Generating Vertex Normals

Author: Max Wagner, mwagner @digipen.edu

Generating Vertex Normals Author: Max Wagner, mwagndigipen.edu

Pre-Regs

Familiarity with terms and concepts from Linear éltga, including the ideas behind
vectors and vector spaces.

Notation

Vectors AND points in bold, i.acor n. | leave it to the reader to discern from the
context whether the object is a point or a vectecalars will be weighted normally, that
is un-bolded. Often | will refer to a vectayand then shortly afterward refer to its

components as,, Uy, Uz, etc.

Vertex Normalsvs. Surface Normals

We all know what a surface normal is (if not, it'®® normal to the plane that contains the
surface). So how can a vertex (i.e., a point)elenormal? Strictly speaking, it can't.
What vertex normals provide is a means of simugsimoother surfaces during lighting
calculations when using procedures such as Pho@goraud shading (sometimes just
called Smooth shading). Imagine a polygonal méshhmman: technically, this mesh is
just a bunch of flat polygons. But really, thisshas simulating the smooth surface of a
human body. If all pixels within a polygon wereitientically, the “flatness” of each
polygon would be starkly obvious; but by using e&rhormals, we can light each vertex
on a triangle differently, thus causing a smoo#dpearance. The trick is to generate
these vertex normals so that they actually enhdmsesmooth appearance.

The Intuition behind Vertex Normals

Let's take a close look at the lighting proceslagd in traditional polygonal mesh,
scan-line rasterization techniques (such as thogdoged on graphics cards and in
software renderers for real-time applications)ghting will be applied per-vertex, where
the dot product of the surface normal and the sgiitection will be used to modulate
the intensity of the light's color (this aspecttioé light model is called the Diffuse
lighting term). This modulated light color willéh be added to a pre-computed, constant
vertex color. Other terms are also possible (dpecambient) as well. Thus, if we are
using triangles, all three vertices of a triangl# mave an identical dot product between
the light direction and surface normal vectorslsing the same normal for all three
vertices assumes that the actual surface we ardaging is flat, but we know this is not
the case. It's as though we are using a singl@kagnpoint to compute the normal for

all three vertices. But imagine we could actuatynple the “true” surface at the vertices

! Alternatively, if point light sources are being used, ¢heill be a small amount of variation in the dot
product, as the light’s direction will be computed petesers the difference between the vertex’s position
and the light's position. Nonetheless, given small ¢lies, the diffuse term will remain nearly identical for
all three vertices.

12/9/2004 Page 1 of 6

Generating Vertex Normals Author: Max Wagner, mwagndigipen.edu

themselves; then we would surely get more variagimongst the vertex normals, in turn
creating a (smooth) variation in the diffuse ligigtiterms. But how can we sample the
“true” surface?

Unfortunately, we can’t. However, we can come elassing the observation that a
vertex lies at the intersection of multiple triaeg)l Hence, instead of using the surface
normal of the one triangle of which the vertex igaat, we can detect the adjacent
triangles (i.e., the other triangles that sharestirae vertex), and perform a kind of
“averaging” of all adjacent surface normals. Tjrigvides the intuition behind the notion
of a vertex normal, as there is no strict defimt{there are multiple techniques for
computing vertex normals, and no one is “correct”).

The Algorithm

Now that we have an idea of what the vertex norfaetl§ devise an algorithm to
compute them. After devising a standard algorithmi)l discuss a few variations that
can be incorporated for a nicer appearance.

The idea is that we want to average the normaddl piolygons that are adjacent to a
given vertex. Recall that in standard rasterizatezhniques, we have access to a list of
triangles; this list will necessarily contain dugalie vertices, as a given vertex is included
for each triangle of which it is a part. This daption is often alleviated using indexed
triangle lists, but to keep the argument simpleugeassume we are using an un-indexed
list, where the* triangle in our vertex list is defined using theege vertices’ positions
vfi*3].p, v[i*3+1].p, andvfi*3+2].p. Then our task is to find, for each vertex, b t
triangles that share that vertex. Each time we &irtriangle that shares the current
vertex, we compute the triangle’s surface normad, @dd it into a running tally. When
we are done, we normalize the vertex normal, ame st with the vertex.

In pseudocode:

struct Vertex { Position p, Normal n }
VertexList v

for each vertex i in VertexList v
n — Zero Vector
for each triangle j that shares i'" vertex
n < n + Normalize(Normal (v, j))

th

end for
v[i].n < Normalize(n)
end for

The routineNor mal (v,) is assumed to return the outwardly facing normdhée
triangle using the index scheme described above.

12/9/2004 Page 2 of 6

Generating Vertex Normals Author: Max Wagner, mwagndigipen.edu

This pseudocode is pretty simple, though not palerty fast for a large number of
vertices O(n?)).

One problem with the existing approach is thatsimfaces that were actuatlgt meant
to be smooth (i.e., a mesh of a cube), the reslilappear strange; at the corners of a
sharp crease, the lighting will appear smooth, wiscclearly not what we want.

One approach to combat this is to use a threshb&hwleciding whether to include a
triangle’s normal in the averaging. Specificallshen examining thé” vertex, we cache
the surface normal of the triangle to which thetesetechnically belongs (as opposed to
the triangles which share a copy of the vertexvdisge in the triangle list). Then, when
upon finding another triangle that shares the xeme compute the dot product between
the cached normal and the current triangle’s narihtilis dot product is less than some

threshold (call i€, usually a little abové), then we do not include the current triangle’s

normal in the average. How does this work? Rehatlthe dot product corresponds to
the cosine of the angle between two vectors. \Wieadre effectively saying is, if the

angle between two surfaces is greater thaton’'t average them.

The new pseudocode:

struct Vertex { Position p, Nornmal n }
VertexList v
epsilon e

for each vertex i in VertexList v
n — Zero Vector
m — Normalize(Normal (v, i%3))
for each triangle j that shares i'" vertex
g « Normalize(Normal (v, j))
if DotProduct(gq, m > e

n—n+gq
end if
end for
v[i].n < Normalize(n)
end for

Another possible improvement to our algorithm corinesy examining the fact that,
while a vertex lies at the intersection of multipl@ngles, these triangles are not
necessarily of equal size. Some people suggey tis¢ area of the triangle as a
weighting factor when including a surface normathia averaging process. The
pseudocode is hardly changed to incorporate thegust require a new routine to
compute the area of a triangle, given the thretoes.

The final version looks like:

struct Vertex { Position p, Nornal n }
VertexList v
epsilon e

12/9/2004 Page 3 of 6

Generating Vertex Normals Author: Max Wagner, mwagndigipen.edu

for each vertex i in VertexList v
n — Zero Vector
m — Normalize(Normal (v, i%3))
for each triangle j that shares
g « Normalize(Normal (v, j))
W~ Area(v, j)
if DotProduct(gq, m > e

th vertex

n —n + wgq
end if
end for
v[i].n < Normalize(n)
end for

Applicationsto Real-Time Generation

So what about a deformable mesh? For a rigid lnbdpurse, where the verticds not
move with respect to each other, we can placetaxeormal in the world using the
inverse transpose of the world transformation matBut this won’t work for vertices
whose positions change with respect to the otheiices on the mesh. This is because
the planes governing the generation of the noretasige with respect to each other.

We clearly can'’t just use the above algoritasns, because it's too slow for a mesh with
many polygons. We can however do a pre-processhwil allow us to more quickly
update the normals. Consider that generatingtax@ormal for a given vertex requires
knowledge of the adjacent polygons; finding thedja@nt polygons in an arbitrary
triangle list requires looping through the entigg; lthis is slooow®(n?). But if we do

this part once, as a pre-process, and associdteath vertex a list of adjacent polygons,
then computing all the vertex normals can be peréaf in linear time. You simply walk
your vertex list, then iterate through the (pre-paoited) list of adjacent polygons,
summing their normals as above, before finally redizmg the normal.

However, in newer architectures utilizing verteadérs, often we want to initialize our
vertex buffer once, and perform all vertex modifica through shaders (i.e., on the GPU,
not the CPU). Re-computing the vertex normalsessidbed above using an adjacency
list requires relative addressing (array indexiagll access to a large amount of data (all
the vertices at once), two features that arendibggupported by most vertex shader
languages (though even this is changing as shademne more flexible). Hence, this
computation would happen on the CPU in your nor@ia@l++ code, and then you would
feed these dynamically updated normals to yourlgeapcard by locking down your
vertex buffer and copying the new data in (potdigt@ausing a stall in the pipeline).

Surface Approximation

So how can we get around this? The answer isyhigyhendent on the needs and
context of the application. However, if you're livify to sacrifice some accuracy in
exchange for an extremely rapid and easy-to-impterakernative, then | propose a very
simple approximation that is well suited to simplgects and vertex shader
implementations.

12/9/2004 Page 4 of 6

Generating Vertex Normals Author: Max Wagner, mwagndigipen.edu

If we can find an analytic function that sufficignapproximates our surface, then taking
the partial derivative of this function will givesuhe normal of the surface at a given
point, i.e.:

Vfixyz)=(Uy /sy % /s,) = surface normal at the point on the surface (x.y,z)
where it is assumed thAt,1,z)=0 for a point on the surface.

An analytic function is easy to express in a vedieader; notice that the only dependence
of the function is the point on the surface, i vertex position; but this is the natural
input of a vertex shader. Of course, the reasonseepolygonal meshes is because there
is rarely an analytic function that can describegbrts of shapes we have in games or
other applications. Again, | stress the wapgroximation.

At the extreme, we can say that our object is sreed by a sphere. Taking the partial
derivative of the equation for a sphere centerexhairbitrary position yields:

f=lx-CP+y-CF+(z-CF-7?=0
V= (s, Wy Vs)= (2c- G 20y - G 2z - C)

Since we are going to normalize the normal anywagycan scale the above result by 0.5;
notice that this yields just the point on the scefaninus the center of the sphere! Of
course, this is what we would expect intuitivelyattthe surface normal of a sphere
would be in the direction along the line from thant on the sphere to the center. In our
vertex shader, now all we need as extra inputasc¢bnter” of our object; calculating the
normal then involves a vector subtraction and néizagon.

An extension of this method could account for ceecabjects by performing a pre-
process of the vertex list and associating witthaeastex a sign of negative or positive
one. This sign represents whether the vertex nashmaild point toward or away from
the center. Computing this sign would depend anesbeuristic, such as performing ray
casts from the point to the center of the objedtd&termining how many times the ray
enters or exits the surface.

Surfaces using Regular Gridsof Vertices

Other times, we may have surfaces defined usimegyalar grid of vertices, such as

terrain or a piece of cloth. In this case, we gs@ the original “correct” algorithm

without an adjacency list. This is because wegsarerate in constant time the neighbors
of a given face, simply using thigj)-th index of a given vertex. To minimize redunta
polygon normal computations, first we would runotlgh the entire grid and generate
each polygon normal; then we would run throughhadlvertices of the grid, and access
the adjacent polygons, summing their normals, tl@malizing. This technique is not

12/9/2004 Page 5 of 6

Generating Vertex Normals Author: Max Wagner, mwagndigipen.edu

suitable for shaders, but it is fast and very aategiin cases where the accuracy is
necessary (such as a piece of cloth, or a defoerabiain), a surface approximation will
likely not provide an adequate visualization; tinesresort to this grid based approach.

12/9/2004 Page 6 of 6

