

Keyword(s):

Abstract:

Flogger: A File-centric Logger for Monitoring File Access and Transfers within
Cloud Computing Environments
K L Ryan Ko, Peter Jagadpramana, Bu Sung Lee

HP Laboratories
HPL-2011-119

Cloud computing; logging; auditability; accountability; trust in Cloud computing; trusted Cloud; Cloud
computing security; file-centric logs; file-centric logging mechanisms; detective mechanisms

Trust is one of the main obstacles to widespread Cloud adoption. In order to increase trust in Cloud
computing, we need to increase transparency and accountability of data in the Cloud for both enterprises
and end-users. However, current system tools are unable to log file accesses and transfers effectively within
a Cloud environment. In this paper, we present Flogger, a novel file-centric logger suitable for both private
and public Cloud environments. Flogger records file-centric access and transfer information from within
the kernel spaces of both virtual machines (VMs) and physical machines (PMs) in the Cloud, thus giving
full transparency of the entire data landscape in the Cloud. With Flogger, services can be built above it to
provide Cloud providers, end-users and regulators with the relevant provenance, e.g. a tool for an end-user
to track whether his/her file was 'touched' by an unauthorized user. We present the initial developments of
Flogger, and interesting results from our experiments. We also present compelling future work that will
shape the beginnings of a new logging paradigm: distributed VM/PM file-centric logging.

External Posting Date: August 6, 2011 [Fulltext] Approved for External Publication
Internal Posting Date: August 6, 2011 [Fulltext]

Copyright 2011 Hewlett-Packard Development Company, L.P.

Flogger: A File-centric Logger for Monitoring File Access and Transfers within
Cloud Computing Environments

Ryan K L Ko, Peter Jagadpramana, Bu Sung Lee
Cloud and Security Lab

HP Laboratories Singapore
{ryan.ko | peter.jagadpramana | francis.lee}@hp.com

Abstract— Trust is one of the main obstacles to widespread
Cloud adoption. In order to increase trust in Cloud computing,
we need to increase transparency and accountability of data in
the Cloud for both enterprises and end-users. However,
current system tools are unable to log file accesses and
transfers effectively within a Cloud environment. In this paper,
we present Flogger, a novel file-centric logger suitable for both
private and public Cloud environments. Flogger records file-
centric access and transfer information from within the kernel
spaces of both virtual machines (VMs) and physical machines
(PMs) in the Cloud, thus giving full transparency of the entire
data landscape in the Cloud. With Flogger, services can be
built above it to provide Cloud providers, end-users and
regulators with the relevant provenance, e.g. a tool for an end-
user to track whether his/ her file was ‘touched’ by an
unauthorized user. We present the initial developments of
Flogger, and interesting results from our experiments. We also
present compelling future work that will shape the beginnings
of a new logging paradigm: distributed VM/ PM file-centric
logging.

Keywords- Cloud computing; logging; auditability;
accountability; trust in Cloud computing; trusted Cloud; Cloud
computing security; file-centric logs; file-centric logging
mechanisms; detective mechanisms.

I. INTRODUCTION

Trust is one of the main obstacles to widespread Cloud
Computing adoption. In order to increase trust in Cloud
Computing, there are both preventive and detective measures
[1]. While many Cloud Computing service providers are
focusing on preventive measures (e.g. better firewalls,
stronger encryption, etc), few are focusing on increasing the
accountability and transparency of their Clouds via detective
mechanisms (e.g. logging, reports for end-user self forensics)
[2].

With Cloud computing removing the need for end-users
to own systems, we also experience a change in mindset,
from a focus on systems security to a focus on data security
and protection. There is a need to know the “who, what,
where, when, how and why” of data movements in the
Cloud. This is made even more urgent with the impending
data explosion [3], and the dawn of the so-called ‘fourth
paradigm’ [3, 4] described by the late Microsoft researcher
Jim Gray.

With the need for detective measures and the change in
focus to data security and protection, comes a demand for a
robust security tools which will enable end-users, Cloud
computing service providers, administrators of Cloud

services, and even regulators to inspect, monitor and analyze
the trends of data accesses and movements within the large-
scale Cloud computing environment from a single point of
view. However, are current detective mechanisms ready for
this change in paradigm? We begin by analyzing the current
state of the art:

II. RELATED WORK

A. User Space Centralized File System Call Monitor

In traditional one-system or local area network (LAN)
environments, it is common to find user-space file
monitoring tools or extensions of file systems (e.g. iNotify
[5], swatch [6], file alteration monitors (FAM) [7]) to be
widely used for monitoring the single- or multiple-file
activities within a single machine. Tools are also available
for monitoring packets in networks (e.g. snort [8]). With
large scales and heavy usage of virtualization technologies in
Cloud computing, such tools are insufficient to provide an
over-arching view for monitoring files across both virtual
machines (VMs) and physical machines (PMs). Moreover,
these applications are usually housed within the user space,
leaving them vulnerable to user space attacks.

B. File Integrity Checkers as Intrusion Detection

File integrity checkers such as TripWire inspect for
changes to the files in the systems by checking against a
baseline hash-key database which is regularly updated with
the latest hash keys of the files within a system. Such an
implementation is not scalable for the Cloud as there is a
high volume of access, i.e. the need to regularly update the
key database is not feasible. Furthermore, these tools do not
provide a history of the file changes. Hence, while they are
able to identify which files have changed, they are unable to
explain the history of what actually happened to the files.
Such limitation is not desirable for forensics in the context of
the Cloud.

C. Virtual Environment Monitors

With the rise in adoption of virtualization technologies
especially in private Clouds, software such as the HyTrust
Appliance [9] are starting to become more prominent. These
tools enable administrators to regulate the access rights and
to have an overview of the activities and consolidation of
common system logs for all virtual machines. However, this
visibility of the virtual layer is still not the full transparency
requested by end-users [10] surveyed by the Fujitsu
Research Institute, which states that 88% of these users want

to know ‘exactly what goes on’ in the physical servers
hosting the guest machines.

D. Cloud Systems Health and Performance Monitoring

When there is mention of monitoring, there is a current
emphasis of monitoring the server performance in Clouds.
Such a focus on system monitoring is not totally aligned to
the actual needs of users. Despite having color schemes,
visualizations and attractive dashboards, tools such as
VMWare vFabric Hyperic [11] and CloudKick [12] are still
unable to offer the crucial need of monitoring data
movements and transfers in the Cloud.

III. NEW BREED OF LOGGERS REQUIRED

It is now evident from observing the limitations of the
state-of-the-art that we need the following necessary
requirements for effective monitoring of data in the Cloud:
 Transcend VM/ PM - It must be in kernel space, and

must be able to transcend both virtual and physical
spaces in the Cloud, providing full transparency of all
operations in the Cloud.

 Provenance - It must provide a full or a summarized/
concise provenance of data life cycles and transfers in
the Cloud. This is also in tandem with the increase in
the emphasis of data governance [13] and
accountability [1].

 Single Auditable View - It must be able to provide a
single consolidated report for inspection.

 Efficient storage - It must be efficient in both short
term storage and long term archival.

 Analytics – It must provide auditing features to enable
strong analytics and quick observations of footprints
of file activities and transfers.

With the above list in mind, we propose Flogger (short
for File-Centric Logger), a novel file-centric logger that can
be implemented in both VM and PM kernels in a non-
invasive manner within nodes in the Cloud.

IV. FLOGGER - ARCHITECTURE AND DESIGN

A. Flogger Addresses the System Layer of the TrustCloud
Framework

Flogger addresses the needs of system layer within the
TrustCloud Framework [1]. TrustCloud is a layered
framework describing the different layers of granularity for
Cloud accountability. The System Layer in the framework
highlighted the importance of monitoring and auditing
containers of data (e.g. files) within and out of the Cloud.

With the foundational System Layer, we can then study
movement and changes of data within and across files (Data
Layer), and also workflows and data flows (Workflow
Layer)– thus giving full provenance of data in the Cloud and
in compliance to the Law/ Regulation Layer and the Policies
Layer. Further descriptions of issues related to these layers of
accountability are described in [1].

B. Flogger Components and Architecture

Figure 1 shows Floggers and their accompanying
components, and demonstrates the underlying mechanisms

capturing file actions and movements from the underlying
kernel space (depicted by the numeric sequence in Figure 1).
A simple example of the resulting file-centric log (in short,
“flog”) captured by both a VM and its host PM is shown in
Figure 2.

1) Components
The typical implementation consists of the following
components (See Figure 1):

 Flogger (Linux) – A Linux Loadable Kernel
Module (LKM) running on VM which intercepts
file and network operations and writes the events
as VM flogs.

 Flogger (Windows) – A Windows Device Driver
running on PM which intercepts file operations and
writes the events as PM flogs.

 Components accompanying Flogger
- File Sender Client program running on VM which

transfers the VM log files from VM to PM via a
direct communication channel.

- File Sender daemon running on VM which
regularly executes the File Sender Client program.

- File Sender Server program running on host PMs
which receives the VM log files sent by the File
Sender Client program.

- Two Database Loader daemons running on PM.
The first one regularly loads the VM log files into a
remote database server. The second one regularly
loads the PM log files into the same remote
database server.

With these components, we can then view and analyze the
consolidated VM and PM flogs using any database front-
end tools or in spreadsheet tools reading comma-separated
value (CSV)/ tab-separated value (TSV) files.

2) How Flogger Works
Flogger captures file-centric logs (a.k.a. flogs) via the

following steps (with reference to the labels in Figure 1):

Step 1: Linux Flogger/ Windows Flogger intercept every file
access in the VMs. The Floggers capture the following
information (Flog Subset A) (non-exhaustive list):

 VM Accessed file name and full path e.g.
/home/users/john/docs/sensitive.txt

 VM File access date/time
 VM IP address
 VM MAC address
 Machine type i.e. VM or PM
 UID of file owner of the accessed file
 GID of file owner of the accessed file
 UID of process owner who accessed the file
 GID of process owner who accessed the file
 Action done to accessed file e.g. Create, Read,

Write, Socket (Send Message), Socket (Receive
Message), Delete

It is important to note that the list in Flog Subset A is not
exhaustive and more attributes are added to make the system
more robust, e.g. more timestamps.

Figure 1. Architecture and flow of interactions and information passing between Flogger components

Figure 2. Sample consolidated file-centric log (flog) extracted from querying the log storage

Table 1: Extracted columns from flogs of Scenario 1
No.
(Included
for this
paper) filename full_path

u
i
d

g
i
d

file_
user
nam
e pid p_uid

proce
ss_us
ernam
e vm_ip4 vm_ip6 vm_mac

vm_inte
rface date_time

timeva
l_sec

timeval_u
sec

vm_ip
4_raw action

…

1
PatentDi
sclosure.

txt

/shared/do
c/PatentDi
sclosure.tx

t

5
0
2

5
0
2 alice 24436 502 alice

10.252.
250.1

fe8000000
00000000
20c29fffec

5bc44
00:0c:29:c

5:bc:44 eth0

2011-06-27
09:55:24+0

8
13091
39727 738618

18435
1233 Create

…

2
PatentDi
sclosure.

txt

/shared/do
c/PatentDi
sclosure.tx

t

5
0
2

5
0
3 alice 24436 502 alice

10.252.
250.1

fe8000000
00000000
20c29fffec

5bc44
00:0c:29:c

5:bc:44 eth0

2011-06-27
09:55:24+0

8
13091
39727 739308

18435
1233 Read

…

3
PatentDi
sclosure.

txt

/shared/do
c/PatentDi
sclosure.tx

t

5
0
2

5
0
3 alice 24524 502 alice

10.252.
250.1

fe8000000
00000000
20c29fffec

5bc44
00:0c:29:c

5:bc:44 eth0

2011-06-27
09:56:47+0

8
13091
39810 672980

18435
1233 Read

…

4
PatentDi
sclosure.

txt

/shared/do
c/PatentDi
sclosure.tx

t

5
0
2

5
0
3 alice 24524 502 alice

10.252.
250.1

fe8000000
00000000
20c29fffec

5bc44
00:0c:29:c

5:bc:44 eth0

2011-06-27
09:57:00+0

8
13091
39823 808734

18435
1233 Write

…

5
PatentDi
sclosure.

txt

/shared/do
c/PatentDi
sclosure.tx

t

5
0
2

5
0
3 alice 24524 502 alice

10.252.
250.1

fe8000000
00000000
20c29fffec

5bc44
00:0c:29:c

5:bc:44 eth0

2011-06-27
09:57:00+0

8
13091
39823 836413

18435
1233 Read

…

6
PatentDi
sclosure.

txt

/shared/do
c/PatentDi
sclosure.tx

t

5
0
2

5
0
3 alice 24524 502 alice

10.252.
250.1

fe8000000
00000000
20c29fffec

5bc44
00:0c:29:c

5:bc:44 eth0

2011-06-27
09:57:00+0

8
13091
39823 837186

18435
1233

Rename
(Old File)

…

7
PatentDi
sclosure.

txt~

/shared/do
c/PatentDi
sclosure.tx

t~

5
0
2

5
0
2 alice 24524 502 alice

10.252.
250.1

fe8000000
00000000
20c29fffec

5bc44
00:0c:29:c

5:bc:44 eth0

2011-06-27
09:57:00+0

8
13091
39823 837735

18435
1233

Rename
(New File)

…

8
PatentDi
sclosure.

txt

/shared/do
c/PatentDi
sclosure.tx

t

5
0
2

5
0
2 alice 24524 502 alice

10.252.
250.1

fe8000000
00000000
20c29fffec

5bc44
00:0c:29:c

5:bc:44 eth0

2011-06-27
09:57:00+0

8
13091
39823 841338

18435
1233

Rename
(New File)

…

9
PatentDi
sclosure.

txt

/shared/do
c/PatentDi
sclosure.tx

t

5
0
2

5
0
3 alice 24524 502 alice

10.252.
250.1

fe8000000
00000000
20c29fffec

5bc44
00:0c:29:c

5:bc:44 eth0

2011-06-27
09:57:00+0

8
13091
39823 844019

18435
1233 Read

…

10
PatentDi
sclosure.

txt

/shared/do
c/PatentDi
sclosure.tx

t

5
0
2

5
0
3 alice 24590 502 alice

10.252.
250.1

fe8000000
00000000
20c29fffec

5bc44
00:0c:29:c

5:bc:44 eth0

2011-06-27
09:58:34+0

8
13091
39917 782164

18435
1233 Read

…

11
PatentDi
sclosure.

txt

/shared/do
c/PatentDi
sclosure.tx

t

5
0
2

5
0
3 alice 24595 502 alice

10.252.
250.1

fe8000000
00000000
20c29fffec

5bc44
00:0c:29:c

5:bc:44 eth0

2011-06-27
09:58:50+0

8
13091
39933 983277

18435
1233 Read

…

12
PatentDi
sclosure.

txt

/shared/do
c/PatentDi
sclosure.tx

t

5
0
2

5
0
3 alice 24631 503 bob

10.252.
250.1

fe8000000
00000000
20c29fffec

5bc44
00:0c:29:c

5:bc:44 eth0

2011-06-27
10:00:34+0

8
13091
40037 509728

18435
1233 Read

…

Step 1’: Just like VMs, PMs also have Floggers which
intercept the PMs file system calls and then stores them in
the Data Store.

Step 2: After the file life-cycle related information are
captured, they are sent to the host PM. The VM Flogger
directly sends the captured information (Flog Subset A) to
PM Receiver Daemon via a Communication Channel
between VM and PM. The Communication Channel is
special mechanism available on typical hypervisors which
enable a serial cable-like communication between VMs and
PMs. It does not involve networking transfers. Hence, no
VM Flogger transfer Flogs to PM File Sender Servers via
network transfers. This increases the security of the transfer
of Flogs.

Step 3: VM File Sender Daemon regularly executes the File
Sender Client which reads the File Access Details (Flog
Subset A) and sends them to the PM via the Communication
Channel between VM and PM.

Step 4: PM File Sender Server receives the File Access
Details (Flog Subset A) from VM File Sender Client via the
Communication Channel between VM and PM.

Step 5: PM Flogger generates other PM information (Flog
Subset B), for example (but not limited to):

 PM IP address
 PM MAC address

Step 6: The PM Flogger sends Subset B to PM File Sender
Server. Subsets A & B will give users a consolidated set of
information (i.e. Flog) which can pinpoint the VMs and PMs
involved in each file’s life cycle to enable full accountability
of distributed VM and PM architectures, e.g. Cloud
computing.

Step 7: Within the PM Subnet, the PM Database loader
daemons write the joint/ consolidated information (both
Subset A & Subset B) to a Data Store e.g. database for future
data mining and reporting. Note that all the consolidation of
the Flogs across PMs into the Data Store take place only in
the PM Subnet. Users in the VM Subnet should have no

awareness of these behind-the-scenes steps. It is also
noteworthy to know that we have not decided on the exact
short, medium and long term storage of flogs, as this require
another set of I/O experiments against benchmarks and scale.

V. RESULTS AND EXAMPLE SCENARIOS

This paper reports our initial experiments focusing on
deploying Floggers to capture flogs across VMs and PMs for
a Cloud, and also to demonstrate that we are able to join the
information for VMs and their underlying host PMs. This
gives a comprehensive overview of the file-centric accesses
and transfers within a typical Cloud. Many other research
topics and questions were raised and they will be covered in
Section VI.

A. Environments Experiments Conducted In

In order to prove the concept of Flogger, we have developed
and run the implementation of Flogger on the following
operating systems:

 Flogger (Linux) in the Linux Family
o CentOS 5.3
o Fedora 15
o Ubuntu 11.04

 Flogger (Windows) in the Windows Family
o Windows XP Professional SP3
o Windows Server 2008 R2

Flogs generated were also pushed into databases via the
DB loaders. Experiments were conducted against the
prominent open-source row-based relational database
PostgreSQL 9.0 and in preparation for data analytical needs
over flogs, we also experimented with the column-store
MonetDB.

B. Use Case Scenarios

To illustrate the Flogger in action, we will explain two
example scenarios. It is important to note the number of
scenarios is not exhaustive, and they serve to enhance the
appreciation of the usage and potential of Flogger.

1) Example Scenario 1: Recording and Detection of
Unauthorized User Accessing a File

In this scenario, a fictitious user ‘Alice’ creates a
sensitive document (PatentDisclosure.txt) and modified the
document. Some time later, another user ‘Bob’ reads the
sensitive document without Alice’s permission.

Table 1 shows a subset of the columns and results of
flogs from a VM as a result of enacting this scenario. The
log rows number 1 to 11, excluding 6 to 8, depict Alice
creating and modifying the sensitive document. The log rows
number 6 to 8 (the Rename operations) depict the text editor
doing some behind-the-scene housekeeping operations
during a save operation. Interestingly, the log row number 12
depicts Bob reading the sensitive document without Alice’s
permission. Note that Bob’s username is displayed in row 12
instead of Alice’s username.

2) Example Scenario 2: Capturing of File Transfers

Across VMs in the Cloud

In the next scenario, we show Flogger capturing file
transfers within the Cloud. The first VM running CentOS 5.3
sends a file (testcopy.txt) via the Linux program scp (Secure
Copy) to the second VM running Ubuntu 11.04.

In Figures 3(a) to 3(d), the sender VM log rows number 2
and 7 depict the network operations (Socket (Send
Message)) when the first VM is sending the file. (We have
split up the table into parts a to d due to space reasons).

(a)

(b)

(c)

(d)

Figure 3. Extract from Scenario 2 Sender Logs

(a)

(b)

(c)

(d)

Figure 4. Extract from Scenario 2 Receiver Logs

In Figures 4(a) to 4(d), the receiver VM log row number
124 depicts one of the network operations (Socket (Receive
Message)) when the second VM is receiving the file. Note:
most of the receiver log rows have been hidden due to space
constraint. Note that at the same time, corresponding
physical machine logs are also generated in their underlying
PMs during the scp transfer. Both sets of VM and PM logs
can then be joined for further analysis and forensics.

Figures 5 and 6 below depict the Socket (Send Message)
and Socket (Receive Message) respectively being captured in
the Linux kernel message log.

Figure 5. Scenario 2 Sender Kernel Message Log File

Figure 6. Scenario 2 Receiver Kernel Message Log File

C. Provenance from Logs

From the two scenarios, we can now visualize the data
provenance potential information that Floggers can provide
for Cloud end-users, administrators and even regulators.
Virtual machine file access and transfers are logged with
their corresponding file system calls in the physical hosts.
Such correlation gives a good transparency of the location of
files within a Cloud, and analytical tools can be built over

these flogs to let people answer questions such as “Are my
files really deleted in this Cloud?” or “Can I see who has
accessed my sensitive file in this Cloud?”.

VI. CURRENT AND FUTURE WORK

The development of Floggers and the successful
consolidation of simultaneously-generated VM and PM file-
centric logs addressed the need for higher Cloud
accountability and transparency, but also revealed limitations
and several compelling future research directions:

A. Integrity and Security of the Logger and Logs

At the moment, flogs are passed securely down the
communication channels from the VMs to their host PMs.
As such, there is no network transfer of flogs at the virtual
layer and the VM subnet (see Figure 1). Flogs consolidated
at the PMs are sent to the data store within the PM subnet.
Security of the Floggers also depends on the integrity of the
machine kernels in the Cloud. However, the assumption of
the kernel integrity is insufficient. Vulnerabilities may exist
when PMs are transferring logs to the database storage.
Authentication or simple client puzzles-like protocols
between PMs and the storage may be introduced when flogs
are transferred. There is also a need for flogs to remain
tamper-proof and immutable. These requirements are our
current top priorities.

B. Scale and Log Data Size Explosion

Compared to system-centric logs (e.g. event logs, system
logs, or user account activity logs), file-centric logs (flogs)
grow at a relatively higher rate. In one of our experiments, a
file created in a word processing application generated up to
approximately 29,000 file activities within 30 minutes even
though user-triggered activities (e.g. write) are kept to the
minimum. It was later revealed that its automatic backup
features was enabled, causing it to be extremely chatty.

We are also aware that the prospect of flogs outgrowing
the size of the actual files to be tracked is a realistic one.
However, the concerns of the exponential growth of logs
may be mitigated by our current attempts in exploring tiered
storage and archival [1], de-duplication and summarization
techniques.

C. Rules for Application Footprints Captured in Flogs

 In our experiment, we also note an interesting
observation of recurring footprints for different types of
software. This opens the possibility of creating heuristics and
rules for identification of anomalies and attacks in the Cloud.

D. Visualizations

With the large amount of data collected, it is perhaps a
good idea to formulate different types of useful exploratory
and presentation visualizations for the discovery and
presentation of notable trends and patterns in the flogs.
Visualization needs for end-users, administrators and
regulators are different. For example, Cloud service
providers may only offer end-users knowledge about the
high-level geography without revealing specific data centers
locations. End-users can still know if their data has violated

cross-geography policies of data transfers. On the other hand,
regulators may be granted special access accounts to
visualize and audit the compliance of full data flows within
the Cloud.

E. Linkage with Governance, Regulation and Compliance
(GRC) needs

With the data accesses and transfers logged by Flogger,
automatic auditing and high availability of data flow
information are now realistic futures in the Cloud. This is
also inline with the vision of the Workflow Layer in the
TrustCloud framework[1].

VII. CONCLUDING REMARKS

In this paper, we emphasized the importance of a file-
centric detective measures for increasing trust in the Cloud.
We also demonstrated the increase of transparency and
accountability of the Cloud via the novel file-centric logging
mechanisms known as Floggers.

Current system logs only focuses on general system
health indicators (e.g. uptimes, processor usage, events, etc).
There is no focus on the life cycles of files stored in the file
systems across both VM and PM. Our technique has
addressed the need for a file-centric logging within networks
of PMs hosting multiple-folds of VMs.

Moreover, current system logs are standalones kept
within each VM or PM, and at best, across multiple VMs or
PMs, but never consolidated or managed across both VM
and PM simultaneously. There is a need for users to be
aware of the exact VMs and the physical locations of
underlying PMs that they have stored data in. Our technique,
Flogger, has addressed this by logging file life-cycle related
events on both VMs and their underlying host PMs.

Floggers can be applied into both private and public
Cloud computing environments. Because of the service-
oriented nature of Cloud services, Cloud users no longer
need to own and maintain their own PMs, but rather, store
their information in the Cloud, without the need to be
concerned of the vendors’ server system health indicators.

Our technique will enable system administrators and end-
users to audit file life cycles, access and transfer histories.
File-centric logs, or flogs, collected by Floggers will also
enable system administrators and end-users to identify both
the virtual and physical location of original and duplicate
files to facilitate accountability, IT forensics and tracking of
criminal activities within a Cloud provider’s servers.

The initial experiments show a lot of promise. While
there is much future work involved, we strongly feel that this
is the exciting beginning of the distributed VM/PM file-
centric logging paradigm for Cloud computing.

ACKNOWLEDGMENTS

We would like to thank our colleagues Markus
Kirchberg, Teck Hooi Lim, Alan Tan, Chun Hui Suen,
Ahmed Aneeth, Ahmed Rifau Rasheed, Siani Pearson, and
Miranda Mowbray from the TrustCloud research project [1]
for their valuable critique and feedback.

REFERENCES
[1] R.K.L. Ko, P. Jagadpramana, M. Mowbray, S. Pearson, M. Kirchberg,
Q. Liang and B.S. Lee, “TrustCloud - A Framework for Accountability and
Trust in Cloud Computing,” Proc. IEEE 2nd Cloud Forum for
Practitioners (IEEE ICFP 2011), IEEE Computer Society, 2011, pp. 1-5.
[2] R.K.L. Ko, B.S. Lee and S. Pearson, “Towards Achieving
Accountability, Auditability and Trust in Cloud Computing,” Proc.
International workshop on Cloud Computing: Architecture, Algorithms and
Applications (CloudComp2011), Springer, 2011, pp. 5-18.
[3] A.J.G. Hey, S. Tansley and K.M. Tolle, The fourth paradigm: data-
intensive scientific discovery, Microsoft Research Redmond, WA, 2009.
[4] S. Sakr, A. Liu, D. Batista and M. Alomari, “A Survey of Large Scale
Data Management Approaches in Cloud Environments,” Communications
Surveys & Tutorials, IEEE, no. 99, pp. 1-26.
[5] R. Love, “Kernel Korner: Intro to iNotify,” Linux Journal, vol. 2005,
no. 139, 2005, pp. 8.
[6] S.E. Hansen and E.T. Atkins, “Automated system monitoring and
notification with swatch,” USENIX Association’s Proceedings of the
Seventh Systems Administration (LISA VII) Conference, 1993.
[7] Silicon Graphics International Corp, “File Alteration Monitor (FAM)
Overview,” 2009; http://oss.sgi.com/projects/fam/.
[8] M. Roesch, “Snort-lightweight intrusion detection for networks,”
Proc. 13th Large Installation System Administration Conference (LISA),
1999, pp. 229–238.
[9] HyTrust, “HyTrust Appliance,” 2010;
http://www.hytrust.com/product/overview/.
[10] Fujitsu Research Institute, “Personal data in the cloud: A global
survey of consumer attitudes,” 2010;
http://www.fujitsu.com/downloads/SOL/fai/reports/fujitsu_personal-data-
in-the-cloud.pdf.
[11] VMWare Hyperic, “Performance Monitoring for Cloud Services,”
2011; http://www.hyperic.com/products/cloud-status-monitoring.
[12] CloudKick, “CloudKick - Cloud Monitoring and Management,”
2011; https://www.cloudkick.com/.
[13] Cloud Security Alliance, “Security Guidance for Critical Areas of
Focus in Cloud Computing V2.16,” 2009;
https://cloudsecurityalliance.org/csaguide.pdf.

http://oss.sgi.com/projects/fam/
http://www.hytrust.com/product/overview/
http://www.fujitsu.com/downloads/SOL/fai/reports/fujitsu_personal-data-in-the-cloud.pdf
http://www.fujitsu.com/downloads/SOL/fai/reports/fujitsu_personal-data-in-the-cloud.pdf
http://www.hyperic.com/products/cloud-status-monitoring
http://www.cloudkick.com/

