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Abstract. An analysis of Lunar Laser Ranging (LLR) observations from January 1972 until April 2001 has been
performed, and a new solution for the lunar orbital motion and librations has been constructed that has been
named S2001. With respect to prior solutions, improvements in the statistical treatment of the data, new nutation
and libration models and the addition of the positions of the observing stations to the list of fitted parameters have
been introduced. Globally, for recent observations, our rms (root mean square error) is within 2 to 3 centimeters in
the lunar distance. Special attention has been paid to the determination of the correction to the IAU76 luni-solar
constant of precession, and the value of the secular acceleration of the Moon’s longitude due to the tidal forces.
The main results are:
– correction to the constant of precession: ∆p = −0.302 ± 0.003′′/cy,
– tidal acceleration of the lunar longitude: Γ = −25.858 ± 0.003′′/cy2.
The positions and velocities of the stations have also been determined. The results are consistent with the
ITRF2000 determinations from SLR observations. The lunar theory ELP is referred to a dynamical system and
introduces the inertial mean ecliptic of J2000.0. The positioning of the reference system of the theory with respect
to ICRS is performed (and also with respect to some useful JPL numerical integrations). Finally the orientation of
the celestial axes with respect to the ICRS reference system has been derived as well as the offsets of the Celestial
Ephemeris Pole.
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1. The new solution S2001

Several analyses of LLR observations have been per-
formed using the lunar theory ELP2000-96 (Chapront &
Chapront-Touzé 1997) and an improved version of the lu-
nar libration theory of Moons (1984) with numerical and
analytical complements (Chapront et al. 1999a). A previ-
ous analysis, described in (Chapront et al. 1999b), covered
the time span January 1972 until March 1998. It is referred
to below as the solution S1998. We refer to this paper for
the presentation of the principles of the analysis, discus-
sion of the methods and results of the comparisons. More
recently a new analysis was performed using LLR obser-
vations of McDONALD and CERGA before May 2000
(Chapront et al. 2000). Several improvements were intro-
duced in the lunar ephemerides, mainly in the libration
model, and also in the program of reduction (an up-to-
date nutation model) and in the statistical treatment of
the data (an adequate distribution of weights among the
various observing stations and periods of observations).
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This solution is referred to as S2000. Now, on the same
basis, we have enlarged the time span of observations un-
til April 2001 and added a few parameters in the program
of reduction (positions and velocities of the observing sta-
tions). This last solution is referred to as S2001.

In this paper, we shall also mention intermediate so-
lutions in which the characteristics of the fit are the same
as in S2001; the only change is the upper limit of the time
span covered by the observations, which may vary within
5 years (1996–2001). This interval has been chosen consid-
ering that recent observations, more accurate than earlier
ones, have a much larger weight in the determination of
the fitted parameters. These intermediate solutions were
done to study the evolution of the fitted values with the
time interval of observations, in particular for tidal accel-
eration (Fig. 3), precession constant (Fig. 4), and obliquity
(Fig. 5).

2. The residuals

Table 1 shows the residuals in distance and illustrates the
global precision of the solution S2001. As it was already
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Table 1. LLR residuals: time distribution of the rms (in centimeter). N is the number of normal points involved.

OBSERVATORY Time S1998 S2000 Time S2001 N
and instruments Interval rms rms Interval rms

McDONALD 1972–1986 34.7 34.5 1972–1975 43.5 1487
Telescope 2.70 m 1976–1979 27.7 1035
and MLRS1 1980–1986 29.1 990

CERGA Rubis 1984–1986 18.2 18.8 1984–1986 18.7 1165

HALEAKALA 1987–1990 11.1 8.0 1987–1990 6.3 451

McDONALD 1987–1998 5.0 1987–1991 5.8 232
MLRS2 1987–2000 3.8 1991–1995 4.6 586

1995–2001 3.3 1669

CERGA Yag 1987–1998 4.8 1987–1991 5.3 1574
1987–2000 3.8 1991–1995 3.9 2044

1995–2001 3.0 3273

mentioned for S2000, an important gain of precision has
been obtained in our new solutions compared to S1998.
Consequently the unknowns in S2001 are determined with
a better accuracy than in S1998.

In order to estimate the evolution in the quality of the
observations we illustrate in Fig. 1 the time distribution
of rms obtained with S2001, for the data provided by the
2 modern instruments: MLRS2 for McDONALD and Yag
for the CERGA.

Since 1991 we have observed smaller residuals for the
CERGA except around 1997. It is worthwhile to note that
this period corresponds to an offset in the CERGA mea-
surements (Mangin 1998), which is taken into account in
our analysis by a global correction of 0.7 ns for the observa-
tions from January 13, 1997 to June 24, 1998. During the
same period, we also observe in the determination of var-
ious parameters a kind of “accidental jump” (see, for ex-
ample, in Fig. 4, the “jump” occurring during this period
for the correction to the IAU76 constant of precession).

3. The fitted parameters

We list below the parameters that are fit in the solutions
S1998 and S2000. All the angles and mean motions are
referred to J2000.0.
– The geocentric lunar orbital parameters W

(0)
1 , W (0)

2 ,
W

(0)
3 (constants of the mean longitude and mean lon-

gitudes of perigee and node), ν = W
(1)
1 , Γ, E (sidereal

mean motion, constants for inclination and eccentricity).
– The heliocentric orbital parameters of the Earth-Moon
barycenter T (0), $(0) (constants of the mean longitude

Fig. 1. Time evolution of rms for the 2 stations McDONALD
and CERGA covering 14 years (solution S2001).

and mean longitude of perihelion), n′, e′ (sidereal mean
motion and eccentricity).
– The bias parameters ∆W (2)

1 , ∆W (1)
2 , ∆W (1)

3 (observed
corrections to the computed coefficient of the quadratic
term of the lunar mean longitude, and the computed
mean motions of perigee and node). ∆W (2)

1 yields an
observed value of W (2,T )

1 , the tidal part of the coefficient
of the quadratic term of the mean longitude (half tidal
secular acceleration).
– The 6 free libration parameters (parameters tied to the
coefficients of the main free libration terms and values of
the free libration arguments).
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Fig. 2. Relative positions of the mean inertial ecliptic of
J2000.0 with respect to ICRS, MCEP and JPL.

– The 3×4 reflector coordinates. The reflector coordinates
are referred to lunar principal axes of inertia.
– The position angles φ, ε and ψ with respect to different
systems of axes. Figure 2 illustrates the relative positions
of various systems presented in Sect. 4.
– A correction to precession ∆p: optional parameter.

In the solution S2001 we keep the same list as above and
we add 5 × 3 × 2 optional parameters giving the posi-
tions and velocities of the 5 stations: McDONALD 2.70 m,
MLRS1 and MLRS2, CERGA and Haleakala. The param-
eters are the equatorial rectangular coordinatesX , Y , Z in
the ITRF (position) and their derivatives Ẋ, Ẏ , Ż (veloc-
ity). Note that simultaneously fitting all the parameters
has not been possible. The fits have been performed in
several steps, but tests have been made in order to check
the stability of the results. Indeed, strong correlations ex-
ist among some parameters that may weaken the accu-
racy of our determinations; in particular, it is the case of
the variables related to the reference frame (φ and ε) and
the positions of the stations (X , Y , Z). ∆p (precession)
and ε̇ (obliquity rate) are correlated with the velocities
of the stations (Ẋ , Ẏ , Ż); ∆p and the principal nutation
term are also difficult to separate. We have adopted the
following strategy. First, we determine the whole set of
parameters mentioned above except the positions and ve-
locities of the stations. Then fixing the value of φ, we add
the positions of the stations to the whole set and make
a new improvement. Next we determine the velocities of
the stations separately. Finally, fixing all the parameters,
we perform a last analysis including ∆p and the principal
term of ∆ψ (nutation in longitude) (see Sect. 10). At each
step of the process we verify the coherence of the deter-
minations; for example we verify that the introduction of
the fitted values of X , Y , Z does not change significantly
the value of φ if the first step is reiterated.

4. Position angles of the inertial mean ecliptic
J2000.0

We recall here the definition of the position angles of
the inertial mean ecliptic J2000.0 with respect to various

“equatorial” reference systems (R). R stands either for
ICRS (International Celestial Reference System), MCEP
(Reference linked to the Mean Celestial Ephemeris Pole
of J2000.0) or JPL (Reference system defined by a JPL
numerical integration such as DE200, DE403 or DE405).
We set:
– γI2000(R): ascending node of the inertial mean ecliptic
J2000.0 on the equator of R;
– ε(R): Inclination of the inertial mean ecliptic on the
equator of R;
– o(R): Origin of right ascensions in the equator of R;
– φ(R): Arc o(R)γI2000(R);
– ψ(R): Arc γI2000(ICRS)γI2000(R).
Two solutions are investigated. They are denoted
Sol. 1 (MCEP) and Sol. 2 (ICRS), corresponding to the
reference systems MCEP or ICRS. In the reduction of
LLR observations one has to transform the terrestrial co-
ordinates of the station to celestial ones. Such a transfor-
mation depends of the daily values of the polar motion
xp, yp, the difference UT1 − UTC and a precession nu-
tation matrix P ×N which rotates the celestial instanta-
neous axes to a J2000.0 fixed celestial “equatorial” system
of axes.

In Sol. 1 (MCEP), the matrix P×N is provided by an-
alytical solutions: polynomial expressions for the orienta-
tion of the Earth’s equator (Williams 1994) and IERS 1996
theory of nutation (McCarthy 1996). The reference plane
is the mean equator of the CEP for J2000.0. The corre-
sponding system of axes is that of the MCEP.

In Sol. 2 (ICRS), P × N is computed via a system of
corrections to a conventional set of values for the nutations
in longitude and obliquity, i.e. δψ and δε which are daily
values provided by IERS (series C04). The corresponding
system is the ICRS.

In both solutions, corrections to the precession con-
stant and to the obliquity are fit. Sol. 1 (MCEP) involves
the theoretical value of the obliquity rate due to (Williams
1994), −46.8340′′/cy. Corrections to the principal terms
of the nutations in longitude and obliquity are also fit in
Sol. 1 (MCEP) (see Sect. 10).

5. Orbital motion

The main results are summarized in Tables 2 and 3. They
can be compared to analogous tables in Chapront et al.
(1999b, 2000). The uncertainties reported in these tables
are formal errors.

Table 2 shows the corrections to the nominal values
of the orbital parameters of the Moon which were for-
merly fit to JPL ephemerides DE200. These basic pa-
rameters are regarded as nominal values in our lunar
ephemeris ELP2000. They have been used in our work
since 1982 (Chapront-Touzé & Chapront 1983, 1988) and
maintained to facilitate further comparison. The origin of
angles is γI2000(MCEP) in Sol. 1 (MCEP) and γI2000(ICRS)
in Sol. 2 (ICRS). The differences between the angles W (0)

1 ,
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Table 2. Solution S2001: corrections to the nominal values
of the orbital parameters formerly fit to DE200 (in arcsecond,
except for ν and n′, in arcsecond/cy).

Variable Sol. 1 (MCEP) Sol. 2 (ICRS)

W
(0)
1 −0.1218 ± 0.0002 −0.0775 ± 0.0002

W
(0)
2 −0.0673 ± 0.0002 −0.0229 ± 0.0002

W
(0)
3 −0.1155 ± 0.0005 −0.0717 ± 0.0005

ν −0.3978 ± 0.0008 −0.4033 ± 0.0008
Γ 0.0008 ± 0.0000 0.0009 ± 0.0000
E 0.0002 ± 0.0000 0.0002 ± 0.0000

T (0) −0.0770 ± 0.0002 −0.0326 ± 0.0002

$′(0) −0.0587 ± 0.0003 −0.0140 ± 0.0003
n′ 0.0304 ± 0.0008 0.0258 ± 0.0008
e′ 0.0000 ± 0.0000 0.0000 ± 0.0000

Table 3. Solution S2001: fitted value of tidal part of the
quadratic term of the mean longitude (in arcsecond/cy2) and
observed corrections to the mean motion of perigee and node
(in arcsecond/cy).

Variable Sol. 1 (MCEP) Sol. 2 (ICRS)

W
(2,T )
1 −12.9257 ± 0.0016 −12.9290 ± 0.0016

∆W
(1)
2 0.0334 ± 0.0008 0.0317 ± 0.0008

∆W
(1)
3 −0.3806 ± 0.0097 −0.3611 ± 0.0097

W
(0)
2 , W (0)

3 in Sol. 1 (MCEP) and in Sol. 2 (ICRS) are
close to the value of :

ψ(MCEP) = γI2000(ICRS)γI2000(MCEP) = 0.0445′′

given below (see Table 9). For all the quantities, the dif-
ferences, corrected by ψ for angles, are less than 3σ except
for ν and n′. We note that the differences νMCEP − νICRS

and n′MCEP− n′ICRS are almost equal, around 0.0050′′/cy,
and do not vary significantly with the time interval of
observations in the intermediate solutions (1996–2001)
(see Sect. 1). This suggests a slight drift between the
two frames that is not yet completely clarified.

Table 3 shows the observed value W (2,T )
1 , and the bias

in the mean motions W (1)
2 , W (1)

3 . It is worthwhile to note
the agreement of the three quantities determined indepen-
dently in the two solutions; it was not the case in S1998
for W (2,T )

1 and W
(1)
3 .

Table 4 gives the expressions of the angular mean el-
ements of the Moon and of the Earth-Moon barycenter,
and the corresponding Delaunay arguments deduced from
the S2001 Sol. 2 (ICRF):
– the mean longitude and the mean longitudes of perigee
and node of the Moon (W1, W2, W3);
– the heliocentric orbital parameters of the Earth-Moon
barycenter (T , $′);
– the Delaunay arguments: l = W1 −W2, l′ = T − $′,
F = W1 −W3 and D = W1 − T + 180◦.
The mean motions are referred to J2000.0 and the origin
of the angles is γI2000(ICRS) (see Fig. 2).

6. Positions and motions of the stations

In the solutions S2000 and earlier we set the positions
and motions of the stations to constant values deduced
from the ITRF94. Increasing the interval of observations,
we noticed slight trends of quantities related to the ref-
erence frame, in particular in the obliquity of the ecliptic
ε. Furthermore, with other sets of positions and veloci-
ties for the stations, deduced from ITRF96 or ITRF2000,
we observed significant changes in the obliquity. Hence,
we modified our list of fitted parameters in the analysis,
adding the positions and velocities of the stations as new
unknowns. As initial values, we adopted the positions de-
duced from ITRF94 and the velocities of ITRF2000.
The main results are the following:
– The trend in ε, when the time interval of observations
increases, is significantly reduced.
– The residuals for Haleakala are significantly reduced
from 8 cm in S2000 to 6 cm in S2001 (see Table 1);
– The corrections to the positions of the stations are in
good agreement with the positions given in ITRF2000.
The last point calls for some comments. The corrections to
the positions determined either with a large set of param-
eters (see Sect. 3) or independently are very close, which
supports the relevance of our present determinations. The
corrections obtained in Sol. 1 (MCEP) and Sol. 2 (ICRS),
are also very close.

In Table 5 we present our fit in Sol. 2 (ICRS) for the
positions of the 2 operating stations: CERGA (Yag) and
McDONALD (MLRS2). The “references” are deduced
from ITRF publications (Boucher et al. 1996, 1998); in the
case of MLRS2 we used corrections of eccentricity to the
nearby SLR station (Ries 1999). The “corrections” S2001
Sol. 2 (ICRS) must be applied to ITRF94 positions (Epoch
1993.0) and to ITRF2000 velocities, and have been fit in-
dependently. For the “comparisons”, our corrected posi-
tions at the epoch 1997.0 were computed in two different
ways: using the ITRF2000 velocities (positions S2001∗)
or using the corrected velocities (positions S2001∗∗). The
positions S2001∗ show a better agreement with ITRF2000
than with ITRF96.

For the CERGA the results S2001∗∗ are even closer.
Nevertheless, the correction to Ż (0.0036 m/year) seems
to be too large compared to the reference value
(0.0101 m/year in ITRF2000). New determinations of
the positions of LLR and SLR stations at CERGA have
been obtained recently by (Nicolas 2000), using the ob-
servations of the satellites LAGEOS 1 and 2 from 1997
to 1999. They show local and seasonal displacements of
the LLR station, reaching a few centimeters with a proba-
ble tendency of a few mm/year. These small displacements
are ignored in ITRF2000, but the recent LLR observa-
tions are sensitive to this level of accuracy. The order of
magnitude of such displacements is in accordance with our
corrections.
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Table 4. Angular mean elements of the Moon and the Earth-Moon barycenter and Delaunay arguments deduced from S2001.
The origin of the angles is γI2000(ICRS) (see Fig. 2); t is the time in Julian centuries reckoned from J2000.0.

W1 = 218◦18′59.′′878 2 + 1 732 559 343.′′332 8 t − 6.′′870 0 t2 + 0.′′006 604 t3 − 0.′′000 031 69 t4

W2 = 83◦21′11.′′651 8 + 14 643 420.′′330 4 t − 38.′′263 9 t2 − 0.′′045 047 t3 + 0.′′000 213 01 t4

W3 = 125◦02′40.′′326 5 − 6 967 919.′′885 1 t + 6.′′359 3 t2 + 0.′′007 625 t3 − 0.′′000 035 86 t4

T = 100◦27′59.′′188 0 + 129 597 742.′′301 6 t − 0.′′020 2 t2 + 0.′′000 009 t3 + 0.′′000 000 15 t4

$′ = 102◦56′14.′′413 6 + 1 161.′′228 3 t + 0.′′532 7 t2 − 0.′′000 138 t3

l = 134◦57′48.′′226 4 + 1 717 915 923.′′002 4 t + 31.′′393 9 t2 + 0.′′051 651 t3 − 0.′′000 244 70 t4

l′ = 357◦31′44.′′774 4 + 129 596 581.′′073 3 t − 0.′′552 9 t2 + 0.′′000 147 t3 + 0.′′000 000 15 t4

F = 93◦16′19.′′551 7 + 1 739 527 263.′′217 9 t − 13.′′229 3 t2 − 0.′′001 021 t3 + 0.′′000 004 17 t4

D = 297◦51′00.′′690 2 + 1 602 961 601.′′031 2 t − 6.′′849 8 t2 + 0.′′006 595 t3 − 0.′′000 031 84 t4

Table 5. Fit of the positions and velocities of the two observing LLR stations CERGA (Yag) and McDONALD (MLRS2).
Units: positions X, Y , Z in meters; velocities Ẋ, Ẏ , Ż in meter/year.

CERGA (Yag) X Y Z Ẋ Ẏ Ż

References
ITRF1994 Epoch 1993.0 4581692.254 556195.961 4389355.019 −0.0122 0.0194 0.0084
ITRF1996 Epoch 1997.0 4581692.217 556196.039 4389355.075 −0.0120 0.0189 0.0106
ITRF2000 Epoch 1997.0 4581692.181 556196.024 4389355.072 −0.0131 0.0189 0.0101
Corrections
S2001 Sol. 2 (ICRS) −0.012 −0.006 −0.001 −0.0008 0.0000 0.0036
Comparisons
ITRF96 – ITRF2000 0.036 0.015 0.003
S2001∗ – ITRF96 −0.027 −0.008 −0.017
S2001∗ – ITRF2000 0.009 0.007 −0.014
S2001∗∗ – ITRF2000 0.005 0.007 0.001

McDONALD (MLRS2) X Y Z Ẋ Ẏ Ż

References
ITRF1994 Epoch 1993.0 −1330021.390 −5328403.336 3236481.726 −0.0116 −0.0036 −0.0073
ITRF1996 Epoch 1997.0 −1330021.431 −5328403.340 3236481.672 −0.0117 −0.0034 −0.0064
ITRF2000 Epoch 1997.0 −1330021.440 −5328403.330 3236481.675 −0.0125 −0.0001 −0.0065
Corrections
S2001 Sol. 2 (ICRS) −0.006 0.005 −0.031 −0.0004 −0.0007 −0.0002
Comparisons
ITRF96 – ITRF2000 0.009 −0.010 −0.003
S2001∗ – ITRF96 −0.015 0.009 −0.003
S2001∗ – ITRF2000 −0.006 −0.001 −0.006
S2001∗∗ – ITRF2000 −0.008 −0.004 −0.007

7. The tidal acceleration of the Moon

The tidal component of the secular acceleration of the
Moon’s longitude is a fundamental parameter of the evo-
lution of the Earth-Moon system. The tidal dissipation
is due to a misalignment of the tidal bulge of the Earth
relative to the Earth-Moon direction. This bulge exerts
a secular torque and most of the effect comes from the

ocean tides. It produces a secular negative acceleration
of the Moon and a decrease in the Earth’s rotation rate
(increase of the length of day). A consequence of the neg-
ative acceleration in the lunar longitude of approximately
−25.8′′/cy2 is the well-known displacement of the Moon’s
barycenter that corresponds to an increase of the Earth-
Moon distance of 3.8 cm/year.
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Let us examine the quadratic terms of the lunar mean
longitude W (2)

1 as it appears in the analytical lunar the-
ory ELP2000-96 (Chapront et al. 1997). Here the con-
stants and parameters are those from DE245, in particular
Love numbers and time delays (see Sect. 8). W (2)

1 contains
mainly 3 contributions (in ′′/cy2):
[1] 5.8665 Planetary perturbations;
[2] 0.1925 Earth’s figure perturbations;
[3] − 12.8125 Tides.
These contributions have to be multiplied by 2 if we speak
of “secular acceleration” components.

In [1] the main effect is due to the secular variation of
the solar eccentricity. It represents in fact a Taylor ex-
pansion of long periodic perturbations, mentioned also
as “secular perturbations” in classical celestial mechan-
ics, with periods of the solar perigee and node of several
ten thousand years.

In [2] the contribution is of the same nature. Hence, [1]
and [2] are due to very long period effects. They have to be
distinguished from the tides that induce dissipative forces.
An analytical solution for the lunar motion also provides
secular terms of higher degree in time (t3-terms, t4-terms,
etc.). With the knowledge of all the secular components in
the longitude, we are able to isolate the tidal acceleration
from other perturbations.

We gather in Table 6 a non-exhaustive list of determi-
nations of the tidal secular acceleration of the lunar lon-
gitude. The most recent values have been obtained with
LLR observations. We note, for this type of determina-
tion, a significant improvement of the precision with more
observations. It is also worth noticing that the most re-
cent determination around −25.86′′/cy2 comes closer to
the value of Morrison & Ward (1975), −26′′/cy2, obtained
with an analysis of optical observations including occul-
tations and planetary transits covering a time interval of
approximately 2 centuries.

It is interesting to examine the intrinsic values of the
tidal acceleration in various JPL numerical integrations
(see Table 7). These values do not appear explicitly in
the lists of parameters that are provided with each lunar
ephemeris, but we have computed them from those pa-
rameters and from the models described in Sect. 8. It is
worth noticing that the difference between the tidal secu-
lar acceleration in DE405 and our determination in S2001
is about 0.03′′/cy2 which gives an idea of the present un-
certainty for this fundamental lunar parameter.

The expression of the lunar mean longitude of the
Moon W1 has the following secular expansion: W1 =
W

(0)
1 +W

(1)
1 t+W

(2)
1 t2+..., where t is the time in century

reckoned from J2000.0; W (0)
1 is the constant term; W (1)

1 is
the sidereal mean motion for J2000.0;W (2)

1 is the total half
secular acceleration of the Moon. We have investigated the
convergence of these quantities to the S2001 values given
in Table 4, when the upper limit of the time interval of ob-
servations increases. The results are given in Fig. 3 where
∆W (0)

1 , ∆W (1)
1 and ∆W (2)

1 are the corrections to S2001
values obtained in the intermediate solutions (1996–2001).

Table 6. Tidal acceleration of the lunar mean longitude
(in arcsecond/cy2).

Authors Value Publication

Spencer Jonesa −22 1939

Oesterwinter & Cohena −38 1975

Morrison & Warda −26 1975

Mullerb −30 1976

Calame & Mulhollandc −24.6 1978

Ferrari et al.d −23.8 1980

Dickey et al.c −23.8 1982

Dickey and Williamsc −25.10 1982

Newhall et al.c −24.90 1988

Chapront Touzé et al.c −25.62 1997

(Solution S1998)c −25.78 1999b

(Solution S2000)c −25.836 2000

(this paper, solution 2001)c −25.858

Type of observations: a Occultations, b eclipses, c LLR, d LLR
and Lunar orbiter.

Table 7. Tidal acceleration of the lunar mean longitude in
various JPL ephemerides (in arcsecond/cy2) (Standish 1982,
1995, 1998).

JPL ephemeris Value Publication

DE200 −23.895 1982

DE245 −25.625 1990

DE403 −25.580 1995

DE405 −25.826 1998

In particular the variation of ∆W (2)
1 shows the evolution of

the fitted value of the tidal acceleration when using more
and more recent LLR observations: as mentioned above
W

(2)
1 is the sum of several contributions listed [1], [2] and

[3] at the beginning of the present section, and we may as-
sume that [1] and [2] have been computed with sufficient
accuracy through the secular terms in ELP theory; only [3]
(half tidal acceleration) needs to be fit. This graph allows
us to ensure nowadays a realistic precision in the knowl-
edge of the secular acceleration of better than 0.03′′/cy2,
in agreement with the conclusion resulting from the com-
parison of the S2001 value to the DE405 one.

8. An analytical approach to the tidal
perturbations

The tidal perturbations of the Moon have various origins:
[1] the Earth deformations due to the Moon;
[2] the Earth deformations due to the Sun;
[3] the deformations of the Moon itself by the Earth;
[4] the deformations of the Moon itself by the Sun.

The main effect arises from [1]. Below, we restrict our-
selves to this tidal component. The additional potential of
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Fig. 3. Time evolution of the corrections ∆ to the secular com-
ponents of the mean longitude of the Moon, W1 = W

(0)
1 +

W
(1)
1 t+W

(2)
1 t2, when increasing the set of LLR measurements.

a non rigid Earth acting on the Moon has the well-known
classical form (Lambeck 1980):

∆U =
GM

r∗

∞∑
l=2

(
R

r

)2l+1 ( r
r∗

)l
×

l∑
m=0

klm(2− δm0 )
(l−m)!

(l +m)!
Plm(sinφ)Plm(sinφ∗) cosm(λ− λ∗),

where G is the gravitational constant and M the mass
of the Moon, R the equatorial radius of the Earth; l and
m are integers. kl,m are Love numbers and Pl,m Legendre
functions. λ, φ and r are the spherical coordinates of a
point outside of the Earth at time t, in terrestrial axes; λ∗,
φ∗ and r∗ are the same quantities for the Moon’s barycen-
ter, the symbol star (*) meaning that the coordinates are
evaluated at the time t∗ = t − τl,m where τl,m is a delay
in the deformation related to the harmonic of index (l,m)
attached to the Love number kl,m. For an elastic Earth:
τl,m = 0; in case of an anelastic Earth: τl,m 6= 0. If now we
limit ourselves to l = 2 and express the above formula in
terms of right ascension α and declination δ, we derive for
the disturbing function acting on the Earth-Moon vector:

∆U = GM

(
1 +

M

E

)
R5

r∗3r3

×[ k20P20(sin δ)P20(sin δ∗)

+
1
3
k21P21(sin δ)P21(sin δ∗) cos(α− α∗ − ωτ12)

+
1
12

k22P22(sin δ)P22(sin δ∗) cos(2α− 2α∗ − 2ωτ22) ],

where ω is the angular velocity of the Earth, and E is the
mass of the Earth. The index (2, 1) induces the diurnal
tides; the index (2, 2) induces the semi-diurnal ones.

In the simplified model of the JPL numerical inte-
gration DE200 the following approximations where done:
k20 = k21 = k22 = k; τ21 = τ22 = τ ; (ωτ)2 is neglected.

In DE245, and further JPL integrations (DE403 and
DE405), one simply puts τ20 = 0, and k21 = k22. In the

Table 8. Contributions of harmonics in the evaluation of a and
b coefficients in the lunar mean longitude ∆W1 = at2 + b cos Ω.
k: Love number; τ : time delay.

Parameter (2, 0) (2, 1) (2, 2) Total

DE200

k 0.30 0.30 0.30

τ (day) 0 0.006460 0.006460

a (′′/cy2) −0.90 −10.55 −11.45

b (10−5′′) 0 58 −138 −80

DE403

k 0.34 0.30 0.30

τ (day) 0 0.014350 0.006772

a (′′/cy2) −2.0 −11.06 −13.06

b (10−5′′) 0 127 −144 −17

DE405

k 0.34 0.30 0.30

τ (day) 0 0.012909 0.006942

a (′′/cy2) −1.8 −11.34 −13.14

b (10−5′′) 0 114 −148 −34

analytical solution ELP we follow the same way, and sub-
stitute in ∆U analytical series for the lunar coordinates.
After integration of the differential equations, the main
effect consists of two contributions in the mean longitude:

∆W1 = at2 + b cos Ω.

The first term corresponds to the secular acceleration 2×a.
The second term is a periodic term in Ω with the pe-
riod of the ascending node of the Moon on the ecliptic
(18.6 years).

We gather in Table 8 various evaluations of a and b
depending on the model, and the corresponding values of
Love numbers and delay. We notice that the b coefficient is
smaller in the case of DE403 and DE405 than for DE200.
It is mainly due to a partial cancellation of the coefficients
arising from (2, 1) and (2, 2), which is not the case for
DE200. It should be noted that the value of the secular
acceleration (2× a) from Table 8, Col. 5, is not complete
as mentioned above. It represents nevertheless the main
tidal contributions that are slightly different from the total
contributions given in Table 7.

In JPL numerical integrations, Love numbers and time
delays are fitted parameters, while in our solution only a
is fit. In both cases, because of the long period of the
argument Ω, a long and accurate set of data is neces-
sary. Hence, we understand why the value (2 × a) of the
secular acceleration has been significantly improved since
DE200, which was fit on less that 15 years of observations
(Williams et al. 1978). A better knowledge of this param-
eter has benefited from an increasing range of data and
an improvement in the quality of observations.
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Table 9. Position angles of the inertial mean ecliptic of J2000.0 with respect to equatorial celestial system (R) in S2001. The
uncertainties are formal errors. Units: arcsecond.

R ε− 23◦26′21′′ φ ψ Mean Epoch

ICRS 0.41100 ± 0.00005 −0.05542 ± 0.00011 Dec. 1994

MCEP 0.40564 ± 0.00009 −0.01460 ± 0.00015 0.0445 ± 0.0003 Dec. 1994

DE403 0.40928 ± 0.00000 −0.05294 ± 0.00001 0.0048 ± 0.0004 Jan. 1985

DE405 0.40960 ± 0.00001 −0.05028 ± 0.00001 0.0064 ± 0.0003 Jan. 1990

9. Orientation of the celestial axes

We gather in Table 9 our new determinations of the po-
sition angles φ, ε and ψ (see Sect. 4). The angle ψ is ob-
tained through the 2 different versions of the mean longi-
tude of the Moon W1, which is evaluated in the ICRS
(with Sol. 2), and in the reference system R, R being
the MCEP with Sol. 1, or the reference system of any
JPL numerical integration DEn with the solution fit to
the lunar ephemeris of DEn. Such a solution is deduced
from an analysis of the same nature as those using the
LLR observations themselves, by considering the JPL lu-
nar ephemeris as an “observational model”. Hence, we
compute the difference:

ψ(R) = W1(ICRS)−W 1(R)

= W
(0)
1 (ICRS)−W (0)

1 (R)

+[W (1)
1 (ICRS)−W (1)

1 (R)]t

+[W (2)
1 (ICRS)−W (2)

1 (R)]t2,

where t is the time at a mean epoch, reckoned in centuries
from J2000.0.

The mean epoch for MCEP arises directly from
the least-squares fit; it is the weighted time related to
the distribution of weights of the sub-groups. For the
JPL ephemerides, the mean epochs are mentioned in
the literature and correspond to JPL’s fits. In ψ(R)
the linear term corresponds to the difference of sidereal
mean motions in the 2 systems: ν(ICRS) − ν(R); the
quadratic term corresponds to half the difference between
the tidal parts of the acceleration of the mean longitude in
the 2 systems: W (2,T )

1 (ICRS)−W (2,T )
1 (R), the non tidal

parts being the same.
The ψ function that we obtain for DE405 is:

ψ(DE405) = 0.00832 + 0.01793t− 0.01555t2 (arcsecond).
From (Standish 2000), the reference system tied to the
ephemeris is based on VLBI observations (Magellan space-
craft to Venus and Phobos approach to Mars) made be-
tween 1989 and 1994. Hence, we have arbitrarily chosen
1990 Jan. 1 for the mean epoch of DE405.

Using the quantities φ and ψ of Table 9, we make the
projection on the ICRS “equator” of the origin of right
ascension o(DE405) which is distant from o(ICRS) by
less than one mas. We find:

o(ICRS)o(DE405) = 0.7 mas (Epoch, 1990 Jan. 1).

For DE403 we obtain:

o(ICRS)o(DE403) = 1.9 mas (Epoch, 1985 Jan. 1).

These results concerning DE405 agree with the fact
that the numerical integration is oriented onto the ICRS
(Standish 1998).

10. The precession constant

The correction to the IAU76 constant of precession in
(Chapront et al. 2000) was:

∆1p = −0.3164± 0.0027′′/cy. (1)

This value was presented at the IAU meeting in
Manchester (Fukushima 2000a). It was obtained via the
solution S2000, using Sol. 1 (MCEP), as mentioned above.
With Sol. 1 (MCEP) of S2001, we get now:

∆1p = −0.3364± 0.0027′′/cy.

The noticeable divergence of this new determination with
respect to the previous one in (1) caught our attention and
we noticed that in Sol. 2 (ICRS) a residual ∆2p arises:

∆2p = −0.0316± 0.0027′′/cy.

Sol. 1 (MCEP) and Sol. 2 (ICRS) use the same observa-
tions (the main source of errors) and the same models,
except for the motion of the reference frame due to pre-
cession and nutation. Hence, the differences between the
corrections ∆1p and ∆2p are mainly due to the precession-
nutation models. If we assume that C04 δψ and δε series
used in Sol. 2 (ICRS) based on VLBI observations, con-
tributes ideally to the precession-nutation matrix P ×N ,
the difference ∆1p−∆2p gives an estimate of the correc-
tions that should be applied to the IAU76 precession con-
stant. In particular this difference eliminates the effects of
an improper motion of the stations, errors in the EOP se-
ries for Universal Time and polar motion, and a local bias
produced by the observations themselves. Contrariwise all
systematic effects or local errors in C04 δψ and δε series
are still in the difference.

If we suppose that C04 δψ and δε series do not contain
any secular trends or bias, a more appropriate correction
to the IAU76 constant of precession should then be done
with:

∆p = ∆1p−∆2p = −0.3048′′/cy. (2)
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Table 10. Correction to the IAU76 constant of precession ∆p (in arcsecond/cy) and offsets of Celestial Ephemeris Pole at
J2000.0 −ψ sin ε and ∆ε (in arcsecond). The uncertainties are formal errors.

Method Source ∆p −ψ sin ε ∆ε

VLBI Fukushima (2000a) −0.297 ± 0.004 −0.0167 ± 0.0005 −0.0049 ± 0.0003
LLR S1998 −0.344 ± 0.004 −0.0183 ± 0.0004 −0.0056 ± 0.0002
LLR S2000 −0.316 ± 0.003 −0.0173 ± 0.0004 −0.0054 ± 0.0002
LLR S2001 (this paper) −0.302 ± 0.003 −0.0177 ± 0.0004 −0.0054 ± 0.0002

IAU 2000A (Mathews et al. 2002) −0.29965

Fig. 4. Evolution of the correction to the IAU76 constant of
precession with the upper limit of the time span covered by
the fit.

Figure 4 illustrates the evolution of ∆1p and ∆p = ∆1p−
∆2p when the upper limit of the time span covered by
the fit varies. We see that, though ∆1p varies, ∆p remains
constant around the value −0.302′′/cy, and we propose
now this value as the LLR correction value.
The obliquity shows a similar phenomenon illustrated
by Fig. 5. We note ∆1ε the correction obtained with
Sol. 1 (MCEP) to a reference value of obliquity, ∆2ε the
similar quantity obtained with Sol. 2 (ICRS), and ∆ε the
difference: ∆ε = ∆1ε−∆2ε. A trend in ∆1ε is apparent in
Fig. 5 (about 0.008′′/cy) but the difference ∆ε is almost
a constant. The trend in ∆1ε could make one believe in
a correction to the obliquity rate −46′′.8340/cy adopted
in Sol. 1 (MCEP) from Williams (1994), but the similar
trend in ∆2ε makes this hypothesis vanish. As for pre-
cession, the trends in ∆1ε and ∆2ε are rather due to an
improper motion of the stations or to a local bias pro-
duced by the observations themselves. Note that trends
are larger when positions and velocities of the stations are
not improved (see Sect. 6).

In Table 10, we bring together our LLR determinations
for the correction to the IAU76 constant of precession with
the last values obtained by VLBI (Fukushima 2000b and
Mathews et al. 2002), and the best estimates for the offsets
of Celestial Ephemeris Pole at J2000.0, −ψ sin ε(MCEP )
and ∆ε = ε(MCEP )− ε(ICRS). The last two quantities
are denoted as θ2 and −θ1 in Chapront et al. (1999b), and
∆ψ sin ε0 and ∆ε0 by Fukushima. We note that our values

Fig. 5. Evolution of the correction to the obliquity with the
upper limit of the time span covered by the fit.

for ∆p are significantly different in S2001 and S1998. The
nutation model and the weight distribution are deciding
factors for the improvement of the solution. Now the value
for ∆p obtained by LLR and VLBI converge nicely with
a separation smaller than 0.03 mas/year.

We have also performed an analysis including the pre-
cession and the principal terms of nutations in longitude
and obliquity. Although there is a strong correlation be-
tween precession and nutation, the final correction to the
above ∆p is small (+0.0082′′/cy) and the amplitudes of
the principal terms in nutations are not sensibly modified
(0.5 mas for longitude and 0.02 mas for obliquity) within
the formal errors.

11. Conclusion

The complete set of LLR observations now covers a time
interval longer than 30 years. During the last ten years
the precision in the measurements has been improved no-
ticeably. Presently an individual measurement shows at
CERGA an error around 30–60 ps in time, which corre-
sponds to 5 to 10 mm in the one-way distance (Chapront
& Mignard 2000). Hence the quality in the determination
of several parameters of the Earth-Moon system has been
improved correspondingly. This is the case in particular
for the precession constant and the secular acceleration
in the Moon’s longitude. Increasing the precision and the
length of the observing time, the models have to be re-
fined. As mentioned above, small trends in the obliquity
and bias in the mean motions of the Sun and Moon have
not been completely eliminated from our analysis and that
should be improved in the near future.
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