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Pre-Reqs 
 
Familiarity with terms and concepts from Linear Algebra, including the ideas behind 
vectors and vector spaces. 
 

Notation 
 
Vectors AND points in bold, i.e. uuuu or nnnn.  I leave it to the reader to discern from the 
context whether the object is a point or a vector.  Scalars will be weighted normally, that 
is un-bolded.  Often I will refer to a vector uuuu, and then shortly afterward refer to its 
components as ux, uy, uz, etc. 
 

Vertex Normals vs. Surface Normals 
 
We all know what a surface normal is (if not, it’s the normal to the plane that contains the 
surface).  So how can a vertex (i.e., a point), have a normal?  Strictly speaking, it can’t.  
What vertex normals provide is a means of simulating smoother surfaces during lighting 
calculations when using procedures such as Phong or Gouraud shading (sometimes just 
called Smooth shading).  Imagine a polygonal mesh of a human: technically, this mesh is 
just a bunch of flat polygons.  But really, this mesh is simulating the smooth surface of a 
human body.  If all pixels within a polygon were lit identically, the “flatness” of each 
polygon would be starkly obvious; but by using vertex normals, we can light each vertex 
on a triangle differently, thus causing a smoother appearance.  The trick is to generate 
these vertex normals so that they actually enhance this smooth appearance. 
 

The Intuition behind Vertex Normals 
 
Let’s take a close look at the lighting process involved in traditional polygonal mesh, 
scan-line rasterization techniques (such as those employed on graphics cards and in 
software renderers for real-time applications).  Lighting will be applied per-vertex, where 
the dot product of the surface normal and the light’s direction will be used to modulate 
the intensity of the light’s color (this aspect of the light model is called the Diffuse 
lighting term).  This modulated light color will then be added to a pre-computed, constant 
vertex color.  Other terms are also possible (specular, ambient) as well.  Thus, if we are 
using triangles, all three vertices of a triangle will have an identical dot product between 
the light direction and surface normal vectors1.  Using the same normal for all three 
vertices assumes that the actual surface we are simulating is flat, but we know this is not 
the case.  It’s as though we are using a single sampling point to compute the normal for 
all three vertices.  But imagine we could actually sample the “true” surface at the vertices 
                                                 
1 Alternatively, if point light sources are being used, there will be a small amount of variation in the dot 
product, as the light’s direction will be computed per vertex as the difference between the vertex’s position 
and the light’s position.  Nonetheless, given small triangles, the diffuse term will remain nearly identical for 
all three vertices. 
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themselves; then we would surely get more variation amongst the vertex normals, in turn 
creating a (smooth) variation in the diffuse lighting terms.  But how can we sample the 
“true” surface? 
 
Unfortunately, we can’t.  However, we can come close, using the observation that a 
vertex lies at the intersection of multiple triangles.  Hence, instead of using the surface 
normal of the one triangle of which the vertex is a part, we can detect the adjacent 
triangles (i.e., the other triangles that share the same vertex), and perform a kind of 
“averaging” of all adjacent surface normals.  This provides the intuition behind the notion 
of a vertex normal, as there is no strict definition (there are multiple techniques for 
computing vertex normals, and no one is “correct”). 
 

The Algorithm 
 
Now that we have an idea of what the vertex normal, let’s devise an algorithm to 
compute them.  After devising a standard algorithm, I will discuss a few variations that 
can be incorporated for a nicer appearance. 
 
The idea is that we want to average the normals of all polygons that are adjacent to a 
given vertex.  Recall that in standard rasterization techniques, we have access to a list of 
triangles; this list will necessarily contain duplicate vertices, as a given vertex is included 
for each triangle of which it is a part.  This duplication is often alleviated using indexed 
triangle lists, but to keep the argument simple, let us assume we are using an un-indexed 
list, where the ith triangle in our vertex list is defined using the three vertices’ positions 
v[i*3].p , v[i*3+1].p , and v[i*3+2].p.  Then our task is to find, for each vertex, all the 
triangles that share that vertex.  Each time we find a triangle that shares the current 
vertex, we compute the triangle’s surface normal, and add it into a running tally.  When 
we are done, we normalize the vertex normal, and store it with the vertex. 
 
In pseudocode: 
 

struct Vertex { Position p,  Normal n } 
VertexList v 
 
for each vertex i in VertexList v 
 n ← Zero Vector 
 for each triangle j that shares ith vertex 
  n ← n + Normalize(Normal(v, j)) 
 end for 
 v[i].n ← Normalize(n) 
end for 
 

 
The routine Normal(v, j) is assumed to return the outwardly facing normal to the 
triangle using the index scheme described above. 
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This pseudocode is pretty simple, though not particularly fast for a large number of 
vertices (O(n2) ). 
 
One problem with the existing approach is that, for surfaces that were actually not meant 
to be smooth (i.e., a mesh of a cube), the result will appear strange; at the corners of a 
sharp crease, the lighting will appear smooth, which is clearly not what we want. 
 
One approach to combat this is to use a threshold when deciding whether to include a 
triangle’s normal in the averaging.  Specifically, when examining the ith vertex, we cache 
the surface normal of the triangle to which the vertex technically belongs (as opposed to 
the triangles which share a copy of the vertex elsewhere in the triangle list).  Then, when 
upon finding another triangle that shares the vertex, we compute the dot product between 
the cached normal and the current triangle’s normal; if this dot product is less than some 
threshold (call it ε, usually a little above 0), then we do not include the current triangle’s 
normal in the average.  How does this work?  Recall that the dot product corresponds to 
the cosine of the angle between two vectors.  What we are effectively saying is, if the 
angle between two surfaces is greater than ε, don’t average them. 
 
The new pseudocode: 
 

struct Vertex { Position p,  Normal n } 
VertexList v 
epsilon e 
 
for each vertex i in VertexList v 
 n ← Zero Vector 
 m ← Normalize(Normal(v, i%3)) 
 for each triangle j that shares ith vertex 
  q ← Normalize(Normal(v, j)) 
  if DotProduct(q, m) > e 
   n ← n + q 
  end if 
 end for 
 v[i].n ← Normalize(n) 
end for 

 
Another possible improvement to our algorithm comes from examining the fact that, 
while a vertex lies at the intersection of multiple triangles, these triangles are not 
necessarily of equal size.  Some people suggest using the area of the triangle as a 
weighting factor when including a surface normal in the averaging process.  The 
pseudocode is hardly changed to incorporate this; we just require a new routine to 
compute the area of a triangle, given the three vertices. 
 
The final version looks like: 
 

struct Vertex { Position p,  Normal n } 
VertexList v 
epsilon e 
 



Generating Vertex Normals Author: Max Wagner, mwagner@digipen.edu 

12/9/2004  Page 4 of 6 

for each vertex i in VertexList v 
 n ← Zero Vector 
 m ← Normalize(Normal(v, i%3)) 
 for each triangle j that shares ith vertex 
  q ← Normalize(Normal(v, j)) 
  w ← Area(v, j) 
  if DotProduct(q, m) > e 
   n ← n + w*q 
  end if 
 end for 
 v[i].n ← Normalize(n) 
end for 

 

Applications to Real-Time Generation 
 
So what about a deformable mesh?  For a rigid body of course, where the vertices do not 
move with respect to each other, we can place a vertex normal in the world using the 
inverse transpose of the world transformation matrix.  But this won’t work for vertices 
whose positions change with respect to the other vertices on the mesh.  This is because 
the planes governing the generation of the normals change with respect to each other. 
 
We clearly can’t just use the above algorithm as is, because it’s too slow for a mesh with 
many polygons.  We can however do a pre-process which will allow us to more quickly 
update the normals.  Consider that generating a vertex normal for a given vertex requires 
knowledge of the adjacent polygons; finding these adjacent polygons in an arbitrary 
triangle list requires looping through the entire list; this is slooow (O(n2)).  But if we do 
this part once, as a pre-process, and associate with each vertex a list of adjacent polygons, 
then computing all the vertex normals can be performed in linear time.  You simply walk 
your vertex list, then iterate through the (pre-computed) list of adjacent polygons, 
summing their normals as above, before finally normalizing the normal. 
 
However, in newer architectures utilizing vertex shaders, often we want to initialize our 
vertex buffer once, and perform all vertex modification through shaders (i.e., on the GPU, 
not the CPU).  Re-computing the vertex normals as described above using an adjacency 
list requires relative addressing (array indexing) and access to a large amount of data (all 
the vertices at once), two features that aren’t readily supported by most vertex shader 
languages (though even this is changing as shaders become more flexible).  Hence, this 
computation would happen on the CPU in your normal C/C++ code, and then you would 
feed these dynamically updated normals to your graphics card by locking down your 
vertex buffer and copying the new data in (potentially causing a stall in the pipeline). 
 
Surface Approximation 
 
So how can we get around this?  The answer is highly dependent on the needs and 
context of the application.  However, if you’re willing to sacrifice some accuracy in 
exchange for an extremely rapid and easy-to-implement alternative, then I propose a very 
simple approximation that is well suited to simple objects and vertex shader 
implementations. 
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If we can find an analytic function that sufficiently approximates our surface, then taking 
the partial derivative of this function will give us the normal of the surface at a given 
point, i.e.: 

 

∆

ffff(x,y,z) = ( δf/δx ,  δf/δy , δf/δz ) = surface normal at the point on the surface (x,y,z) 
 
where it is assumed that ffff(x,y,z)=0 for a point on the surface. 
 
An analytic function is easy to express in a vertex shader; notice that the only dependence 
of the function is the point on the surface, i.e. the vertex position; but this is the natural 
input of a vertex shader.  Of course, the reason we use polygonal meshes is because there 
is rarely an analytic function that can describe the sorts of shapes we have in games or 
other applications.  Again, I stress the word approximation. 
 
At the extreme, we can say that our object is represented by a sphere.  Taking the partial 
derivative of the equation for a sphere centered at an arbitrary position yields: 

 
ffff    = = = = (x - Cx)2 + (y - Cy)2 + (z - Cz)2 - r2 = 0 

 ∆

ffff = ( δf/δx ,  δf/δy , δf/δz ) = (2(x - Cx), 2(y - Cy), 2(z - Cz)) 

 
Since we are going to normalize the normal anyway, we can scale the above result by 0.5; 
notice that this yields just the point on the surface minus the center of the sphere!  Of 
course, this is what we would expect intuitively, that the surface normal of a sphere 
would be in the direction along the line from the point on the sphere to the center.  In our 
vertex shader, now all we need as extra input is the “center” of our object; calculating the 
normal then involves a vector subtraction and normalization. 
 
An extension of this method could account for concave objects by performing a pre-
process of the vertex list and associating with each vertex a sign of negative or positive 
one.  This sign represents whether the vertex normal should point toward or away from 
the center.  Computing this sign would depend on some heuristic, such as performing ray 
casts from the point to the center of the object and determining how many times the ray 
enters or exits the surface. 
 
Surfaces using Regular Grids of Vertices 
 
Other times, we may have surfaces defined using a regular grid of vertices, such as 
terrain or a piece of cloth.  In this case, we can use the original “correct” algorithm 
without an adjacency list.  This is because we can generate in constant time the neighbors 
of a given face, simply using the (i,j)-th  index of a given vertex.  To minimize redundant 
polygon normal computations, first we would run through the entire grid and generate 
each polygon normal; then we would run through all the vertices of the grid, and access 
the adjacent polygons, summing their normals, then normalizing.  This technique is not 
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suitable for shaders, but it is fast and very accurate; in cases where the accuracy is 
necessary (such as a piece of cloth, or a deformable terrain), a surface approximation will 
likely not provide an adequate visualization; thus we resort to this grid based approach. 
 


