transform matrix from a three-
element floating-point rotation vector.

Syntax
rotVec - A three-element floating-point rotation vector: "RotX RotY RotZ".
 These are rotations about the specified axes.

Returns
Returns a transform matrix of the form "0 0 0 X Y Z theta".

See Also
MatrixCreate

MatrixMulPoint(transform , point)
Purpose
Use the MatrixMulPoint function to multiply a seven element transform matrix by a three
element point vector, producing a three element position vector.

Syntax
transform – A seven-element transform matrix.
 point – A three-element point/position vector.

Returns
Returns a three-element position vector.

See Also
MatrixMultiply, MatrixMulVector

276

© Copyright 2000-2006 GarageGames Product of Hall Of Worlds, LLC.

MatrixMultiply(transformA , transformB)
Purpose
Use the MatrixMultiply function to multiply two seven-element transform matrices to
produce a new seven element matrix.

Syntax
transformA – A seven-element transform matrix of the form
 "PosX PosY PosZ RotX RotY RotZ theta".
transformB – A seven-element transform matrix of the form
 "PosX PosY PosZ RotX RotY RotZ theta".

Returns
Returns a seven-element matrix resulting from transiformA x transformB.
See Also
MatrixMulPoint, MatrixMulVector

MatrixMulVector(transform , vector)
Purpose
Use the MatrixMulVector function to multiply a seven-element transform matrix with a
three-element matrix.

Syntax
transform – A seven-element transform matrix of the form
 "PosX PosY PosZ RotX RotY RotZ theta".
 vector – A three-element vector.

Returns
Returns three-element resulting from vector * transform.
See Also
MatrixMulPoint, MatrixMultiply

mCeil(val)
Purpose
Use the mCeil function to calculate the next highest integer value from val.

Syntax
val – A floating-point value.

Returns
Returns an integer representing the next highest integer from val.

See Also
mFloor

277

© Copyright 2000-2006 GarageGames Product of Hall Of Worlds, LLC.

mCos(val)
Purpose
Use the mCos function to get the cosine of the radian angle val.

Syntax
val – A value between -3.14159 and 3.14159.

Returns
Returns the cosine of val. This value will be in the range [-1.0 , 1.0].

See Also
mAcos

mDegToRad(val)
Purpose
Use the mDegToRad function to convert degrees to radians.

Syntax
val – A floating-point number representing some number of degrees.

Returns
Returns the equivalent of the degree value val in radians.

See Also
mRadToDeg

mFloatLength(val , numDecimals)
Purpose
Use the mFloatLength function to limit the number of decimal places in val to numDecimals.

Syntax
 val – A floating-point value.
numDecimals – An integer between 0 and inf representing the number of decimal
 places to allow val to have.

Returns
Returns a floating-point value equivalent to a truncated version of val, where the new
version has numDecimals decimal places.

278

© Copyright 2000-2006 GarageGames Product of Hall Of Worlds, LLC.

mFloor(val)
Purpose
Use the mFloor function to calculate the next lowest integer value from val.

Syntax
val – A floating-point value.

Returns
Returns an integer representing the next lowest integer from val.

See Also
mCeil

mLog(val)
Purpose
Use the mLog function to calculate the natural logarithm of val.

Syntax
val – A numeric value.

Returns
Returns the natural logarithm of val.

mPow(val , power)
Purpose
Use the mPow function to calculated val raised to the power of power.

Syntax
 val – A numeric (integer or floating-point) value to be raised to a power.
piower - A numeric (integer or floating-point) power to raise val to.
Returns
Returns val^power.

mRadToDeg(val)
Purpose
Use the mRadToDeg function to convert radians to degrees.

Syntax
val – A floating-point number representing some number of radians.

Returns
Returns the equivalent of the radian value val in degrees.

See Also
mDegToRad

279

© Copyright 2000-2006 GarageGames Product of Hall Of Worlds, LLC.

mSin(val)
Purpose
Use the mSin function to get the sine of the radian angle val.

Syntax
val – A value between -3.14159 and 3.14159.

Returns
Returns the sine of val. This value will be in the range [-1.0 , 1.0].

See Also
mAsin

mSolveCubic(a , b , c , d)
Purpose
Use the mSolveCubic function to solve for x0, x1, x2 in third-order polynomial equation
with factors a, b, c, d:

aX^3 + bX^2 + cX + d = 0

Syntax
a, b , c, d – Polynomial factors (see above).

Returns
Returns x0, x1, x2: (X + x0) (X + x1) (X + x2)

mSolveQuadratic(a , b , c)
Purpose
Use the mSolveCubic function to solve for x0, x1 in second-order polynomial equation with
factors a, b, c:

aX^2 + bX + c = 0

Syntax
a, b , c – Polynomial factors (see above).

Returns
Returns x0, x1: (X + x0) (X + x1)

Notes
Warning, x0 and x1 are inverted.

280

© Copyright 2000-2006 GarageGames Product of Hall Of Worlds, LLC.

mSolveQuartic(a,b,c,d,e)
Purpose
Use the mSolveCubic function to solve for x0, x1, x2, x3 in fourth-order polynomial
equation with factors a, b, c, d, e:

aX^4 + bX^3 + cX^2 + dX + e = 0

Syntax
a, b , c, d, e– Polynomial factors (see above).

Returns
Returns x0, x1, x2, x3: (X + x0) (X + x1) (X + x2) (X + x3)

Notes
Broken.

mSqrt(val)
Purpose
Use the mSqrt function to calculated the square root of val.

Syntax
val – A numeric value.

Returns
Returns the the squareroot of val.

mTan(val)
Purpose
Use the mTan function to get the tangent of the radian angle val.

Syntax
val – A value between -3.14159/2 and 3.14159/2.

Returns
Returns the tangent of val. This value will be in the range [-inf.0 , inf.0].

See Also
mAtan

281

© Copyright 2000-2006 GarageGames Product of Hall Of Worlds, LLC.

setRandomSeed(startSeed)
Purpose
Use the setRandomSeed function to initialize the random number generator with the initial
seed of startSeed.

Syntax
startSeed – The new starting seed value for the random generator.

Returns
No return value.

See Also
getRandom, getRandomSeed

VectorAdd(vecA , vecB)
Purpose
Use the VectorAdd function to add two vectors of up to three elements each to each other

Syntax
vecA – A vector of up to three elements.
vecB – A vector of up to three elements.

Returns
Returns the result of vecA + vecB.

See Also
vectorSub

VectorCross(vecA , vecB)
Purpose
Use the VectorCross function to calculate the cross product of two vectors of up to three
elements each.

Syntax
vecA – A vector of up to three elements.
vecB – A vector of up to three elements.

Returns
Returns the result of vecA x vecB.

Notes
Remember, the resultant vector will always be an right angles to both input vectors.

See Also
VectorDot

282

© Copyright 2000-2006 GarageGames Product of Hall Of Worlds, LLC.

VectorDist(vecA , vecB)
Purpose
Use the VectorDist function to calculate distance between two vectors of up to three
elements each.

Syntax
vecA – A vector of up to three elements.
vecB – A vector of up to three elements.

Returns
Returns the result of " |Xa – Xb| |Ya – Yb| |Za – Zb| ".

See Also
VectorLen

VectorDot(vecA , vecB)
Purpose
Use the VectorCross function to calculate the dot product of two unit vectors of up to
three elements each.

Warning! Be sure to always normalize both vecA and vecB before attempting to find the dot
product. Calculating a dot product using un-normalized vectors (non- unit vectors) will
result in meaningless results.

Syntax
vecA – A unit-vector of up to three elements.
vecB – A unit-vector of up to three elements.

Returns
Returns a scalar value equal to the result of vecA . vecB. This value which will always
be a single floating-point value in the range [-1 , +1].

Notes
If the return value is < 0, the inner-angle between the vectors is > 90 degrees.
If the return value is == 0, the inner-angle between the vectors is == 90 degrees.
If the return value is > 0, the inner-angle between the vectors is < 90 degrees.

See Also
VectorCross

283

© Copyright 2000-2006 GarageGames Product of Hall Of Worlds, LLC.

VectorLen(vec)
Purpose
Use the VectorLen function to calculate the length of vector vec.

Syntax
vec - A vector of up to three elements.

Returns
Returns a scalar representing the length of the vector vec.

See Also
VectorDist

VectorNormalize(vec)
Purpose
Use the VectorNormalize function to calculated the unit vector equivalent of the vector
vec.

Syntax
vec - A vector of up to three elements.

Returns
Returns the unit vector equivalent of the vector vec.

See Also
VectorScale

VectorOrthoBasis(vec)
Purpose
Use the VectorOrthoBasis function to calculate a 3x3 Row-Major formated matrix
representing the orthogonal basis for the vector vec.

Syntax
vec - A four element vector of the form "AxisX AxisY AxisZ theta", where theta
 is the angle of rotation about the vector formed by the prior three values.

Returns
Returns a 3x3 Row-Major formated matrix.

284

© Copyright 2000-2006 GarageGames Product of Hall Of Worlds, LLC.

VectorScale(vec , scale)
Purpose
Use the VectorScale function to scale the vector vec by the scalar scale.

Syntax
 vec - A vector of up to three elements.
scale – A numeric value (integer or floating-point) representing the scaling factor.

Returns
Returns a scaled version of the vector vec, equivalent to:

" (scale * X) (scale * Y) (scale * Z) "

See Also
VectorNormalize

VectorSub(vecA , vecB)
Purpose
Use the VectorSub function to subtract vecB from vecA.

Syntax
vecA – Left side vector in subtraction equation.
vecB - Right side vector in subtraction equation.

Returns
Returns a new vector equivalent to: "vecA - vecB"

See Also
vectorAdd

285

© Copyright 2000-2006 GarageGames Product of Hall Of Worlds, LLC.

A.4 GUI Controls Quick Reference

A.4.1. Purpose
This appendix has been created to facilitate scripted creation and use of the standard Torque GUI controls.

With the exclusion of the GuiControl profile class, all GUI classes with specific fields, methods, and/or callbacks
are listed alphabetically, not by function.

A.4.2. GuiControlProfile Fields
Th GUIControlProfile (profile) class serves a similar purpose to that played by SimDataBlock, except in the

context of GUI controls. Instances of this class are used to initialize common features of GUI controls. All GUI
controls require a profile.

Creation Syntax

new GuiControlProfile (GUIProfileName [: parentProfile])
{
 field_0 = value;
...
 field_N = value;
...
 [dynamicfield_N = value;]
};

Usage Syntax

Normally, the profile for a GUI control is selected out of the profile pulldown in the GUI Inspector, but they
can also be set and changed directly via script:

new GUIControl(GUIControlName) {
 profile = GUIProfileName;
 // ...
};

// subsequently, it can be changed:
GUIControlName.profile = GUIProfileName2;

Fields

GUIControlProfiles provide the following fields. Not all fields are used by all controls, nor are all fields
interpretted the same by all controls that use them. Several examples of field useage are given in the GPGT
GUI Sampler.

286

© Copyright 2000-2006 GarageGames Product of Hall Of Worlds, LLC.

Field Name Type Description
autoSizeHeight Bool Auto-size the height-bounds of the control to fit it's contents.

autoSizeWidth Bool Auto-size the width-bounds of the control to fit it's contents.

bitmap String Location of this control’s bitmap.

border ColorI For most controls, if border is > 0 a border will be drawn, some
controls use this to draw different types of borders however.

borderColor ColorI Border color, used to draw a border around the bounds if border is
enabled.

borderColorHL ColorI Used instead of borderColor when the object is highlighted.
borderColorNA ColorI Used instead of borderColor when the object is not active or

disabled.
borderThickness Integer Thickness of border in pixels.

canKeyFocus Bool True if the object can be given keyboard focus (in other words,
made a first responder).

cursorColor ColorI Color for the blinking cursor in text fields (among other cases).

fillColor ColorI Fill color, this is used to fill the bounds of the control if it is opaque.

fillColorHL ColorI This is used instead of fillColor if the object is highlighted.

fillColorNA ColorI This is used instead of fillColor if the object is inactive or disabled.

fontColor ColorI Color of base font. “\c0”.

fontColorHL ColorI Color of highlighted font. “\c1”.

fontColorLink ColorI This is used as the font color for embedded URLs.

fontColorLinkHL ColorI This is used as the font color for embedded URLs when they are
clicked or otherwise highlighted.

fontColorNA ColorI Color of inactive font. “\c2”.

fontColors[10] ColorI
Each of these corresponds to a font color “\cn”. Note: Instead of
using fontColors for the first four, they should be specified using
fontColor, fontColorHL, fontColorNA, and fontColorSel, in that order.

fontColorSEL ColorI Color of selected font. “\c3”.

fontSize Integer Size of font. Points or Pixels?

fontType String Font face name for the control.

hasBitmapArray bool Enables skinning in skinnable controls

justify String
Justification for text:
• left
• center
• right

modal Bool If set to true, this is a modeless dialog meaning it will pass input
through instead of taking it all.

mouseOverSelected Bool If set to true, this control should be "selected" while the mouse is
over it. (Only used by guiTextListCtrl)

numbersOnly Bool If true and a text control, this control should accept only numeric
inputs.

opaque Bool If true, this control is not translucent.

returnTab Bool Used in GuiTextEditCtrl to specify if a tab-event should be simulated
when return is pressed.

soundButtonDown AudioProfile Sound played when the object is "down" i.e. a button is pushed.

soundButtonOver AudioProfile Sound played when the mouse is over the object.

tab Bool This control is accessible via the tab key. (i.e. can be tabbed to).

287

© Copyright 2000-2006 GarageGames Product of Hall Of Worlds, LLC.

Field Name Type Description
textOffset Vector Vector of two integers “x-offset y-offset”.

A.4.3. Standard GUI Controls (Alphabetical Listing)

GuiBitmapBorderCtrl

This skinnable control is used to adorn other controls with a frame (or border). If you have
never designed a GUI skin, see Standard GUIs chapter in Tech School Section of GPGT.

Skinning

• Define a profile with the following settings:

new GuiControlProfile (aProfileName)
{
 // ...
 hasBitmapArray = true;
 bitmap = "path to bitmap array graphic";
};

• Provide an image file with the following structure:

Column 0 Column 1 Column 2 Column 3 Column 4

Upper-left border Upper-right border Top border --

Left border Right Border Lower-left border Lower border Lower-right border

288

© Copyright 2000-2006 GarageGames Product of Hall Of Worlds, LLC.

GuiBitmapButtonCtrl

This control is a skinnable button. Unlike other skinned controls, this control takes a maximum of four
normal (non-array) graphics. Graphics files for this control use the following naming convention:

prefix_tag.suffix

• prefix – Any name for the image file.

• _tag – Any of the following (based on button state):

• _n – Normal

• _h – Highlighted

• _d – Depressed

• _i – Inactive

• suffix – png, jpg, bmp, etc.

For example, we could provide the following four images:

gglogo_n.png

 (normal)

gglogo_h.png

(highlighted)

gglogo_d.png

(depressed)

gglogo_i.png

(inactive)

If an image file is not provided for any of the states: highlighted, depressed, or invalid, the normal image will
be substituted. The normal image is always required. Also, setting the extent to "0 0" in the GUI Inspector and
then pressing apply will cause the GUI to expand to the size of the image file.

Fields

Field Name Description Sample

bitmap

Path to image file, must be of the format:

"path\path\path\prefix"

Do not provide tag or suffix

".\gglogo"

Console Methods

setBitmap()

289

© Copyright 2000-2006 GarageGames Product of Hall Of Worlds, LLC.

setBitmap(pathName)
Purpose
Use the setBitmap method to change the bitmap this control uses.

Syntax
pathName – A path to a new texture for this control.

Returns
No return value.

GuiBitmapCtrl

This control is used to display a small bitmap. In TGE versions prior to 1.4, this control can only accept a
bitmap with a maximum size of 256 x 256 pixels. For larger images or in case of malfunction, use the
GUIChunkedBitmapCtrl control.

Fields

Field Name Description Sample
bitmap Path to image file. (Suffix is optional) ".\gg_background.png"

wrap

Boolean value enabling wrapping. If wrap is false and the
image is larger than the GUIBitmapCtrl extent, the image will
be down-scaled. Vice-versa, if the extent is larger than the
image it will be scaled up. However, if wrap is true, and the
extent is smaller than the image, then only a portion of the
image will be visible.

[false , true]

Console Methods

setBitmap() setValue()

setBitmap(pathName)
Purpose
Use the setBitmap method to change the bitmap this control uses.

Syntax
pathName – A path to a new texture for this control.

Returns
No return value.

290

© Copyright 2000-2006 GarageGames Product of Hall Of Worlds, LLC.

setValue(xOffset , yOffset);
Purpose
Use the setValue method modify the positioning of the bitmap this control displays.

Syntax
xOffset – The pixel x-offset for the upper-left corner of this control's bitmap.
yOffset – The pixel y-offset for the upper-left corner of this control's bitmap.

Returns
No return value.

GuiButtonBaseCtrl

This is the base class to all other buttons and should NOT be used to make buttons. Its only job is to
provide common fields and methods for the GuiBitmapButtonCtrl, GuiButtonCtrl, GuiCheckBoxCtrl, and
GuiRadioCtrl.

Fields

Field Name Description Sample

buttonType

Each button has a default type, but that type can be over-
ridden to be:

- PushButton – Normal on/off button
- ToggleButton – On/Off button that toggles.
- RadioButton – When grouped with other radio buttons,
only one button in the group may be on. groupNum should
be specified when using this setting.

PushButton
ToggleButton
RadioButton

groupNum
(radio buttons only)

Provide a positive integer greater than or equal to zero to
group a set of radio buttons. i.e. to group three radio
buttons, give them each the same groupNum.

-1 - Ungrouped
[0 , inf) - Grouped

text Text to be displayed on button. Not displayed on
GuiBitmapButtonCtrl buttons with a valid image.

"Cancel"

Console Methods

getText performClick setText

getText()
Purpose
Use the getText method to get the current value of this control's text field.

Returns
Returns the current value of the text field for this control.

See Also
setText

291

© Copyright 2000-2006 GarageGames Product of Hall Of Worlds, LLC.

performClick()
Purpose
Use the performClick method to force a click-event for this control.

setText(newText)
Purpose
Use the newText method to set the curent value of this control's text field.

Syntax
newText – A string containing text to replace the text field's old value with.

Returns
No return value.

GuiButtonCtrl

The standard button. It defaults to a buttonType of PushButton. All functionality comes from its parent
GuiBaseButtonCtrl.

GuiCanvas

The canvas is the owner of all controls. That is, all other controls are placed in the The canvas can always
be found for scripting purposes using the name: 'Canvas'. In order to display another control, that control must
be made the 'content' of the Alternately, dialogs, can be pushed onto a canvas layer. Only dialogs exist in
layers. The dialog in the highest layer always receives the keyboard and mouse input, unless the dialog is
modeless. In this case, the dialog will only capture the input if it is the focus, else the inputs will all through to
the next layer. Note: Modal dialogs supersede all other controls below them when it comes to capturing input.

Console Methods

cursorOff cursorOn getContent getCursorPos
hideCursor isCursorOn popDialog popLayer
pushDialog renderFront repaint reset
setContent setCursor setCursorPos showCursor

cursorOff()
Purpose
Use the cursorOff method to disable the cursor.

Returns
No return value.

292

© Copyright 2000-2006 GarageGames Product of Hall Of Worlds, LLC.

cursorOn()
Purpose
Use the cursorOn method to enable the cursor.

Returns
No return value.

getContent()
Purpose
Use the getContent method to get the ID of the control which is being used as the current
canvas content.

Returns
Returns the ID of the current canvas content (a control), or 0 meaning the canvas is
empty.

getCursorPos()
Purpose
Use the getCursorPos method to retrieve the current position of the mouse pointer.

Returns
Returns a vector containing the “x y” coordinates of the cursor in the canvas.

hideCursor()
Purpose
Use the hideCursor method to hide the cursor.

Returns
No return value.

isCursorOn()
Purpose
Use the isCursorOn method to see if the cursor is currently enabled.

Returns
Returns true if cursor is on, false otherwise.

293

© Copyright 2000-2006 GarageGames Product of Hall Of Worlds, LLC.

popDialog(handle)
Purpose
Use the popDialog method to remove a currently showing dialog. If no handle is provided,
the top most dialog is popped.

Syntax
handle – The ID or a previously pushed dialog.

Returns
No return value.

See Also
pushDialog, popLayer

popLayer(layer)
Purpose
Use the popLayer method to remove (close) all dialogs in the specified canvas ‘layer’.

Syntax
layer – A integer value in the range [0 , inf) specifying the canvas layer to
 clear.

Returns
No return value.

See Also
pushDialog, popDialog

pushDialog(handle [, layer])
Purpose
Use the pushDialog method to open a dialog on a specific canvas layer, or in the same
layer the last openned dialog. Newly placed dialogs placed in a layer with another
dialog(s) will overlap the prior dialog(s).

Syntax
handle – The numeric ID or name of the dialog to be opened.
 layer – A integer value in the range [0 , inf) specifying the canvas layer to
 place the dialog in.

renderFront(enable)
Purpose
Use the renderFront method to modify the canvas rendering order.

Syntax
enable – A boolean value. If true, layers are rendered front-to-back,
 otherwise, the are rendered back-to-front (default).

See Also
popDialog, popLayer

294

© Copyright 2000-2006 GarageGames Product of Hall Of Worlds, LLC.

repaint()
Purpose
Use the repaint method to force the canvas to redraw all elements.

Returns
No return value.

reset()
Purpose
Use the reset method to reset the current canvas update region.

Returns
No return value.

setContent(handle)
Purpose
Use the setContent method to set the control identified by handle as the current canvas
content.

Syntax
handle – The numeric ID or name of the control to be made the canvas contents.

Returns
No return value.

setCursor(cursorHandle)
Purpose
Use the setCursor method to select the current cursor.

Syntax
cursorHandle – The ID of a previously defined GuiCursor object.

Returns
No return value.

setCursorPos()
Purpose
Use the setCursorPos method to set the position of the cursor in the cavas.

Syntax
position – An "x y" position vector specifying the new location of the cursor.

295

© Copyright 2000-2006 GarageGames Product of Hall Of Worlds, LLC.

showCursor()
Purpose
Use the showCursor method to enable the display of the cursor.

Returns
No return value.

Gotchas

• Do not try to run two copies of TGE in stand-alone mode unless the binary is complied to Debug. There is
code in release compiles that prevents two or more copies of the canvas from running simultaneously on
a Windows platform. You are probably safe on OSX and Linux, but if you encounter errors opening
multiple instances of TGE, this may be the cause.

• Do not [ever] try to create a second instance of the Canvas within the same running image of TGE. You will
crash or hang your game.

GUICheckBoxCtrl

This skinnable control displays the perennial check-box control. By default this control toggles between on
and off. If you have never designed a GUI skin, see Standard GUIs chapter in Tech School Section of GPGT.

Skinning

• Define a profile with the following settings:

new GuiControlProfile (aProfileName)
{
 // ...
 hasBitmapArray = true;
 bitmap = "path to bitmap array graphic";
};

296

© Copyright 2000-2006 GarageGames Product of Hall Of Worlds, LLC.

• Provide an image file with the following structure:

Sample Array Image Column 0

Unchecked Normal

Checked Normal

Unchecked Inactive

Checked Inactive

GuiChunkedBitmapCtrl

This control is the big brother to GuiBitmapCtrl and serves the same purpose. Its main value is that it can
handle images larger than 256 x 256.

Fields

Field Name Description Sample
bitmap Path to image file. File extension is optional. ".\ggbackground"

tile

Boolean value enabling wrapping. If tile is false and the
image is larger than the GUIBitmapCtrl extent, the image will
be down-scaled. Vice-versa, if the extent is larger than the
image it will be scaled up. However, if tile is true, and the
extent is smaller than the image, then only a portion of the
image will be visible.

[false , true]

useVariable See External Bitmap Specification below. [false , true]

External Bitmap Specification

The GuiChunkedBitmapCtrl provides an interesting feature. It is possible to leave the bitmap field empty and
to tell the control to get its bitmap from a global variable. To do this, specify your control similarly to this:

new GuiChunkedBitmapCtrl()
{
 // ...
 useVariable = true;
 variable = "MyBitmap";
 bitmap = "";
};

297

© Copyright 2000-2006 GarageGames Product of Hall Of Worlds, LLC.

Of course, for this to work we must have defined $MyBitmap:

$MyBitmap = ".\some\path\to\some\image";

GuiControl

GUI Control is the root class to all GUI controls and thus provides many fields and console methods. When it
is used as a control, it is normally used as a container.

Fields

Member (Field) Description Sample/Range

accelerator
• Specifies the hot-key for this command. See key

mappings index. --

altcommand
• Specifies a command(s) to be executed on a

specific control action.
• This field is used in a control-specific way.

echo("this is the altCommand");

command
• Specifies a command(s) to be executed on a

specific control action.
• This field is used in a control-specific way.

echo("this is the command");

extent
• These two values specify the pixel “WIDTH

HEIGHT” of the control. --

horizSizing
• In short, this field affects re-sizing and re-

positioning of controls in relation to resolution. right, width, left, center, relative

minExtent

• These two values specify the minimum size
“WIDTH HEIGHT” of the control.

• Some controls provide an alternate/supplemental
field that does something similar.

--

modal • Setting this does NOTHING. (Deprecated field) false

position
• This value specifies the coordinate of the control’s

upper-left corner. "0 0"

profile

• This allows you to select a predefined profile for
your control.

• Profiles are used to provide default field values for
controls.

• Values you supply in the inspector will over-ride
profile defined values.

• A value of <NULL> means, “use no profile”.
• Most profiles are defined the file:

example\common\ui\defaultProfiles.cs.
• To fine all defined profiles, search for ‘new ControlProfile’ in

all .CS files.

SomeGUIProfile

298

© Copyright 2000-2006 GarageGames Product of Hall Of Worlds, LLC.

Member (Field) Description Sample/Range

setFirstResponder
• Setting this does NOTHING. (Deprecated field)

false

variable

• This field is used to specify the name of a (global)
console variable which will be updated with the
value of the control.

• This field is used in a control-specific way.
"MyGlobalVar"

vertSizing
• In short, this field affects re-sizing and re-

positioning of controls in relation to resolution. bottom, height, top, center, relative

visible
• Specifies whether the GUI should start off in the

visible state, or hidden. [false , true]

 Console Methods

getExtent getMinExtent getPosition getValue
isActive isAwake isVisible makeFirstResponder
resize setActive setProfile setValue

setVisible

getExtent()
Purpose
Use the getExtent method to determine the extent of the current control.

Returns
Returns a two-value integer vector containing the "x y" extent of the control.

getMinExtent()
Purpose
Use the getMinExtent method to determine the minimum allowed extent of this control.

Returns
Returns a two-value integer vector containing the "x y" minimum allowed extent of the
control.

getPosition()
Purpose
Use the getPosition method to get the position of the upper-left corner of this control.

Returns
Returns a two-value integer vector containing the "x y" position of the control's upper-
left corner.

299

© Copyright 2000-2006 GarageGames Product of Hall Of Worlds, LLC.

getValue()
Purpose
Use the getValue method to get the control-specific 'value' for this control.

Returns
Returns a control-specific specific value. Varies by control.

isActive()
Purpose
Use the isActive method to determine if this control is active.

Returns
Returns true if this control is active.

Notes
An inactive control may visible, but will not accept inputs. It will also normally re-
shade or re-skin itself to reflect its inactive state.

isAwake()
Purpose
Use the isAwake method to determine if this control is awake.

Returns
Returns true if this control is awake and ready to display.

isVisible()
Purpose
Use the isVisible method to determine if this control is visible.

Returns
Returns true if the control is visible.

Notes
This can return true, even if the entire control covered by another. This merely means
that the control will render if not covered.

300

© Copyright 2000-2006 GarageGames Product of Hall Of Worlds, LLC.

makeFirstResponder(isFirst)
Purpose
Use the makeFirstResponder method to force this control to become the first responder.

Syntax
isFirst – A boolean value. If true, then this control become first reponder and
 at captures inputs before all other controls, excluding dialogs above
 this control.

Returns
No return value.

resize(ulX , ulY , width , height)
Purpose
Use the resize method to resize and/or re-position a control. The upper-left corner of
the control will be placed at <uliX, ulY> in its parent and the control will be given an
extent of "width height".

Syntax
 ulX – The upper-left X coordinate of this control in pixels.
 ulY – The upper-left Y coordinate of this control in pixels.
 width – The width of this control in pixels.
height – The height of this control in pixels.

Returns
No return value.

setActive(isActive)
Purpose
Use the setActive method to (de)activate this control. Once active, a control can accept
inputs. Controls automatically re-shade/skin themselves to reflect their active/inactive
state.

Syntax
isActive – A boolean value. f isActive is true, this control is activated, else it is set
to inactive.

Returns
No return value.

301

© Copyright 2000-2006 GarageGames Product of Hall Of Worlds, LLC.

setProfile(profileName)
Purpose
Use the setProfile method to change this control's profile to profileName.

Syntax
profileName – A previously defined control profile.

Returns
No return value.

setValue(value)
Purpose
Use the setValue method to set the control specific value to value. Purpose and type
varies by control type.

Syntax
value – Some control specific value.

Returns
No return value.

setVisible(isVisible)
Purpose
Use the setVisible method to (un)hide this control.

Syntax
isVisible – A boolean value. If true, the control will be made visible, otherwise the
control will be hidden.

Returns
No return value.

Callbacks

onAction() onAdd() onRemove onSleep()
onWake()

onAction(theControl)
Purpose
This generic callback will fire if there is an action event and no value is specified for
the command field.

Syntax
theControl – The ID of this control.

302

© Copyright 2000-2006 GarageGames Product of Hall Of Worlds, LLC.

onAdd(theControl)
Purpose
The onAdd callback is called when this control is created.

Syntax
theControl – The ID of this control.

onRemove(theControl)
Purpose
This callback fires when the control is destroyed.

Syntax
theControl – The ID of this control.

onSleep(theControl)
Purpose
This callback fires when the control is removed from the canvas, as a result of a call to
setContent(control), where control is not this control. This is also called when the
control is destroyed, prior to calling onRemove().

Syntax
theControl – The ID of this control.

onWake(theControl)
Purpose
This callback fires when the control is added to the canvas via the setContent(control)
method call, where control is this control.

Syntax
theControl – The ID of this control.

GuiCursor

TGE allows us to define our own cursors, using a simple image file and some information defining the
location of the cursor's hot-spot. In order to use a custom cursor, tell the canvas to activate it using the
setCursor() method.

Fields

Field Name Description Sample
bitmapName Path to cursor image. ".\mycursor.png"

hotSpot
A two-element vector specifying the offset from the image's
upper-left corner where the hot-spot of the cursor should be
located.

"4 4"
Offset by 4 pixels in x and y.

303

© Copyright 2000-2006 GarageGames Product of Hall Of Worlds, LLC.

GuiFadeInBitmapCtrl

This control is used to display an image by fading it in, then out over specified times. This control can be
made to fade in and out continously, by putting it to sleep at the end of the fade out cycle and then waking it
back up. This has to be done with a script and a call to schedule.

Fields

Field Name Description Sample
done Boolean value denoting that this control is done fading out. Always initialize as false.

fadeInTime Integer value specifying time to fade in (in milliseconds). [0 , inf)

fadeOutTime Integer value specifying time to fade out (in milliseconds). [0 , inf)

waitTime Integer value specifying time to wait after fade-in completes,
before starting to fade out.

[0 , inf)

Callbacks

click

click(theControl)
Purpose
This callback is fired, if the control has the focus and either a mouse button is
clicked, or a keyboard key is pressed.

Syntax
theControl – The ID of this control.

GUIFilterCtrl

This odd control allows us to specify a multi-knotted spline-like GUI that can be used to create a vector of
floating-povalues (one per knot), where each value is between 0.0 and 1.0. The control can be used both as an
input device and as a feedback device (we can set the position of each knot from script).

Fields

Field Name Description Sample
controlPoints Number of knots to use. 3

filter A floating-povector containing the default values for each
knot. Values are bracketed between: [0.0 , 1.0]

"0.25 0.5 0.75"

Console Methods

getValue() identity() setValue()

304

© Copyright 2000-2006 GarageGames Product of Hall Of Worlds, LLC.

getValue()
Purpose
Use the setVisible method to (un)hide this control.

Syntax
isVisible – A boolean value. If true, the control will be made visible, otherwise the
control will be hidden.

Returns
No return value.

Returns a n-tuple floating-povector of values for each knot (left to right).

identity()
Purpose
Resets the filter and places all knots on a line following a 45 degree angle from 0.0
(bottom) on the left to 1.0 (top) on the right.

Returns
No return value.

setValue(knots)
Purpose
Sets the knot value for each knot by position.

Syntax
knots – a vector containing the knot positions for each knot. Each knot has a value
 between 0.0 and 1.0..

Returns
No return value.

GuiInputCtrl

This control is used to capture all input events. Input events in this case are such things as mouse clicks
and/or keystrokes. For every input event, a callback is fired.

Callbacks

onInputEvent()

305

© Copyright 2000-2006 GarageGames Product of Hall Of Worlds, LLC.

onInputEvent(theControl , deviceString , actionString , makeOrBreak)
Purpose
Is called on make or break actions for all input devices. A make action for the mouse
being a click-press, and a break action being the click-release.

Syntax
 theControl – The ID of this control.
deviceString – "keyboard", "mouse", "mouse", etc. (see devices strings below).
actionString – Event + modifiers (see actions strings below).
 makeOrBreak – Was this a make or break action [0 , 1]?

Device Strings
keyboard mouse joystick

keyboard0 .. N mouse0 .. N joystick0 ..N
Note: If there are multiple devices of the same type, specify an instance number. i.e. keyboard1. If there is only one instance, just

using an instance number is acceptable, but not required.

Keyboard Actions + Modifiers
a .. z A .. Z F1 .. F24 0 .. 1

backspace tab return enter
shift ctrl alt pause

capslock escape space pagedown
pageup end home left

up right down print
insert delete help win_lwindow (win)

win_rwindow (win) win_apps (win) cmd (mac) opt (mac)
lopt (mac) ropt (mac) numpad0 .. numpad9 numpadmult

numpadadd numpadsep numpadminus numpaddecimal
numpaddivide numpadenter numlock scrolllock

lshift rshift lcontrol rcontrol
lalt ralt tilde minus

equals lbracket rbracket backslash
semicolon apostrophe comma slash
lessthan exclamation grave greaterthan

Joystick/Mouse Actions

button .. 31

Mouse Actions
xaxis yaxis zaxis rxaxis
ryaxis rzaxis slider

Joystick POV Actions

xpov ypov upov dpov
lpov rpov xpov2 ypov2

upov2 dpov2 lpov2 rpov2

306

© Copyright 2000-2006 GarageGames Product of Hall Of Worlds, LLC.

Miscellaneous Actions

anykey nomatch

function myControl::onInputEvent(%this, %device, %action, %makeOrBreak)
{
 echo("** onInputEvent called - device = ", %device,
 ", action = ", %action,
 ", makeOrBreak = ", %makeOrBreak, " **");
}

GUIMenuBar

This semi-skinnable control displays the familiar menu bar control. By semi-skinnable, it is meant that
graphic icons can be embedded in menu items, but the bar and the drop-downs themselves are not skinnable.
If you have never designed a GUI image array, see Standard GUIs chapter GPGT.

Menu Item Icon Arrays

• Define a profile with the following settings:

new GuiControlProfile (aProfileName)
{
 // ...
 hasBitmapArray = true;
 bitmap = "path to bitmap array graphic";
};

• Provide an image file with the following structure:

Sample Array Image Column 0 Column 1 Column 2

Checked Mark Not-Checked Mark Inactive Checked Mark

Optional Icon 0 (on) Optional Icon 0 (off) Optional Icon 0 (inactive)

...

Optional Icon N (on) Optional Icon N (of) Optional Icon N (inactive)

In effect, a GUIMenuBar can have any number of icon row, but the first (0th) row is normally reserved for the
'checked' icons. You can of course use any icon for that you wish, and you can use those icons elsewhere too.

307

© Copyright 2000-2006 GarageGames Product of Hall Of Worlds, LLC.

GUIMenuBar Guidelines/Rules

The following guidelines/rules apply when building menus:

1. Build and Place – Place and size the initial menu bar using the GUI Editor.

2. Populate – Open the .gui file (or use a separate .cs) and write code to populate the menu.

3. Menus' and Menu Items' names should not start with a digit

4. Menu Items may optionally have accelerators

5. Menu Items may be enabled and disabled from script.

6. Menu Items may have separator lines (-----) between them.

7. Menus' and MenuItems' text can be dynamically changed from scripts.

8. Menu Items can be hidden.

9. Menu Items can have check box behavior and radio behaviors, including the display of a currently checked
image in-menu.

10. Menus and Menu Items can be identified/referred to either by Menu/Menu Item text or ID.

11. Hierarchical (cascading) menus are not supported.

12. Menus do not support accelerators (only Menu Items support this)

Console Methods

Note: In the descriptions below, 'Menu Name' and 'Menu Item Name' refer to the Menu and Menu Item text
respectively.

addMenu addMenuItem clearMenuItems clearMenus
removeMenu removeMenuItem setMenuItemBitmap setMenuItemChecked

setMenuItemEnable setMenuItemText setMenuItemVisible setMenuText
setMenuVisible

addMenu(menuName , menuID)
Purpose
Adds a new menu to the menu bar.

Syntax
menuName – The text (name) of the new menu entry.
 menuID – The ID of the new menu entry.

Returns
No return value.

308

© Copyright 2000-2006 GarageGames Product of Hall Of Worlds, LLC.

addMenuItem(menuID | menuName , menuItemName , menuItemID ,
 [accelerator] , [checkGroup])
Purpose
Adds a sub-menu entry to the specified menu.

Syntax
 menuID – The ID of the menu.
 menuName – The text (name) of the menu.
 menuItemID – The ID of the menu item.
menuItemName – The text (name) of the menu item.
 accelerator – A boolean value. If set to true, the sub-menu entry is checked,
 otherwise it is unchecked.
 checkGroup – The check group this item should belong to, if any.

Returns
No return value.

clearMenuItems(menuID | menuName)
Purpose
Removes all the sub-menu items from the specified menu.

Syntax
 menuID – The ID of the menu.
menuName – The text (name) of the menu.

Returns
No return value.

clearMenus()
Purpose
Clears all menus and sub-menus from the menu bar.

Returns
No return value.

removeMenu(menuID | menuName)
Purpose
Removes the specified menu from the menu bar.

Syntax
 menuID – The ID of the menu.
 menuName – The text (name) of the menu.
 menuItemID – The ID of the menu item.
menuItemName – The text (name) of the menu item.
 checked – A boolean value. If set to true, the sub-menu entry is checked,
 otherwise it is unchecked.

Returns
No return value.

309

© Copyright 2000-2006 GarageGames Product of Hall Of Worlds, LLC.

removeMenuItem(menuID | menuName , menuItemID | menuItemName)
Purpose
Removes the specified menu item from the menu.

Syntax
 menuID – The ID of the menu.
 menuName – The text (name) of the menu.
 menuItemID – The ID of the menu item.
menuItemName – The text (name) of the menu item.

Returns
No return value.

setMenuItemBitmap(menuID | menuName , menuItemID | menuItemName , bitmapIndex)
Purpose
Sets the specified menu item bitmap index in the bitmap array. Setting the item's index
to -1 will remove any bitmap.

Syntax
 menuID – The ID of the menu.
 menuName – The text (name) of the menu.
 menuItemID – The ID of the menu item.
menuItemName – The text (name) of the menu item.
 bitMapIndex – An integer value specifying the row of bitmap entries to use for
 sub-menu entry.

Returns
No return value.

setMenuItemChecked(menuID | menuName , menuItemID | menuItemName , checked)
Purpose
Sets the menu item bitmap to a check mark, which must be the first element in the bitmap
array. Any other menu items in the menu with the same check group become unchecked if
they are checked.

Syntax
 menuID – The ID of the menu.
 menuName – The text (name) of the menu.
 menuItemID – The ID of the menu item.
menuItemName – The text (name) of the menu item.
 checked – A boolean value. If set to true, the sub-menu entry is checked,
 otherwise it is unchecked.

Returns
No return value.

310

© Copyright 2000-2006 GarageGames Product of Hall Of Worlds, LLC.

setMenuItemEnable(menuID | menuName , menuItemID | menuItemName , enabled)
Purpose
Sets the menu item to enabled or disabled.

Syntax
 menuID – The ID of the menu.
 menuName – The text (name) of the menu.
 menuItemID – The ID of the menu item.
menuItemName – The text (name) of the menu item.
 enabled – A boolean value. If set to true, the sub-menu entry is enabled,
 otherwise it is disabled.

Returns
No return value.

setMenuItemText(menuID | menuName , menuItemID | menuItemName , newMenuItemText)
Purpose
Sets the text of the specified menu item to the new string.

Syntax
 menuID – The ID of the menu.
 menuName – The text (name) of the menu.
 menuItemID – The ID of the menu item.
 menuItemName – The text (name) of the menu item.
newMenuItemText – The new text for the specified sub-menu entry.

Returns
No return value.

setMenuItemVisible(menuID | menuName, menuItemID | menuItemName, visible)
Purpose
Use the setMenuItemVisible method to enable or disable the visibility of a specific sub-
menu entry.

Syntax
 menuID – The ID of the menu.
 menuName – The text (name) of the menu.
 menuItemID – The ID of the menu item.
menuItemName – The text (name) of the menu item.
 visible – A boolean value. If set to true, this sub-menu entry will be shown,
 otherwise it will be hidden.

Returns
No return value.

311

© Copyright 2000-2006 GarageGames Product of Hall Of Worlds, LLC.

setMenuText(menuID | menuName , newMenuText)
Purpose
Sets the text of the specified menu to the new string.

Syntax
 menuID – The ID of the menu.
 menuName – The text (name) of the menu.
newMenuText – The new text to give the menu entry.

Returns
No return value.

setMenuVisible(menuID | menuName , visible)
Purpose
Use the setMenuVisible method to enable or disable the visibility of a specific menu
entry.

Syntax
 menuID – The ID of the menu.
menuName – The text (name) of the menu.
 visible – A boolean value. If set to true, this menu entry will be shown,
 otherwise it will be hidden.

Returns
No return value.

Callbacks

When a menu is clicked it calls the onMenuSelect() method before displaying the drop-down menu items list.
This allows the callback to enable/disable menu items, add/remove menu items, etc. in a context-sensitive way.

When a menu item is clicked, the drop-down menu items list removes itself from the display, then calls the
onMenuItemSelect() method.

onMenuItemSelect onMenuSelect

onMenuItemSelect(theControl , menuID , menuName , menuItemID , menuItemName)
Purpose
Called when a menu item is selected. Provides the menu's menuID, and the text in the
menu menuName, as well as menu item's menuItemID, and the text in the menu Item
menuItemName.

Syntax
 theControl – The ID of this control.
 menuID - The ID assigned to this menu item.
 menuName – The text assigned to this menu item.
 menuItemID – The ID assigned to this sub-menu item.
menuItemName - The text assigned to this sub-menu item.

312

© Copyright 2000-2006 GarageGames Product of Hall Of Worlds, LLC.

onMenuSelect(theControl , menuID , menuName)
Purpose
Called when a menu is selected. Provides the menu's menuID, and the text in the menu
menuName.

Syntax
theControl – The ID of this control.
 menuID - The ID assigned to this menu item.
 menuName – The text assigned to this menu item.

Returns
No return value.

GuiMessageVectorCtrl

This control is normally used to build a chat hud, but it can be used for a number of other purposes as well.
In order to use this control, a MessageVector object must also be used (see MessageVector below). Since the
actual data to be displayed is stored in the MessageVector and not this control, we can remove and add
GUIMessageVectorCtrl controls at will and not corrupt the message data. This control is capable of displaying
colorized text and can support beyond the base ten colors. Additionally, this control will recognize URLs and
supports opening an external browser on url-click events.

Fields

Field Name Description Sample/Range

allowedMatches[16]
This string(s) is used to match a message string. When we
have a positive match, the matched string will be highlighted
with matchColor color. Up to 16 strings can be matched
(watched for).

allowedMatches[0] = "GPGT";
allowedMatches[1] = "http";

lineContinuedIndex TBD integer

lineSpacing Spacing between lines in pixels. [0 , inf)

matchColor Highlight color to use for strings matched against
allowedMatches[n].

"128 255 255"

maxColorIndex This index can be used to restrict or increase the number of
supported text colors

[0 , 99]

Console Methods

attach detach

313

© Copyright 2000-2006 GarageGames Product of Hall Of Worlds, LLC.

attach(aVector)
Purpose
Make this gui control display messages from the specified MessageVector.

Syntax
aVector – A previously created messageVector instance.

Returns
No return value.

detach()
Purpose
Stop listening to messages from the MessageVector this control was previously attached to.

Returns
No return value.

Callbacks

urlClickCallback

urlClickCallback(theControl , url)
Purpose
Called when a URL is clicked in this control.

Syntax
theControl – The ID of this control.

MessageVector

The MessageVector object is a container of text meant to be consumed by the GuiMessageVectorCtrl control.
Having said that, this class can be used for various other text storage purposes too.

Message Vector Console Methods

clear deleteLine dump getLineIndexByTag
getLineTag getLineText getLineTextByTag getNumLines
insertLine popBackLine popFrontLine pushBackLine

pushFrontLine

314

© Copyright 2000-2006 GarageGames Product of Hall Of Worlds, LLC.

clear()
Purpose
Clear the message vector.

Returns
No return value.

deleteLine(lineIndex)
Purpose
Delete the line at the specified position.

Syntax
lineIndex – The line to delete in this vector.

Returns
No return value.

See Also
insertLine, pushBackLine, pushFrontLine

dump(filename [, header])
Purpose
Dump the message vector to a file, optionally prefixing the file with a header.

Syntax
filename – The file to dump this vector to.
 header – An optional string containing data to dump to the new file prior
 to dumping the vector.

Returns
No return value.

getLineIndexByTag(tag)
Purpose
Scan through the vector, returning the line number of the first line that matches the
specified tag; else returns -1 if no match was found.

Syntax
tag – A special marker, possibly embedded in one or more lines in the vector.

Returns
Returns the line number of the first line found with the specified tag, otherwise returns
-1.

See Also
insertLine, pushBackLine, pushFrontLine

315

© Copyright 2000-2006 GarageGames Product of Hall Of Worlds, LLC.

getLineTag(line)
Purpose
Use the getLineTag method to retrieve the tag for the specified line.

Syntax
line – Line to search for tag in.

Returns
Returns a tag value or 0 indicating no tag found.

See Also
insertLine, pushBackLine, pushFrontLine

getLineText(index)
Purpose
Use the getLineIndex method to get the text at a specified line.

Syntax
index – The index in the vector from which to retrieve a line of text.

Returns
Returns the text at the specified line, or “” indicating a bad index.

See Also
insertLine, pushBackLine, pushFrontLine

getLineTextByTag(tag)
Purpose
Use the getLineTextByTag method to scan through the lines in the vector, returning the
first line that has a matching tag.

Syntax
tag – An special marker that may have been used when creating lines in the vector.

Returns
Returns the contents of the first line found with a matching tag, or “” indicating no
match.

See Also
insertLine, pushBackLine, pushFrontLine

316

© Copyright 2000-2006 GarageGames Product of Hall Of Worlds, LLC.

getNumLines()
Purpose
Use the getNumLines method to get the number of lines in the vector.

Returns
Returns an integer value equal to the line count for this vector.

See Also
insertLine, pushBackLine, pushFrontLine

insertLine(pos , msg [, tag])
Purpose
Use the insertLine method to insert a new line into the vector at the specified position.
An optional tag may also be applied.

Syntax
pos – The line at which to insert the new text.
msg – The text to add to this control.
tag – An optional tag to tag this line with. If not tag is supplied, a tag of 0 is used.

Returns
No return value.

See Also
pushBackLine, pushFrontLine

popBackLine()
Purpose
Use the popBackLine method to pop a line from the back of the list; destroys the line.

Returns
No return value.

See Also
insertLine, pushBackLine, pushFrontLine

popFrontLine()
Purpose
Use the popFrontLine method to pop a line from the front of the vector, destroying the
line.

Returns
No return value.

See Also
insertLine, pushBackLine, pushFrontLine

317

© Copyright 2000-2006 GarageGames Product of Hall Of Worlds, LLC.

pushBackLine(msg [, tag])
Purpose
Use the pushBackLine method to push a line onto the back of the list.

Syntax
msg – The text to add to this control.
tag – An optional tag to tag this line with. If not tag is supplied, a tag of 0 is used.

Returns
No return value.

See Also
popBackLine, popFrontLine, insertLine, pushFrontLine

pushFrontLine(msg [, tag])
Purpose
Use the pushFrontLine method to push a line onto the front of the vector.

Syntax
msg – The text to add to this control.
tag – An optional tag to tag this line with. If not tag is supplied, a tag of 0 is used.

Returns
No return value.

See Also
popBackLine, popFrontLine, insertLine, pushBackLine

See Also
popBackLine, popFrontLine, insertLine, pushBackLine

318

© Copyright 2000-2006 GarageGames Product of Hall Of Worlds, LLC.

GuiMLTextCtrl

This control is a multi-line markup-language supporting text control (ML == Markup Language). In addition
to printing multi-line text, this control will accept TGE Markup-Language (TorqueML) formatted text, allowing us
to make changes to the font, font-weight, color, etc. A complete listing of the TorqueML tokens and the Syntax
for using them is supplied below. This control also supports onURL() and onResize() callbacks.

Fields

Field Name Description Sample/Range
allowColorChars Enable colored text. [false , true]

deniedSound Audio profile played when current number of characters ==
maxChars and an attempt is made to add new characters.

Audio Profile

lineSpacing Integer value specifying number of pixels between lines. 2

maxChars Integer value specifying number of characters that will fit in
this control.

[0 , inf)

text Initial text to dispaly in control. "Type Here"

Console Methods

addText() forceReflow() getText() scrollToTag()
setAlpha() setCursorPosition() setText()

addText(text , reformat)
Purpose
Use the addText method to add new text to the control. You may optionally request that
the control be reformatted.

Syntax
 text – Text to add to control.
reformat – A boolean value that when set to true forces the control to
 re-evaluate the entire contents and to redisplay it.

Returns
No return value.

See Also
getText, setText, forceReflow

319

© Copyright 2000-2006 GarageGames Product of Hall Of Worlds, LLC.

forceReflow()
Purpose
Use the forceReflow method to force the text control to re-evaluate the entire contents
and to redisplay it, possibly resizing the control.

Returns
No return value.

See Also
addText

getText()
Purpose
Use the getText method to return the current text contents of the control, including all
formatting characters.

Returns
Returns the entire text contents of the control or “” indicating no contents.

See Also
addText

scrollToTag(tagID)
Purpose
Use the scrollToTag method to scroll to the first instance of a tag if it exists.

Syntax
tagID – A tag number to search for. These tags are specified by embedding
 TorqueML <tag:tag_number> entries in text.

Returns
No return value.

See Also
scrollToTop, setCursorPosition

scrollToTop()
Purpose
Use the scrollToTop method to scroll to the top of the text.

Returns
No return value.

See Also
scrollToTag, setCursorPosition

320

© Copyright 2000-2006 GarageGames Product of Hall Of Worlds, LLC.

setAlpha(alpha)
Purpose
Use the setAlpha method to set alpha of this control to between [0.0 , 1.0].

Syntax
alpha – A floating point value between 0.0 and 1.0 indicating the control's
 new alpha setting.

setCursorPosition(newPos)
Purpose
Use the setCursorPosition method to offset the cursor by newPos characters into the
current text contents of the control.

Syntax
newPos – An integer value indicating the character position at which to place the cursor.

Returns
No return value.

See Also
scrollToTag, scrollToTop

setText(text)
Purpose
Use the setText method to change the current text content of the control to text. This
replaces all old content.

Syntax
text – The new contents for this control.

Returns
No return value.

See Also
addText, getText

Callbacks

onURL() onResize()

onURL(theControl , url)
Purpose
This callback is called when a hyperlink or a gamelink is clicked in the control.

Syntax
theControl – The ID of this control.
 url – The url value that was specified by the TorqeML link statement.

321

© Copyright 2000-2006 GarageGames Product of Hall Of Worlds, LLC.

Notes:
If a normal URL was specified like this:

<a:gamers.hallofworlds.com>name
, the value of url will be the string “gamers.hallofworlds.com”
If a gamelinke URL was specified (starts with the string “gamelink”) like this:
 the <a:gamelink_SomeTopic>name
, the value of url will be the string “gamelink_SomeTopic”

onResize(theControl , width , height)
Purpose
This calleback is fired when the control is resized.

Syntax
theControl – The ID of this control.
 width – The new width for this control.
 height – The new height for this control.

TGE Markup Language (TorqueML)

Markup Tag Purpose Samples
Fonts and Text Effects

<font:font_name :font_size>
Changes font type and size.

font_name – Any legal font name.
font_size – [1 , 32] points

<font:Arial Bold:16>
<font:Verdana Italic:32>

<font:Palatino Linotype:4>
<font:Lucida Console:10>

<color:hex_tag> Changes subsequent text color to that
represented in hex_tag.

<color:FF0000> Pure Red
<color:00FFCC > A Nice Green

<shadow:XOffset:YOffset> Enables shadowed text with an offset
of "XOffset YOffset" pixels.

<shadow:10:10> down 10, right 10
<shadow:-5:-10> up 5, left 10

<shadowcolor:hex_tag> Changes subsequent text shadow
color to that represented in hex_tag.

<color:C0C0C0> Light Gray

Test Justification
<just:left> Justifies text to left. <just:left>

<just:right> Justifies text to right. <just:right>

<just:center> Justifies text to center. <just:center>

Text Clipping

<clip:pixels>text</clip>
Forces text to be clipped if is over
pixels pixels wide. Clipped text has
... appended to the end.

<clip:50>abcdefghijk</clip>
Displays -> abcde...

<clip:20>abcdefghijk</clip>
Displays -> a...

Margins
<lmargin%:percent> Sets left margin to percent

percentage of viewable area.
<lmargin%:5>
<lmargin%:20>

<rmargin%:percent > Sets right margin to percent
percentage of viewable area.

<rmargin%:5>
<rmargin%:20>

<lmargin:pixels> Sets left margin to pixels number of <lmargin:12>

322

© Copyright 2000-2006 GarageGames Product of Hall Of Worlds, LLC.

Markup Tag Purpose Samples
pixels. <lmargin:100>

<rmargin:pixels> Sets right margin to pixels number of
pixels.

<rmargin:12>
<rmargin:100>

HyperLinks
<a:link_address>text Creates a hyper-text link to

link_address and displays text.
<linkcolor:0000FF><a:www.hallofworlds.com

>HOW
Displays -> HOW

<a:gamelinkTAG>text
Same as-<a:link_address> but
address is not underlined.
Can be used for making context
sensitive help GUIs and other non-
web links.

<linkcolor:0000FF><a:gamelinkTopic0>Topic
0

Displays -> Topic 0

<linkcolor:hex_tag> Changes subsequent hyperlink color
to that represented in hex_tag.

<linkcolor:0000FF>
For Blue Links

Images

<bitmap:path/filename>
Displays a bitmap. Note:
path/filename must be a complete
path, starting at the mod directory.

<bitmap:egt/client/ui/gglogo.png>

Tables

<tab:tabstop,tabstiop,...,tabstop>

Use to create table like entities with
columns tabstop pixels wide.

Subsequently,
Each new line is a table row.
Columns are separated by tabs.

<tab:100,150,100>

Subsequent lines should be treated as a three
column table with columns 100, 150, and 100
pixels wide respectively.

Attribute Stacking
<spush> Saves current attributes on stack. <spush>

<spop> Pop last stacked attributes, restoring
them.

<spop>

<sbreak> Do not use. --

Miscellaneous

 Line break. Hello
World

<div:>

<tag:tag_number>
Places a numeric tag tag_number in
this line. This is used for searching
and is not displayed.

<tag:100>

GuiMLTextEditCtrl

This control is a TorqueML formatted text entry. Nearly all of its functionality derives from its parent
GuiMLTextCtrl (above).

Fields

Field Name Description Sample/Range
escapeCommand Command to execute on escape key press (while editting). --

323

© Copyright 2000-2006 GarageGames Product of Hall Of Worlds, LLC.

GuiMouseEventCtrl

This control is used to capture and react to (via callback) all standard mouse events. Most controls do not
automatically execute a callback for all mouse events. This helps reduce the possible flood of callbacks that
would otherwise occur in complicated GUIs. However, when an event needs to be captured, and the control in
question does not already do so, simply add this control as a child of the control needing to capture the event
and be sure it covers the areas where the event should be captured. This control will then capture the following
events:

• Left/Right Mouse Down

• Left/Right Moue Up

• Mouse Move

• Left/Right Mouse Drag

• Mouse Enter

• Mouse Exit

, with these (possible) modifiers:

• Left/Right/Either Shift

• Left/Right/Either Control

• Left/Right/Either ALT

Fields

Field Name Description Sample
lockMouse If true, this control temporarily ignores the mouse. [false , true]

Globals

The following globals are made available for script writting purposes.

Field Name Description
$EventModifier::LSHIFT Left Shift-Key Depressed

$EventModifier::RSHIFT Right Shift-Key Depressed

$EventModifier::SHIFT Either Shift-Key Depressed

$EventModifier::LCTRL Left Ctrl-Key Depressed

$EventModifier::RCTRL Right Ctrl-Key Depressed

$EventModifier::CTRL Either Ctrl-Key Depressed

$EventModifier::LALT Left Alt-Key Depressed

$EventModifier::RALT Right Alt-Key Depressed

$EventModifier::ALT Either Alt-Key Depressed

324

© Copyright 2000-2006 GarageGames Product of Hall Of Worlds, LLC.

Callbacks

onMouseDown() onMouseDragged() onMouseEnter() onMouseLeave()
onMouseMove() onMouseUp() onMouseRightDown() onMouseRightDragged()

onMouseRightUp()

onMouse*(theControl , eventModifier , XY , numMouseClicks)
Purpose
Called when the * event occurs.

All onMouse* events take the same modifiers. The possibilities for * are:
• Down – Left mouse button-pressed.
• Dragged – Mouse moved while left-button held down.
• Enter – Mouse entered area covered by this control.
• Leave - Mouse left area covered by this control.
• Move - Mouse moved in area covered by this control
• Up – Left mouse button-released.
• RightDown – Right mouse button-pressed.
• RightDragged – Mouse moved while right-button held down.
• RightUp – Right mouse button-released.

As noted above, this callback will be passed the eventModifier(s) listed in
globals(above). These modifiers are bit-masks and should be treated as such.

Lastly, the double-click time is 500ms, thus if the mouse is clicked two or more times in
that period of time, this callback will get a numMouseClicks > 1. This is used primarily
to determine if a double-click or a single-click processing should occur.

Syntax
 theControl – The ID of this control.
 eventModifier – One or more of the globals specified above.
 XY – The position of the mouse in the current control.
numMouseClicks – The number of clicks recorded in the last 500ms.

GuiPopUpMenuCtrl

This is a traditional pop-up menu. When a left-mouse click is applied to this control, a
list will pop up. This list will either be above or below the control dependent on its
placement, how many entries are in the list, and the nearness of the bottom of its parent.
In the case that the list is taller than the height of its parent or maxPopupHeight, it will
scroll automatically. Additionally, each text entry can be themed with a coloring scheme.

325

© Copyright 2000-2006 GarageGames Product of Hall Of Worlds, LLC.

Fields

Field Name Description Sample/Range

maxPopupHeight
Integer value specifying the maximum number of list entries
to show at any one time. List scrolls if there are more
entries than maxPopupHeight.

--

Console Methods

add() addScheme() clear() findText()
forceClose() forceOnAction() getSelected() getText()

getTextByID() replaceText() setEnumContent() setSelected()
setText() size() sort()

add(entryText , entryID [, entryScheme])
Purpose
Use the add method to add a new entry with text entryText, ID entryID, and using the
scheme entryScheme.

Syntax
 entryText – Text to display in menu entry.
 entryID – ID to assign to entry. This value may be 1 or greater.
entryScheme – An integer value representing the ID of an optional color
 scheme to be used for this entry.

Returns
No return value.

See Also
addScheme, clear

326

© Copyright 2000-2006 GarageGames Product of Hall Of Worlds, LLC.

addScheme(entryScheme , fontColor , fontColorHL , fontColorSEL)
Purpose
Use the addScheme method to create a new color scheme or to modify an existing one.

Syntax
 entryScheme – An integer value representing the ID of the scheme, between
 1 and inf.
 fontColor – A vector containing an integer representation of the menu
 entry's normal color.
 fontColorHL – A vector containing an integer representation of the menu
 entry's highlighted color.
fontColorSEL – A vector containing an integer representation of the menu
 entry's selected color.

Returns
No return value.

Notes
An integer color vector contains three integer values, each between 0 and 255 and is
organized in this order: “R G B”,

See Also
add

clear()
Purpose
Use the clear method to remove all entries and schemes from the menu.

Returns
No return value.

See Also
add, addScheme

findText(text)
Purpose
Use the findText method to locate the string text in the list of menu items. It will
return the ID of the first entry found.

Syntax
text – A string containing the text to search for.

Returns
Returns an integer value representing the ID of the menu item, or -1 if the text was not
found.

Notes
This is an exact match, so if the menu item is “Gish” and you search for “Gis”, or
“gish', or any other variation that does not match the entire menu item and the case of
each letter, the search will not find a match.

327

© Copyright 2000-2006 GarageGames Product of Hall Of Worlds, LLC.

forceClose()
Purpose
Use the forceClose method to force the menu to close.

Returns
No return value.

Notes
This is useful for making menus that fold up after a short delay when the mouse leaves
the menu area.

See Also
forceOnAction

forceOnAction()
Purpose
Use the forceOnAction method to force the onAction callback to be triggered.

Returns
No return value.

See Also
forceClose, onAction (GUIControl callback)

getSelected()
Purpose
Use the getSelected method to get the ID of the last selected entry.

Returns
Returns the ID of the currently selected entry, or 0 meaning no menu was selected after
the last menu open.

Warning
If someone opens and then closes the menu without making a selection, the selected entry
goes back to 0, even if an entry was previously selected.

See Also
getText, setSelected

getText()
Purpose
Use the getText method to get the text currently displayed in the menu bar.

Returns
Returns the text in the menu bar or “” if no text is present.

See Also
getSelected, setText

328

© Copyright 2000-2006 GarageGames Product of Hall Of Worlds, LLC.

getTextById(ID)
Purpose
Use the getTextById method to get the text value for the menu item represented by ID.

Syntax
ID – An integer value representing the ID of a menu item.

Returns
Returns a string containing the menu item corresponding to ID, or a NULL string (“”) if
no menu item has the specified ID.

See Also
add, getText

replaceText(enable)
Purpose
Use the replaceText method to enable the updating of the menu bar text when a menu item
is selected.

Syntax
enable – A boolean value enabling or disabling the automatic updating of
 the menu bar text when a selection is made.

Returns
No return value.

Notes
This does not prevent changing the menu bar text with setText.

See Also
getText, setText

setEnumContent(className , enumName)
Purpose
Use the setEnumContent method to fill the menu with a class reps field enumerations.

Syntax
className – The class name associated with this enum content.
enumName – The name of the enumerated entry to add to the menu. This value
 must match an enum string as exposed by the engine for the class.
 The menu item will have the same text as the enum string name,
 and the ID will be equal to the enumerated entries value.

Returns
No return value.

329

© Copyright 2000-2006 GarageGames Product of Hall Of Worlds, LLC.

setSelected(ID)
Purpose
Use the setSelected method to force the selection of a specific entry in the menu as
identified by ID.

Syntax
ID – An integer value representing the ID of the entry to select.

Returns
No return value.

Notes
This will cause the menu text to update and the onSelect callback will fire.

If the control is currently in no-replace mode, the text in the menu bar will not be
updated by this selection.

See Also
getSelected, onSelect (callback), replaceText, setText

setText(text)
Purpose
Use the setText method to change the text displayed in the menu bar.

Syntax
text – New text to display in the menu bar.

Returns
No return value.

Notes
Pass the NULL string (“”) to clear the menu bar text.

See Also
getText, replaceText

size()
Purpose
Use the size method to determine the number of entries in the menu.

Returns
Returns an integer value representing the number of menu items currently in the menu.

See Also
add

330

© Copyright 2000-2006 GarageGames Product of Hall Of Worlds, LLC.

sort()
Purpose
Use the sort method to sort the menu in ascending order.

Returns
No return value.

Notes
This is a lexicographic sort, so number (1,2,3,...) will come before letters (a,b,c,...).

Callbacks

onCancel onSelect

onSelect(theControl , ID , text)
Purpose
Called when an entry is selected from the list.

Syntax
theControl – The ID of this control.
 ID – ID of entry selected.
 text – Text for entry selected.

onCancel(theControl)
Purpose
Called when a selection fails. i.e. if a scripted selection (setSelected()) provides an
invalid entry ID, this event will be called.

Syntax
theControl – The ID of this control.

Returns
No return value.

GuiProgressCtrl

This control is used to reflect a percentage. Furthermore, it is
usually used to give feedback on the progress of a task. It does not
add any new fields, methods, or callbacks and is derived from the
GUIControl. To update the bar, simply use the setValue() methods with an argument between 0.0 and 1.0. Ex:

%myProgressBar.setValue(0.25); // Sets bar to 25% (left to right)

This control, does not have a text label, but this can easily be accomplished using a GuiTextCtrl.

331

© Copyright 2000-2006 GarageGames Product of Hall Of Worlds, LLC.

GuiRadioCtrl

This is a skinnable radio button control. It is used when a group of buttons must have only one
button set at any one time. If you have never designed a GUI skin, see Standard GUIs chapter in
Tech School Section of GPGT.

Skinning

• Define a profile with the following settings:

new GuiControlProfile (aProfileName) {
 // ...
 hasBitmapArray = true;
 bitmap = "path to bitmap array graphic";
};

• Provide an image file with the following structure:

Sample Array Image Column 0

Unchecked Normal

Checked Normal

Unchecked Inactive

Checked Inactive

In order for the radio control to behave properly, the buttons all need to have the same parent and
groupNum. In this example, either "Radio 0" or "Radio 1" can be selected, but not both.

new guiControl() {
 new GuiRadioCtrl() {
 profile = "GuiRadioProfile";
 //..
 text = "Radio 0";
 groupNum = "1";
 buttonType = "RadioButton";
 };
 new GuiRadioCtrl() {
 profile = "GuiRadioProfile";
 //..
 text = "Radio 1";
 groupNum = "1";
 buttonType = "RadioButton";

332

© Copyright 2000-2006 GarageGames Product of Hall Of Worlds, LLC.

 };
};

GuiScrollCtrl

This is a container control used in concert with a GUIMLText,
GUIMLEditTextCtrl, GuiTextListCtrl, and other resizeable controls. These
resizeable controls are made children of the GuiScrollCtrl, which then allows
the user to use scroll bars to move to a specific location in the child contol.
GuiScrollCtrl can be programmed to supply a vertical and/or a horizontal
scrollbar. These scrollbars will be enabled (based on field settings), always,
never, or when the child content expands beyond the vertical or horizontal
bounds of the view area.

Skinning

• Define a profile with the following settings:

new GuiControlProfile (aProfileName) {
 // ...
 hasBitmapArray = true;
 bitmap = "path to bitmap array graphic";
};

333

© Copyright 2000-2006 GarageGames Product of Hall Of Worlds, LLC.

• Provide an image file with the following structure:

Sample Array Image Column 0 Column 1 Column 2
Up-Scroll Normal Up-Scroll Depressed Up-Scroll Inactive

Down-Scroll Normal Down-Scroll Depressed Down-Scroll Inactive

Top of Vertical Thumb Normal Top of Vertical Thumb
Depressed

Top of Vertical Thumb Inactive

Middle of Vertical Thumb
Normal

Middle of Vertical Thumb
Depressed

Middle of Vertical Thumb
Inactive

Bottom of Vertical Thumb
Normal

Bottom of Vertical Thumb
Depressed

Bottom of Vertical Thumb
Inactive

Vertical Bar Normal Vertical Bar Depressed Vertical Bar Inactive

Right-Scroll Normal Right-Scroll Depressed Right-Scroll Inactive

Left-Scroll Normal Left-Scroll Depressed Left-Scroll Inactive

Left of Horizontal Thumb
Normal

Left of Horizontal Thumb
Depressed

Left of Horizontal Thumb
Inactive

Middle of Horizontal Thumb
Normal

Middle of Horizontal Thumb
Depressed

Middle of Horizontal Thumb
Inactive

Right of Horizontal Thumb
Normal

Right of Horizontal Thumb
Depressed

Right of Horizontal Thumb
Inactive

Horizontal Bar Normal Horizontal Bar Depressed Horizontal Bar Inactive

Lower-Right Affordance
Normal

Lower-Right Affordance
Depressed

Lower-Right Affordance
Inactive

Fields

Field Name Description Sample

childMargin
A two-value integer vector specifying a horizontal and/or
vertical offset for child entries. In effect this is a padding
value.

"4 4"
(Provide 4 pixels of padding.)

constantThumbHeight
If this is true, the bar drag affordance does not scale to
reflect the number of entries in the list. This helps when the
list is very full. It keeps the drag bar from getting too thin to
be grabbed/selected.

[false , true]

hScrollBar Attributes for horizontal bar.
alwaysOn
alwaysOff
dynamic

vScrollBar Attributes for vertical bar.
alwaysOn
alwaysOff
dynamic

willFirstRepond Boolean value enabling first responder status. [false , true]

334

© Copyright 2000-2006 GarageGames Product of Hall Of Worlds, LLC.

Console Methods

scrollToBottom() scrollToTop()

scrollToTop()
Purpose
Use the scrollToTop method to scroll the scroll control to the top of the child content
area.

Returns
No return value.

See Also
scrollToBottom

scrollToBottom()
Purpose
Use the scrollToBottom method to scroll the scroll control to the bottom of the child
content area.

Returns
No return value.

See Also
scrollToTop

GuiSliderCtrl

This is a numeric slider control. It allows a value between a lower and
upper range to be selected using a sliding interface.

Fields

Field Name Description Sample
range A two-element floating-point vector containing the the low

and high values this control can take.
"-10.0 100.0"

"min max"

ticks Number of ticks to have on bar. 10

value Initial value. [min , max]

Console Methods

getValue()

335

© Copyright 2000-2006 GarageGames Product of Hall Of Worlds, LLC.

getValue()
Purpose
Use the getValue method to get the current value of the slider.

Returns
Returns current value of control (position of slider).

Notes

1. Holding SHIFT while dragging slider selects closest tick.

2. If altCommand is specified, it will be called every sim tick while this control is awake.

GuiTextCtrl

This is a label control. It displays a fixed (256 characters or fewer) amount of text. It can be
updated dynamically from script if needed.

Fields

Field Name Description Sample
maxLength Integer limit on length of text in label. Max is 256. Text is

truncated once it reaches the current limit.
25

text Initial text for label. "Hello world"

Console Methods

setText()

setText(newText)
Purpose
Use the setText method to set the content of label to newText.

Syntax
newText – A string representing the new value for this label.

Notes

1. If altCommand is specified, it will be called when the keypad-enter or regular enter-key is pressed.

GuiTextEditCtrl

This is a simple single-line text entry control. It is a child of GuiTextCtrl and is thus limited
to a maximum of 256 characters and can be limited with the same mechanisms provided by its
parent. This control can also recall prior entries and allows them to be recalled via the up and down arrows on

336

© Copyright 2000-2006 GarageGames Product of Hall Of Worlds, LLC.

the keyboard.

Fields

Field Name Description Sample
deniedSound Audio profile for sound that should be played when typing

continues and the entry is full or at its maxLength limit.
NoMoreSpaceSound

escapeCommand Script to execute when escape key is pressed an this control
is active.

--

historySize Integer value determining number of prior entries to recall. [0 , inf)

password Boolean value specifying this is a password. If true, insted
of letters, asterisks will be printed.

[false , true]

sinkAllKeyEvents
Boolean value specifying that this control will capture all key
events. Note: This will be ignored of more than one
GUITextEditCtrl within the same control has this set to true.

[false , true]

tabComplete Boolean value specifying that when the tab key is pressed,
the onTabComplete callback should be executed.

[false , true]

validate Script that should be executed when this control loses focus. --

Console Methods

getCursorPos() setCursorPos()

getCursorPos()
Purpose
Use the getCursorPos method to get the current position of the text cursor in the control.

Returns
Returns the current position of the text cursor in the control, where 0 is at the
beginning of the line, 1 is after the first letter, and so on.

See Also
setCursorPos

337

© Copyright 2000-2006 GarageGames Product of Hall Of Worlds, LLC.

setCursorPos(newPos)
Purpose
Use the setCursorPos method to set the current position of text cursor to newPos.

Syntax
newPos – The new position to place the cursor at, where 0 is at the beginning of the
line, 1 is after the first letter, and so on.

Returns
No return value.

Notes
If the requested position is beyond the end of text, the cursor will be placed after the
last letter. If the value is less than zero, the cursor will be placed at the front of
the entry.

See Also
getCursorPos

Callbacks

onTablComplete

onTabComplete(theControl)
Purpose
This callback is executed if the tab key is pressed, and the tabComplete field is set to
true.

Syntax
theControl – The ID of this control.

GuiTextListCtrl

This control is a mult-line scrollable list. Alone it can be used to
display data, but in concert other controls (buttons), it can be used as
a selection control. Futthermore, this can be made the child of a
GuiScrollCtrl to allow for long lists.

Fields

Field Name Description Sample

clipColumnText
Boolean value instructing the control to clip contents of
entries that extend beyond the visual edge of the current
column.

[false , true]

columns A vector contain a series of integer values corresponding to
the pixel position for each column.

“0 50 100”

338

© Copyright 2000-2006 GarageGames Product of Hall Of Worlds, LLC.

Field Name Description Sample
enumerate No longer used. --

fitParentWidth
Boolean value specifying that this control should expand to
fit the extent (or other limits) of its parent. [false , true]

resizeCell No longer used. --

Console Methods

addRow() clear() clearSelection() findTextIndex()
getRowID() getRowNumByID() getRowText() getRowTextByID()

getSelectedID() isRowActive() removeRow() removeRowByID()
rowCount() scrollVisible() setRowActive() setRowByID()

setSelectedByID() setSelectedRow() sort() sortNumerical()

addRow(ID , text [, row])
Purpose
Use the addRow method to add a new entry to the text list.

Syntax
 ID – The integer ID to assign to this entry. May be between 0 and inf
 and can be repeated. i.e., multiple entries may have the same ID.
text – The text to display for this entry in the list.
 row – An optional integer value representing the position at which to
 add this entry, where 0 is the top of the list, 1 is after them
 first entry (if any), etc.

Returns
Returns the row number of the new entry.

See Also
clear, removeRow

clear()
Purpose
Use the clear method to remove all entries from the list.

Returns
No return value.

See Also
addRow, clearSelection, removeRow

339

© Copyright 2000-2006 GarageGames Product of Hall Of Worlds, LLC.

clearSelection()
Purpose
Use the clearSelection method to deselect the current selection (if any).

Returns
No return value.

See Also
clear, setSelection

findTextIndex(text)
Purpose
Use the findTextIndex method to do an exact-match search for text in the list of items.

Syntax
text – The text to search for. Must match exactly or no match will occur.

Returns
No return value.

Notes
This is an exact match, so if the menu item is “Gish” and you search for “Gis”, or
“gish', or any other variation that does not match the entire menu item and the case of
each letter, the search will not find a match.

See Also
getRowText, getRowTextByID

getRowId(row)
Purpose
Use the getRowId method to get the ID value for a specified row.

Syntax
row – The row in the list to check the ID for.

Returns
Returns the ID of the specified row, or -1 if row is out of range.

Notes
Row numbers start at 0.

See Also
addRow, getRowNumByID, getRowText, getRowTextByID

340

© Copyright 2000-2006 GarageGames Product of Hall Of Worlds, LLC.

getRowNumById(ID)
Purpose
Use the getRowNumById method to get the row number of the first entry in the list with
the specified ID.
Syntax
ID – An integer value equal to an the entry ID to search for.

Returns
Returns the number of the first row found with a matching ID, or -1 if no row contains
the specified ID.

Notes
Row numbers start at 0.

See Also
addRow, getRowID, getRowText, getRowTextByID

getRowText(row)
Purpose
Use the getRowText method to retrieve the text value of an entry in the list at the
specified row.

Syntax
row – The number of the list row from which to retrieve the text.

Returns
Returns the text found at the specified row, or the NULL string (“”) if the row number is
out of bounds.

Notes
Row numbers start at 0.

See Also
addRow, getRowID, getRowNumByID, getRowTextByID

getRowTextById(ID)
Purpose
Use the getRowTextById method to get the text of the first row with an ID matching the
passed ID.

Syntax
ID – An integer value equal to the entry ID to search for.

Returns
Returns a string containing the text of the first row with a matching ID, or the NULL
string (“”) if no row matches the specified ID.

See Also
addRow, findTextIndex, getRowID, getRowNumByID, getRowTextByID

341

© Copyright 2000-2006 GarageGames Product of Hall Of Worlds, LLC.

getSelectedId()
Purpose
Use the getSelectedId method to return the ID value of the currently selected entry (if
any).

Returns
Returns the integer ID of the currently selected row or -1 if no row is selected.

See Also
addRow, clearSelected, getRowID, getRowNumByID, getRowTextByID

isRowActive(row)
Purpose
Use the isRowActive method to determine if the specified row is active.

Syntax
row – The row to check the active status for.

Returns
Returns 1 if the row is active, or 0 if the row is inactive or the specified row is out
of bounds.

Notes
Row numbers start at 0.

See Also
setRowActive

removeRow(row)
Purpose
Use the removeRow method to remove the specified row from the list.

Syntax
row – The number of the list row to be removed.

Returns
No return value.

Notes
Row numbers start at 0. Nothing is removed if row is out of bounds.

See Also
add, removeRowbyID

342

© Copyright 2000-2006 GarageGames Product of Hall Of Worlds, LLC.

removeRowById(ID)
Purpose
Use the removeRowById method to remove the first row containing a matching ID.

Syntax
ID – An integer value equal to the entry ID of the row to delete.

Returns
No return value.

See Also
add, removeRow, rowCount

rowCount()
Purpose
Use the rowCount method to determine how many entries are in the list.

Returns
Returns 0 if the list is entry or a positive integer value equal to the number of rows in
the list if it is not empty.

See Also
add, removeRow

scrollVisible(row)
Purpose
Use the scrollVisible method to force the scrollList containing this text list to scroll
so that the specified row is visible.

Syntax
row – The number of the list row to be scrolled to.

Returns
No return value.

Notes
Row numbers start at 0.

See Also
rowCount

343

© Copyright 2000-2006 GarageGames Product of Hall Of Worlds, LLC.

setRowActive(row , active)
Purpose
Use the setRowActive method to activate or deactivate the specified row.

Syntax
 row – The number of the list row to activate or deactivate.
active – A boolean value specifying whether this row is active or inactive.

Returns
No return value.

Notes
Row numbers start at 0. The row will not change visibly, but we can check if a selected
row is active later to determine whether to respond or not to this selection.

See Also
isRowActive

setRowById(ID , text)
Purpose
Use the setRowById method to update the text if the first row fond with an ID matching
the specified ID.

Syntax
 ID – An integer value equal to the entry ID of the row to change the text
 for.
text – The text to replace the found row value with.

Returns
No return value.

setSelectedById(ID)
Purpose
Use the setSelectedById method to selected a row by a specified ID. This will select the
first row found to have an ID matching the specified ID.

Syntax
ID – An integer value equal to the entry ID of the row to select.

Returns
No return value.

Notes
No selection will be made if no row has a matching ID. Additionally, if no selection is
made and a prior row was selected, that selection will stay in effect.

See Also
setSelectedRow

344

© Copyright 2000-2006 GarageGames Product of Hall Of Worlds, LLC.

setSelectedRow(row)
Purpose
Use the setSelectedRow method to select a specified row in the list.

Syntax
row – The number of the list row to set as selected.

Returns
No return value.

Notes
Row numbers start at 0. No selection will be made if the row number is out of bounds.
Additionally, if no selection is made and a prior row was selected, that selection will
stay in effect.

See Also
setSelectedByID

sort(columnID [, ascending = false])
Purpose
Use the sort method to sort the list using a lexicographic sort. The sort order may be
either ascending or descending (default).

Syntax
 columnID – The column to sort on.
ascending – An optional boolean value, which when true means to do an
 ascending sort, otherwise the sort will be descending.

Returns
No return value.

Notes
Columns may be specified when setting up the list, by default most lists have one column
so the columnID should be 0.

See Also
sortNumerical

345

© Copyright 2000-2006 GarageGames Product of Hall Of Worlds, LLC.

sortNumerical(columnID [, ascending = false])
Purpose
Use the sortNumerical method to sort the list using a numeric sort. The sort order may
be either ascending or descending (default).

Syntax
 columnID – The column to sort on.
ascending – An optional boolean value, which when true means to do an
 ascending sort, otherwise the sort will be descending.

Returns
No return value.

Notes
Columns may be specified when setting up the list, by default most lists have one column
so the columnID should be 0.

See Also
sort

Callbacks

onDeleteKey onSelect

onDeleteKey(theControl , entry)
Purpose
This callback is executed if the delete key is pressed, and this control is active.

Syntax
theControl – The ID of this control.
 entry – The ID of the currently selected text list item.

onSelect(theControl , entry)
Purpose
This callback is executed when an item in the text list is selected.

Syntax
theControl – The ID of this control.
 entry – The text value of the selected text list item.

346

© Copyright 2000-2006 GarageGames Product of Hall Of Worlds, LLC.

GuiTextEditSliderCtrl

This is another floating-poslider control, but it uses up-down buttons instead of a a left-right
slider. This control is a bit more flexible in terms of its output as it uses a standard-C printf style
formatting string.

Fields

Field Name Description Sample

format

A format string of the form:
%[Flags][Width].[Precision][Size][Type]

See standard-C printf formatting rules for specifics. This is
fed directly into an sprintf() command in TGE.

"%#5.5f"

range A two-element floating-point vector containing the min/max
range for this control.

"0.0 255.0"
"min max"

increment A floating-povalue specifying step size (per-click) 1

Notes

1. If altCommand is specified, it will be called with an argument of 'false' when the keypad enter or regular
enter key is pressed.

GuiWindowCtrl

This is a completely skinnable window control. It behaves like a standard window,
providing the ability to drag, resize, minimize, maximize, restore, and close. If you have
never designed a GUI skin, see Standard GUIs chapter in Tech School Section of GPGT.

Skinning

• Define a profile with the following settings:

new GuiControlProfile (aProfileName) {
 // ...
 hasBitmapArray = true;
 bitmap = "path to bitmap array graphic";
};

347

© Copyright 2000-2006 GarageGames Product of Hall Of Worlds, LLC.

• Provide an image file with the following structure:

Sample Array Image Column 0 Column 1 Column 2 Column 3 Column 4
Close Button

Normal
Close Button
Depressed

Close Button
Inactive

-- --

Maximize Button
Normal

Maximize Button
Depressed

Maximize Button
Inactive

-- --

Revert Button
Normal

Revert Button
Depressed

Revert Button
Inactive

-- --

Minimize Button
Normal

Minimize Button
Depressed

Minimize Button
Inactive

-- --

Title Bar
Left Edge

Title Bar
Right Edge

Title Bar
Middle

-- --

Title Bar
Left Edge
Inactive

Title Bar
Right Edge

Inactive

Title Bar
Middle

Inactive
-- --

Left Edge Right Edge Lower Left
Corner

Bottom Edge Lower Right Corner

Fields

Field Name Description Sample
canClose Allow window to be closed. [false , true]

canMaximize Allow window to be maximized.If false, button does not
render.

[false , true]

canMinimize Allow window to be minimized. If false, button does not
render.

[false , true]

canMove Allow window to be moved. [false , true]

closeCommand Command(s) to issue on close. [false , true]

minSize Two-element integer vector specifying minimum <x,y>
dimensions window can assume when drag-resizing.

"10 20"

resizeHeight Enable (drag) height resizing. [false , true]

resizeWidth Enable (drag) width resizing. [false , true]

348

© Copyright 2000-2006 GarageGames Product of Hall Of Worlds, LLC.

GuiFrameSetCtrl

This control is used to automatically or manually frame any number of children controls, in regular row
column format.

The first time you try to use it; it may seem a little odd, but once you understand the rules by which it
operates, you'll be using it for all kinds of tasks.

Frames are organized as a grid, where frame 0 is the upper-left corner frame, frame N is the lower-right
frame. Frame numbers increment left-to-right and top-to-bottom. i.e. A control with 3 rows and 3 frames would
have these frame numbers:

0 | 1 | 2

3 | 4 | 5

6 | 7 | 8

Fields

Field Name Description Range/Sample
autoBalance If set to true, the control will attempt to make all cells have the same

height and width on waking.
[false , true]

borderColor An integer color vector representing the color of the control's borders. "255 128 128"

borderEnable
An enumerated string value determining if borders are rendered. This
affects the filling of the border, not its presence. If you want no
border, set borderWidth to 0.

alwaysOn
alwaysOff
dynamic

borderMovable
An enumerated string value determining if borders are mouse
draggable.

alwaysOn
alwaysOff
dynamic

borderWidth An integer value representing the pixel width of the borders. [0 , inf]

columns An integer vector specifying the pixel starting position of each new
column.

“0 100 200”

fudgeFactor
An integer value representing the number of pixels to subtract from
the ends of borders (making them shorter). Does not affect ability to
grab borders.

[0 , inf]

rows An integer vector specifying the pixel starting position of each new
row.

“0 100 200”

Console Methods

addColumn() addRow() frameBorder() frameMinExtent()
frameMovable() getColumnCount() getColumnOffset() getRowCount()
getRowOffset() removeColumn() removeRow() setColumnOffset()
setRowOffset()

349

© Copyright 2000-2006 GarageGames Product of Hall Of Worlds, LLC.

addColumn()
Purpose
Use the addColumn method to add another column to the control.

Returns
No return value.

Notes
The current contents of the GUIFrameCtrl may shift to fill the new column.

New columns are added on the right of the control.

See Also
addRow, removeColumn, removeRow

addRow()
Purpose
Use the addRow method to add another row to the control.

Returns
No return value.

Notes
The current contents of the GUIFrameCtrl may shift to fill the new row.

New rows are added on the bottom of the control.

See Also
addColumn, removeColumn, removeRow

frameBorder(index [, enable = true])
Purpose
Use the frameBorder method to change the frame's enable state.

Syntax
 index – Frame index to enable/disable/
enable – Currently a boolean, but should actually be a string:
 alwaysOn, alwaysOff, dynamic.

Returns
No return value.

Notes
This function is not working as of this writing.

350

© Copyright 2000-2006 GarageGames Product of Hall Of Worlds, LLC.

frameMinExtent(index, w, h)
Purpose
Use the frameMinExtent method to set the minimum extent allowed for a frame.

Syntax
index – The frame number
 w – Minimum width in pixels.
 h - Minimum height in pixels.

Returns
No return value.

Notes
These minimum extents do not prevent a parent control from collapsing the frame control
and its frames. These limits apply to dragging and resizing as is done with the frames'
draggable borders.

frameMovable(index [, enable = true])
Purpose
Use the frameMovable method to change the frame's draggable state.

Syntax
 index – Frame index to enable/disable/
enable – Currently a boolean, but should actually be a string:
 alwaysOn, alwaysOff, dynamic.

Returns
No return value.

Notes
This function is not working as of this writing.

getColumnCount()
Purpose
Use the getColumnCount method to determine the number of columns in this control.

Returns
Returns an integer value equal to the number of columns in this frame.

See Also
getRowCount

351

© Copyright 2000-2006 GarageGames Product of Hall Of Worlds, LLC.

getColumnOffset(column)
Purpose
Use the getColumnOffset method to determine the current pixel location of the specified
column.

Syntax
column – An integer value specifying the column to examine.

Returns
Returns the pixel offset for the specified column.

Notes
Column 0 is the first column on the left side of frame 0. Column 1 is on the right side
of frame 0 and the left side of frame 1, etc.

See Also
getRowOffset, setColumnOffset, setRowOffset

getRowCount()
Purpose
Use the getRowCount method to determine the number of rows in this control.

Returns
Returns an integer value equal to the number of rows in this frame.

See Also
getColumnCount

getRowOffset(row)
Purpose
Use the getRowOffset method to determine the current pixel location of the specified row.

Syntax
row – An integer value specifying the row to examine.

Returns
Returns the pixel offset for the specified row.

Notes
Row 0 is the first row on the top of the first row of frames. Row 1 is below the first
row of frames and above the second row of frames, etc. 1, etc.

See Also
getColumnOffset, setColumnOffset, setRowOffset

352

© Copyright 2000-2006 GarageGames Product of Hall Of Worlds, LLC.

removeColumn()
Purpose
Use the removeColumn method to remove a column from the right side of the control.

Returns
No return value.

Notes
Columns are removed right to left.

See Also
addColumn, addRow, removeRow

removeRow()
Purpose
Use the removeRow method to remove the bottom row from the control.

Returns
No return value.

Notes
Rows are removed bottom to top.

See Also
addColumn, addRow, removeColumn

setColumnOffset(column , offset)
Purpose
Use the setColumnOffset method to determine the current pixel location of the specified
column.

Syntax
column – An integer value specifying the column to examine.
offset – An integer value specifying the new column offset in pixels.

Notes
Column 0 is the first column on the left side of frame 0. Column 1 is on the right side
of frame 0 and the left side of frame 1, etc.

The left-most and right-most columns cannot be moved.

See Also
getColumnOffset, getRowOffset, setRowOffset

353

© Copyright 2000-2006 GarageGames Product of Hall Of Worlds, LLC.

setRowOffset(row , offset)
Purpose
Use the setRowOffset method to set the current pixel location of the specified row.

Syntax
 row – An integer value specifying the row to modify.
offset – An integer value specifying the new row offset in pixels.

Notes
Row 0 is the first row on the top of the first row of frames. Row 1 is below the first
row of frames and above the second row of frames, etc. 1, etc.

The bottom-most and top-most rows cannot be moved.

See Also
getColumnOffset, getRowOffset, setColumnOffset

354

© Copyright 2000-2006 GarageGames Product of Hall Of Worlds, LLC.

A.5 Callbacks Quick Reference

A.5.1. Game Callbacks
These of callbacks are the ones that you will encounter after the game has started.

aiPlayer::

onMoveStuck(Obj)
Purpose
Called when aiPlayer gets stuck while moving.

Syntax
Obj – The object this callback is called for.

onReachDestination(Obj)
Purpose
Called when aiPlayer reaches last programmed 'destination'.

Syntax
Obj – The object this callback is called for.

onTargetEnterLOS(Obj)
Purpose
Called when current target of Obj aiPlayer comes into it's field-of-view, and therefore
line of sight.

Syntax
 DB – The ID of the datablock this callback is executed on.
Obj – The object this callback is called for.

onTargetExitLOS(Obj)
Purpose
Called when aiPlayer loses sight of current target. comes

Syntax
 DB – The ID of the datablock this callback is executed on.
Obj – The object this callback is called for.

355

© Copyright 2000-2006 GarageGames Product of Hall Of Worlds, LLC.

gameBaseData::

onAdd(DB , Obj)
Purpose
Called when Obj object is added to the scene. This callback should be used to do any
initialization work required for Obj object.

Syntax
 DB – The ID of the datablock this callback is executed on.
Obj – The object this callback is called for.

onNewDataBlock(DB , Obj)
Purpose
Called whenever a datablock needs to be registered on the server.

Syntax
 DB – The ID of the datablock this callback is executed on.
Obj – The object this callback is called for.

onRemove(DB , Obj)
Purpose
Called just before Obj object is removed from the scene. This callback should be used
to do any cleanup work required for Obj object.

Syntax
 DB – The ID of the datablock this callback is executed on.
Obj – The object this callback is called for.

itemData::

onEnterLiquid(DB , Obj , percentCovered , liquidType)
Purpose
Called when an item enters water.

Syntax
 DB – The ID of the datablock this callback is executed on.
 Obj – The object this callback is called for.
percentCovered – A value between 0.0 and 1.0 equivalent to the water coverage.
 liquidType - Water = 0,
 OceanWater = 1,
 RiverWater = 2,
 StagnantWater = 3,
 Lava = 4,
 HotLava = 5,
 CrustyLava = 6,
 Quicksand = 7

356

© Copyright 2000-2006 GarageGames Product of Hall Of Worlds, LLC.

onLeaveLiquid(DB , Obj , liquidType)
Purpose
Called when an item exits water.

Syntax
 DB – The ID of the datablock this callback is executed on.
 Obj – The object this callback is called for.
liquidType - Water = 0,
 OceanWater = 1,
 RiverWater = 2,
 StagnantWater = 3,
 Lava = 4,
 HotLava = 5,
 CrustyLava = 6,
 Quicksand = 7

onStickyCollision(DB , Obj)
Purpose
Called when an item has a sticky collision.

Syntax
 DB – The ID of the datablock this callback is executed on.
Obj – The object this callback is called for.

lightningData::

applyDamage(DB , Obj , hitObject, hitPosition , hitNormal)
Purpose
Called when lightning strikes an object.

Syntax
 DB – The ID of the datablock this callback is executed on.
 Obj – The object this callback is called for.
 hitObject – ID of object struck by lightning.
hitPosition – Position of strike.
 hitNormal – Surface normal at strike position.

 pathCamera::

onNode(Obj , node)
Purpose
Called when a path camera gets to a node on its path.

Syntax
 Obj – The object this callback is called for.
node – The number of the node that the camera got to.

357

© Copyright 2000-2006 GarageGames Product of Hall Of Worlds, LLC.

playerData::

animationDone(DB , Obj)
Purpose
Called when a scripted animation (playThread) completes.

Syntax
 DB – The ID of the datablock this callback is executed on.
Obj – The object this callback is called for.

Notes
This doesn't specify which animation completed, just that an animation started by
playThread completed.

doDismount(DB , Obj)
Purpose
Called when the player is mounted to another shape, and $mvTrigger2 is set to 1.

Syntax
 DB – The ID of the datablock this callback is executed on.
Obj – The object this callback is called for.

onEnterLiquid(DB , Obj , percentCovered, liquidType)
Purpose
Called when this player enters a waterblock.

Syntax
 DB – The ID of the datablock this callback is executed on.
 Obj – The object this callback is called for.
percentCovered – A value between 0.0 and 1.0 equivalent to the water coverage.
 liquidType - Water = 0,
 OceanWater = 1,
 RiverWater = 2,
 StagnantWater = 3,
 Lava = 4,
 HotLava = 5,
 CrustyLava = 6,
 Quicksand = 7

onEnterMissionArea(DB , Obj)
Purpose
Called when this player enters the mission area.

Syntax
 DB – The ID of the datablock this callback is executed on.
Obj – The object this callback is called for.

358

© Copyright 2000-2006 GarageGames Product of Hall Of Worlds, LLC.

onLeaveLiquid(DB , Obj , liquidType)
Purpose
Called when this player exits a waterblock.

Syntax
 DB – The ID of the datablock this callback is executed on.
Obj – The object this callback is called for.

onLeaveMissionArea(DB , Obj)
Purpose
Called when this player leaves the mission area.

Syntax
 DB – The ID of the datablock this callback is executed on.
Obj – The object this callback is called for.

 projectileData::

onCollision(colliderDB , colliderObject , collidedObj , fade , pos , normal)
Purpose
Called when a projectile strikes another object.

Syntax
 colliderDB – Datablock handle for Obj projectile object.
 colliderObj – Handle to Obj instance of the projectile object.
collidedObject – Handle to the instance of the object the projectile has struck.
 fade – How much Obj projectile has faded at the time of collision
 [0.0 , 1.0].
 pos – World position the collision occurred.
 normal – The normal vector for the surface that was struck.

onExplode(DB , Obj , position , fade)
Purpose
Called when an projectile explodes.

Syntax
 DB – The ID of the datablock this callback is executed on.
 Obj – The object this callback is called for.
position – World position the collision occurred.
 fade – How much the projectile has faded at the time of explosion [0.0 , 1.0].

359

© Copyright 2000-2006 GarageGames Product of Hall Of Worlds, LLC.

shapeBaseData::

onCollision(colliderDB , colliderObject , collidedObj , vec , speed)
Purpose
Called when a shape collides with an object.

Syntax
 colliderDB – Datablock handle for Obj projectile object.
 colliderObj – Handle to Obj instance of the projectile object.
collidedObject – Handle to the instance of the object the projectile has struck.
 vec – The collision vector for Obj object.
 speed – The velocity of the collision. Just the magnitude of the
 collision vector.

onDamage(DB , Obj , damage)
Purpose
The onDamage callback executes when the shape using this datablock receives damage or
repair.

Syntax
 DB – The ID of the datablock this callback is executed on.
 Obj – The object this callback is called for.
damage – Damage or repair that was applied to this shape.

onDestroyed(DB , Obj)
Purpose
Called when a shape is destroyed.

Syntax
 DB – The ID of the datablock this callback is executed on.
Obj – The object this callback is called for.

onDisabled(DB , Obj)
Purpose
Called when a shape is disabled.

Syntax
 DB – The ID of the datablock this callback is executed on.
Obj – The object this callback is called for.

onEnabled(DB , Obj)
Purpose
Called when a shape is enabled.

Syntax
 DB – The ID of the datablock this callback is executed on.
Obj – The object this callback is called for.

360

© Copyright 2000-2006 GarageGames Product of Hall Of Worlds, LLC.

onEndSequence(DB , Obj , slot)
Purpose
Called when a non-cyclic animation ends for this shape.

Syntax
 DB – The ID of the datablock this callback is executed on.
Obj – The object this callback is called for.

onImpact(colliderDB , colliderObject , collidedObj , vec , speed)
Purpose
Called when a shape impacts an object.

Syntax
 colliderDB – Datablock handle for Obj projectile object.
 colliderObj – Handle to Obj instance of the projectile object.
collidedObject – Handle to the instance of the object the projectile has struck.
 vec – The collision vector for Obj object.
 speed – The velocity of the collision. Just the magnitude of the
 collision vector.

onMount(DB , Obj , mountToObject , node)
Purpose
Called when this object mounts to another object.

Syntax
 DB – The ID of the datablock this callback is executed on.
 Obj – The object this callback is called for.
mountToObject – The object this shape mounted to.
 node – The node that this shape mounted to.

onTrigger(DB , Obj , triggerNum , triggerVal)
Purpose
Called when this object is told that a trigger was pressed or released.

Syntax
 DB – The ID of the datablock this callback is executed on.
 Obj – The object this callback is called for.
triggerNum – Ths trigger number (between 0 and 6).
triggerVal – 1, if the trigger was pressed. 0, if the trigger was released.

361

© Copyright 2000-2006 GarageGames Product of Hall Of Worlds, LLC.

onUnmount(DB , Obj , mountToObject , node)
Purpose
Called when this object dismounts from another object.

Syntax
 DB – The ID of the datablock this callback is executed on.
 Obj – The object this callback is called for.
mountToObject – The object this shape dismounted from.
 node – The node that this shape dismounted from.

shapeBaseImage::

onMount(DB , mountToObject , node)
Purpose
Called when this image mounts to a shape.

Syntax
 DB – The ID of the datablock this callback is executed on.
mountToObject – The object this image is mounted to.
 slot – The slot (for the shape this image is mounted to) this image
 is mounted in.

onUnmount(DB , mountToObject , node)
Purpose
Called when this image dismounts from a shape.

Syntax
 DB – The ID of the datablock this callback is executed on.
mountToObject – The object this image is mounted to.
 slot – The slot (for the shape this image is mounted to) this image
 is mounted in.

userCallback(DB , mountToObject , slot)

Purpose
Called by an image's state machine. 'userCallback' can be anything the user specifies in
the state machine's 'userCallback' fields.

Syntax
 DB – The ID of the datablock this callback is executed on.
mountToObject – The object this image is mounted to.
 slot – The slot (for the shape this image is mounted to) this image
 is mounted in.

362

© Copyright 2000-2006 GarageGames Product of Hall Of Worlds, LLC.

triggerData::

onEnterTrigger(DB , Obj , intruder)
Purpose
Called when an object enters the bounds of this trigger.

Syntax
 DB – The ID of the datablock this callback is executed on.
 Obj – The object this callback is called for.
intruder – The object interacting with this trigger.

onLeaveTrigger(DB , Obj , intruder)
Purpose
Called when an object leaves the bounds of this trigger.

Syntax
 DB – The ID of the datablock this callback is executed on.
 Obj – The object this callback is called for.
intruder – The object interacting with this trigger.

onTickTrigger(DB , Obj , intruder)
Purpose
Called when a trigger tick goes by and there are objects within the bounds of this
trigger.

Syntax
 DB – The ID of the datablock this callback is executed on.
 Obj – The object this callback is called for.
intruder – The object interacting with this trigger.

onTrigger(DB , Obj , enter)
Purpose
Executes when a group trigger enter or leave event occurs.

Syntax
 DB – The ID of the datablock this callback is executed on.
 Obj – The object this callback is called for.
enter – If an object entered the group trigger, this value is 1, otherwise it is 0.

onTriggerTick(DB , Obj)
Purpose
Called when a group trigger ticks and objects are within the bounds of that trigger.

Syntax
 DB – The ID of the datablock this callback is executed on.
Obj – The object this callback is called for.

363

© Copyright 2000-2006 GarageGames Product of Hall Of Worlds, LLC.

vehicleData::

onEnterLiquid(DB , Obj , percentCovered , liquidType)
Purpose
Called when this vehicle enters a water block.

Syntax
 DB – The ID of the datablock this callback is executed on.
 Obj – The object this callback is called for.
percentCovered – A value between 0.0 and 1.0 equivalent to the water coverage.
 liquidType - Water = 0,
 OceanWater = 1,
 RiverWater = 2,
 StagnantWater = 3,
 Lava = 4,
 HotLava = 5,
 CrustyLava = 6,
 Quicksand = 7

onLeaveLiquid(DB , Obj , liquidType)
Purpose
Called when this vehicle leaves a water block.

Syntax
 DB – The ID of the datablock this callback is executed on.
 Obj – The object this callback is called for.
liquidType - Water = 0,
 OceanWater = 1,
 RiverWater = 2,
 StagnantWater = 3,
 Lava = 4,
 HotLava = 5,
 CrustyLava = 6,
 Quicksand = 7

A.5.2. GUI Callbacks
Please see GUI Controls Quick Reference.

364

© Copyright 2000-2006 GarageGames Product of Hall Of Worlds, LLC.

A.5.3. Other Callbacks

scriptObject::/scriptGroup::

onAdd(Obj)
Purpose
Called when a scriptObject or scriptGroup is created.

Syntax
Obj – The object this callback is called for.

onRemove(Obj)
Purpose
Called when a scriptObject or scriptGroup is about to be destroyed.

Syntax
Obj – The object this callback is called for.

Game

onExit()
Purpose
The onExit callback executes when the game starts to shutdown.

365

© Copyright 2000-2006 GarageGames Product of Hall Of Worlds, LLC.

A.6 Scripted Systems Quick Reference
The EGTGE Kit comes with the following 'systems':

Volumes 1 & 2

• Simple Task Manager – This is a semi-advanced self-executing task management system that allows
you to create a list of tasks. Tasks can be functions, statements, methods targeting some object, or
some combination thereof. The task manager can then be told to start self-executing, or it can be
manually forwarded, based on one's need. There is also a manager-manager that can be enabled to
watch for rogue task managers, etc.

• Simple Inventory – This is a standard inventory system implemented using a scriptObject instead of
in the current control object. This system is described thoroughly in Volume 1 Inventories.

• EGTGE Utilities – Although not actually a system, there are several utility functions and methods
provided with the kit. Their use is documented here.

Next Book ONLY

• EGTGE Brains – This is a simple, yet very flexible, state-machine manager that can be be used to drive
anything from complex user interfaces to AI players and vehicles.

• EGTGE Ranged Weapons – In the Weapons chapter of Volume 2, we discuss the difficult task of
designing a set of weapons. This discussion leads to the definition and implementation of a weapons
system designed to handle any type of mounted, thrown, or deployed ranged weapon.

This e-document contains references for each of the above systems. Please note, although this document is
included in volume 1, the actual volume 2 systems are not available unless you have purchased that volume.

366

© Copyright 2000-2006 GarageGames Product of Hall Of Worlds, LLC.

A.6.1. Simple Task Management System (SimpleTaskMgr)
While experimenting with the original TGE FPS kit, I came across some code embedded in the AI handling

scripts. Basically, this code created a queue of tasks and then executed them. I thought, "Gee that would be
useful for a variety of things. It sure would be nice if that functionality were centralized instead..." Thus,
SimpleTaskMgr was born.

This 'task management system' can be used in both client and server space and provides the following
features:

• Tasks can be enqueued in a 'task queue'

• A task queue can operate standalone (i.e. each task is a function), or a target object can be assigned to the
task queue. In the latter case, each task in the queue (excluding special tasks) will be called on the
target object: "%obj.sometask()".

• The tasks manager is an object and can be deleted, automatically canceling any pending tasks.

• Tasks can be programmed to recycle themselves (task executes and re-adds it self to end of queue between
0 and infinite times).

• Tasks can be programmed to preempt subsequent tasks (task executes and re-adds it self to front of queue
a finite number of times).

• Tasks in the queue can be manually scheduled, or self-scheduled.

• When self-scheduling, tasks can provide their own schedule times, or use an overriding default time specified
in the SimpleTaskMgr instance.

• There is no limit on the number of task manager that can be executing at once and all task managers are
independent of all other managers.

This may seem a bit complicated, but be assured, the interfaces to the above features are simple and you
don't need to use functionality you don't want. Furthermore, a thorough coverage of SimpleTaskMgr is provided
below because it is used heavily in the EGTGE Kit.

367

© Copyright 2000-2006 GarageGames Product of Hall Of Worlds, LLC.

SimpleTaskMgr Usage

Executing Functions

In its most basic incarnation, SimpleTaskMgr can be treated like a queue of tasks or function. In order to
use it, we create a manger, add some tasks, execute the tasks, and remove the manager:

%testTaskMgr = newTaskManager();

%testTaskMgr.addTask("echo(\"Hello\");");
%testTaskMgr.addTask("echo(\"World\");");

%testTaskMgr.executeNextTask();
%testTaskMgr.executeNextTask();

%testTaskMgr.delete();

This would produce the output:

Hello
World

Executing Methods

In addition to executing a series of functions, we can tell the task manager to run a series of methods, by
assigning a target object:

// A method to call on our target object
function TestObj::dummyTaskFunc(%this, %val) {
 echo("TestObj::dummyTaskFunc("@%val@")");
}

%myObj = new scriptGroup(TestObj);

%testTaskMgr = newTaskManager(%myObj);

%testTaskMgr.addTask("dummyTaskFunc(10);");
%testTaskMgr.addTask("dummyTaskFunc(20);");

%testTaskMgr.executeNextTask();
%testTaskMgr.executeNextTask();

%myObj.delete();
%testTaskMgr.delete();

368

© Copyright 2000-2006 GarageGames Product of Hall Of Worlds, LLC.

This would produce the output:

TestObj::dummyTaskFunc(10);
TestObj::dummyTaskFunc(20);

Re-Targetting

Generally speaking, a SimpleTaskMgr instance should be used for either functions, or for methods, but not
for both. However, an SimpleTaskMgr instance can be re-targeted at any time with the setTarget() method:

%testTaskMgr.setTarget(%someNewTarget);

Recycling

Because it would not be very useful to have to specify a repetitive list, or to re-specify a list that is supposed
to run forever, SimpleTaskMgr supports the idea of recycling. A task can be added to the list with an additional
argument specifying the number of times this task should 'recycled' before being removed from the list:

%testTaskMgr = newTaskManager();

%testTaskMgr.addTask("echo(\"Echo...\");", 2);

%testTaskMgr.executeNextTask();
%testTaskMgr.executeNextTask();
%testTaskMgr.executeNextTask();

%testTaskMgr.delete();

Even though executeNextTask() was called three times, the output would only be:

Echo...
Echo...

Why? The task was told to execute twice, or to recycle N-1 times, where N was 2. Once this was done, the
task was deleted from the queue. Note: A recycle value of 0 or 1 both mean 'run once', because (logically) a
task can only be cycled a minimum of once.

Beyond finite repeats, a task can be made to recycle infinitely by doing this:

%testTaskMgr = newTaskManager();

%testTaskMgr.addTask("echo(\"Echo A...\");", -1);
%testTaskMgr.addTask("echo(\"Echo B...\");");

%testTaskMgr.executeNextTask();

369

© Copyright 2000-2006 GarageGames Product of Hall Of Worlds, LLC.

%testTaskMgr.executeNextTask();
%testTaskMgr.executeNextTask();
%testTaskMgr.executeNextTask();

%testTaskMgr.delete();

The new output would be:

Echo A ...
Echo B ...
Echo A ...
Echo A ...

Preempting

In addition to repeating tasks, we can make some tasks preempt subsequent tasks:

%testTaskMgr = newTaskManager();

%testTaskMgr.addTask("echo(\"Echo A...\");", 2, true);
%testTaskMgr.addTask("echo(\"Echo B...\");", 2, false);

%testTaskMgr.executeNextTask();
%testTaskMgr.executeNextTask();
%testTaskMgr.executeNextTask();
%testTaskMgr.executeNextTask();
%testTaskMgr.executeNextTask();

%testTaskMgr.delete();

This code would produce:

Echo A ...
Echo A ...
Echo B ...
Echo B ...

What has happened is the first task was told to preempt subsequent tasks. To do this, the task manager
executes the function and then places it at the front of the queue instead of the back.

Scheduled Preemption

The task manager allows us to add new tasks any time we wish. As we add tasks, we may wish to have
them execute immediately instead of waiting their turn and working from back to front in the queue. Thus, this
variation on the addTask() method is provided:

370

© Copyright 2000-2006 GarageGames Product of Hall Of Worlds, LLC.

%testTaskMgr.addTaskFront("echo(\"Echo A...\");", 2, true);

Adding to the front of the task queue insures that this method will be executed next.

Return Values

SimpleTaskMgr can be used to drive decisions based on the values it returns when executing tasks. That is,
if a task returns a value, the executeNextTask() method will return it:
function dummyTaskFunc(%val) {
 echo("dummyTaskFunc("@%val@")");
 return %val;
}

%testTaskMgr = newTaskManager();

%testTaskMgr.addTask("dummyTaskFunc(" @ 10 @ ");", 2);
%testTaskMgr.addTask("dummyTaskFunc(" @ 20 @ ");", -1);

%total = 0;
%total += %testTaskMgr.executeNextTask(); // +10
%total += %testTaskMgr.executeNextTask(); // +20
%total += %testTaskMgr.executeNextTask(); // +10
%total += %testTaskMgr.executeNextTask(); // +20
%total += %testTaskMgr.executeNextTask(); // +20

echo("Our total is ", %total);

%testTaskMgr.delete;

This produces:

Our total is 80

371

© Copyright 2000-2006 GarageGames Product of Hall Of Worlds, LLC.

Late Evaluation

All tasks execute with the scope of the current task manager, thus we can pass variables to functions and
methods that are scoped to the manager that is executing them. This gives us the ability to 'late evaluate'
arguments. Used appropriately, this late execution feature can be used to create a very complex execution
model. This sample of 'late evaluation' is taken directly from the SimpleTaskMgr validation code:

function TestObj::dummyTaskFunc(%this, %val) {
 echo("TestObj::dummyTaskFunc("@%val@")");
 return %val;
}
// Test target execution and ability to change task manager values
// and have them 'late evaluated'
function validateTaskMgr2() {
 %myObj = new scriptGroup(TestObj);

 %testTaskMgr = newTaskManager(%myObj);

 %testTaskMgr.addTask("dummyTaskFunc(%this.val0);" , 2);
 %testTaskMgr.addTask("dummyTaskFunc(%this.val1);" , 0);

 %testTaskMgr.val0 = 10;
 %testTaskMgr.val1 = 20;

 %total = 0;
 %total += %testTaskMgr.executeNextTask(); // +10
 %total += %testTaskMgr.executeNextTask(); // +20

 %testTaskMgr.val0 = 30;

 %total += %testTaskMgr.executeNextTask(); // +30
 %total += %testTaskMgr.executeNextTask(); // +0

 %myObj.delete();
 %testTaskMgr.delete();
}

Self-Execution

SimpleTaskMgr allows us to manually execute tasks and also provides the ability to schedule them. In other
words, the task manager can be made to self-execute. When self-executing, the task manager will step over
the queue till all tasks have been executed. Additionally, it can be told to execute tasks according to their own
schedule or a fixed schedule:

%testTaskMgr = newTaskManager();

%testTaskMgr.setDefaultTaskDelay(2000);
%testTaskMgr.addTask("echo(\"Task 0\");" , 0, false, 500);
%testTaskMgr.addTask("echo(\"Task 1\");" , 0, false, 1000);

%testTaskMgr.selfExecuteTasks(true); // Use Default Default Task Delay

372

© Copyright 2000-2006 GarageGames Product of Hall Of Worlds, LLC.

In the above example, although the tasks have provided their own schedule times, these times will be over-
ridden and they will be executed two seconds apart. Understand that delays come first, then execution, thus
the execution would go like this:

// two second delay
Task 0
// two second delay
Task 1

Alternately, we could tell the task manager to use the tasks' times instead:

%testTaskMgr = newTaskManager();

%testTaskMgr.setDefaultTaskDelay(2000);
%testTaskMgr.addTask("echo(\"Task 0\");" , 0, false, 500);
%testTaskMgr.addTask("echo(\"Task 1\");" , 0, false, 1000);

%testTaskMgr.selfExecuteTasks(false); // Ignore Default Task Delay

Now we get:

// half-second delay
Task 0
// one second delay
Task 1

In either case, if a delay value is set to -1, it means execute 'immediately':

%testTaskMgr = newTaskManager();

%testTaskMgr.addTask("echo(\"Task 0\");" , 0, false, 3000);
%testTaskMgr.addTask("echo(\"Task 1\");" , 0, false, -1);

%testTaskMgr.selfExecuteTasks(false);

Now we get:

// half-second delay
Task 0
Task 1

373

© Copyright 2000-2006 GarageGames Product of Hall Of Worlds, LLC.

Stopping Self-Execution

In many cases we will need to stop the execution of our task manager and to re-start it at a later time.
Therefore, a method is provided to stop the current execution:

%testTaskMgr.stopSelfExecution();

Stopping does not affect the contents of the task manager queue, nor does it stop the currently scheduled or
executing task. The stop is applied after the next scheduled task.

Self-execution can be started again later with another call to 'selfExecuteTasks()'.

Deletion and Safety

As previously noted, SimpleTaskMgr is self-contained. It has been designed to handle deletion and to
appropriately clean up. Subsequent tasks are canceled and the task list is cleaned up. Also, if the task manager
is used with a target object and the target object is deleted or becomes invalid, the task manager will handle it
and not attempt to execute against this object. Cycling will continue, if it is self-executing, but no work will be
done.

It is best to create SimpleTaskMgr instances in objects' onAdd() methods and then to removed them in the
objects' onRemove() methods.

Special Tokens

The task manager allows you to embed the following tokens in the task definitons:

Token Purpose
TERMINATE# Causes the task manager to self-terminate when it reaches this task.

LASTRET# Replaces token with return value from last task.

LOCK# Causes task manager to not store the return value for the current task,
thereby retaining the last known return value.

STMT# Treats the current task like a standalone statement or function call, regardless of
whether this task manager has a 'target' object.

TASKMGR# Replaces the token with the numeric ID of this task manager instance.

TASK# Replaces the token with the numeric ID of the current task.

NULL# This is an empty task. It is preferable to use delays on real tasks, but sometimes this
is useful.

374

© Copyright 2000-2006 GarageGames Product of Hall Of Worlds, LLC.

A.6.2. EGTGE Tasks Management Reference

EGTask:: Methods

A script object representing an individual task. This has two support function, only one of which should be
used.
execute()
Execute this task. Normally, this is called by SimpleTaskMgr and should not normally be
called directly by the user.

%myTask.execute();

setTaskDelay(delay)
Set the automatic execution delay for this task. Delay is in milliseconds.

%myTask.setTaskDelay(500); // Delay this task for 500 ms

SimpleTaskMgr Functions

newTaskManager([target])
Creates a new task manager with an optional target, and returns ID.

%testTaskMgr = newTaskManager();

SimpleTaskMgr:: Methods

addTask(task , [recycleCount , preempt , taskDelay])
Creates a new task at back of tasks queue and return ID of task.

• task – String specifying task to execute. Must be of a form acceptable to the eval()
console function.

• recycleCount – Optional cycles to execute this task. Task is executed and pushed to
back of task queue.

0, 1 – Execute once.
N > 1 – Execute N-1 times
-1 - Execute forever.

•
• preempt – Boolean value specifying that recycled transactions should be pushed to front
of task queue. Cannot be used with infinite recycleCount.

• taskDelay – Number of milliseconds to wait prior to executing task when selfExecuting.
-1 means execute immediately.

%testTaskMgr.addTask("doit();") // Add task doit to back of queue
%testTaskMgr.addTask("doit();" 2) // doit() twice
%testTaskMgr.addTask("doit();" 2 , true) // doit() twice in a row
%testTaskMgr.addTask("doit();" -1, false, 1000) // doit() once per second forever

375

© Copyright 2000-2006 GarageGames Product of Hall Of Worlds, LLC.

addTaskFront(task, [recycleCount, preempt , taskDelay])
Creates a new task at front of tasks queue and return ID of task. See addTask() for
argument details.

%testTaskMgr.addTaskFront("doit();") // Add task doit to front of queue

clearTarget()
Clear target for this manager. Once cleared, manager will assume tasks are not
associated with an object and treat them like functions.

%testTaskMgr.clearTarget();

clearTasks()
Delete all tasks from queue without executing.

%testTaskMgr.clearTasks()

executeNextTask()
Executes next task in queue and returns value returned by task if any.

%retVal = %testTaskMgr.executeNextTask();

getTarget()
Returns ID of current manager target object.

%curTarget = %testTaskMgr.getTarget();

selfExecuteTasks([useDefaultDelay])
Causes task manager to execute tasks automatically (with delays if specified).
If useDefaultDelay is true, all tasks will use the delay specified via
'setDefaultTaskDelay()' (see below), otherwise each task will use its own delay.

%testTaskMgr.selfExecuteTasks(); // Use task delays

%testTaskMgr.setDefaultTaskDelay(1500);
%testTaskMgr.selfExecuteTasks(true); // Use default delay of 1.5 seconds

setDefaultTaskDelay(delay)
Sets default delay for tasks when executed with over-ride delay. i.e. useDefaulDelay is
true when calling 'selfExecuteTasks()' method.

%testTaskMgr.setDefaultTaskDelay(1500); // Set default delay to 1.5 seconds

%testTaskMgr.setDefaultTaskDelay(-1); // Set default delay to immediate mode

376

© Copyright 2000-2006 GarageGames Product of Hall Of Worlds, LLC.

setTarget(target)
Set target to ID or Name supplied in target.
%testTaskMgr

stopSelfExecution()
Stop automatic execution of tasks. Does not stop current scheduled or in-action task.

%testTaskMgr.stopSelfExecution();

A.6.3. Simple Inventory System (SimpleInventory)
The Simple Inventory system provides the ability to create an inventory container and place it in any

ShapeBase class. This container then scopes all the methods required to store and retrieve non-unique
instances of Items. It also provides methods for constraining the inventory. i.e. One can specify max values for
specific inventory items. Lastly, it provides a set of methods that are scoped to the ShapeBase/Data and
Item/Data classes to handle all basic inventory interactions.

Described otherwise, SimpleInventory has the following attributes:

• It is script based and will work with the standard TGE kit.

• It is implemented with ScriptObjects and can be placed in any object or ‘stand-alone’. In effect, this allows
any object to have an inventory or inventories, further compartmenting and structuring game interactions.

• It is a generalized inventory system, designed to store non-unique items referenced by their datablock
names.

• Items are stored and referenced by their datablock and can thus items with unique properties can be stored,
but their unique-ness will be lost.

• An inventory can store any number of any type of datablock identified item.

• A max count limit can be set for any specific inventory item.

• All methods that operate on SimpleInventory are scoped under the SimpleInventory:: namespace.

• Inventory methods are provided for ShapeBaseData:: to enable a basic set of SimpleInventory interactions:

• doPickup() – Pick up one instance of an object.

• doThrow() – Throw or drop one instance of an object from inventory.

• doUse() – Use an object from inventory.

• Inventory methods are provided for ItemData:: and Item:: classes to complete the inventory functionality.

377

© Copyright 2000-2006 GarageGames Product of Hall Of Worlds, LLC.

A.6.4. SimpleInventory:: Structure

SimpleInventory Object

Inventoryable Items Datablock Template

datablock ItemData (inventoryableItem)
{
 [InventoryItem = alternateInventoryItemToStore;]
 [InventoryValue = 10;]

 // ...
};

• InventoryItem – Optional alternate item to store in inventory. Stores this items intead of collision item.

• InventoryValue – Optional inventory value for this item. By default, items are worth one inventory
instance. This field can be used to increase that value. Values should only be positive.

A.6.5. Simple Inventory Console Functions
newSimpleInventory()

378

SimpleInventory
(scriptObject)

Owner

knownItemTracking

[name]

SimSet

KnownItem0
KnownItem1
…
KnownItemNCount[KnownItem0]=10;

Count[KnownItem1]=0;
...
Count[KnownItemN]=N;

[OwnerID]

© Copyright 2000-2006 GarageGames Product of Hall Of Worlds, LLC.

newSimpleInventory([%name])
Purpose:
Create a new SimpleInventory instance. Optionally give it the name %name.
Arguments:
%name – Handle to this inventory.

%Obj.myInventory = newSimpleInventory(backPack);

A.6.6. SimpleInventory:: Console Methods
addObject() dumpContentsToString() getInventoryCount() getInventoryMaxCount()

listContents() removeObject() setInventoryCount() setInventoryMaxCount()
setOwner() verifyArgs()

addObject(%theInventory , %objectName [, %numobjects])
Purpose:
Add one %objectName object to the inventory. Returns number of objects successfully added.

Arguments:
%theInventory – Handle to this inventory.
%objectName – Datablock ID for this object.
%numObjects – Number objects to add.

dumpContentsToString(%theInventory)
Purpose:
Returns semi-colon (;) separated list of current inventory contents in the form:

ObjName0;Count0;...ObjNameN;CountN

Arguments:
%theInventory – Handle to this inventory.

getInventoryCount(%theInventory , %objectName)
Purpose:
Get total number of %objectName objects in the inventory. Returns 0 if none found.

Arguments:
%theInventory – Handle to this inventory.
%objectName – Datablock ID for this object.

getInventoryMaxCount(%theInventory , %objectName)
Purpose:
Get max number of %objectName objects allowed in the inventory.

Arguments:
%theInventory – Handle to this inventory.
%objectName – Datablock ID for this object.

379

© Copyright 2000-2006 GarageGames Product of Hall Of Worlds, LLC.

listContents(%theInventory)
Purpose:
Prints a list of the inventory's contents to the console.

Arguments:
%theInventory – Handle to this inventory.

removeObject(%theInventory , %objectName [, %numobjects])
Purpose:
Remove one %objectName from the inventory. Returns number of objects successfully removed.

Arguments:
%theInventory – Handle to this inventory.
%objectName – Datablock ID for this object.
%numObjects – Number objects to remove.

setInventoryCount(%theInventory , %objectName , %numObjects)
Purpose:
Set total number of %objectName objects in the inventory. Returns number of objects
succesfully set.

Arguments:
%theInventory – Handle to this inventory.
%objectName – Datablock ID for this object.
%numObjects – Number objects to set.

setInventoryMaxCount(%theInventory , %objectName , %maxCount)
Purpose:
Sets maximum number of %objectName objects allowed in the inventory.

Arguments:
%theInventory – Handle to this inventory.
%objectName – Datablock ID for this object.
%maxCount – Max objects of this type allowed. (Can be "", 0, or N > 0)

setOwner(%theInventory , %ownerObj)
Purpose:
Assigns and 'owner' to this inventory.

Arguments:
%theInventory – Handle to this inventory.
%ownerObj – Object that contains/owns this inventory.

verifyArgs(%theInventory , %objectName)
Purpose:
Verifies that %objectName is in fact an object and returns the stringized name of said
object.

Arguments:
%theInventory – Handle to this inventory.
%objectName – Datablock ID for this object.

380

© Copyright 2000-2006 GarageGames Product of Hall Of Worlds, LLC.

A.6.7. ShapeBaseData:: Inventory Methods
doPickup() doThrow() throwObject() doUse()

doPickup(%ownerDB , %ownerObj , %pickupObj)
Purpose:
Do a pickup of %pickupObj.

Returns:
• 0 – Fail
• N > 0 – Success. N == number of objects added (always 1 for SimpleInventory).

Arguments:
%ownerDB – Datablock ID or string for this owner.
%ownerObj – Handle to this owner.
%pickupObj – Object to pick up.

Notes:
• Assumes inventory field is named: myInventory

doThrow(%ownerDB , %ownerObj , %throwDB)
Purpose:
Do a throw of %throwDB. If the throw is successful, call %throwObj (returned by
onThrow().schedulePop() to remove the object in $Item::PopTime milliseconds.

Returns:
• 0 – Failed throw.
• 1 – Succesful throw.

Arguments:
%ownerDB – Datablock ID or string for this owner.
%ownerObj – Handle to this owner.
%throwDB – Datablock ID or string for throw object.

Notes:
• Assumes inventory field is named: myInventory

throwObject(%ownerDB , %ownerObj , %throwObj)
Purpose:
Execute the actual ‘throwing’ of the object. This function simply applies a mass
specific impulse to the throw item along upward-diagonal vector calculated from the
owner’s eye vector.

Arguments:
%ownerDB – Datablock ID or string for this owner.
%ownerObj – Handle to this owner.
%throwObj – Object to throw.

381

© Copyright 2000-2006 GarageGames Product of Hall Of Worlds, LLC.

doUse(%ownerDB , %ownerObj , %useDB)
Purpose:
Attempt to use execute the onUse() method fo %useDB.

Returns:
• 0 – Fail
• N > 0 – Success. N == number of objects added (always 1 for SimpleInventory).

Arguments:
%ownerDB – Datablock ID or string for this owner.
%ownerObj – Handle to this owner.
%useDB– Object to use.

Notes:
• Assumes inventory field is named: myInventory
• This function may seem to fulfill no real purpose, but it actually an ideal place to
put additional use functionality for different ShapeBase derived class types.

A.6.8. ItemData:: Inventory Methods
onInventory() onPickup() onThrow() onUse()

onInventory(%inventoryObj , %ownerObj, %amount)
Purpose:
This method is called for all items when the value (count) of this item is changed
(either added or removed) in inventory.

Returns:
• 0 – Fail
• N > 0 – Success. N == number of objects added (always 1 for SimpleInventory).

Arguments:
%inventoryObj – Datablock ID or string for this object.
%ownerObj – Object that owns inventory.
%amount – Non-zero change value (either positive for add, or negative for remove)
Notes:
• Assumes inventory field is named: myInventory

382

© Copyright 2000-2006 GarageGames Product of Hall Of Worlds, LLC.

onPickup(%pickupDB , %pickupObj, %ownerObj)
Purpose:
Attempt to place %pickupDB in %ownerObj inventory. If the add is successful, call
%pickupObj.respawn() to temporarily hide the object. The object will reappear in
$Item::RespawnTime milliseconds

Returns:
• 0 – Fail
• N > 0 – Success. N == number of objects added (always 1 for SimpleInventory).

Arguments:
%pickupDB – Datablock ID or string for this object.
%pickupObj– Handle to this item object.
%ownerObj – Agent calling onPickup().

Notes:
• Assumes inventory field is named: myInventory

onThrow(%throwDB , %ownerObj)
Purpose:
Attempt to remove %throwDB from %ownerObj inventory. If successful, create a new
instance of type % throwDB and return the handle %throwObj.

Returns:
• 0 – Item not found in inventory, or failed to create instance.
• %throwObj – New object handle.

Arguments:
%throwDB – Datablock ID or string for this object.
%ownerObj – Agent calling onThrow().

Notes:
• Assumes inventory field is named: myInventory

onUse(%useDB , %ownerObj)
Purpose:
Attempt to remove %useDB from %owneObj inventory. If successful, ‘do something’ with the
object.

Returns:
• false – Item not found in inventory.
• true – Successfully ‘used’ object.

Arguments:
%ItemDB – Datablock ID for this object.
%Owner – Agent calling onUse().

383

© Copyright 2000-2006 GarageGames Product of Hall Of Worlds, LLC.

A.6.9. Item:: Inventory Globals

$Item::PopTime
Time afer pickup till items pop (auto-delete). Default == 5000 milliseconds.

$Item::RespawnTime
Time afer pickup till items respawn (un-hide). Default == 5000 milliseconds.

A.6.10. Item:: Inventory Helper Methods
respawn() schedulePop()

respawn(%Item)
Purpose:
Fades out and hides %Item. Then schedules an un-hide and fade-in to occur in
$Item::RespawnTime milliseconds.

Arguments:
%Item – Handle to object to operate on.

schedulePop(%Item)
Purpose:
Schedules a fade-out and delete() on %Item in $Item::PopTime millisconds.

Arguments:
%Item – Handle to object to operate on.

A.6.11. GPGT Utilities
This section documents various utility scripts that have been included with the book for your use. These

scripts were created to ease some of my coding tasks and I thought they would also be useful to you, the
reader. Enjoy.

A.6.11.1. String Utilities

randomizeWords(%words , %iterations)
Purpose:
Randomizes the ordering of all words found in the %words string, returning a new string
containing the result. Randomization can be improved by increasing the %iterations
setting.

Arguments:
 %words – A string containing word to randomize.
%iterations – The number of passes to make while randomizing the list.

384

© Copyright 2000-2006 GarageGames Product of Hall Of Worlds, LLC.

%wordList = "This is a test";

%randWordList = randomizeWords(%wordList , 10);

swapWords(%words, %first, %second)
Purpose:
Swaps two words, found in %words and located at indexes %first and %second. Returns a
string containing the contents of %words, with the two strings re-ordered. If either
index is out of bounds, the original string is returned.

Arguments:
 %words – A string containing words, two of which will be swapped.
 %first – An integer value indicating the index of the first word.
%second - An integer value indicating the index of the second word.

%wordList = "This is a test";

%swapWordList = swapWords(%wordList , 0, 2);

echo(%swapWordList); // Produces “a is This test”

A.6.11.2. SimSet Utilities

These utilities are used to manipulated SimSet, SimGroup, and ScriptGroup objects.
simSet::copyToSet(%theSet, %destSet)
Purpose:
Copies the contents of %theSet to %destSet. There is no return value.
This can also be used to move the contents of one SimGroup or ScriptGroup to another.

Arguments:
 %theSet – SimSet to copy contents from.
%destSet – SimSet to copy contents to.

new SimGroup(source);
new SimGroup(dest);

source.add(new SimObject(A));
source.add(new SimObject(B));

source.copyToSet(dest);

source.add(new SimObject(C));

source.listObjects(); // Lists only C

dest.listObjects(); // Lists A and B

385

© Copyright 2000-2006 GarageGames Product of Hall Of Worlds, LLC.

simSet::deleteSet(%theSet, %selfDestruct)
Purpose:
Iteratively deletes the contents of the set %theSet. Optionally, if %selfDestruct is set
to true, the object will then self-delete.

This is not the same as clear(), but rather it actually deletes every object stored in
the simSet.

Arguments:
 %theSet – The SimSet from which to remove and delete all contents.
%selfDestruct – A boolean value, when set to true, indicating that the
 SimSet should be deleted after the contents have been removed.

%myTask.execute();

simSet::forEach(%theSet, %function, [%isMethod , [%printEval]])
Purpose:
This method allows us to iteratively call a function or a method on every entry in the
SimSet.

Arguments:
 %theSet – The SimSet whose contents will be called against.
 %function – The unadorned name of the function or method.
 %isMethod – A boolean value, when true, indicating %function is a method,
 otherwise %function is treated as a function.
%printEval – A debug feature that will print the strings being fed to eval().
 If you are having trouble with this method, set this to true
 to see what scripts are actually being constructed and executed.

function test_func(%obj)
{
 echo(“test_func got %obj == ”, %obj.getname());
};

function SimSet::test_method(%obj)
{
 echo(“test_method got %obj == ”, %obj.getname());
};

new SimSet(testSet);

testSet.add(new SimObject(A));
testSet.add(new SimObject(B));
testSet.add(new SimObject(C));

// There are three ways to call the above function and method
//

// 1
testSet.forEach(test_func); // call test_func as method

386

© Copyright 2000-2006 GarageGames Product of Hall Of Worlds, LLC.

// 2
testSet.forEach(test_method , 1); // call test_method as method

// 3
testSet.forEach(SimSet::test_method); // treat test_method like function

simSet::forEachStmt(%theSet, %statement, %token, %printEval)
Purpose:
This method allows us to iteratively call a statement using each object in the SimSet.

This will call a series of statements, each operating on one of the objects in the set at
a time.

Arguments:
 %theSet – The SimSet whose contents will be called against.
%statement – Any legal TorqueScript statement (with closing semi-colon (;)).
 %token – A token name embedded in %statement which will be replaced with
 the ID of the object that is currently being operated on.
 The token can be used multiple times in the same statement.
%printEval – A debug feature that will print the strings being fed to eval().
 If you are having trouble with this method, set this to true
 to see what scripts are actually being constructed and executed.

$x = new SimSet();

$x.add(new SimObject(A));
$x.add(new SimObject(B));
$x.add(new SimObject(C));

$x.forEachStmt("echo(tok.getName(), \" has ID == \", tok.getID());" , tok);

// Above code call would print something like:
// A has ID == 123
// B has ID == 124
// C has ID == 125

387

© Copyright 2000-2006 GarageGames Product of Hall Of Worlds, LLC.

simSet::getRandomObject(%theSet)
Purpose:
Returns the ID of an object from %theSet, selected at random. Also, for any set with two
or more objects stored in it, this method is guaranteed to never return the same value
twice in a row.

Warning:
This method adds a field to all sets that call it named: _lastRandomObject. This field is
used to track the last object returned and allows the method to protect against repeats.

Arguments:
%theSet – The SimSet to get our random selection from.

$x = new SimSet();

$x.add(new SimObject(A));
$x.add(new SimObject(B));
$x.add(new SimObject(C));

echo($x.getRandomObject);
echo($x.getRandomObject);
echo($x.getRandomObject);
echo($x.getRandomObject);

// Above echo calls might print something like:
// B
// A
// C
// A

A.6.11.3. Array Object

The purpose of these utilities is to allow the creation of array objects that allow easy sorting and passing of
arrays. Normal Torque arrays cannot be passed as arguments to functions or methods, and sorting them
requires that you write code. The array object utilities now take care of this for you. With the provided utility
methods, you may create a scriptObject (or scriptGroup) using any of the following syntaxes:

%aryObj = new ScriptObject(arrayObject);

// OR

%aryObj = new ScriptObject()
{
 class = "arrayObject";
};

// OR

%aryObj = new ScriptObject()
{
 superClass = "arrayObject";
};

388

© Copyright 2000-2006 GarageGames Product of Hall Of Worlds, LLC.

Subsequently, you may use this object as an array as follows:

// Add four entries to the array object

%aryObj.addEntry("This");
%aryObj.addEntry("Is");
%aryObj.addEntry("a");
%aryObj.addEntry("test");

// Get the count of objects in this array
echo("My array object has ", %aryObj.getCount() , " entries.");

// Sort the array (increasing sort only)
%aryObj.sort();

// Pass the array to a function for printing
// Just demonstrating ability to pass the array
function dumpArray(%aryObject)
{
 for(%count = 0; %count < %aryObject.getCount(); %count ++)
 {
 echo("Entry(", %count , ") == ", %arrayObject.getEntry(%count));
 }
}

dumpArray(%aryObj);

The result of the above dumpArray() call will be:

Entry(0) == a
Entry(1) == Is
Entry(2) == test
Entry(3) == This

arrayObject::addEntry(%Obj , %entry)
Purpose:
Adds a new entry into the array.

Arguments:
 %Obj – The array Object.
%entry – New value to add to array.

arrayObject::getCount(%Obj)
Purpose:
Returns the number of entries in the array.

Arguments:
%Obj – The array Object.

389

© Copyright 2000-2006 GarageGames Product of Hall Of Worlds, LLC.

arrayObject::getEntry(%Obj , %index)
Purpose:
Returns the entry in this array at index %index, or “” if no entry is found.

Arguments:
 %Obj – The array Object.
%index – Index to entry to retrieve.

arrayObject::sort(%Obj [, %Decreasing])
Purpose:
Sorts the contents of the array in increasing order if %Decreasing is set to false, or
not specified. If %Decreasing is set to true, the array is sorted in decreasing order.
Warning:
This sort uses a lexicographic comparison, meaning the entries <5 5000 a b c> would be
sorted in these orders:

Increasing Order -> < 5 5000 a b c >

Decreasing Order -> < c b a 5000 5 >

Arguments:
 %Obj – The array Object.
%Decreasing – Optional boolean value. Setting this to true sorts in
 decreasing ordering.

A.6.11.1. Miscellaneous Utilities

CalculateObjectDropPosition(%oldPosition , %offsetVector)
Purpose:
This function will calculate a drop point without moving the object and returns the
calculated drop position.

The function casts a ray from %oldPosition downward and calculates a drop position based
on the first object that is hit. This ray cast will hit ALL game objects that have a
collision mesh.

Final positions will be:
“initially calculated drop” + %offsetVector

Arguments:
 %object - The object to be dropped.
%offsetVector - An offset to adjust the drop by.

390

© Copyright 2000-2006 GarageGames Product of Hall Of Worlds, LLC.

DropObject(%object , %offsetVector)
Purpose:
This function will drop an object to the ground, or on top of the first object found with
a valid collision box below the dropping object.

The dropping object starts its 'drop' at the position it was created at and drop from
there.

Note 1:
To calculate a starting position, use CalculateObjectDropPosition().

Note 2:
This function will not move TSStatic() objects. Their positions must be set once and only
once, upon construction. Use CalculateObjectDropPosition() instead.

Arguments:
 %object - The object to be dropped.
%offsetVector - An offset to adjust the drop by.

DropObjectFromMarker(%object , %marker , %offsetVector)
Purpose:
This is the same as DropObject, but it drops the object from the position of another
world object whose handle is passed in %marker.
Arguments:
 %object - The object to be dropped.
 %marker - A valid marker (object) to be used as a starting point.
%offsetVector - An offset to adjust the drop by.

getLeftVector(%vec)
Purpose:
Returns the pre-normalized right-hand cross-product of %vec and the world up-vector.
i.e., This operation is performed: (| vec | X “0 0 1”)

Arguments:
%vec – The vector to find a left vector for.

echo(getLeftVector(" 100 50 75 ")); // prints: < 0.447 -0.894 0 >

getRightVector(%vec)
Purpose:
Returns the pre-normalized left-hand cross-product of %vec and the world up-vector. i.e.,
This operation is performed: -(| vec | X “0 0 1”)

Arguments:
%vec – The vector to find a left vector for.

echo(getRightVector(" 100 50 75 ")); // prints: < -0.447 0.894 0 >

391

© Copyright 2000-2006 GarageGames Product of Hall Of Worlds, LLC.

GuiMLTextCtrl::fillFromFile(%theControl , %textFile [, %clear])
Purpose:
This handy helper adds the contents of any file to any GUIMLTextCtrl object. You may
optionally clear the current contents or append to them.

Arguments:
%theControl – Handle to the GUIMLTextCtrl.
 %textFile – Path to the file to be loaded.
 %clear – Optional boolean value. If set to true, the control is cleared
 before loading occurs.

// Place the contents of soHandy.txt into myGUIMLTextCtrl, and clear it first
myGUIMLTextCtrl.fillFromFile(“~/soHandy.txt”, true);

sceneObject::getCompassPoints(%Obj, %Offset)
Purpose:
Returns a SimSet containing scriptObjects, each having a field named 'position'
containing the location of a compass point about the shape.

Compass points are in a circle about the shape, where the circle lies on the outer edges
of the shape's world box. The circle's radius can be increased by specifying an %Offset,
where %Offset will be added to the initial radius.
Arguments:
 %Obj – The sceneObject to find eight compass points for.
%Offset – A floating-point value by which to increase the radius of the base
 circle on which the compass points lie.

// Place eight spawn spheres around an object.

function scriptObject::placeMarker(%Obj)
{
 %obj = new SpawnSphere()
 {
 dataBlock = %data;
 position = %Obj.position;
 };

 MissionCleanup.add(%obj);
}

%compassSet = myObject.getCompassPoints();

%compassSet.forEach(placeMarker);

%compassSet.deleteSet(true); // Destroy the set and all markers in it.

392

© Copyright 2000-2006 GarageGames Product of Hall Of Worlds, LLC.

SceneObject::getLeftVector(%Obj)
Purpose:
This method passes the forward vector of %Obj to getLeftVector and returns the result.
Arguments:
%Obj – The object to get the left vector for.

echo(getObjLeftVector(%player));

SceneObject::getRightVector(%Obj)
Purpose:
This method passes the forward vector of %Obj to getRightVector and returns the result.
Arguments:
%Obj – The object to get the left vector for.

echo(getObjRightVector(%player));

393

	A.1 TorqueScript Quick Reference
	A.1.1. Conventions
	A.1.2. Syntax/Rules
	A.1.3. Literals
	A.1.4. Operators in TGE
	A.1.5. Keywords
	break
	case
	continue
	datablock
	default
	else
	false
	for
	function
	if
	new
	package
	Parent
	return
	switch
	switch$
	true
	while

	A.1.5. Engine Interfacing
	addField
	addFieldV
	addNamedField
	addNamedFieldV
	Con::addVariable
	Con::removeVariable
	ConsoleFunction
	ConsoleMethod

	A.2 Console Objects Fields and Methods Quick Reference
	A.2.1. ActionMap
	Console Method Summaries
	Console Methods
	Device Table
	Action Table
	Mouse Modifiers

	A.2.2. AIConnection
	Console Method Summaries
	Console Methods

	
A.2.3. AIPlayer
	Console Method Summaries
	Console Methods

	A.2.4. AIWheeledVehicle
	Fields
	Console Method Summaries
	Console Methods

	
A.2.5. AudioDescription
	Fields

	A.2.6. AudioEmitter
	Fields

	A.2.6. AudioProfile (AP)
	Fields

	A.2.8. Camera
	Globals
	Console Method Summaries
	Console Methods

	A.2.9. CameraData
	A.2.10. ConsoleLogger
	Fields

	A.2.11. Debris
	Fields
	Console Methods

	A.2.12. DebrisData
	Fields

	A.2.13. DecalData
	Fields

	A.2.14. DecalManager
	Globals

	A.2.15. EditManager
	Console Method Summaries
	Console Methods

	A.2.16. Explosion
	A.2.17. ExplosionData
	Fields

	A.2.18. FileObject
	Console Method Summaries
	Console Methods

	A.2.19. FlyingVehicle
	Fields

	A.2.20. FlyingVehicleData
	Fields

	A.2.21. fxFoliageReplicator
	Fields
	Console Functions

	A.2.22. fxLight
	Fields
	Console Method Summaries
	Console Methods

	A.2.23. fxLightData
	Fields

	A.2.24. fxShapeReplicator
	Fields
	Console Functions

	A.2.25. fxSunLight
	Fields
	Console Method Summaries

	A.2.26. GameBase
	Fields
	Globals
	Console Method Summaries
	Console Methods

	A.2.27. GameBaseData
	Fields

	A.2.28. GameConnection
	Console Method Summaries
	Console Methods

	A.2.29. HoverVehicle
	A.2.30. HoverVehicleData
	Fields

	A.2.31. InteriorInstance
	Fields
	Globals
	Console Method Summaries
	Console Methods

	A.2.32. Item
	Fields
	Console Method Summaries
	Console Methods

	A.2.33. ItemData
	Fields

	A.2.34. Lightning
	Fields
	Console Method Summaries
	Console Methods

	A.2.35. LightningData
	
Fields

	A.2.36. Marker
	Fields

	A.2.37. MissionArea
	Fields

	A.2.38. MissionMarker
	A.2.39. NetConnection
	Globals
	Console Method Summaries
	Console Methods

	A.2.40. NetObject
	Console Method Summaries
	Console Methods

	A.2.41. ParticleData (PD)
	
Fields

	A.2.42. ParticleEmitterData
	Fields

	A.2.43. ParticleEmitterNode
	Fields

	A.2.44. ParticleEmitterNodeData
	Fields

	A.2.45. Path
	Fields
	Console Method Summaries
	Console Methods

	A.2.46. PathCamera
	Console Method Summaries
	Console Methods

	A.2.47. PhysicalZone
	Fields
	Console Method Summaries
	Console Methods

	A.2.48. Player
	Console Method Summaries
	Console Methods

	A.2.49. PlayerData
	Fields

	A.2.50. Precipitation
	Fields
	Console Method Summaries
	Console Methods

	A.2.51. PrecipitationData
	Fields

	A.2.53. Projectile
	Fields

	A.2.53. ProjectileData
	Fields

	A.2.54. SceneObject
	Console Method Summaries
	Console Methods

	A.2.55. ScriptGroup
	Fields

	A.2.56. ScriptObject
	Fields

	A.2.57. ShapeBase
	Globals
	Console Functions
	Console Method Summaries
	Console Methods

	A.2.59. ShapeBaseData
	Fields
	Console Method Summaries
	Console Methods

	A.2.60. ShapeBaseImageData
	Fields

	A.2.61. SimDataBlock
	A.2.62. SimGroup
	A.2.63. SimObject
	Console Method Summaries
	Console Methods

	A.2.64. SimSet
	Console Methods

	A.2.65. Sky
	Fields
	Globals
	Console Methods

	A.2.66. SpawnSphere
	Fields

	A.2.67. Splash
	A.2.68. SplashData
	Fields

	A.2.69. StaticShape
	Console Methods

	A.2.70. StaticShapeData
	Fields

	A.2.71. Sun
	Fields

	A.2.72. TCPObject
	Console Method Summaries
	Console Methods

	A.2.73. TerrainBlock
	Fields
	Globals
	Console Methods

	A.2.74. Trigger
	Fields
	Console Methods

	A.2.75. TriggerData
	Fields

	A.2.76. TSShapeConstructor
	Fields

	A.2.77. TSStatic
	Fields

	A.2.78. Vehicle
	Fields

	A.2.79. VehicleData
	Fields

	A.2.80. WaterBlock
	Fields

	A.2.81. WheeledVehicle
	Console Methods

	A.2.82. WheeledVehicleData
	Fields

	A.2.83. WheeledVehicleSpring
	Fields

	A.2.84. WheeledVehicleTire
	Fields

	A.3 Console Functions Quick Reference
	A.3.1. OpenAL
	A.3.2. Debugging
	General
	Interiors
	Journalling
	Logging
	Memory
	Metrics
	Networking
	Profiling
	Tracing

	A.3.3. String Manipulation
	Bad Word Filtering
	Comparison
	Conversion
	Fields (Newline or Tab Separated String)
	 Metrics
	Records (Newline Separated String)
	Replacing
	Searching
	Stripping and Trimming
	Tokens
	Words (Space separated strings)

	A.3.4. NETWORKING
	Tags (NetStringTable)
	Telnet
	Client-Server Communications
	Game Server
	Statistics/Metrics

	A.3.5. CONSOLE
	A.3.6. DEVICE IO
	A.3.7. FILE I/O
	A.3.8. PACKAGES
	A.3.9. OBJECTS
	A.3.10. EVENT SCHEDULING
	A.3.11. DATABLOCKS
	A.3.12. VIDEO / TEXTURING
	A.3.13. SPECIAL
	A.3.14. RESOURCE MANAGEMENT
	A.3.15. SCENE
	A.3.16. CONTAINERS and RAYCASTS
	A.3.17. EDITORS
	A.3.18. BUILD
	A.3.19. TIME
	A.3.20. GUIS
	A.3.21. MATH

	A.4 GUI Controls Quick Reference
	A.4.1. Purpose
	A.4.2. GuiControlProfile Fields
	Creation Syntax
	Usage Syntax
	Fields

	A.4.3. Standard GUI Controls (Alphabetical Listing)
	GuiBitmapBorderCtrl
	GuiBitmapButtonCtrl
	GuiBitmapCtrl
	GuiButtonBaseCtrl
	GuiButtonCtrl
	GuiCanvas
	GUICheckBoxCtrl
	GuiChunkedBitmapCtrl
	GuiControl
	GuiCursor
	GuiFadeInBitmapCtrl
	GUIFilterCtrl
	GuiInputCtrl
	GUIMenuBar
	GuiMessageVectorCtrl
	GuiMLTextCtrl
	GuiMLTextEditCtrl
	GuiMouseEventCtrl
	GuiPopUpMenuCtrl
	GuiProgressCtrl
	GuiRadioCtrl
	GuiScrollCtrl
	GuiSliderCtrl
	GuiTextCtrl
	GuiTextEditCtrl
	GuiTextListCtrl
	GuiTextEditSliderCtrl
	GuiWindowCtrl
	GuiFrameSetCtrl

	A.5 Callbacks Quick Reference
	A.5.1. Game Callbacks
	aiPlayer::
	gameBaseData::
	itemData::
	lightningData::
	 pathCamera::
	playerData::
	 projectileData::
	shapeBaseData::
	shapeBaseImage::
	triggerData::
	vehicleData::

	A.5.2. GUI Callbacks
	A.5.3. Other Callbacks
	scriptObject::/scriptGroup::
	Game

	A.6 Scripted Systems Quick Reference
	A.6.1. Simple Task Management System (SimpleTaskMgr)
	SimpleTaskMgr Usage

	A.6.2. EGTGE Tasks Management Reference
	EGTask:: Methods
	SimpleTaskMgr Functions
	SimpleTaskMgr:: Methods

	A.6.3. Simple Inventory System (SimpleInventory)
	A.6.4. SimpleInventory:: Structure
	SimpleInventory Object
	Inventoryable Items Datablock Template

	A.6.5. Simple Inventory Console Functions
	A.6.6. SimpleInventory:: Console Methods
	A.6.7. ShapeBaseData:: Inventory Methods
	A.6.8. ItemData:: Inventory Methods
	A.6.9. Item:: Inventory Globals
	A.6.10. Item:: Inventory Helper Methods
	A.6.11. GPGT Utilities
	A.6.11.1. String Utilities
	A.6.11.2. SimSet Utilities
	A.6.11.3. Array Object
	A.6.11.1. Miscellaneous Utilities

