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Abstract: Massive and mass-less Yang-Mills and gravitational fields are considered.
It is found that there is a discrete difference between the zero-mass theories and
the very small, but non-zero mass theories. In the oase of gravitation, compar-
ison of massive and mass-less theories with experiment, in particular the peri-
helion movement of Mercury, leads to exclusion of the massive theory. It is con-
cluded that the graviton mass must be rigorously zero.

1. INTRODUCTION

Both mass-less [1] and massive [2, 3] Yang-Mills fields [4] and also the
zero-mass gravitational field [1] have been the subject of several publica-
tions. Feynman rules for mass-less fields have been established using the
method of path integrals; Faddeev and Popov [5] have verified unitarity by
going over to the Coulomb gauge, while in Mandelstam's formalism unitar-
ity is built in.

For the massive fields, where at least the starting point is unambiguous,
work has been done in order to reformulate the Feynman rules in such a
way that the limit of zero-mass and also ultra-violet problems could be
studied. Superficially seen it appeared that at least for no or one closed
loop the limit of zero-mass existed and coincided with the results of the
mass-less case. But recently, after a more complete analysis, it has been
shown that no such result is valid for diagrams with more than one closed
loop [3]. And, as has been observed by Faddeev and Slavnov [6], already
the results for one closed loop are different: the closed loops of ghost par-
ticles have different coefficients for the cases of zero-mass and the limit
of zero-mass respectively.

Actually the solution to the problem is quite simple. The zero-mass
case is simply not the limiting case of the finite mass theory, and there is
a discrete difference between the theory with zero-mass and a theory with
finite mass, no matter how small as compared to all external momenta.
The reason is that a finite mass spin 1 particle has three different states
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of polarization while a zero-mass particle has only two such states (with
helicities ±1). And the "third" state of polarization does not decouple in the
limit of small mass. This is quite different from electrodynamics, where
indeed the "third" state decouples, and where then the zero-mass theory is
indistinguishable from a small-mass theory, at least as far as its Feynman
rules are concerned.

Having understood the mechanism one may wonder what happens in the
case of the gravitational field. A zero-mass theory has particles of spin 2
with two different states of polarization while finite-mass spin 2 particles
have five polarization states. It turns out that also here the limit of zero-
mass is discretely different from the zero-mass case, and in fact already
at the level of no closed loops. This implies that the bending of light rays
near the sun and the perihelion movement of Mercury is distinctly differ-
ent for zero-mass gravitons as compared to infinitesimally small mass
gravitons. Experiment tells us then what theory to take, and the result is
of course the zero-mass theory. We may conclude that the graviton has
rigorously zero-mass.

In sect. 2 the situation for Yang-Mills fields is clarified by analyzing
the simplest diagrams with no or one closed loop. The requirement of uni-
tarity is seen to imply different ghost loop coefficients for the small mass
and the zero-mass case respectively. In sect. 3 we will consider massive
and mass-less gravitons and establish the form of the graviton propagator
for both cases. We then also consider the effect of graviton exchange be-
tween two material objects. The coupling constant being fixed by compari-
son with Newton's law, a different result comes out for the bending of light
rays as well as for the perihelion movement of Mercury, the massive theory
giving and respectively of the results of the mass-less theory.

Since experiment agrees for the perihelion movement to within 10% with
the prediction of the mass-less theory we have the result that the graviton
mass is exactly zero.

2. MASSIVE AND MASS-LESS YANG-MILLS FIELDS

A massive spin 1 particle is characterized by its four momentum and
a polarization vector There are three independent polarization vec-
tors, and one finds summing over all polarizations

(1)

It is instructive to consider this formula in the rest system of the particle.
There =(0 , 0, 0, iM) and for the we may take the orthonormal set
(1 ,0 ,0 ,0) , (0,1,0,0) and (0 ,0 ,1 ,0) . The left-hand side of eq. (1) is a two-
tensor that may be given in matrix form:
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(massive case) . (2)

One verifies that the right-hand side of eq. (1) has the same form in this
system.

For a zero-mass spin 1 particle of momentum there are two inde-
pendent polarizations. In the coordinate system where is aligned along
the third axis one has with and one may take for
the the vectors (1, 0, 0, 0) and (0,1, 0, 0). We then have

(mass-less case) . (3)

Let now be the vector obtained from by applying a space reflection,
that is (0, 0, -p,ip). A tensor as given in eq. (3) may be constructed out
of and and we find:

(mass-less case) . (4)

Note that or applied to the right-hand side of eq. (4) gives zero, as
should be, due to the fact that

Both the massive and the mass-less case have a three and a four-point
vertex:

(5)

(6)

We do not need the explicit form of the four-vertex. For the propagators
we take

(massive case) , (7)
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(mass-less case) .

For further use some formulae are needed. First we note:

Let now be a polarization vector with = 0. We find

Similarly

If is a polarization vector with = 0 one has

(8)

(9)

(10)

(11)

(12)

Consider now lowest order two-meson scattering:

(13)

where and are the initial, and the final momenta. To check uni-
tarity we must compute the imaginary part of this set of diagrams. Only
the first diagram has a non-zero imaginary part that may be obtained by
replacing the propagator (7) or (8) by or The
requirement of unitarity is satisfied if we may replace by the respec-
tive sums over polarizations (1) and (4). We now note that in diagrams (13)
all in and outgoing particles are physical, i.e. on the mass-shell. Thus

' and moreover in these diagrams we have also polarization
vectors (k), (q) etc. We see that due to eq. (12) no difference arises if
we make the replacement (1) or (4). Obviously at the no-closed loop
level the difference between (1) and (4) does not imply any difference in the
Feynman rules for zero-mass and finite, but small mass

Let us now consider the simplest one closed loop case. With eqs. (5),
(6), (7) and (8) we have only one diagram with non-vanishing imaginary
part. To this diagram we add another one, involving the vertex

(14)
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and propagator

(massive case) ,

(mass-less case) , (15)

but provided with a factor Next we will compute the imaginary part of
the two diagrams and then fix such that unitarity is satisfied. Thus con-
sider:

(16)

The imaginary part of the first diagram is

(massive case) ,

(mass-less case) , (17)

Unitarity requires the imaginary part of the second-order diagram to be
equal to eq. (17) with now however

(massive case) ,

(mass-less case) . (18)
The difference between eqs. (17) and (18) must be provided by the imagi-
nary part of the second diagram of eq. (16). Using eqs. (10) and (11), and
noting that and moreover that in the mass-less case
we find after some trivial algebra for the difference between (18) and (17):

401
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(massive case) ,

(mass-less case) . (19)
These results differ by a factor of two. The imaginary part of the second
diagram in (16) is:

(20)

Thus we must choose = - 1 for the massive and = - 2 for the mass-less
case, for then we have that (18) = (17) + (20). Actually the known derivations
for the massive and mass-less case give this result.

The above makes clear that the mass-less theory cannot be obtained as
a limiting case of the finite-mass theory. The origin of the difference goes
back to the difference between the sums over polarizations (1) and (4).

3. MASSIVE AND MASS-LESS GRAVITATION

We now repeat the work of sect. 2 for the case of a spin 2 particle.
A spin 2 particle is characterized by its four-momentum and a sym-

metric polarization tensor such that = 0 and There
are five independent polarization tensors, and one finds summing over all
polarizations:

In the -rest frame one may choose for the the orthonormal set:

(21)
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(22)

One verifies:

which coincides with the right-hand side of (21) if = (0, 0,0, iM). For the
mass-less case, when is aligned along the third axis, = (0 , 0,
we have two independent polarizations. In this frame we may take

(24)

Note that eq. (24) is different from eq. (23) even if . . . =1,2. This is
due to the first polarization tensor in eq. (22), which corresponds to the
state of polarization with zero angular momentum along the third axis.

If, as before, is the vector obtained from by space reflection one
may write:

(23)

we note:
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Eq. (25) is obtained from eq. (24) by replacing any tensor by

(25)

which is of the form

Let us now consider the interaction between two material objects caused by
exchange of a gravitation. In lowest order one has one diagram:

(26)

where the wiggly line stands for tha graviton. The material objects enter
through divergence free symmetric tensors and respectively, and
if is the four-momentem of the graviton exchanged one has

(27)

For the graviton propagator we take:
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(massive case) ,

Noting that eqs. (21) and (25) for = 0 equal to the nominators of the propa-
gators (28) we see that due to eq. (27) unitarity holds in diagram (26) for
the choice (28). The diagram (26) leads to:

(mass-less case) . (29)

The quantities and are fixed by the requirement that (29) contains
Newton's law for non-relativistic systems. Then from and
the 44 components are non-zero. For = v = = =4 one finds:

(massive case) ,

(mass-less case) .

If g2 is correctly chosen we see that we must take

(30)

(31)

to obtain in both cases the correct result.
Next we consider the case where represents a fixed source (thus

only non-zero), like the sun, while is the energy-momentum ten-
sor associated with a mass-less particle. In that case has zero trace,

= 0. Thus, the last term in the propagators (28) does not contribute.
One finds:

(massive case) ,

(mass-less case) ,

(32)

Thus in the massive case (but with extremely small mass) the bending of
a ray of light passing near the sun is of that predicted in the mass-less
case. Experiment is however too vague to decide between the two cases*.

* Note added in proof. Recently more precise experiments have been performed [9],
agreeing closely with Einstein's theory, thereby excluding the massive theory.

(mass-less case) . (28)

(massive case) ,
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Similarly one may compute the perihelion precession of Mercury [7] in
both the massive and mass-less case. For very small mass one obtains
of the value for zero mass. This means that the massive case is excluded
by experiment, since the experimental value coincides to within 10% with
the prediction of the mass-less theory, i.e. the prediction of Einstein's
theory.

4. CONCLUSIONS

It appears to us that Feynman rules for massive and mass-less Yang-
Mills fields are now well established and understood. The fact that small
mass and zero-mass theory are discretely different has been the main
source of confusion. In the Yang-Mills theory this difference was rather
subtle, at least up to the one closed loop level, but for the gravitational
field the difference is hard to miss.

Actually, a theory of massive gravitation may be set up similarly to the
massive Yang-Mills theory; in the appendix some details on this rather
academic theory are given.

For completeness it must be remarked that both the massive Yang-Mills
and massive gravitational theories are singular as the mass goes to zero.
As shown in ref. [3], for the Yang-Mills theory these singularities occur
for two or more closed loops, and it appears that they take the form of a
series in where is an ultra-violet cut-off, and g is the coup-
ling constant. One might speculate that after summing this series the limit

exists; however, since this series has an overall factor (for
self-energy diagrams) we cannot expect that the conclusions of this paper
are affected. This is because the arguments in the foregoing rely on the
imaginary parts of second-order diagrams that are fixed by unitarity alone.

The second author is indebted to Prof. Zumino for a stimulating discus-
sion on this subject.

APPENDIX

The spin-2 field
The Lagrangian for the mass-less spin-2 field has the form:

(A.1)

This Lagrangian is invariant under the gauge transformation:
(A. 2)

where the and (x) are eight arbitrary functions.
To eq. (A.1) we may add mass terms. There are three possibilities,

and we write
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(A. 3)

where a1 , a2 and a3 will be proportional to some mass squared. We must
find the form of the propagator of the field for various choices of the

To this purpose we study

(A.4)

As much as possible we will try to determine the unknown function
with the help of the equations of motion that follow from the Lagrangian
(A. 3). These equations are

Subtracting from eq. (A. 5) the equation obtained by interchanging and we
get

(A.6)

We will not study the case a2 = a3 , and eq. (A.6) therefore has as conse-
quence that must be symmetrical:

Next we apply and to eq. (A.5) with the result
(i)

(A.7)

(A.8)

or with eq. (A.7)

With the abbrevation

(A.9)

(A.10)

(A.5)

(A.11)

(A.12)
we have
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(A.13)

(A.14)

With the help of eqs. (A .11 ) , (A.12), (A.13) and (A.14) the equation of mo-
tion (A. 5) reduces to

Writing

we have, using eq. (A.14)

while eq. (A.12) implies

(A. 15)

(A. 16)

(A. 17)

(A. 18)

Note that the divergence of is non-zero, which implies according to
Fierz [8] a negative energy particle. The equation of motion (A. 15) reduces
to

(A. 19)

Thus the Lagrangian (A.3) describes a situation with a (spin 0) particle
with mass squared

and a (spin 2) particle with mass squared

(A. 20)

(A.21)

This fixes the function up to two arbitrary factors that determine
the spin 0 resp. spin 2 content. Furthermore, according to Fierz [8] the
spin 0 particle has negative energy, while the energy of the spin 2 particle
is positive. We find
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(A.22)

Let now be some arbitrary two tensor. Positive definiteness of the
norm of the physical state implies that

where is related to the complex conjugate z* by

We now also insist that and Then by choosing

(A.23)

with some appropriate scalar function f(x) we get

The choice

(A. 24)

leads to
Actually the Lagrangian (A. 3) implies
To see that one may eliminate from the Lagrangian with the help of

eq. (A. 16); after some cumbersome algebra one finds

where Comparison with the Lagrangian of a scalar field gives the
required coefficient

(A. 25)
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It is possible to have positive energy for the spin-zero particle provided
its metric is made negative. Thus one may have and instead
of in eq. (A.22). Of course negative energy or indefinite metric are
not physically acceptable, so the acceptable case is = -1, i.e. no spin 0
part. Indeed, with , = and a3 = 0 one has which is
precisely the Lagrangian given by Fierz and Pauli [8j.

Gravitational interaction is obtained by introducing terms involving the
tensor in such a way that, apart from the mass term, the Lagrangian
is invariant under the infinitesimal transformation

(A. 26)

A mass term must be invented such that the transformation (A.26), to first
order in results only in the addition of terms of the form

and (A. 27)

This is necessary in order to be able to apply the techniques of ref. [3],
that is in order to be able to obtain Ward-identities. The solution is

(A. 28)

where
field

is the well-known Lagrangian for the mass-less gravitational

(A. 29)

However, this theory is not acceptable. If we work out the square root up
to second order in the " we find

(A. 30)

which corresponds to i.e. a non-zero amount of
spin 0 admixture. One verifies that with the gravitation propagator of this
theory, in the limit of small mass for no closed loop, precisely the re-
sults of the mass-less theory are obtained. However, the theory would be
physically unacceptable, containing either negative energy or indefinite
metric.
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