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Abstract 
 
Interannual to decadal variations in Earth global temperature estimates have often 
been identified with El Nino Southern Oscillation (ENSO) events. However, we show 
that variability on timescales of 2-15 years in mean annual global land surface 
temperature anomalies, Tavg are more closely correlated with variability in sea 
surface temperatures in the North Atlantic. In particular, the cross-correlation of 
annually-averaged values of Tavg with annual values of the AMO, the Atlantic 
Mutidecadal Oscillation index, is much stronger than the cross-correlation of Tavg 
with ENSO.  The pattern of fluctuations in Tavg from 1950 to 2010 reflects true 
climate variability, and is not an artifact of station sampling.  A world map of 
temperature correlations shows that the association with AMO is broadly distributed 
and unidirectional.  The effect of El Nino on temperature is locally stronger, but can be 
of either sign, leading to less impact on the global average.  We identify one strong 
narrow spectral peak in the AMO at period 9.1 ± 0.4 years and p-value 1.7% (CL 
98.3%). Variations in the flow of the Atlantic Meridional Overturning Circulation may 
be responsible for some of the 2-15 year variability observed in global land 
temperatures. 
 
 

1. Introduction 
 
The average earth land surface temperature, Tavg, is a key indicator of climate 
change.  Detailed analyses of Tavg have been reported by three major teams: the 
National Oceanographic and Atmospheric Administration (NOAA; see Menne et al. 
[2005]), the NASA Goddard Institute for Space Science (GISS; see Hansen et al. 
[2010]), and a collaboration of the Hadley Centre of the UK Meteorological Office with 
the Climate Research Unit of East Anglia  (HadCRU; see Jones et al. [2003], Brohan et 
al. [2005]). Results from their analysis are shown in Figure 1.  The time period in the 
plot begins at 1950 since a large number of new stations were introduced at that time. 
The uncertainties prior to 1950 are substantially larger.  Note that in this paper we 
focus of the land-only temperature average – not including oceans – so that the time 
series will not directly include the ocean data that we will use for our correlation 
analysis.  
 
Also shown in Figure 1 is a new estimate of the Earth atmospheric land surface 
temperature that we created from data independent of that used by the other three 
groups.  We obtained this estimate by choosing 2000 sites randomly from a list of 
approximately 30,964 temperature recording stations world-wide that had not been 
used by NOAA, GISS, or HadCRU.  Each temperature record was adjusted by an 
additive parameter, one per record, to bring it into a best least-squares fit with the 
other records; details of this procedure are described by Rohde et al. [2011]. The 
statistical techniques used (Kriging) are designed to compensate for sampling biases 
in station coverage.   This permits a random selection of stations to be made without 
giving excessive weight to heavily sampled regions, such as North America and 
Europe.  No adjustments or corrections were made for systematic effects such as 
urban heat island warming or change of instrumentation.  Despite these limitations, 



 3 
the virtue of this estimate is that it is derived independently from previously used 
data.  Because of this, the qualitative agreement with the prior estimates confirms that 
the fluctuations are true indicators of climate and not artifacts of data selection and 
processing.  The four curves show a broad trend of “global warming” with some 
unevenness; the lack of warming from 1950 to 1975 has been attributed to a 
combination of natural and anthropogenic factors, especially the cooling effect of 
increased aerosol pollution [Jones et al., 2003].  
 
  

 
Figure 1.  Global land temperature estimates Tavg, smoothed by a 12-month moving 
average. The temperature anomaly is the difference between the estimated 
temperature and the mean in the period 1950-1980 for each temperature series. Note 
the similarity of many of the short-term fluctuations with periods 2-15 years. The 
Berkeley Earth data were randomly chosen from 30,964 sites that were not used by 
the other groups. 

 
 

2. Decadal (2 – 15 yr) Variations 
 
Much attention has been given to the small Tavg maxima of 1998 and 2005.  The 
maximum in 1998 occurred during a very strong El Nino, and is plausibly associated 
with that oceanic event [Trenberth, 2002].  In this study we examined the annually-
averaged global land temperature time series to study their possible correlation not 
only with the El Nino Southern Oscillation index (ENSO; see NOAA [2005]) but with 
the Atlantic Multidecadal Oscillation (AMO; see Schlesinger et al. [1994] and Enfield et 
al. [2001]), the Pacific Decadal Oscillation (PDO, see Zhang et al. [1997] ), the North 
Atlantic Oscillation (NAO, see Zhang et al. [1997], Hurrell et al. [1995]), and the Arctic 
Oscillation (AO, see Thompson et al. [1998]).  Three of these indices: ENSO, AMO, PDO, 
are derived from sea surface temperature records, in the equatorial Pacific, the North 
Atlantic, and the North Pacific respectively.  Two of these, the NAO and the AO, are 
derived from surface pressure differences at locations in the northern Atlantic and 
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Arctic.  We find that the strongest cross-correlation of the decadal fluctuations in 
land surface temperature is not with ENSO but with the AMO. The AMO index is 
plotted in Figure 2. 
 
 

 
Figure 2.  The AMO index.  The pattern is dominated by the 65-70 year multidecadal 
oscillation that gave the index its name.  In this paper, we are more interested in the 
short-term 2-15 year variations that are evident in the 12-month smoothed curve. 
 

 

Our analysis used the monthly land-surface average temperature records made 
available by the four groups previously referenced: NOAA, NASA GISS, HadCRU, and 
ours, the Berkeley Earth Surface Temperature group. The land temperature data were 
smoothed with a 12-month running average (boxcar smoothing); this removes high 
frequency (e.g. monthly) changes.  The data prior to 1950 were noisier than the 
subsequent data, primarily because the number of stations was smaller, and for that 
reason we restricted the period for our analysis to 1950-2010.  
 
To emphasize the decadal-scale variations, the long-term changes in the temperature 
records and oceanic indices were “pre-whitened.”  This is a process to remove a large 
signal that is not being studied in order to reduce bias in the remainder.  To do this, 
we fit each record (yearly data sets) separately to 5th order polynomials using a 
linear least-squares regression; we subtracted the respective fits, and normalized the 
results to unit mean-square deviation.  This procedure effectively removes slow 
changes such as global warming and the ~70 year cycle of the AMO, and gives each 
record zero mean. The 12-month smoothing removes high frequency (e.g. monthly) 
changes.  All of the remaining analysis in this paper is based on the pre-whitened 
temperature records and oceanic indices. 
 
The four temperature estimates after this conditioning are shown in Figure 3A.  In 3B 
and 3C, these four temperature estimates were averaged and compared, in turn, to the 
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conditioned AMO and ENSO.  In 3C we directly compare the AMO and ENSO decadal 
variations. 
 

 
Figure 3.  Decadal fluctuations in surface land temperature estimates and in oceanic 
indices.  The long-term variability was suppressed by removing the least-squares fit 
5th order polynomial from each curve.  (A) shows the 12-month smoothed land 
surface temperature estimates from the four groups.  The decadal variations are very 
similar to each other.  The Berkeley Earth data were derived from 2000 sites chosen 
randomly from a set of 30964 that did not include any of the sites from the other 
groups. (B) shows the AMO index compared to Tavg, the average of the four land 
estimates.  (C) shows the ENSO index compared to the average of the four land 
estimates.  (D) shows the AMO and ENSO directly. Note that the AMO agreement in (b) 
is qualitatively stronger than the ENSO agreement in (c). 

 

3. Difference and Correlation Analysis 
 
Visual inspection of Figure 3 suggests that the AMO fluctuations match the 
temperature variations better than does the ENSO index almost everywhere; perhaps 
the only prominent exception being 1968 – 1973.  This impression is verified by 
calculating the RMS (root-mean-squared) differences of pairs of plots.  The results are 
shown in Table 1.  Note that the RMS of the difference between ENSO and Tavg is over 
50% larger than the RMS of the difference between AMO and Tavg.  The RMS of the 
difference between AMO and ENSO is 67% larger than that of AMO and Tavg.  The 
“random” signal, put to show the RMS expected when there is no correlation, was 
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created by breaking the ENSO signal into 10 parts and randomly scrambling them; 
the RMS of the difference between it and the AMO agrees with the theoretical 
expectation of √2. 
 

 
records RMS  

(4 estimates) – Tavg 0.26 C 

AMO – Tavg 0.75 C 

ENSO – Tavg 1.14 C 

AMO – ENSO 1.25 C 

AMO - random 1.41 C 

 
Table 1.  Root-mean-squared difference of the data shown in Figure 3. The first row 
shows the RMS deviation of the 4 temperature estimates from Tavg, the average of the 
four.  The other entries show the RMS deviation of the signal differences.  The 
“random” signal was generated by breaking ENSO into 10 parts and randomly 
scrambling them in time.  

 
To quantify further the relationship between Tavg and AMO and ENSO, we performed 
a correlation analysis.  Correlation C(A ,B) is a measure of the linear time invariant 
dependence between two time series {A(t)} and {B(t)}.   Here, A and B represent 
either pre-whitened temperature signals or oceanic indices, normalized to zero mean 
and unit standard deviation.  If we include the possibility of a time delay or lag L 
between the two signals, then we can define the cross-correlation C as 
 

(     )  
 

 ( )
∑ ( ) (   ) 

 
where A and B have zero mean and unit standard deviation and N(L) is the number of 
terms in the sum.  With this definition, the correlation of a function can vary between 
–1 and +1.  At zero lag, the autocorrelation = 1.   The value of the correlation at zero 
lag is commonly called Pearson’s Correlation Coefficient, often designated by r.   
 
The correlation estimates between major temperature records and oceanic indices 
are shown in Figure 4.  In these plots, a peak at 0 lag indicates a direct linear 
correlation between the data sets.  A peak offset from zero also indicates correlation 
but with one lagging the other by the offset. 
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Figure 4 . Decadal correlations of the Berkeley Earth land temperature estimates Tavg 
with the (a) AMO index, (b) ENSO index, (c) PDO index, and (d) NAO index.  The 
strongest correlation observed, 0.65 ± 0.04, is with the AMO.  

 
The strongest correlation is observed between the estimates of the average land 
temperature Tavg and AMO, the Atlantic Multidecadal oscillation, with a correlation 
coefficient r =  0.65 ± 0.04.  (In this paper, ± refers to 1 standard error, frequently 
called by physicists “one standard deviation”.)  This is the highest peak in any of the 
cross-correlation plots we calculated, and it occurs at zero lag. The correlation 
coefficient for the temperature data with ENSO is substantially less, with r = 0.49 ± 
0.04.  The error uncertainties were estimated from the variance of the four 
correlations.  There is no statistically significant correlation seen in panels (c) and (d). 
 
For reference, the maximum correlation between AMO and ENSO in these data is 0.50 
± 0.04; with AMO lagging ENSO by 0.70 ±  0.25 years.  This is a somewhat larger lag 
than previously reported in a more detailed analysis of ENSO by Trenberth et al.  
[2002].  
 
To estimate the statistical significance of the AMO r-factor, we did a permutation test 
based on a Monte-Carlo simulation.  The AMO pre-whitened record contains 16 points 
at which the index rises through zero; we chopped the record at these points, creating 
17 AMO segments.  The order of these segments was then permuted randomly and 
reassembled, creating a simulated AMO.  Because of the manner of cutting, the 
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scrambled AMO has many of the same statistical properties as the original AMO; it 
has the identical amplitude distribution as well as the same number and shapes of 
peaks and valleys; indeed, it looks to the eye very much like the original AMO.  We 
generated 1,000,000 of these simulated AMOs, and calculated the correlation 
coefficient r for each of these with the Tavg of the Berkeley Earth surface land 
temperature record.  In those 1,000,000 simulated AMO trials, the highest value of r 
obtained was 0.49, substantially less than the value of 0.65 ± 0.04 obtained with the 
real AMO, giving a p-factor less than 10-6.  Of course, it is not too surprising that land 
temperature estimates are correlated with sea temperature indices; the key 
observation is that for interannual to decadal variations, it is the AMO that has the 
strongest correlation, not ENSO or one of the other indices.  
 
Figure 5(A) shows the conditioned AMO and PDO indices as a function of time.  It can 
be seen on this plot that PDO generally leads AMO. The correlation is shown in Figure 
5(B).  Although the correlation peaks near zero lag, the bulk of the central correlation 
peak is at a lag of about 2 years. The periodicity of the correlation plot is an indication 
of a periodicity in both AMO and PDO that we will discuss next. 
 

 
Figure 5.  (a) shows the pre-whitened AMO and PDO indices plotted together vs time.  
It can be seen that PDO leads AMO by about 2.5 years.  (b) shows the correlation of 
AMO and PDO vs lag.  The periodicity of the correlation (4.5 cycles in 40 years of lag) 
is a result of the apparent presence of a 9-year cycle in both. 

 
It is not possible from the correlations to ascribe causality with any certainty.  For 
example, Zhang and Delworth [2007] suggested that the observed AMO leads the 
inverted PDO index by about 12 years, and discussed the possible mechanism for the 
Atlantic-Pacific linkage.  On our plot Figure 5(b) this corresponds to the large 
downward variation at Lag of negative 12 years.  Such ambiguities could be addressed 
by mapping the correlation over the world as a function of time.  
 

 
4. Correlation Map 
 
In Figure 6 we show a map of the decadal correlations of both AMO and ENSO with 
the NOAA global temperature anomaly map; this map includes oceans as well as land.  
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The association with AMO is broadly distributed and unidirectional.  The effect of El 
Nino on temperature is locally stronger, but can be of either sign, leading to less 
impact on the global average.  The strong correlation of AMO with the Atlantic is, of 
course, a result of the fact that the AMO is derived from Atlantic temperatures; 
similarly for the strong correlation between ENSO and the equatorial Pacific.  ENSO 
also shows a strong correlation with the Indian ocean.  On the land, the AMO affects 
Africa, southern Asia, and Canada; ENSO correlates most strongly to the continents in 
the Southern hemisphere.  Note its weak correlation to the Atlantic.  
 

 
Figure 6. Correlation maps of the filtered AMO and ENSO time series with similarly 
filtered temperature time series taken from the Earth’s surface temperature map 
constructed by the NOAA group.  Colors show the degree of correlation at each 
location.  AMO is observed to have positive or neutral correlation almost everywhere, 
while ENSO shows both strong positive and negative correlations. 

 
Remarkably, neither AMO nor ENSO shows a strong correlation with the temperature 
in the United States, although ENSO reaches strongly up the west coast of the US.  The 
variations in the Caribbean, related to the hurricane intensity hitting the southern 
coast of the US, is more strongly affected by AMO than by ENSO.  The correlation 
patterns help to explain the larger association observed between AMO and Tavg than 
between ENSO and Tavg.  ENSO is locally a more intense effect, but it is also a more 
complex one giving rise to both correlated and anti-correlated behavior.  By contrast, 
the AMO map shows positive (or neutral) correlation nearly everywhere.  Given this, 
it is not surprising that the simpler AMO association corresponds to a clearer imprint 
on the large scale average, Tavg. 
 
5. Spectral Analysis 

 
In Figure 7 we show the spectral power for the AMO and PDO pre-whitened indices.  
This spectral power estimate is a periodogram, calculated using a Fourier transform 
with no taper, padded with zeros to yield intermediate frequencies; the spectral 
method is described in Muller and MacDonald [2002]. 
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Figure 7. Spectral power in the (a) Atlantic Multidecadal Oscillation and in (b) the 
Pacific Decadal Oscillation.  The low frequency oscillations (< 0.06/yr) have been 
suppressed by the subtraction of a best-fit 5th order polynomial from each time series 
prior to calculation of the spectrum; similarly, a 12-month running average eliminated 
high frequency (e.g. monthly) fluctuations. A strong peak is observed in the AMO at 
0.110 ± 0.005 cycles/year, corresponding to a period of 9.1 ± 0.4 years, at the 98.3% 
confidence level. The maximum peak in the PDO occurs at a similar frequency, 0.111  
± 0.006, although with a confidence level of 94%.   

 
In the AMO spectrum, a strong peak appears at frequency 0.11 ± 0.005 /yr, period 9.1 
± 0.4 years.  We place no error bars on this plot because the expected distribution for 
a power spectrum is exponential, not gaussian.  Instead, we estimate the statistical 
significance of this peak using the Monte Carlo approach described earlier.  10,000 
time-scrambled AMO data were used as estimates of random background.  In these 
runs, we obtained a peak (at any frequency) of spectral power level of 18 or greater a 
total of 170 times.  Based on this, we conclude that probability that the observed peak 
in the unscrambled data could be due to chance is 170/10,000, i.e. the p-value is 1.7%.  
For the frequency uncertainty, a cycle of fixed frequency 0.1 cycle/yr and power 
amplitude 18 (same as the observed peak) was injected into a set of 10,000 scrambled 
AMO sets, and the observed root-mean-square of the frequency distribution was 
taken to be the frequency uncertainty.   
  
Although the 9.1 year peak in the AMO has high statistical significance, it contains only 
30% of the spectral power; for this reason its presence is not evident to the eye in 
Figures 3 or 4. 
  
The highest peak in the PDO spectrum, Figure 7 (b) has period 9.0 ± 0.5 years with 
amplitude 14.4 and p-value 6%.   None of the other peaks in Figure 6 are statistically 
significant.  We also looked at the spectra of ENSO, NAO, and Tavg; we did not find any 
statistically significant narrow spectral signals, although there is of course broad 
power in the decadal bands.  
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6. Summary and Discussion 

 
The similarity between the decadal fluctuations in land surface temperature records 
that use different sources indicates that the fluctuations are physical and not the 
effect of statistical fluctuations. The 2-15 year variations in AMO, based on sea surface 
temperature records, strongly correlates with the land record Tavg.  Although short-
term excursions, such as the temperature maximum in 1998 was widely associated 
with a strong El Nino event, the AMO is more closely associated with variability in the 
globally-average land surface temperature than is ENSO. 
 
For a discussion of the variability of the AMO, see Frankcombe et al. [2009], who 
identified important variability in two time scales: 20-30 years, and 50-70 years.  In 
this and much of other analyses prior to ours, the key focus was on longer time scales 
and so the data were smoothed with a decade-long running average; such a procedure 
suppresses the interannual to decadal scale variations (2 to 15 year) that are the 
subject of the present paper. 
In the interannual to decadal region we studied, there is only one statistically-
significant spectral peak, with the period of 9.1 ± 0.4 years, strong in the AMO, weaker 
in the PDO.  It is not present at a statistically significant level in the land Tavg or in 
ENSO or in other ocean indices that we examined.  Spectral analysis of global 
temperatures by others had previously yielded claims of many frequencies, most of 
which we conclude are not statistically significant when we analyze them using our 
Monte Carlo background estimation.  For example, Scafetta [2010], reported a forest 
of 11 spectral peaks based on a multitaper analysis; to each of these peaks he 
calculated 99% confidence intervals.  He reported 7 peaks with periods in the range 
from 5.99 years to 14.8 years.  One of these is at our period of 9.1 years; he suggests 
that this year cycle could be induced by lunar tidal variations. However, we find that 
when we use our Monte Carlo methods to estimate background, none of his claimed 
peaks are statistically significant except for the 9.1 year peak; we do not find them in 
the AMO, PDO, or ENSO. 
 
Correlation does not imply causation.  The association between Atlantic sea surface 
temperature fluctuations and land temperature may simply indicate that both sets of 
temperatures are responding to the same source of natural variability.  However, it is 
also interesting to consider whether oceanic changes in the AMO may be driving 
short-term fluctuations in land surface temperature.  Such fluctuations might 
originate as instabilities in the AMO region itself, or they might occur as a non-linear 
response to changes elsewhere (such as within the ENSO region).  
  
If the fluctuations originate locally, then they might be associated with natural 
variations in the meridional overturning circulation (MOC) or from salinity anomaly 
events (Dickson et al., 1988; Belkin,2004).  They could be related to a larger instability 
in the flow of the thermohaline circulation (the oceanic conveyor belt).  Computer 
simulations of the thermohaline circulation by Jungclaus et al. [2010] “show 
pronounced multidecadal fluctuations of the Atlantic overturning circulation and the 
associated meridional heat transport. The period of the oscillations is about 70–80 yr.  
The low-frequency variability of the meridional overturning circulation (MOC) 
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contributes substantially to sea surface temperature and sea ice fluctuations in the 
North Atlantic.”   
 
A theory for decadal oscillations in the North Pacific was devised by Munnich [1998].  
It involves an interaction between wind and the thermohaline circulation.  Such 
models predict broad spectrum of frequencies, and could drive the structure we see in 
Figure 3(A), but we would not expect such a driving force to result in the narrow 9.1 
yr peak.  For more on exited internal modes, see Frankcombe et al. [2010] and 
Sévellec et al. [2009, 2010] and the references therein.  
 
Given that the 2-15 year variations in world temperature are so closely linked to the 
AMO raises (or re-raises) an important ancillary issue: to what extent does the 65-70 
year cycle in AMO contribute to the global average temperature change? (Enfield, 
2006; Zhang et al., 2007; Kerr, 1984.)  Since 1975, the AMO has shown a gradual but 
steady rise from -0.35 C to +0.2 C (see Figure 2), a change of 0.55 C.  During this same 
time, the land-average temperature has increased about 0.8 C.  Such changes may be 
independent responses to a common forcing (e.g. greenhouse gases); however, it is 
also possible that some of the land warming is a direct response to changes in the 
AMO region.  If the long-term AMO changes have been driven by greenhouse gases 
then the AMO region may serve as a positive feedback that amplifies the effect of 
greenhouse gas forcing over land.  On the other hand, some of the long-term change in 
the AMO could be driven by natural variability, e.g. fluctuations in thermohaline 
flow.  In that case the human component of global warming may be somewhat 
overestimated. 
 
 In conclusion, our analysis suggests that strong interannual and decadal variations 
observed in the average land surface temperature records represent a true climate 
phenomenon, not only during the years when fluctuations on the timescale of 2-15 
years had been previously identified with El Nino events. The variations are strongly 
correlated with the similar decadal fluctuations observed in the Atlantic Multidecadal 
Oscillation index, and less so with the El Nino Southern Oscillation index.  This 
correlation could indicate that the AMO plays an important intermediary role in the 
influence of the Pacific ENSO on world climate; alternatively, it might indicate that 
variability in the thermohaline flow plays a bigger role than had previously been 
recognized.  The models could be tested by studying the temperature correlations in 
the ocean as a function of location and time.  A 9.1 ± 0.4 year cycle is observed in the 
pre-whitened AMO, but it contributes only 30% to the variance.  A similar cycle at 9.0 
± 0.5 years is seen in the PDO. 
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