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Abstract

An algebra is presented for a simple probabilistic data model that may be regarded

as an extension of the standard relational model. The probabilistic algebra is developed

in such a way that (restricted to α -acyclic database schemes) the relational algebra is a

homomorphic image of it. Strictly probabilistic results are emphasized. Variations on

the basic probabilistic data model are discussed. The algebra is used to explicate a com-

monly used statistical smoothing procedure and is shown to be potentially very useful

for decision support with uncertain information.

Index Terms − Bayes and Markov networks, data models, decision support, probability,

relational algebra.

I. Introduction

Beginning in the mid−1960s, researchers in systems theory, influenced by Ashby

[2], Lewis [22] and others, began work on techniques for reconstructability analysis of

finite-variable relational and probabilistic systems [20]. These methods are primarily

aimed at identifying collections of subsystems into which a system may be (nearly-)

losslessly decomposed.

Noting the parallels between reconstructability analysis and database theory, Cav-

allo and Pittarelli [9] introduced a probabilistic model of data generalizing the relational

model (by replacing the characteristic function of a relation with a finite probability dis-

tribution function). Since then, models have been proposed allowing probability inter-

vals [34], embedding of multiple distributions within a single "probabilistic relation"

and incompletely specified distributions [3].

In what follows, the relative expressive power of these models is discussed. An

outline is sketched of a probabilistic algebra analogous to the relational algebra. The

utility of this algebra for the construction of probabilistic decision support systems is

illustrated. The algebra is used to explicate a commonly applied probability estimation



technique. Connections to Bayes and Markov network research are also noted.

II. Probabilistic Data Models

In the standard relational model, a relational database instance is informally

viewed as a collection of tables. Each column of a table is associated with an attribute

that can take on any of a finite number of values. Each row is a sequence of these val-

ues.

Example II.1: The tables below represent a simple relational database in the customary

format. (See Maier [26].)

production (Plant Type Output) quality (Plant Acceptable)

Lubbock Chain Medium Lubbock Yes
Lubbock Sprocket Low Waco No

Waco Chain High
Waco Sprocket High

More formally, a relational database instance is a (finite) collection of relations on

finite domains; i.e., a set of subsets of Cartesian products of finite sets. Let dom(A)

denote the domain of attribute A. Then the relation instance ’quality’, for example, is a

subset of the product set dom(Plant)×dom(Acceptable). As observed by Nambiar [30],

it is often advantageous to work with the characteristic function associated with a rela-

tion. In this paper, a relation is identified with its characteristic function. Let V be the

set of attributes (relational scheme) for relation instance r. Let dom(V) = ×A∈V dom(A).

Then r:dom(V) → {0, 1}, where, for any tuple t∈dom(V), r(t)=1 if and only if t is a

member of relation instance r. So,

production(Lubbock, Chain, Medium) = 1,

production(Lubbock, Chain, High) = 0, etc.

(In a tabular representation of the characteristic function, those tuples t of dom(V) for

which r(t)=0 are omitted.

A relational database is thus a collection R = {r1, . . . ,rm}, where

ri:dom(Vi) → {0, 1}. The set {V1, . . . ,Vm} is the database scheme or structure [26] for

R. A probabilistic database is a collection P = {p1, . . . ,pm}, where pi:dom(Vi) → [0, 1]

and Σt ∈dom(Vi)pi(t) = 1.

Example II.2: The database {p1,p2} below represents a (fictional) pooled sample

of 100 parts from two different manufacturing plants.



Type Plant p1(t) Plant Defective p2(t)

Chain Lubbock 16/100 Lubbock No 27/100
Chain Waco 42/100 Lubbock Yes 2/100

Sprocket Lubbock 13/100 Waco No 48/100
Sprocket Waco 29/100 Waco Yes 23/100

An entry pi(t)=x may be interpreted as stating that the relative frequency with which a

part from the sample possesses the tuple of attributes t is x.

The set {p1,p2} of Example II.2 is a probabilistic database of the type discussed by

Cavallo and Pittarelli [9]. Extensions to this model have been proposed. Pittarelli [34]

considers interval-valued probabilistic databases, in which distribution functions map

tuples to closed subintervals of the real interval [0, 1].

Example II.3:

Color Shape i(t)

Black Sphere [0.3, 0.6]
Black Cube [0.1, 0.4]
White Sphere [0, 0.3]
White Cube [0, 0.3]

The set of intervals {i(t)|t∈dom(V)} is regarded as a collection of linear inequality

constraints on real-valued distributions over dom(V). For distribution i of Example II.3,

the associated set of real-valued distributions is the set of solutions p to the system
p(Black, Sphere) ≥ 0. 3

p(Black, Sphere) ≤ 0. 6

. . .

p(White, Cube) ≥ 0

p(White, Cube) ≤ 0. 3

Values i(t) may be confidence intervals constructed from frequencies (e.g. the data

of Example II.2) or imprecisely stated subjective probabilities determined by introspec-

tion or elicited from experts. They may also be derived from knowledge of lower-

dimensional (real- or interval-valued) distributions, as discussed in Section III.

Barbara′, Garcia-Molina and Porter [3] propose a model in which multiple proba-

bility distributions may be contained within a single probabilistic relation. These rela-

tions have deterministic keys. In addition, it is possible to incompletely specify the dis-

tributions. Two examples follow.

Example II.4 [3]:



Employee Department Quality Bonus Sales

Jon Smith To y 0.4 [Great Yes] 0.3 [30-34K]
0.5 [Good Yes] 0.7 [35-39K]
0.1 [Fair No]

Fred Jones Houseware 1.0 [Good Yes] 0.5 [20-24K]
0.5 [25-29K]



Example II.5 [3]:
Student GPA Interest Accept Evaluation

Adam 3.8 0.7 [theory] 0.6 [Y A]
0.3 [ * ] 0.1 [N A]

0.3 [* *]

Eve 3.9 0.6 [database] 0.5 [Y A]
0.4 [systems] 0.3 [Y B]

0.2 [Y C]

The entry 0.3 [*] above is referred to as a missing probability. It is considered to be dis-
tributed in some unknown fashion among the values of dom(Interest), including ’the-
ory’.

Any probabilistic relation without missing probabilities may be represented (some-
what awkwardly) by a real-valued Cavallo-Pittarelli database: For each independent
attribute or cluster of attributes (over each of which a probability distribution is speci-
fied) construct a probability distribution over the key attributes and the cluster by divid-
ing the given probabilities by the number of distinct key values in the active domain of
the probabilistic relation. To recover the original probabilistic relation, multiply each
probability by the number of active key values (i.e., key values of the tuples assigned
positive probability) and collect the resulting distributions into a single table, grouped
by key value. (This may be accomplished by means of the probabilistic select operator,
Section III.D.) Whether or not such a transformation is applied, the algebra of Section
III is applicable to the distributions in a collection of probabilistic relations.
Example II.6: The probabilistic relation of Example II.4 is represented as the database

Employee Department p1(t)

Jon Smith To y 0.5
Fred Jones Houseware 0.5

Employee Quality Bonus p2(t)

Jon Smith Great Yes 0.2
Jon Smith Good Yes 0.25
Jon Smith Fair No 0.05
Fred Jones Good Yes 0.5

Employee Sales p3(t)

Jon Smith 30-34K 0.15
Jon Smith 35-39K 0.35
Fred Jones 20-24K 0.25
Fred Jones 25-29K 0.25

Probabilistic relations with missing probabilities (probabilities assigned to tuples

containing wildcard values, denoted by asterisks) can be represented by an interval-



valued probabilistic database [34]. The probability assigned to a tuple without wildcard

components is interpreted as the lower endpoint of the probability interval associated

with the tuple. The sum of this value and the probabilities assigned to matching wild-

card tuples is the upper endpoint. (Probabilities x of distributions without missing prob-

abilities are represented as intervals [x, x].) Divide each interval endpoint by the number

of key tuples in the active domain. The result is an interval probability distribution.

Example II.7: Transformation of Example II.5:

Student GPA i1(t)

Adam 3.8 [0.5,0.5]
Eve 3.9 [0.5,0.5]

Student Interest i2(t)

Adam theory [0.35,0.5]
Adam t∈dom(Interest)-{theory} [0,0.15]
Eve database [0.3,0.3]
Eve systems [0.2,0.2]

Student Accept Evaluation i3(t)

Adam Y A [0.3,0.45]
Adam N A [0.05,0.2]
Adam t∈(dom(Acc.)×dom(Eval.))-{(Y,A),(N,A)} [0,0.15]
Eve Y A [0.25,0.25]
Eve Y B [0.15,0.15]
Eve Y C [0.1,0.1]

A standard relational database instance may also be transformed via an injective

mapping to a Cavallo-Pittarelli probabilistic database: For non-empty relations r,

trp(r)(t) = r(t)/Σtr(t).

For a database R = {r1, . . . ,rm}, {trp(r1), . . . ,trp(rm)} is abbreviated trp(R). Let PV and

RV denote the set of all distributions and the set of all non-empty relations, respectively,

over dom(V). Since PV is infinite and RV is finite, trp does not have a two-sided inverse.

Further, it has infinitely many left inverses, functions f from distributions to relations

with the property

f(trp(r)) = r.

A reasonable choice is the (onto, total) function tpr under which a tuple is included in

the resulting relation if and only if it is assigned non-zero probability. In Section III, tpr

is shown to be a homomorphism from probabilistic to relational systems defined in

terms of standard relational operators and their probabilistic analogues. In [9] it is

shown that the transformation trp preserves standard relational data dependencies



(functional, join, etc., in probabilistic form (characterized in terms of conditional and

relative entropy); the notion of approximate satisfaction of relational and probabilistic

dependencies is also discussed there.

Unless stated otherwise, all subsequent uses of the term "probabilistic database"

refer to the real-valued Cavallo-Pittarelli model [9].

III. Probabilistic Data Algebra

A fairly small set of probabilistic operators is discussed. Three − projection, selec-

tion, and (maximum entropy) join − are shown to be formally analogous to the corre-

spondingly named relational operators. (Linear) pooling, a widely used method of rec-

onciling differing expert probability assessments, is shown to be analogous to relational

union. Extension has a relational counterpart, but the probabilistic version seems to be

more useful (e.g. for decision making, as discussed in Section IV.A). Most of the results

derived in this section are strictly probabilistic and are shown in Section IV to have

practical applications.

A. Models and Projection

For tuples w∈dom(W) and b∈dom(B), B⊆W, w[B]=b iff w and b agree on all

attributes in scheme B. The projection of p with scheme V onto A⊆V is the distribution

π A(p), where

π A(p)(a) =
t ∈dom(V ), t[A]=a

Σ p(t).

Marginal probabilities p(S), S⊆dom(V), are computed as

p(S) = Σt ∈Sp(t).

With tuples t∈dom(V) viewed as disjoint events, these definitions follow from the addi-

tivity of probability.

Relational projection may be defined in terms of the characteristic function as

π A(r)(a) =
t ∈dom(V ), t[A]=a

max r(t).

It follows trivially from these definitions that

tpr (π A(p)) = π A(tpr (p)), (Eq. III.1)

i.e., that tpr is a homomorphism from (PV , PA, π A) to (RV , RA, π A), and that

π A(r) = tpr (π A(trp(r))). (Eq. III.2)

Lemma 1. πV (p) = p, if V is the scheme for p.

Lemma 2. A⊆B implies π A(π B(p)) = π A(p).



The corresponding result for relations [26] may be derived from the above:

Theorem 3. π A(π B(r)) = π A(r), if A⊆B.

Proof: From tpr onto, Eqs III.1 and III.2, Lemma 2, and the observation

π A(trp(tpr (π B(p)))) = 0 iff π A(π B(p)) = 0.

A model of a scheme V is a structure X={V1, . . . ,Vm} such that
m

j=1
∪ V j⊆V and

Vi⊂/ V j for all i,j∈{1,...,m}. (X will sometimes be referred to as a model of a distribu-

tion with scheme V.) If X is also a cover of V, then X is a reduced hypergraph over V

[26]. Normally, attention is restricted to reduced hypergraph models of a given scheme

V.

A distribution with scheme V may be projected onto a model X={V1, . . . ,Vm} of V

to form a probabilistic database

π X (p)={πV1
(p),. . . , πVm

(p)}.

Example III.1: The database of Example II.2 is the projection π X (p) of the distribution

below, with X = {{Type, Plant}, {Plant, Defective}}.

Type Plant Defective p(t)

Chain Lubbock No 15/100
Chain Lubbock Yes 1/100
Chain Waco No 22/100
Chain Waco Yes 20/100

Sprocket Lubbock No 12/100
Sprocket Lubbock Yes 1/100
Sprocket Waco No 26/100
Sprocket Waco Yes 3/100

A useful partial ordering on models is the refinement relation [8]. A structure X is

a refinement of structure Y (and Y is an aggregate or coarsening of X), denoted X≤Y, iff

for each Vx ∈X there exists a Vy ∈Y such that Vx⊆Vy. For example, {{A},{B,C}} is a

refinement of {{A,B},{B,C},{D}}. The set of all models over V together with the

refinement ordering is a lattice. Any pair of models has a greatest lower bound equal to

their least refined common refinement and a least upper bound equal to the most refined

structure of which they are both refinements. The universal upper bound of the lattice of

models over V is {V}; the lower bound is {∅}. For the (sub)lattice of reduced hyper-

graphs, the universal lower bound is {{v}|v∈V}.

A database P with structure Y may be projected onto a refinement X of Y to form a

database π X (P) each element of which is a projection of some element of P.



Example III.2: Projecting P={p1,p2} of Example II.2 onto the structure

{{Type},{Plant},{Defective}} results in the database

Type π {Type }(p1)(t) Plant π {Plant }(p1)(t) Defective π {Defective }(p2)(t)

Chain 58/100 Lubbock 29/100 No 75/100
Sprocket 42/100 Waco 71/100 Yes 25/100

For a set of distributions D, πV (D) denotes the image of D under the mapping πV . Thus,

for any family of sets (Di)i∈I ,

πV (∪i∈I Di) = ∪i∈I πV (Di)

and

πV (∩i∈I Di) ⊆ ∩i∈I πV (Di).

B. Extension

For a distribution p with scheme A, its extension to the scheme V, A⊆V, is the set

of all preimages of p under the mapping π A:

EV (p) = {p′∈PV |π A(p′) = p}.

The extension of a database P is the intersection of the extensions of its elements:

EV (P) = ∩p∈PEV (p).

Thus, EV (π X (p)) is the set of all preimages of the database π X (p) under the mapping π X ;

any model X of V partitions PV into classes EV (π X (p)) equivalent with respect to projec-

tions onto X. If the structure of P is a cover of V, then EV (P) may be abbreviated E(P).

Any EV (p) or EV (P) is a convex polyhedron (set of solutions to the system of linear

equations determined by the projection conditions). As discussed in Section IV.A, this

makes feasible decision support without assumption or computation of a universal

instance [26].

Example III.3: The database below represents partial information regarding the

contents of a box of wooden blocks.
Color p1(t) Shape p2(t)

Black 0.7 Sphere 0.6
White 0.3 Cube 0.4

Its extension to {Color, Shape} is the set of solutions p to the system
p(Black, Sphere) + p(Black, Cube) = 0. 7

p(White, Sphere) + p(White, Cube) = 0. 3

p(Black, Sphere) + p(White, Sphere) = 0. 6



p(Black, Cube) + p(White, Cube) = 0. 4

(The equations imply that Σtp(t) = 1.) From just the information given, it cannot be

determined which of the infinitely many members of E(P) is the actual joint distribution

over {Color, Shape} for this box of blocks.

The extension of a relational database instance may be defined analogously, substi-

tuting the maximum operator for addition. For a relational database R, (E(R), ⊆) is a

partially ordered set with the natural join of R as maximum element.

Since E(P) is convex, the set of values {p(t)|p∈E(P)} for a given tuple t is an inter-

val. The collection of intervals for each t∈dom(V) is an interval-valued distribution. For

the database of Example III.3, the corresponding interval distribution is given as Exam-

ple II.3. Information is lost when the equations defining E(P) are replaced by the asso-

ciated intervals. For example, the distribution

Color Shape p(t)

Black Sphere 0.5
Black Cube 0.1
White Sphere 0.2
White Cube 0.2

is consistent with the intervals of Example II.3 but violates each of the equations in

Example III.3.

Each element of E(P) is a potential universal instance for P, a distribution p for

which π X (p) = P. Databases whose extensions are nonempty are referred to as consis-

tent. As is the case with relational databases, it is not necessary for an otherwise useful

probabilistic database to be consistent. Real-valued probabilistic databases that are not

constructed by projection of a given distribution onto a model are in fact likely to be

inconsistent. (Methods for reconciling inconsistent sets of distributions have been stud-

ied [28].)

For databases with α -acyclic structures [12], a sufficient condition for consistency

is that each pair of distributions agree on projections onto shared attributes [39]. So, the

database of Example II.2 is consistent:

π {Plant }(p1) = π {Plant }(p2).

Extension is complementary to projection in the weak sense that p∈EV (π A(p)),

where V is the scheme for p. Several useful results follow easily from the definitions of

projection and extension:

Lemma 4. If V is the scheme for p and V⊆W⊆S, then πW (ES(p)) = EW (p).



Lemma 5. πV (p)∈EV (π X (p)).

Lemma 6. EV (π {∅}(p)) = PV .

Lemma 7. EV (π {V }(p)) = {πV (p)}.

Lemma 8. If the structure for P is a cover of V, then V⊆S implies

πV (ES(P)) ⊆ E(P).

Proof : πV (ES(P)) = πV (∩p∈PES(p)) [Def. Extension]

⊆ ∩p∈PπV (ES(p))

= ∩p∈PEV (p) [Lemma 4]

= EV (P) [Def. Extension]

Theorem 9. X≤Y implies EV (πY (p)) ⊆ EV (π X (p)).

Proof [9]: EV (π X (p)) is the set of all solutions to the linear system determined by the

projection of p onto the structure X. If X≤Y, then each equation determined by the pro-

jection of p onto X is a linear combination of equations in the system determined by the

projection of p onto Y; thus, all solutions to the latter system are also solutions to the

first.

If E(π X (p)) = {p}, then p is said to be identifiable from (its projections onto) X. (A

distribution is never identifiable from a model that is not a cover of its scheme.) The

smaller the set E(π X (p)) the more information regarding p is contained in the projec-

tions π X (p). From Theorem 9, if X≤Y, more information is recoverable from Y than

from X for any distribution p for which X and Y are models. (Unfortunately, a randomly

selected pair of structures is unlikely to be comparable under ≤; so it usually cannot be

determined a priori which of two models of a distribution will be more informative in

this sense.) From Lemmas 1 and 7, any p with scheme V is identifiable from the struc-

ture {V}. By Lemma 6, no information is contained in E(π {∅}(p)) that would distinguish

p from any other element of PV .

Ashby and Madden [25] investigate conditions under which relations are identifi-

able from projections and conclude that they are met extremely rarely. A fortiori, this is

the case also for probability distributions. Methods for picking a single universal

instance from the (almost certainly infinite) set E(P) are discussed next.

C. Join and Decomposition



It may be argued that the sole reason for estimating a probability distribution is to

base a decision on it. Given that methods exist (Section IV.A) for basing decisions on

sets of distributions, why select a single universal instance from E(P)? There are many

situations where it is reasonable to do so.

A consistent database may be more compactly represented as a universal instance

if its structure is relatively unrefined. For any database P with structure X, P = π X (p),

for any p∈E(P). So P is recoverable from any of its universal instances without loss of

information. Suppose X consists of all (n−1)-element subsets of a set of n binary

attributes. Then n/2 times as many numbers are required to represent P as are needed for

any p∈E(P). (Of course, this works the other way, too. If the structure X is relatively

refined, then storage or transmission of π X (p) is cheaper than that of p. This motivated

the earliest published research in what could be considered probabilistic database theory

[5, 22]. However, as discussed below, there usually does not exist a non-trivial model

from projections onto which a distribution may be recovered.)

It may be known that certain relations of (conditional) probabilistic independence

hold among the attributes of the database. If these relations and the marginal probabili-

ties pi(t) are taken as exact, then a unique p∈E(P) may be inferred.

Let P = {p1, p2}, with structure {V1, V2}. The (pairwise) join of P is the probabil-

ity distribution J(P) ∈E(P) whose components are calculated as

J(P)(t) = p1(a)×p2(b)/
c|c[V1∩V2]=b[V1∩V2]

Σ p2(c),

where a=t[V1] and b=t[V2]. (The denominator of the above expression equals 1 if

V1∩V2 = ∅.)

Example III.4: The join of the database in Example II.2 is the distribution:
Type Plant Defective J({p1, p2})(t)

Chain Lubbock No 0.149 = (16/100×27/100)/(27/100+2/100)
Chain Lubbock Yes 0.011
Chain Waco No 0.284
Chain Waco Yes 0.136

Sprocket Lubbock No 0.121
Sprocket Lubbock Yes 0.009
Sprocket Waco No 0.196
Sprocket Waco Yes 0.094

For sets of variables V1, V2, and V3, V1 is conditionally independent of V2, giv en V3,

iff p(t12|t3) = p(t1|t3)×p(t2|t3), for all t12 ∈dom(V1∪V2) and t3 ∈dom(V3), where

t1 = t12[V1] and t2 = t12[V2]. It follows immediately that:



Theorem 10. For a model {V1, V2} of p with scheme V1∪V2, p = J(π {V1,V2}(p)) iff

V1−(V1∩V2) and V2−(V1∩V2) are conditionally independent, given V1∩V2.

For the industrial parts example, since the distributions of Examples III.1 and III.4 are

not equal, the attributes Type and Defective are not conditionally independent given

Plant.

More generally, the join of a database P = {p1, . . . ,pm} is the element JV (P) of

EV (P) with maximum entropy:

H(JV (P)) =
p∈EV (P)
max H(p),

where

H(p) = −Σtp(t)×log(p(t)).

(Normally, the structure of P is a cover of V. In this case, or when the context makes

clear what set of variables is intended, the superscript is dropped.) Recall that for any

p′∈E(π X (p)), π X (p′) = π X (p). Thus:

Lemma 11. π X (J(π X (p))) = π X (p).

Since the maximum entropy element of an extension E(P) is unique [19], it follows that:

Theorem 12. J(π X (p)) is the unique fixed point of the project-join mapping

Joπ X : E(π X (p)) → E(π X (p)).

If p = J(π X (p)), then p is said to be reconstructable from X. (From Theorem 12,

only one of the infinitely many distributions in a non-unit equivalence class of distribu-

tions E(π X (p)) is reconstructable from X.) If p is identifiable from X, then it is recon-

structable from X, but not conversely. (None of the elements of a non-unit E(π X (p)) is

identifiable from X.)

For any set K with a unique maximum entropy element, for example, π A(E(P)), let

J(K) denote that element. When K is E(P) for a given P, computation of J(K) is more

efficient than in the general case.

Let P = {p1, . . . ,pm}. The result of a sequence of applications

J(. . .(J(J(pσ (1), pσ (2)), pσ (3)). . .), pσ (m))

of the pairwise join procedure, where σ is a permutation of {1, . . . ,m}, is a product

extension of P iff it is an element of E(P).

Theorem 13 [22]. If p is a product extension of P, then p = J(P).

Theorem 14 [39]. If the structure of P is α -acyclic, then a product extension of P may

be computed with σ corresponding to the reverse of any order in which elements of the

structure of P are eliminated by Graham’s algorithm [12].



(For α -cyclic structures, an iterative proportional fitting algorithm converges to J(P)

[5, 20, 38].)

Thus, if X is α -acyclic,

tpr (J(π X (p))) = J(π X (tpr (p))), (Eq. III.3)

i.e., tpr is a homomorphism from (PV , Joπ X ) to (RV , Joπ X ), and

r = J(π X (r)) iff trp(r) = J(π X (trp(r))), (Eq. III.4)

i.e., r satisfies the join dependency |><|[X] iff trp(r) is reconstructable from X [9].

For α -cyclic X, there exist relations r for which

r ≠ J(π X (r))

but

r = tpr (J(π X (trp(r)))).

On the other hand [9], for no structure X (cyclic or otherwise) is it the case that

r = J(π X (r))

and

r ≠ tpr (J(π X (trp(r)))).

So, embedding the relational algebra in the probabilistic via the mapping tpr has the

advantage of allowing non-trivial lossless decomposition of more relations.

In reconstructability analysis, two complementary problems are studied. The iden-

tification problem is to determine from a consistent database π X (p) as much as possible

regarding p. Usually, the system of projection equations (with unknowns p(t)) is under-

determined. So all that can be inferred deductively is that p∈E(π X (p)). This may be

sufficient for decision making (Section IV.A) or if determination of bounds on particular

p(t) is all that is required.

The identification problem is a type of inverse problem in which data are generated

via some non-injective mapping from a set of sources. The problem is to identify, using

some reasonable criterion, a best representative element from the usually infinite set of

preimages for the given data (in this case, a consistent probabilistic database instance).

In all published applications of reconstructability analysis [20], the solution has been to

maximize entropy within E(P); i.e., to select J(P). The primary reason given is that this

is the information-theoretically least bold inference that can be made from the data.

Appeal is also made to Jaynes’ concentration theorem, which has been interpreted as

stating that the (relative frequency) distribution J(P) is the most likely to arise from

observations satisfying the marginal constraints P and that this likelihood decreases with

increasing distance from J(P) [18].



The maximum entropy approach is criticized in [15, 24, 37]. Interestingly, selec-

tion of the centroid of a set of distributions is advocated in [24]. The centroid, C(P),

minimizes the expected squared-error when it is selected as a solution to the identifica-

tion problem. But C(P) is more difficult to calculate than J(P) [32]. When X = {V} or

X = {∅}, J(P) = C(P). In experiments involving approximately 8,000 randomly gener-

ated databases with non-trivial structures, the ratio of the squared-error distance

between J(P) and C(P) to the squared-error diameter of E(P) was found to be approxi-

mately 0.09 [33]. So the join of P, when selection of a single representative element of

E(P) is called for, is, all things considered, not an unreasonable choice.

If relations of conditional independence are known to hold for some subset of

attributes W, the preimage set may be reduced by calculating joint probabilities p(w)

and adding the linear equation

t |t[W ]=w
Σ p(t) = p(w)

to the system for each w∈dom(W). (This corresponds to the embedded join depen-

dency concept of relational database theory [13].) If the independence relations corre-

spond exactly to the (α -acyclic) structure of P, then a unique solution, J(P), is deter-

mined.

This leads to consideration of the connections between probabilistic database the-

ory and Bayes/Markov network research [31]. A probabilistic database may be used in

conjunction with such networks. The conditional probabilities necessary for propaga-

tion may be calculated from the marginal tables. At the same time, the structure of a

database needn’t reflect the dependency structure (if any) of its attributes. This is the

case when, for whatever reason (e.g., constraints on data collection over large groups of

attributes simultaneously) data are obtainable only in the form of certain marginal distri-

butions. As discussed in Section IV.A, for decision making it is not necessary to work

with a single, numerically determinate probability distribution, as in the standard

Bayes/Markov network methodology. Determination of a set (not necessarily the small-

est determinable set) of distributions compatible with the data P sometimes suffices.

Thus, it is possible to avoid the potential for error incurred by calculating a single distri-

bution, e.g., J(P), when it is not certain that the dependencies implying a single solution

actually hold.

The concept of approximate reconstructability is more useful than the correspond-

ing relational concept of approximate join dependency. A probability distribution which



it is desired to decompose into marginals is far more likely to be an approximation in

the first place than is a relation. Further, if a decision is to be based on the information

in a probabilistic database, it is only the ordering of actions by expected utility that mat-

ters, which is likely to be insensitive to small variations in the probabilities.

In reconstructability analysis, the degree to which p is reconstructable from X is

quantified as d(p, J(π X (p))), where d is directed divergence (relative entropy, cross-

entropy) [1]:

d(p, p′) = Σtp(t)×log(p(t)/p′(t)).
The reconstruction problem is to search for structures that minimize this quantity and

are maximally refined. However, since [17]

d(p, J(π X (p)) = H(J(π X (p))) − H(p),

X≤Y implies d(p, J(π X (p))) ≥ d(p, J(πY (p))). Thus, these two criteria are in conflict.

(Search procedures are discussed in [7, 8, 20].)

Although these procedures are used mostly for data analysis, significant storage

savings may also be achieved. For n k-ary attributes, storage of p requires kn numbers,

vs. kn for {π {v1}(p), . . . , π {vn}(p)}. Such dramatic compression might compensate for the

resulting information loss.

D. Select and Threshold

Select is a unary operation on PV : for S ⊆ dom(V),

σ S(p)(t) =




0,

p(t)/ Σt∈S p(t),

if t ∈/ S

otherwise.

σ X (p) is undefined when Σt ∈Sp(t) = 0.

Example III.5: In Example II.6, σ S(p2), where S = {t | t[Employee] = Jon Smith} is

Employee Quality Bonus σ S(p2)(t)

Jon Smith Great Yes 0.4
Jon Smith Good Yes 0.5
Jon Smith Fair No 0.1

which corresponds to one of the distributions of the probabilistic relation in Example

II.4.

The mapping tpr is a homomorphism with respect to select also:

σ S(tpr (p)) = tpr (σ S(p)).

The threshold operator is unary, and renormalizes a probability distribution after



eliminating components failing to exceed a specified value:

Tx(p)(t) =




0,

p(t)/ Σp(t)>x p(t),

if p(t) ≤ x

otherwise.

(Tx(p) is undefined when Σp(t)>xp(t) = 0.)

The composite mapping tpr oTα : PV → RV is analogous to the (strong) α -cut opera-

tor for fuzzy relations [11].

E.Pooling

Probability distributions are sometimes assessed subjectively; and multiple subjec-

tive assessments of a single distribution are sometimes solicited from independent

experts. One may wish to combine the estimates into a single distribution. This distribu-

tion may in turn be decomposed to form a probabilistic database.

These estimates are usually solicited for the purpose of decision making. Although

one could, using the techniques of Section IV.A, work with the entire convex hull of the

individual estimates, the standard practice is to select a single distribution from this set,

as in the identification problem of reconstructability analysis (Section III.C). A common

method (linear pooling [29]) is to compute a weighted average of the estimates:

p = w1p1+. . . +wkpk ,

where wi≥0, Σiwi=1, and wi>w j iff estimate pi is judged more trustworthy than esti-

mate p j .

Let Lpa,b(p, p′) = ap + bp′, a, b ≥ 0, a + b  =  1.

Theorem 15. Lpa,b(π A(p), π A(p′)) = π A(Lpa,b(p, p′)).
Theorem 16. For P, P′ with structure {V1, . . . ,Vm}, let

Lpa,b(P, P′) = {Lpa,b(p1, p′1), . . . ,Lpa,b(pm, p′m)}.

If P and P′ are locally consistent, then so is Lpa,b(P, P′).
Theorem 17. For any p, p′ ∈PV and a, b > 0, tpr (Lpa,b(p, p′)) = tpr (p) ∪ tpr (p′).

F. Updates

Arbitrary changes to a relation instance may be effected by a sequence of deletions

and insertions [26]. These in turn may be characterized algebraically as applications of

set difference and union, respectively.

Similarly, insertion and deletion applied to a relative frequency distribution (e.g.,

distribution p of Example III.1) may be characterized in terms of linear pooling. If c is



the number of observations recorded in distribution p, the result of incrementing the rel-

ative frequency of tuple t is the distribution

Lpc/c+1, 1/c+1(p, q),

where q(t) = 1. Allowing pooling with negative parameters, the result of retracting

observation t is

Lpc/c−1, −1/c−1(p, q).

Besides noting that updating elements of an existing database whose structure is

not a partition is likely to generate inconsistencies, the topic of probability updating in a

more general sense is beyond the scope of this paper. See the discussion and references

in [10, 31].

IV. Applications

A. Decision Support

Techniques for decision making from the information in a probabilistic database

may be devised by means of the probabilistic algebra. For a database P with structure

X, attention is restricted to decision problems with an event space S constructible from

elements of dom(V), V = ∪Vi ∈X Vi, a set of mutually exclusive and exhaustive possible

actions A, and a utility function u: S×A → R.

When S is a partition of dom(Vo) for some Vo ⊆ Vi ∈X, expected utilities are cal-

culated straightforwardly. In the most complicated case, the required distribution is

obtained as

p(s) = Σa∈s Σt[Vo]=api(t),

for all s∈S, by Lemma 2. (For convenience, if S = {{t} | t∈dom(Vo)}, then S is identi-

fied with dom(Vo).) Similarly, if dependencies permit calculation of a unique distribu-

tion p* over V*, Vo ⊆ V* ⊆ V, then

p(s) = Σa∈s Σt[Vo]=ap*(t).

When Vo ⊆/ Vi ∈X, the elements p of E(P), the potential universal instances, do not

necessarily agree on πVo
(p). The strongest inference that can be made is that

πVo
(p) ∈πVo

(E(P)).

Lemma 18. If Vo ⊆
Vi ∈X
∪ Vi, where X is the structure for P, then πVo

(p) ∈πVo
(E(P)), for

any p ∈E(P).

It is not guaranteed, for arbitrary p∈E(P), that πVo
(p) is contained in any smaller sets

that can be constructed by means of the algebra, for example, πVo
(E(πY (p′))), for Y > X



and p′∈E(P). When the required distribution is known only to the extent that it is a

member of some (non-unit) set K, criteria for decision making with partial information

may be applied to identify admissible actions [36]. For any of these criteria, the smaller

K is, the more likely it is that a single optimal action will emerge. Let ep(a) denote the

expected utility of action a relative to distribution p:

ep(a) = Σs∈Sp(s)×u(s, a).

Suppose it is known only that p∈K. The set of expected utilities for a as p ranges over K

is

UK (a) = {ep(a) | p∈K}.

When K is convex, UK (a) is an interval. Further, when K is the solution set of a system

of linear equations or inequalities, for example, πVo
(E(P)), the endpoints may be com-

puted by linear programming.

One criterion for decision making with such information orders actions as

ai > a j iff min UK (ai) > max UK (a j)

and eliminates all but the maximal elements of A under this ordering as inadmissible

[23]. This criterion will be applied to the problem of Example IV.1. (The same example

is analyzed according to a more stringent criterion in [36], with the same result.)

Example IV.1: Suppose P is
I B p1(t) B C p2(t) G D p3(t) E F p4(t)

i1 b1 0.2 b1 c1 0.2 g1 d1 0.3 e1 f1 0.2
i1 b2 0.3 b1 c2 0.4 g1 d2 0.3 e1 f2 0.5
i2 b1 0.4 b2 c1 0.3 g2 d1 0.3 e2 f1 0
i2 b2 0.1 b2 c2 0.1 g2 d2 0.1 e2 f2 0.3

Let S = dom(Vo) with Vo = {I,C}, and let A and u be given as:
sIC=i1c1

si1c2
si2c1

si2c2

a1 50 0 -5 1000
a2 0 10 20 0
a3 400 0 0 10

Calculating expected utility endpoints from the system of equations corresponding

to πVo
(E(P)) is unnecessarily expensive. A larger set, corresponding to a system with

fewer unknowns (8 vs. 128), suffices for this problem.

Theorem 19. Suppose Y≤X, the structure for P, and Y is a cover of V′, where

Vo ⊆V′ ⊆ V =
Vi ∈X
∪ Vi. Then πVo

(E(P)) ⊆ πVo
(E(πY (P))).

Proof: If E(P)=∅, then πVo
(E(P))=∅. If not, then P=π X (p) for any p∈E(P), and



πVo
(EV (π X (p))) = πVo

(πV ′(E
V (π X (p)))) [Lemma 2]

⊆ πVo
(πV ′(E

V (πY (p)))) [Theorem 9]

⊆ πVo
(EV ′(πY (p))) [Lemma 8]

= πVo
(EV ′(πY (π X (p)))) [Lemma 2]

= πVo
(E(πY (P))).

Corollary 20. For P and X as above, Z a cover of V′′ ⊇ Vo, and Z ≤ Y ≤ X,

πVo
(E(P)) ⊆ πVo

(E(πY (P))) ⊆ πVo
(E(π Z (P))).

If ai is uniquely maximal under ’>’ relative to a set K of distributions, then it is

uniquely maximal relative to any K′⊆K. This fact and Corollary 20 suggest the follow-

ing strategy: Starting with the structure W = {{v}|v∈Vo}, the most refined structure that

is a cover of some V′ ⊇ Vo, repeatedly aggregate W until there is a unique maximal ele-

ment under ’>’ relative to πVo
(E(πW (P))), or πVo

(E(πW (P))) happens to be a unit set, or

W=X, whichever comes first. However, if structures are replaced by immediate aggre-

gation, very little progress toward sufficient narrowing of utility intervals is likely to be

made at each iteration. Also, there will usually not be a unique immediate aggregate. A

reasonable alternative to a sequence of immediate aggregates is:

({{v}|v∈Vo}, {Vi∩Vo |Vi ∈X, Vi∩Vo≠∅}, {Vi |Vi ∈X, Vi∩Vo≠∅}, X).

Applying this method to the problem of Example IV.1, the utility intervals calculated

from π {I ,C}(E(π {{ I},{C }}(P))) = E({π {I }(p1), π {C }(p2)}) are indecisive:
U(a1) = [−2. 5, 525]

U(a2) = [0, 15]

U(a3) = [0, 205].

{Vi∩{I,C}|Vi ∈X, Vi∩{I,C}≠∅} = {{I},{C}} also. However,

{Vi |Vi ∈X, Vi∩{I,C}≠∅} = {{I,B},{B,C}}, and action a1 emerges as uniquely admissi-

ble with utility intervals calculated from π {I ,C}(E(π {{ I ,B},{B,C}}(P))) = π {I ,C}(E({p1,p2})):
U ′(a1) = [208, 525]

U ′(a2) = [0, 9]

U ′(a3) = [82, 205].

Therefore, a linear program involving only 8 unknowns (or, counting the previous steps,



two programs, one with 4 unknowns and one with 8) is sufficient to identify a unique

best action, vs. 128 unknowns for the linear program associated with π {I ,C}(E(P)).

An algorithm of Maier and Ullman [27] for finding paths between vertices

(attributes) in acyclic hypergraphs may also be useful for such problems:

1. Z:=X.

2. Repeat in any order until neither has any effect on the current value of Z:

a. If a variable v ∈/ Vo appears in only one element of Z, remove v from that element.

b. If Z contains elements Vi and V j such that Vi ⊂ V j , then Z:=Z−{Vi}.

The resulting structure Z is both a refinement of X and a cover of some V′ ⊇ Vo. For

problems with large numbers of possibly irrelevant attributes, it may be reasonable to

substitute Z for X in the aggregation sequence strategy. In Example IV.1,

Z = {{I, B}, {B, C}} and the same sequence of utility intervals is generated.

B. Probability Estimation

A contingency table [4] may be modelled as a function f: dom(V) → N; thus a col-

lection of contingency tables F = {f1, . . . ,fm} is formally very similar to a probabilistic

database. The obvious relative-frequency-preserving mapping t fp to a probabilistic

database is not injective. Howev er, the number of observations may be stored separately

and the original tables recovered.

A problem for contingency table analysis is the occurrence of sampling zeros.

These are values f(t) = 0  that are due to sample size limitations, and not to the impossi-

bility of observing an entity with attributes t. Among other things, the presence of sam-

pling zeros complicates certain common statistical procedures. Also, with small sample

sizes, the relative frequencies are subject to extreme fluctuations when updated by fur-

ther sampling.

A technique used to reduce both effects is to replace f with the distribution f′,
f′(t) = J(π X (t fp(f))) × N,

where N is the sample size. (The values f′(t) may turn out not to be integers.) This

method was used, notably, in the National Halothane Study [6], an examination of death

rates following surgery under various anesthetics. Related methods have been employed

by the U.S. Census Bureau [38].

Selection of the model X tends to be somewhat ad hoc. For tables with few

attributes (categories), the model with all two-factor effects present, i.e.,

X = {{v, v′}| v, v′ ∈V},



is often used [4].

Recent experiments testing the behavior of reconstructability analysis provide

strong evidence that replacing an initial relative frequency estimate with the join of its

projections onto a suitable model also increases the accuracy of the estimate

[16, 21, 35]. Suppose that a sample of N tuples t∈dom(V) is taken from a population for

which p(t) is the actual probability of observing t. Let pN (t) denote the observed relative

frequency of (entities with attribute) tuple t. It was discovered (in the course of massive

experimentation involving models and domains of various sizes) that it is usually the

case, for small N (N < 5×|dom(V)|, the usual rule-of-thumb minimum sample size for

reliable application of many statistical techniques) and a model X from which pN is

approximately reconstructable, that

h(pN , p) > h(J(π X (pN )), p),

where h denotes the sum of absolute deviations. (Directed divergence, in terms of which

approximate reconstructability is measured, is not applicable to arbitrary pairs of distri-

butions. [1])

The improvement in accuracy may be explained as follows [21, 35]. Suppose p is

approximately reconstructable from X = {V1, . . . ,Vm}. Since the ratios N/|dom(Vi)| will

greatly exceed the ratio N/|dom(V)| = N/|dom(V1∪ . . . ∪Vm)|, the marginals πVi
(pN )

will be much better approximations than is pN itself. If the differences

h(πVi
(pN ), πVi

(p)) are sufficiently small, then h(pN , p) will exceed h(J(π X (pN ), p).

Example IV.2: Distribution p of Example III.1 is a relative frequency distribution for

100 tuples randomly generated in accordance with the distribution:

Type Plant Defective p′(t)
Chain Lubbock No 0.162
Chain Lubbock Yes 0.016
Chain Waco No 0.304
Chain Waco Yes 0.150

Sprocket Lubbock No 0.145
Sprocket Lubbock Yes 0.009
Sprocket Waco No 0.182
Sprocket Waco Yes 0.032

Projecting p onto X = {{Type, Plant}, {Plant, Defective}} (Example II.2) and joining

(Example III.4) results in an improved estimate of p′:
h(J(π X (p)), p′) = 0.152 < 0.258 = h(p,p′).

This method is essentially a smoothing technique [40], in which an initial estimate



pN ∈PV is replaced with one closer on some metric to an ultrasmooth estimate, usually

the uniform distribution, C(PV ).

The best known such method is convex smoothing, in which an estimate p̂ on the

Euclidean line between pN and C(PV ) is selected:

p̂ = λpN + (1−λ)C(PV ),

for some 0 ≤ λ ≤ 1. The reconstruction technique, p̂ = J(π X (pN )), is analogous, and its

smoothing effect may be explained in terms of the probabilistic algebra. Corresponding

to λ = 0  and λ = 1  are the models {∅} and {V}, respectively, by Lemmas 6 and 7. For

fixed pN , the more refined (the closer in the lattice of models to {∅}) X is, the closer p̂

is to C(PV ) as measured by directed divergence, from the identity [1]

d(p, C(PV )) = H(C(PV )) − H(p),

for any p∈PV , and Theorem 9. Thus, a chain ({∅},. . .,{V}) of immediate aggregates in

the lattice of models of V corresponds to the interval [0, 1] of values for λ . (The param-

eter λ may be selected to minimize risk, e.g. expected squared-error, giv en pN [14]. The

model X is selected by performing reconstructability analysis on pN [35].)

V.Conclusions

The probabilistic algebra discussed in [9] is extended to include several new opera-

tors and is reexpressed more perspicuously. Homomorphisms between various proba-

bilistic and relational subsystems are noted. A number of new, strictly probabilistic,

results are derived and are shown to be of some practical use, e.g., for decision support.

An interesting project would be to explore connections between the real-valued

probabilistic algebra discussed here, the algebra for interval-valued distributions

sketched in [34], and the operators introduced by Barbara′ et al. [3] for their probabilis-

tic-relational model.
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