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A Fast, High-Precision Implementation of the Univariate One-Parameter Box-Cox 
Transformation Using the Golden Section Search in SAS/IML® 

Charles D. Coleman, U.S. Census Bureau, Population Division 
 

ABSTRACT 
The one-parameter Box-Cox transformation is implemented using 
the golden section search algorithm in SAS/IML®.  This code 
quickly produces the optimal value of the transformation to the 
user-specified parameter.   It is presented in the form of a macro 
which has been tested using The SAS System for Windows®, 
releases 6.12 and 8.2.  Changes to the SAS/IML® code are also 
presented for Schlesselman’s data-independent version of the 
Box-Cox transformation. 

INTRODUCTION 
The one-parameter Box-Cox transformation (Box and Cox, 1964) 
is a popular transformation for eliminating skewness in 
continuous data where all values are positive.1  It is a type of 
power transformation: the data are exponentiated.  The goal of 
the transformation is to maximize the probability that the 
transformed data come from a symmetric normal distribution.  If 
the data are already symmetric, such as those generated by a 
symmetric normal distribution, then the transformation is 
unnecessary.  The Box-Cox transformation has many practical 
uses.  Emerson and Stoto (1983) provide several examples of its 
uses and interpretations.  Emerson (1983) further looks at 
mathematical properties of the transformation.  This paper also 
considers Schlesselman’s (1971) scale-invariant, data-
independent form of the Box-Cox transformation. 
 
The one-parameter Box-Cox transformation has the form 
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The constant term in the upper (λ ≠ 0) definition of y(λ) makes the 
transformation continuous in λ at λ = 0.  The optimal value of λ, 
λ*, results from maximizing the log-likelihood function 
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where i indexes the n observations and 
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is the average of the )(λ
iy . 

 
Schlesselman (1971) pointed out that the original Box-Cox 
transformation is not scale-invariant: multiplying the yi by a 
constant changes λ*.  Schlesselman (1971, p. 310, eq. 12) offers 
a scale-invariant, data-independent version of (1):2 
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where k > 0 is an arbitrary constant in the same measurement 
units as y.  Alterations to the code to implement this will be 
presented. 
 
The Box-Cox transformation is implemented in the form of a 
macro.  You should feel free to alter the implementation to suit 
your purposes.  For example, you may want to perform additional 
operations on the data or perform simulation studies.  In the first 
case, you may decide to add code to the macro.  In the latter 
case, you may dispense with macro code entirely and invoke 
PROC IML directly from a SAS® command file. 

THE CODE 
Macro fastbc implements the Box-Cox transformation using the 
golden section search algorithm.  Not only does it achieve high 
accuracy, it does so quickly.  Other implementations in SAS®, 
either conduct computationally expensive grid searches, such as 
SAS/QC’s® adxtrans macro, SAS/ETS’s® boxcoxar macro 
and Dimakos’s (1995) bctrans macro, or require computing 
derivatives, such as Hyde (1999).  Another alternative, 
implemented in some other packages requires computing 
derivatives to maximize )(λl .  In the literature, Ogwang and Rao 
(1997) describe a set of methods based on Taylor series 
expansions that require computing derivatives.   
 
The golden section search simply starts with prespecified 
minimum and maximum values a and b, which bracket the 
maximum of )(λl .  That is, the maximum lies in the interval (a,b).  

The golden ratio ( ) 61803399.0215 ≈−=r  is predefined.  Then, 
the two new points c and d are calculated as c = a + r (b – a) and 
d = b – r (b – a).  If )()( dc ll > , then a ← d and d ← c.  

Otherwise, b ← c and c ← d.  The process is iterated until |a – b| 
< tol.  Each iteration successively narrows the bracket 
surrounding the maximum.  The second assignment in each pair 
reduces computation complexity by carrying forward a previously 
calculated intermediate point.  The upshot is that each iteration 
only requires one evaluation of )(λl . 

 
The value of tol, the tolerance, has to be chosen carefully.  
Press et al. (1992, p. 398) show that the minimum tolerance 
should be the square root of the machine precision.  Since The 
SAS System® stores numbers as eight byte reals, its machine 
precision is about 1e-15.  Thus, the minimum usable value of 
tol is about 3e-8.  The macro uses tol = 1e-7. 
 

%macro fastbc(data=, out=, var=, min=,   
  max=); 
 
  proc iml; 
    use &data; 
    read all var {&var} into y; 
    n = nrow(y); 
    sumlog = sum(log(y)); 
    tol = 1e-7; 
    r = 0.61803399; 
    a = &min; 
    b = &max; 
  
    start llf(lambda) global(tol, y, n,            
      sumlog); 
      if abs (lambda) < tol then yl = log(y); 
      else yl = (y ## lambda - 1)/lambda; 
      avgyl = yl[:,]; 
      f = - n * log(ssq(yl - avgyl)/n)/2 +  
        (lambda - 1) * sumlog; 
      return(f); 
    finish llf; 
 
    fa = llf(a); 
    fb = llf(b); 
    c = a + r*(b-a); 
    fc = llf(c); 

     
    do while ((fc < fa) | (fc < fb)); 
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      if (fc < fa) 
        then do; 
          a = a-2; 
          fa = llf(a); 
        end; 
      else do; 
        b = b+2; 
        fb = llf(b); 
      end; 
    c = a + r*(b-a); 
    fc = llf(c); 
  end; 

 
     it = 0;  

  cdflag = 'c'; 
  do while (b – a > tol); 
    it = it + 1; 
    diff = r * (b - a); 
    if (cdflag = 'd')  
      then do; 
        c = a + diff; 
        fc = llf(c); 
      end; 
    if (cdflag = 'c') 
      then do; 

           d = b - diff; 
        fd = llf(d); 
      end; 
    if (fc > fd)  
      then do; 
        a = d; 
        fa = fd; 
        d = c; 
        fd = fc; 
        cdflag = 'd'; 
      end; 
      else do; 
        b = c; 
        fb = fc; 
        c = d; 
        fc = fd; 
        cdflag = 'c'; 
      end; 
 
    if (fa > fb) 
      then lambda = a; 
      else lambda = b; 
 
    print "Iterations" it; 
    create &out from lambda[colname=lambda]; 
    append from lambda; 
 
  quit; 
%mend; 

 

IMPLEMENTING SCHLESSELMAN’S VARIANT 
Schlesselman’s (1971) variant requires adding a line of code and 
modifying module llf.  The additional line can be placed 
anywhere before the do while statement: 

k = 2; 
k can be any positive value other than 1.  Module llf is changed 
to  

start llf(lambda) global(tol, y, n, sumlog, 
  k); 
  if abs (lambda) < tol  
    then yl = log(y / lambda); 
    else yl = (y ## lambda –   
      k**lambda)/lambda; 
  avgyl = yl[:,]; 
  f = - n * log(ssq(yl - avgyl)/n)/2 +  
  (lambda - 1) * sumlog; 

  return(f); 
finish llf; 
 

This module differs from the original one by declaring k to be 
global in the start statement and by implementing equation 
(4). 

INVOKING THE MACRO 
The macro is invoked with five arguments: 
 
data:  The data set which contains the variable to be 

transformed. 
 
out:  The data set to which variable lambda, containing λ*, is 

output. 
 
var:  The variable to be transformed. 
 
min:  The minimum initial value of λ.  For most data sets, -2 

should suffice. 
 
max:  The maximum initial value of λ.  For most data sets, 2 

should suffice. 
 

INSIDE THE CODE 
First, variable &var is read from data set &data into vector y.  
Two global variables are then calculated: n, the number of rows 
of y and sumlog, the sum of the natural logarithms of the 
elements of y.  The next four statements then initialize constants:   
tol, the tolerance, r, the golden ratio already defined in Section 
“The Code,” &min is loaded into a, the initial minimum value of λ, 
and &max is loaded into b, the initial maximum value of λ.  The 
initializations end with the definition of module llf, which 
operationalizes )(λl .  Note that within module llf, whenever  
|lambda| < tol, lambda is assumed to be 0.  Again, this is an 
implementation of the idea of tolerance:  when lambda is close 
enough to 0, it is computationally indistinguishable from 0. 
 
The block of code immediately after the definition of module llf, 
through the first do while loop, tests for the existence of the 
maximum in [a,b].  If this interval is not found to bracket the 
maximum, then an endpoint is changed to widen the interval until 
bracketing is achieved.  In the process, the values of fa = 
llf(a), fb = llf(b) and fc = llf(c) are calculated for use 
in the first iteration. 
 
One more initialization precedes the do while loop that controls 
the iterations.  Variable cdflag indicates whether fc = llf(c) 
or fd = llf(d) has been computed.  A value of 'c' or 'd' 
indicates that fc or fd has been calculated, respectively.  During 
each iteration, the other member of the pair is calculated 
immediately after the do while statement, until convergence.  
Convergence is defined by the condition b – a > tol.  The 
absolute value is not need, as b is always greater than a.  The 
if-then block tests whether fc > fd and assigns variables 
accordingly. 
 
After convergence, a or b is output as variable lambda in dataset 
&out, according to whether fa > fb.  The quit statement exits 
PROC IML and %mend ends the macro. 
 

OPTIMIZING OTHER FUNCTIONS 
You can modify the golden section search to optimize other 
functions, finding either the maximum or minimum.  A 
requirement is that the optimum is global.  This is assured if only 
one optimum exists.  A sufficient condition is that the function is 
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quasi-concave or quasi-convex.  A function f is strictly quasi-
concave if and only if for any two real values x and y, 

)}(),(min{))1(( yfxfyttxf =−+  for 0 < t < 1 implies x = y.  
Likewise, a function f is quasi-convex if and only if the function –f 
is quasi-concave.  Quasi-concave functions have unique maxima 
while quasi-convex functions have unique minima. 
 
To optimize a function other than llf(lambda), simply create a 
module with the function to be optimized and replace module llf 
with it.  Then, change all calls to llf() with calls to your new 
function. 
 
To find the minimum, simply reverse all of the inequalities which 
compare function values.  For example, the first inequality 
 

if fc < fa then do; 
 
becomes 
 

if fc > fa then do; . 

AN APPLICATION 
Swanson, Tayman and Barr (2000) published a dataset of 
absolute percentage errors of forecasts of the 1970 populations 
of counties in Washington state.  They used the Box-Cox 
transformation to develop a new measure of forecast accuracy.  
PROC UNIVARIATE produced the following moment statistics 
and normality tests:3 
 

The UNIVARIATE Procedure 
Variable:  APE  (APE) 

 
Moments 

 
N                39  Sum Weights              39 
Mean        5.06787  Sum Observations    197.647 
Std Deviation 3.812  Variance             4.5299 
Skewness    0.83522  Kurtosis            -0.2923 
Uncorr SS 1553.7869  Corrected SS        552.138 
Coeff Var   75.2153  Std Error Mean      0.61038 
 
Tests for Normality 
 
Test               -Statistic- -----p Value----- 
 
Shapiro-Wilk       W    0.9072 Pr < W     0.0036 
Kolmogorov-Smirnov D    0.1554 Pr > D     0.0184 
Cramer-von Mises   W-Sq 0.1903 Pr > W-Sq  0.0068 
Anderson-Darling   A-Sq 1.1959 Pr > A-Sq <0.0050 
 
The four normality tests reject normality at p-values all less than 
0.02.  This appears to be driven by the large value of skewness.  
Thus, the Box-Cox transformation is appropriate for reducing 
skewness in this dataset and obtaining normally distributed 
transformed variables. 
 
Macro fastbc returned λ* = 0. 2946924.  After transforming 
variable APE using equation (1), PROC UNIVARIATE reported 
the following: 
 
 
 
 
 
 
 
 
 
 

The UNIVARIATE Procedure 
Variable:  APET 

 
Moments 

 
N                 39  Sum Weights             39 
Mean         1.73013  Sum Observations  67.47498 
Std Deviation 1.2948  Variance           1.67644 
Skewness    -0.07783  Kurtosis         -0.776696 
Uncorr SS  180.44511  Corrected SS    63.7047817 
Coeff Var  74.836949  Std Error Mean  0.20732989 
                                   
Tests for Normality 
 
Test               -Statistic- -----p Value----- 
 
Shapiro-Wilk       W    0.9767 Pr < W     0.5854 
Kolmogorov-Smirnov D    0.0699 Pr > D    >0.1500 
Cramer-von Mises   W-Sq 0.0274 Pr > W-Sq >0.2500 
Anderson-Darling   A-Sq 0.2129 Pr > A-Sq >0.2500 
 
Transformation reduces the absolute value of skewness by an 
order of magnitude (.8 to .08) and makes all tests for normality 
insignificant.  However, the transformed data are more 
platykurtotic, that is, they have even less kurtosis than the normal 
distribution.4  This can be seen in the decrease in the already 
negative kurtosis from -.3 to -.7.  Thus, the transformed data, in 
this respect, depart even more from normality.  In fact, it is 
possible for the Box-Cox transformation to produce data whose 
departure from 0 kurtosis causes rejection of normality.5  The 
reason for this lies in the definition of the Box-Cox transformation: 
it maximizes the probability that the transformed data come from 
normal distribution.  However, since it can effectively only operate 
on positive data and produces positive data unless λ* = 0, while 
the normal distribution is defined on the set of all real numbers, it 
is impossible to achieve normality.6  Thus, the Box-Cox 
transformation is really a quasi-maximum likelihood estimator and 
does not truly achieve its goal. 

COMPARISON TO OTHER ALGORITHMS 
Macro fastbc required 37 iterations to find the solution with 
&min = –2 and &max = 2.  Each iteration required one evaluation 
of )(λl .  Adding the three initial evaluations of )(λl  makes a 

total of 40 evaluations of )(λl .  An exhaustive grid search on     

[–2,2] with steps of 10–7 requires 4 × 107 iterations.  A smarter 
grid search searches on successively finer grids to find 
bracketing pairs until convergence.  If the grids are of fineness 1, 
.1, .01, …, 10–7, the best-case performance on the same interval 
is 3 × 27 = 384 iterations.  Thus, one of the best of the most used 
competing search algorithms requires a minimum of about 10 
times as many evaluations of )(λl  as fastbc, and usually far 
more.  The advantages of fastbc compared to these algorithms 
are clear. 
 
The importance of using the correct convergence criterion can be 
seen in three instances.  Press et al.’s (1992, p. 401-402) golden 
section search routine golden uses a different convergence 
criterion that stops quicker than that used in the present paper.  
An implementation of that algorithm for this problem took 20 
iterations to converge to an incorrect value.  SHAZAM (Whistler 
et al., 2001) appears to use the change in )(λl  as the 

convergence criterion.  If )(λl  is flat around its maximum, it can 
converge to the wrong value.  This problem is particular acute 
when the accuracy is set to .001 using the ACCURACY option, 
instead of the default .01.  Ogwang and Rao (1997) use the 
change in the current value of λ as a convergence criterion.  
Their Table 1 (p. 407) shows λ* varying as function of the degree 
of the Taylor series approximation used.  In their equation 
“Consumer goods imports,” λ* varies from .528 to .553.  Although 
they acknowledge imprecision by using .01 as their standard of 
comparison to SHAZAM’s results (Ogwang and Rao, 1997, p. 

AnalysisNESUG 17



 

4 

406), these values vary by about .02, making them different by 
their own standard.  Hyde (1999) develops SAS/IML® code for 
inference in multivariate Box-Cox models, but uses a far too small 
tolerance (1e-10). 

CONCLUSION 
This paper has presented SAS/IML® code for using the golden 
section search to compute fast, high-precision, one-parameter 
Box-Cox transformations.  This code produces estimates of the 
transformation parameter up to machine precision.  It avoids the 
pitfalls of other algorithms in that it does not converge improperly 
and it economizes on the number of function evaluations.  The 
golden section search is a general method that is suited to other 
optimization problems.  Adaptation of the code to these problems 
has been discussed. 
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1 Box and Cox (1964) also define a two-parameter transformation 
that includes a shift parameter.  This paper does not consider 
that transformation.  The presence of the second parameter 
creates a multivariate optimization problem, which requires 
different techniques than those used and discussed in the 
present paper. 
2 Schlesselman (1971) uses c for k.  k is used in the present 
paper for consistency with the SAS/IML® code herein. 
3 The listings from PROC UNIVARIATE have been edited to fit 
into one column. 
4 Graphically, a platykurtotic distribution has a larger modal value 
and thinner tails than a normal distribution. 
5 Thomas Bryan (personal correspondence) has observed this in 
several data sets. 
6 J.B. Ramsey (quoted by Zarembka (1974, p. 87)) appears to 
have been the first to observe this.  However, Zarembka (1974, p. 
87) notes that “if the probability of large negative values [of the 
transformed data] is quite low, the error term may still be 
approximately normal.” 
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