
1

© 2009 Carnegie Mellon University

Secure Coding in C and C++

Module 8, File System Vulnerabilities

Robert C. Seacord

This material is approved for public release.

Distribution is limited by the Software Engineering Institute to attendees.

2

Agenda

Directory Traversal

Equivalence Errors

Symbolic Links

Canonicalization

Hard Links

Special Files

Sandboxes

2

3

Path Names

Absolute path names: If the path name begins with a
slash, the predecessor of the first file name in the
path name is the root directory of the process.

Relative path names: If the path name does not begin
with a slash, the predecessor of the first file name of
the path name is the current working directory of the
process.

Multiple path names may resolve to the same file.

4

Path Name Resolution

Path name resolution is performed for a process to
resolve a path name to a particular file in a file
hierarchy.

Each file name in the path name is located in the
directory specified by its predecessor.

� For example, in the path name fragment a/b,
file b is located in directory a.

� Path name resolution fails if a specifically named
file cannot be found in the indicated directory.

3

5

Special File Names

Inside a directory, the special file name “.” refers to

the directory itself.

Inside a directory, the special file name “..” refers to

the directory’s parent directory.

As a special case, in the root directory, “..” may

refer to the root directory itself.

6

Path Name Resolution: Symbolic Links

If a symbolic link is encountered during path name
resolution, the contents of the symbolic link replace the
name of the link.

/usr/tmp -> ../var/tmp

Evaluates to: /usr/../var/tmp

Which evaluates to: /var/tmp

Operations on symbolic links behave like operations on
regular files unless all of the following are true:

� the link is the last component of the path name

� the path name has no trailing slash

� the function is required to act on the symbolic link itself

4

7

Path Names in URLs

A URL may contain a host and a path name:

http://host.name/path/name/file

Many web servers use the operating system to
resolve the path name.

• “.” and “..” can be embedded in a URL

• relative paths work

• hard links and symbolic links work

8

Directory Traversal Vulnerability

A directory traversal vulnerability arises when a
program operates on a path name, usually supplied
by the user, without sufficient validation.

For example, a program might require all operated-
on files to live only in /home, but validating that a
path name resolves to a file within /home is trickier

than it looks.

5

9

../pathname

Accepting input in the form of ../ without

appropriate validation can allow an attacker to
traverse the file system to access an arbitrary file.

For example, the following path:

/home/../etc/passwd

resolves to:

/etc/passwd

Note that .. is ignored if the current working

directory is the root directory.

10

Example Directory Traversal Vulnerability

VU#210409 describes a directory traversal
vulnerability in FTP clients.

� An attacker can trick users of affected FTP clients into

creating or overwriting files on the client's file system.

� To exploit these vulnerabilities, an attacker must convince

the FTP client user to access a specific FTP server

containing files with crafted file names.

� When an affected FTP client attempts to download

one of these files, the crafted file name causes the

client to write the downloaded files to the location

specified by the file name, not by the victim user.

6

11

VU#210409: Demonstration Session

CLIENT> CONNECT server
220 FTP4ALL FTP server ready. Time is Tue Oct 01, 2002 20:59.
Name (server:username): test
331 Password required for test.
Password:
230-Welcome, test – Last logged in Tue Oct 01, 2002 20:15 !

CLIENT> pwd
257 "/" is current directory.

CLIENT> ls -l
200 PORT command successful.
150 Opening ASCII mode data connection for /bin/ls.
total 1
-rw-r----- 0 nobody nogroup 0 Oct 01 20:11 ...\FAKEME5.txt
-rw-r----- 0 nobody nogroup 0 Oct 01 20:11 ../../FAKEME2.txt
-rw-r----- 0 nobody nogroup 0 Oct 01 20:11 ../FAKEME1.txt
-rw-r----- 0 nobody nogroup 0 Oct 01 20:11 ..\..\FAKEME4.txt
-rw-r----- 0 nobody nogroup 0 Oct 01 20:11 ..\FAKEME3.txt
-rw-r----- 0 nobody nogroup 0 Oct 01 20:11
/tmp/ftptest/FAKEME6.txt
-rw-r----- 0 nobody nogroup 0 Oct 01 20:11 C:\temp\FAKEME7.txt
-rw-r----- 0 nobody nogroup 54 Oct 01 20:10 FAKEFILE.txt
-rw-r----- 0 nobody nogroup 0 Oct 01 20:11 misc.txt
226 Directory listing completed.

12

VU#210409: Demonstration Session 2

CLIENT> GET *.txt

Opening ASCII data connection for FAKEFILE.txt...
Saving as "FAKEFILE.txt"

Opening ASCII data connection for
../../FAKEME2.txt...
Saving as "../../FAKEME2.txt"

Opening ASCII data connection for
/tmp/ftptest/FAKEME6.txt...
Saving as "/tmp/ftptest/FAKEME6.txt"
…

If a client is vulnerable, it saves files outside of the
user’s current working directory.

7

13

VU#210409: Vulnerable Products

Product ../ ..\ C: /path …

wget 1.8.1
� ☺ ☺ �3 ☺

wget 1.7.1
� ☺ ☺ ☺ 2 ☺

OpenBSD 3.0 FTP
� ☺ 1 ☺1 � ☺

Solaris 2.6, 2.7 FTP
� ☺ ☺ � ☺

1. installed the file in the current directory

2. created subdirectories within the current directory
3. only with the -nH option ("Disable host-prefixed directories")

14

Inadequate File Name Validation

Many privileged applications construct path names
dynamically incorporating user supplied data.

For example, the following privileged program can be
used to parse files in a specific directory:

const char *safepath = "/usr/lib/safefile/";

size_t spl = strlen(safe_path);

if (!strncmp(fn, safe_path, spl) {

process_libfile(fn);

}

else abort();

8

15

Relative Path Names

If this program takes the file name argument fn from

an untrusted source (e.g., a user), an attacker can
bypass these checks by supplying a file name such
as

/usr/lib/safefiles/../../../etc/shadow

16

Data Sanitization

A sanitizing mechanism can remove characters such as .

and ../ that may be required for some exploits.

An attacker can try to fool the sanitizing mechanism into

cleaning data into a dangerous form.

Suppose the attacker injects a . inside a file name (e.g.,

sensi.tiveFile) and the sanitizing mechanism

removes the character, resulting in the valid file name,
sensitiveFile.

If the input data are now assumed to be safe, then the file

may be compromised.

9

17

Poor Data Sanitization

Examples of poor data sanitation techniques for
eliminating directory traversal vulnerabilities:

Strip out ../

� path = replace(path, "../", "");

� Input of the form “....//” results in “../”

Strip out ../ and ./

� path = replace(path, "../", "");
path = replace(path, "./", "");

� Input of the form .../..../// results in ../

Use canonicalization to properly sanitize an untrusted file
name.

18

Agenda

Directory Traversal

Equivalence Errors

Symbolic Links

Canonicalization

Hard Links

Special Files

Sandboxes

Summary

10

19

Path Equivalence Vulnerabilities

Path equivalence vulnerabilities occur when an
attacker provides a different but equivalent name for
a resource to bypass security checks.

This is a type of canonicalization error.

20

Equivalence Errors

Trailing characters

Single dot directory: /./

Case sensitivity

Forks

11

21

Trailing Characters

A trailing / on a file name could bypass access rules
that don’t expect a trailing /, causing a server to

provide the file when it normally would not.

22

Single Dot Directory: /./

EServ Password-Protected File Access Vulnerability

It is possible to construct a web request that is capable of
accessing the contents of a protected directory on the
web server.

The following example gives an attacker access to a
password protected directory:

http://host/./admin/

That URL is functionally equivalent to

http://host/admin/

but may circumvent validation.

12

23

Case Sensitivity

The Macintosh Hierarchical File System (HFS+) is
case insensitive, so

/home/PRIVATE == /home/private

Apache directory access control is case sensitive, as
it is designed for UFS (CAN-2001-0766).

� /home/PRIVATE != /home/private

This creates a directory traversal vulnerability.

For more info:
http://www.securityfocus.com/bid/2852/

24

Apple File System Forks

HFS and HFS+ are the traditional file systems on Apple

computers

� In HFS, data and resource forks are used to store

information about a file.

� The data fork provides the contents of the file, while the

resource fork stores metadata such as file type.

Resource forks are accessed in the file system as

• sample.txt/..namedfork/rsrc

Data forks are accessed in the file system as

• sample.txt/..namedfork/data same as
sample.txt

13

25

Vulnerabilities in Resource Forks

Applications may be vulnerable to information
disclosure due to resource forks.

For example, CVE-2004-1084 describes a
vulnerability for Apache running on an Apple HFS+
file system.

� A remote malicious user may be able to directly
access file data or resource fork contents.

� Attackers can read the source code of PHP, Perl,
and other server-side scripting languages.

26

Other Equivalence Issues

Leading or trailing white space

Leading or trailing slash(es)

Internal space: file(SPACE)name

Asterisk wildcard: pathname*

Equivalence vulnerabilities can be mitigated by
canonicalization.

14

27

Agenda

Directory Traversal

Equivalence Errors

Symbolic Links

Canonicalization

Hard Links

Special Files

Sandboxes

Summary

28

Symbolic Links

Convenient solution to file sharing.

Often referred to as “symlinks” after the symlink()

system call.

Creating a symlink creates a new file with a unique
i-node.

Symlinks are special files that contain the path name
to the actual file.

15

29

Sharing File Using Links

30

Symbolic Link Example

Type: directory

i-node: 1000

Perms: 0755

Owner: bin

Group: bin

. 1000

.. 200

fred1.txt 500

fred2.txt 1300

Type: file

i-node: 500

Perms: 0755

Owner: bin

Group: bin

Random data

i-node: 1300

Type: LINK

./fred1.txt

16

31

Symbolic Link Vulnerability Example

Assume the following code runs as a setuid root
application with effective root privileges:

fd = open("/home/usr1/.conf", O_RDWR);

if (fd < 0) abort();

write(fd, userbuf, userlen);

Assume also that the attacker can control the data
(userbuf) that is written in the call to write().

Absolute path not

supplied by user

32

Simple Exploit

An attacker creates a symbolic link from .conf to the /etc/passwd
authentication file

% cd /home/usr1

% ln –s /etc/passwd .conf

and then runs the vulnerable program, which

� opens the file for writing as root

� writes attacker controlled information to the password file

% runprog

This attack can be used, for example, to create a new root account with no
password.

The attacker then uses the su command to switch to the root account for
root access:

% su

17

33

Symlink Aware Functions

The following functions operate on the symbolic link file itself,

and not on the file it references:

unlink() deletes the symbolic link file

lstat() returns information about the symbolic link file

lchown() changes the user and group of the symbolic link file

readlink() reads the contents of the specified symbolic link file

rename() renames a symlink specified as the from argument or

overwrites a symlink file specified as the to argument

34

Power of Symbolic Links

You can create links to files that don’t exist yet.

Symlinks continue to exist after the files they point to

have been renamed, moved, or deleted.

You can create links to arbitrary files, even in file systems

you can’t see.

Symlinks can link to files located across partition and disk

boundaries.

For example, you can change the version of an

application in use, or even an entire website, by changing

a symlink.

18

35

Conditions of Vulnerability

Symlink attacks are not a concern within a secure directory.

You are at risk if you operate

� in a shared directory such as /tmp

� in someone else’s directory with elevated privileges
(running an antivirus program as administrator, for
example)

Use canonicalization to avoid symbolic link vulnerabilities.

36

Agenda

Directory Traversal

Equivalence Errors

Symbolic Links

Canonicalization

Hard Links

Special Files

Sandboxes

Summary

19

37

Canonicalization

Path names, directory names, and file names may contain characters that

make validation difficult and inaccurate.

Furthermore, any path name component can be a symbolic link, which

further obscures the actual location or identity of a file.

To simplify file name validation, it is recommended that names be

translated into their canonical form.

Canonicalizing file names makes it much easier to verify a path, directory,

or file name by making it easier to compare names.

Because the canonical form can vary between operating systems and file

systems, it is best to use operating-system-specific mechanisms for

canonicalization.

[FIO02-C. Canonicalize path names originating from untrusted sources]

38

Canonical Form

Canonical form is the standard form or representation for
something.

Canonicalization is the process by which various
equivalent forms of a name can be resolved to a single,
standard name.

Canonicalization provides a solution for

� directory traversal
� equivalence errors
� symlink issues

The canonical form should not include symlinks.

/usr/../home/rcs is equivalent to /home/rcs

/home/rcs is the canonical path

20

39

Canonicalization Question

Given that there is a symbolic link:

/home/alfred/sss ->

/home/myhomebiz/accounting/spreadsheets/

What is the canonical path to:
/home/bob/../mary/../alfred/.//sss/may.xls?

a) /home/alfred/sss/may.xls

b) /home/myhomebiz/accounting/spreadsheets/may.xls

c) /home/alfred/may.xls

40

Canonicalization Answer

Given that there is a symbolic link:

/home/alfred/sss ->

/home/myhomebiz/accounting/spreadsheets/

What is the canonical path to:
/home/bob/../mary/../alfred/.//sss/may.xls?

a) /home/alfred/sss/may.xls

b) /home/myhomebiz/accounting/spreadsheets/may.xls

c) /home/alfred/may.xls

21

41

UNIX Canonicalization

The POSIX realpath() function returns the

canonical path name for a file.

The GNU libc4, libc5, and BSD implementations
contain a buffer overflow [VU#743092].

� fixed in libc-5.4.13 (the vulnerability was latent for
over a decade)

Consequently, programs must use versions of this
function where this issue is known to be resolved.

42

The realpath() Function

The realpath() function is specified as

char *realpath(

/* file path to resolve */

const char *restrict file_name,

/* location to save canonical path */

char *restrict resolved_name

);

If resolved_name is a null pointer, the behavior of
realpath() is implementation-defined.

22

43

Revised realpath() Implementation

The realpath() function has changed as of POSIX.1-2008

This revision, and many current implementations (led by glibc

and Linux), allocate memory to hold the resolved name if a

null pointer is passed.

� memory is allocated as if by malloc()

� the application should relesea such memory when no
longer required by a call to free()

The following statement can be used to conditionally include
code that depends on this form of the realpath() function

#if _POSIX_VERSION >= 200809L || defined (linux)

44

Revised realpath() Example

char *realpath_res = NULL;

/* Verify argv[1] is supplied */

realpath_res = realpath(argv[1], NULL);

/* Verify file name */

fopen(realpath_res, "w");

/* ... */

free(realpath_res);

realpath_res = NULL;

23

45

PATH_MAX Version

Older versions of the realpath() function expect
resolved_name to refer to a character array large

enough to hold the canonicalized path.

A buffer of at least size PATH_MAX is adequate, but
PATH_MAX is not guaranteed to be defined.

If PATH_MAX is defined, allocate a buffer of size
PATH_MAX to hold the result of realpath().

46

PATH_MAX Version Example

char *realpath_res = NULL;

char *canonical_file = NULL;

canonical_file = malloc(PATH_MAX);

realpath_res = realpath(

argv[1], canonical_file

);

/* Verify file name */

fopen(realpath_res, "w");

/* ... */

free(canonicalized_file);

24

47

canonicalize_file_name()

GCC users can also use the GNU extension:

char *canonicalize_file_name(const char *)

� returns the canonical name containing no ., ..
components, repeated path separators (/), or

symlinks.

� result is passed back as the return value of the
function in a block of allocated memory

� when done, memory should be freed by calling
free()

48

Canonicalization in Windows

Canonicalization issues are more complex in
Windows, due to the many ways of naming a file:

� universal naming convention (UNC) shares
� drive mappings
� short (8.3) name
� long name
� Unicode name
� special files
� trailing dots, forward slashes, and backslashes
� shortcuts
� etc.

25

49

Avoid Decisions Based on Names

Avoid making decisions based on a path, directory, or file name; there
is a very loose correlation between file names and files.

� Don’t trust the properties of a resource because of its name.

� Don’t use the name of a resource for access control.

There is often more than one valid way to represent the name of the
object.

Instead of file names, use operating system-based mechanisms.

� access control lists (ACLs)

� other authorization techniques

� file type

� other metadata (number of hard links, etc.)

This is particularly true of Windows operating systems, where
canonicalization is a nightmare [Howard 02].

50

Agenda

Directory Traversal

Equivalence Errors

Symbolic Links

Canonicalization

Hard Links

Special Files

Sandboxes

Summary

26

51

Hard Links

Hard links can be created using the ln command. For example, the
command ln /etc/passwd

� increments the link counter in the i-node for the passwd file

� creates a new directory entry in the current directory

Hard links are indistinguishable from original directory entry.

Hard links cannot refer to directories or span file systems.

Ownership and permission reside with the i-node, so all hard links to
the same i-node have the same ownership and permissions.

Deleting a hard link doesn't delete the file unless all references to the
file have been deleted.

� a reference is either a hard link or an open file descriptor

� i-node can only be deleted (data addresses cleared) if link counter is 0

� original owner cannot free disk quota unless all hard links are deleted

52

Hard Link Example

Type: directory

i-node: 1000

Perms: 0755

Owner: bin

Group: bin

. 1000

.. 200

fred1.txt 500

Type: directory

i-node: 854

Perms: 0755

Owner: bin

Group: bin

. 854

.. 200

fred2.txt 500

Type: file

i-node: 500

Perms: 0755

Owner: bin

Group: bin

Random data

27

53

Shared File Using Hard Link: i-node

After the owner

removes the file
Prior to linking

After the link is

created

54

Hard Link Vulnerability Example

Assume the following code runs in a setuid root application with
effective root privileges:

stat stbl;

if (lstat(fname, &stb1) != 0)

/* handle error */

if (!S_ISREG(stbl.st_mode))

/* handle error */

fd = open(fname, O_RDONLY);

This test does not catch hard links. An attacker could make fname refer
to a hard link to /etc/passwd.

So a hard link can circumvent this test to read the contents of
whichever file fname is hard linked to.

lstat() stats a symlink—not the file it refers to

If the file is a symlink, it

will not pass this test

28

55

There Can Be Only One

Check the link count to determine if there is more
than one path to the file.

stat stbl;

if ((lstat(fname, &stbl) == 0) && // file exists

(!S_ISREG(stbl.st_mode)) && // regular file

(stbl.st_nlink <= 1)) { // no hard links

fd = open(fname, O_RDONLY);

}

else {

/* handle error */

}

This code has another

vulnerability, however, which

we will look at in the next

module.

56

Hard Link Mitigations

Create separate partitions for sensitive files and user
files (hard links cannot span file systems)

� prevents hard-link exploits (such as linking to
/etc/passwd)

� good advice for system administrators

� developers cannot assume that systems are
configured in this manner

29

57

vs. Hard Link

Shares an i-node with the
file linked to

Same owner and privileges
as linked-to file

Always links to an existing
file

Doesn’t work across file
systems or on directories

Cannot distinguish between
original and recent links to
an i-node

Symbolic Link

Is its own file (that is, has its
own i-node)

Has owner and privileges
independent of linked-to file

Can reference a non-
existent file

Works across file systems
and on directories

Can easily distinguish
symbolic links from other
types of files

58

Checking for the Existence of Links 1

Case 1: A program with elevated privileges that wants to

create a file that doesn't already exist.

Make sure the file doesn't exist, for example, by calling
open() with the O_CREAT | O_EXCL flags.

int fd = open(

file_name,

O_CREAT | O_EXCL |O_WRONLY,

new_file_mode

);

30

59

Checking for the Existence of Links 2

Case 2: A setuid program that wants to prevent users
from overwriting protected files.

(Temporarily) drop privileges and perform the I/O with
the real user ID.

If the user passes you a symbolic link or a hard link,
who cares? as long as the user has permissions to
modify the file.

Creating a hard link or a symbolic link will not alter
the permissions on the i-node for the actual file.

60

Agenda

Directory Traversal

Equivalence Errors

Symbolic Links

Canonicalization

Hard Links

Special Files

Sandboxes

Summary

31

61

UNIX Special Files 1

Directory

� marked with a d as the first letter of the permissions field
drwxr-xr-x /

Symbolic link is a reference to another file.

� stored as a textual representation of the file’s path

� marked with an l in the permissions string:

lrwxrwxrwx termcap -> /usr/share/misc/termcap

Named pipes enable different processes to communicate and
can exist anywhere in the file system.

� made with the command mkfifo as in mkfifo mypipe.

� marked with a p as the first letter of the permissions string:

prw-rw---- mypipe

62

UNIX Special Files 2

Socket

� allows communication between two processes running on
the same machine

� marked with an s as the first letter of the permissions string

srwxrwxrwx X0

Device file

� used to apply access rights and to direct operations on the
files to the appropriate device drivers

� distinction between character devices and block devices:
– Character devices provide only a serial stream of input or output

(marked with a c as the first letter of the permissions string).

– Block devices are randomly accessible (marked with a b).

crw------- /dev/kbd

brw-rw---- /dev/hda

32

63

Linux Device Names

On Linux, it is possible to lock certain applications by

attempting to open devices rather than files, such as

� /dev/mouse

� /dev/console

� /dev/tty0

� /dev/zero

A web browser, for example, that failed to check for these

devices would allow an attacker to create a website with

image tags such as

that would lock the user’s mouse.

64

POSIX: Regular File?

The stat() function can be used in conjunction with the

S_ISREG() macro to identify regular files.

struct stat s;

if (stat(filename, &s) == 0) {

if (S_ISREG(s.st_mode)) {

/* file is a regular file */

}

}

33

65

Agenda

Directory Traversal

Equivalence Errors

Symbolic Links

Canonicalization

Hard Links

Special Files

Sandboxes

Summary

66

Sandboxes

These tools serve to isolate one or more programs
into a safe subset of the file system.

• chroot()

• jail()

34

67

chroot() 1

Calling chroot() effectively establishes an isolated file

directory with its own directory tree and root.

� confines a user process to a portion of the file system

� prevents unauthorized access to system resources

The new tree guards against “..”, symlink, and other

exploits applied to containing directories.

Calling chroot() requires superuser privileges, while

the code executing within the jail cannot execute as root.

68

chroot() 2

In UNIX, chroot() changes root directory

� Originally used to test system code safely

� Confines code to limited portion of file system

� Sample use:

chdir /tmp/ghostview

chroot /tmp/ghostview

su tmpuser (or su nobody)

Potential problems

� chroot() changes root directory, but not current dir

If forget chdir(), program can escape from changed root

� If you forget to change UID, process could escape

35

69

jail()

First appeared in FreeBSD

In addition to file system restrictions imposed by
chroot()

� each jail is bound to a single IP address, so processes
within the jail cannot use other IP addresses for sending
or receiving network communications

� only interact with other processes in the same jail

Still too coarse

� directory to which program is confined may not contain
all utilities the program needs to call

� if copy utilities over, may provide dangerous weapons

� no control over network communications rCs9

70

Extra Programs Needed in Jail

Files needed for /bin/sh

� /usr/ld.so.1 shared object libraries

� /dev/zero clear memory used by shared objs

� /usr/lib/libc.so.1 general C library

� /usr/lib/libdl.so.1 dynamic linking

access library

� / usr/lib/libw.so.1 I18n library

� /usr/lib/libintl.so.1 I18n library

Slide 69

rCs9 this statement appears inconsistent with the fact that you can restrict to single IP address
Robert C. Seacord, 8/28/2008

36

71

Agenda

Directory Traversal

Equivalence Errors

Symbolic Links

Canonicalization

Hard Links

Special Files

Sandboxes

Summary

72

Vulnerability and Mitigation Summary

Vulnerability Mitigation

Directory Traversal Canonicalization

Equivalence Errors Canonicalization

Symbolic Links Canonicalization

Hard Links Check link count

Separate partition

Special Files Check file type

37

73

Summary

Avoid exposing your file system directory structure or
file names through your user interface or other
external APIs.

There is a very loose correlation between file names
and files: Avoid making decisions based on a path,
directory, or file name.

Use operating-system-specific canonicalization
methods.

Don’t make assumptions about the file system.

74

Questions
about
File System
Vulnerabilities

Questions

about File

System

Vulnerabilities

38

75

Secure Coding Guidelines

FIO02-C. Canonicalize path names originating from
untrusted sources

76

References

[Meunier 04] Pascal Meunier. CS390S: Canonicalization
and Directory Traversal, November 2004.

[MITRE 07] MITRE. Common Weakness Enumeration,
Draft 7. October 2007. http://cwe.mitre.org

[Howard 02] Howard, Michael & LeBlanc, David C.
Writing Secure Code, 2nd ed. Redmond, WA: Microsoft
Press, 2002 (ISBN 0-7356-1722-8).

[Viega 03] Viega, John & Messier, Matt. Secure
Programming Cookbook for C and C++: Recipes for
Cryptography, Authentication, Networking, Input
Validation & More. Sebastopol, CA: O'Reilly, 2003 (ISBN
0-596-00394-3).

