

- 1 -

A Fast, High-Precision Implementation of the Univariate One-Parameter Box-Cox
Transformation Using the Golden Section Search in SAS/IML®

Charles D. Coleman, U.S. Census Bureau, Population Division

ABSTRACT
The one-parameter Box-Cox transformation is implemented using
the golden section search algorithm in SAS/IML®. This code
quickly produces the optimal value of the transformation to the
user-specified parameter. It is presented in the form of a macro
which has been tested using The SAS System for Windows®,
releases 6.12 and 8.2. Changes to the SAS/IML® code are also
presented for Schlesselman’s data-independent version of the
Box-Cox transformation.

INTRODUCTION
The one-parameter Box-Cox transformation (Box and Cox, 1964)
is a popular transformation for eliminating skewness in
continuous data where all values are positive.1 It is a type of
power transformation: the data are exponentiated. The goal of
the transformation is to maximize the probability that the
transformed data come from a symmetric normal distribution. If
the data are already symmetric, such as those generated by a
symmetric normal distribution, then the transformation is
unnecessary. The Box-Cox transformation has many practical
uses. Emerson and Stoto (1983) provide several examples of its
uses and interpretations. Emerson (1983) further looks at
mathematical properties of the transformation. This paper also
considers Schlesselman’s (1971) scale-invariant, data-
independent form of the Box-Cox transformation.

The one-parameter Box-Cox transformation has the form

⎪⎩

⎪
⎨
⎧

=

≠−
=

0ln

0
1

)(

λ
λ

λ

λ

λ

y

y
y . (1)

The constant term in the upper (λ ≠ 0) definition of y(λ) makes the
transformation continuous in λ at λ = 0. The optimal value of λ,
λ*, results from maximizing the log-likelihood function

∑∑
==

−+⎥
⎦

⎤
⎢
⎣

⎡
⎟
⎠
⎞⎜

⎝
⎛ −−=

n

i
i

n

i
i yyy

n

n

11

2
)()(ln)1(

1
ln

2
)(λλ λλl (2)

where i indexes the n observations and

∑
=

=
n

i
iy

n
y

1

)()(1 λλ (3)

is the average of the)(λ
iy .

Schlesselman (1971) pointed out that the original Box-Cox
transformation is not scale-invariant: multiplying the yi by a
constant changes λ*. Schlesselman (1971, p. 310, eq. 12) offers
a scale-invariant, data-independent version of (1):2

⎪⎩

⎪
⎨
⎧

=

≠−
=

0)/ln(

0)(

λ
λ

λ

λλ

λ

ky

ky
yk (4)

where k > 0 is an arbitrary constant in the same measurement
units as y. Alterations to the code to implement this will be
presented.

The Box-Cox transformation is implemented in the form of a
macro. You should feel free to alter the implementation to suit
your purposes. For example, you may want to perform additional
operations on the data or perform simulation studies. In the first
case, you may decide to add code to the macro. In the latter
case, you may dispense with macro code entirely and invoke
PROC IML directly from a SAS® command file.

THE CODE
Macro fastbc implements the Box-Cox transformation using the
golden section search algorithm. Not only does it achieve high
accuracy, it does so quickly. Other implementations in SAS®,
either conduct computationally expensive grid searches, such as
SAS/QC’s® adxtrans macro, SAS/ETS’s® boxcoxar macro
and Dimakos’s (1995) bctrans macro, or require computing
derivatives, such as Hyde (1999). Another alternative,
implemented in some other packages requires computing
derivatives to maximize)(λl . In the literature, Ogwang and Rao
(1997) describe a set of methods based on Taylor series
expansions that require computing derivatives.

The golden section search simply starts with prespecified
minimum and maximum values a and b, which bracket the
maximum of)(λl . That is, the maximum lies in the interval (a,b).

The golden ratio () 61803399.0215 ≈−=r is predefined. Then,
the two new points c and d are calculated as c = a + r (b – a) and
d = b – r (b – a). If)()(dc ll > , then a ← d and d ← c.

Otherwise, b ← c and c ← d. The process is iterated until |a – b|
< tol. Each iteration successively narrows the bracket
surrounding the maximum. The second assignment in each pair
reduces computation complexity by carrying forward a previously
calculated intermediate point. The upshot is that each iteration
only requires one evaluation of)(λl .

The value of tol, the tolerance, has to be chosen carefully.
Press et al. (1992, p. 398) show that the minimum tolerance
should be the square root of the machine precision. Since The
SAS System® stores numbers as eight byte reals, its machine
precision is about 1e-15. Thus, the minimum usable value of
tol is about 3e-8. The macro uses tol = 1e-7.

%macro fastbc(data=, out=, var=, min=,
 max=);

 proc iml;
 use &data;
 read all var {&var} into y;
 n = nrow(y);
 sumlog = sum(log(y));
 tol = 1e-7;
 r = 0.61803399;
 a = &min;
 b = &max;

 start llf(lambda) global(tol, y, n,
 sumlog);
 if abs (lambda) < tol then yl = log(y);
 else yl = (y ## lambda - 1)/lambda;
 avgyl = yl[:,];
 f = - n * log(ssq(yl - avgyl)/n)/2 +
 (lambda - 1) * sumlog;
 return(f);
 finish llf;

 fa = llf(a);
 fb = llf(b);
 c = a + r*(b-a);
 fc = llf(c);

 do while ((fc < fa) | (fc < fb));

AnalysisNESUG 17

2

 if (fc < fa)
 then do;
 a = a-2;
 fa = llf(a);
 end;
 else do;
 b = b+2;
 fb = llf(b);
 end;
 c = a + r*(b-a);
 fc = llf(c);
 end;

 it = 0;

 cdflag = 'c';
 do while (b – a > tol);
 it = it + 1;
 diff = r * (b - a);
 if (cdflag = 'd')
 then do;
 c = a + diff;
 fc = llf(c);
 end;
 if (cdflag = 'c')
 then do;

 d = b - diff;
 fd = llf(d);
 end;
 if (fc > fd)
 then do;
 a = d;
 fa = fd;
 d = c;
 fd = fc;
 cdflag = 'd';
 end;
 else do;
 b = c;
 fb = fc;
 c = d;
 fc = fd;
 cdflag = 'c';
 end;

 if (fa > fb)
 then lambda = a;
 else lambda = b;

 print "Iterations" it;
 create &out from lambda[colname=lambda];
 append from lambda;

 quit;
%mend;

IMPLEMENTING SCHLESSELMAN’S VARIANT
Schlesselman’s (1971) variant requires adding a line of code and
modifying module llf. The additional line can be placed
anywhere before the do while statement:

k = 2;
k can be any positive value other than 1. Module llf is changed
to

start llf(lambda) global(tol, y, n, sumlog,
 k);
 if abs (lambda) < tol
 then yl = log(y / lambda);
 else yl = (y ## lambda –
 k**lambda)/lambda;
 avgyl = yl[:,];
 f = - n * log(ssq(yl - avgyl)/n)/2 +
 (lambda - 1) * sumlog;

 return(f);
finish llf;

This module differs from the original one by declaring k to be
global in the start statement and by implementing equation
(4).

INVOKING THE MACRO
The macro is invoked with five arguments:

data: The data set which contains the variable to be

transformed.

out: The data set to which variable lambda, containing λ*, is

output.

var: The variable to be transformed.

min: The minimum initial value of λ. For most data sets, -2

should suffice.

max: The maximum initial value of λ. For most data sets, 2

should suffice.

INSIDE THE CODE
First, variable &var is read from data set &data into vector y.
Two global variables are then calculated: n, the number of rows
of y and sumlog, the sum of the natural logarithms of the
elements of y. The next four statements then initialize constants:
tol, the tolerance, r, the golden ratio already defined in Section
“The Code,” &min is loaded into a, the initial minimum value of λ,
and &max is loaded into b, the initial maximum value of λ. The
initializations end with the definition of module llf, which
operationalizes)(λl . Note that within module llf, whenever
|lambda| < tol, lambda is assumed to be 0. Again, this is an
implementation of the idea of tolerance: when lambda is close
enough to 0, it is computationally indistinguishable from 0.

The block of code immediately after the definition of module llf,
through the first do while loop, tests for the existence of the
maximum in [a,b]. If this interval is not found to bracket the
maximum, then an endpoint is changed to widen the interval until
bracketing is achieved. In the process, the values of fa =
llf(a), fb = llf(b) and fc = llf(c) are calculated for use
in the first iteration.

One more initialization precedes the do while loop that controls
the iterations. Variable cdflag indicates whether fc = llf(c)
or fd = llf(d) has been computed. A value of 'c' or 'd'
indicates that fc or fd has been calculated, respectively. During
each iteration, the other member of the pair is calculated
immediately after the do while statement, until convergence.
Convergence is defined by the condition b – a > tol. The
absolute value is not need, as b is always greater than a. The
if-then block tests whether fc > fd and assigns variables
accordingly.

After convergence, a or b is output as variable lambda in dataset
&out, according to whether fa > fb. The quit statement exits
PROC IML and %mend ends the macro.

OPTIMIZING OTHER FUNCTIONS
You can modify the golden section search to optimize other
functions, finding either the maximum or minimum. A
requirement is that the optimum is global. This is assured if only
one optimum exists. A sufficient condition is that the function is

AnalysisNESUG 17

3

quasi-concave or quasi-convex. A function f is strictly quasi-
concave if and only if for any two real values x and y,

)}(),(min{))1((yfxfyttxf =−+ for 0 < t < 1 implies x = y.
Likewise, a function f is quasi-convex if and only if the function –f
is quasi-concave. Quasi-concave functions have unique maxima
while quasi-convex functions have unique minima.

To optimize a function other than llf(lambda), simply create a
module with the function to be optimized and replace module llf
with it. Then, change all calls to llf() with calls to your new
function.

To find the minimum, simply reverse all of the inequalities which
compare function values. For example, the first inequality

if fc < fa then do;

becomes

if fc > fa then do; .

AN APPLICATION
Swanson, Tayman and Barr (2000) published a dataset of
absolute percentage errors of forecasts of the 1970 populations
of counties in Washington state. They used the Box-Cox
transformation to develop a new measure of forecast accuracy.
PROC UNIVARIATE produced the following moment statistics
and normality tests:3

The UNIVARIATE Procedure
Variable: APE (APE)

Moments

N 39 Sum Weights 39
Mean 5.06787 Sum Observations 197.647
Std Deviation 3.812 Variance 4.5299
Skewness 0.83522 Kurtosis -0.2923
Uncorr SS 1553.7869 Corrected SS 552.138
Coeff Var 75.2153 Std Error Mean 0.61038

Tests for Normality

Test -Statistic- -----p Value-----

Shapiro-Wilk W 0.9072 Pr < W 0.0036
Kolmogorov-Smirnov D 0.1554 Pr > D 0.0184
Cramer-von Mises W-Sq 0.1903 Pr > W-Sq 0.0068
Anderson-Darling A-Sq 1.1959 Pr > A-Sq <0.0050

The four normality tests reject normality at p-values all less than
0.02. This appears to be driven by the large value of skewness.
Thus, the Box-Cox transformation is appropriate for reducing
skewness in this dataset and obtaining normally distributed
transformed variables.

Macro fastbc returned λ* = 0. 2946924. After transforming
variable APE using equation (1), PROC UNIVARIATE reported
the following:

The UNIVARIATE Procedure
Variable: APET

Moments

N 39 Sum Weights 39
Mean 1.73013 Sum Observations 67.47498
Std Deviation 1.2948 Variance 1.67644
Skewness -0.07783 Kurtosis -0.776696
Uncorr SS 180.44511 Corrected SS 63.7047817
Coeff Var 74.836949 Std Error Mean 0.20732989

Tests for Normality

Test -Statistic- -----p Value-----

Shapiro-Wilk W 0.9767 Pr < W 0.5854
Kolmogorov-Smirnov D 0.0699 Pr > D >0.1500
Cramer-von Mises W-Sq 0.0274 Pr > W-Sq >0.2500
Anderson-Darling A-Sq 0.2129 Pr > A-Sq >0.2500

Transformation reduces the absolute value of skewness by an
order of magnitude (.8 to .08) and makes all tests for normality
insignificant. However, the transformed data are more
platykurtotic, that is, they have even less kurtosis than the normal
distribution.4 This can be seen in the decrease in the already
negative kurtosis from -.3 to -.7. Thus, the transformed data, in
this respect, depart even more from normality. In fact, it is
possible for the Box-Cox transformation to produce data whose
departure from 0 kurtosis causes rejection of normality.5 The
reason for this lies in the definition of the Box-Cox transformation:
it maximizes the probability that the transformed data come from
normal distribution. However, since it can effectively only operate
on positive data and produces positive data unless λ* = 0, while
the normal distribution is defined on the set of all real numbers, it
is impossible to achieve normality.6 Thus, the Box-Cox
transformation is really a quasi-maximum likelihood estimator and
does not truly achieve its goal.

COMPARISON TO OTHER ALGORITHMS
Macro fastbc required 37 iterations to find the solution with
&min = –2 and &max = 2. Each iteration required one evaluation
of)(λl . Adding the three initial evaluations of)(λl makes a

total of 40 evaluations of)(λl . An exhaustive grid search on

[–2,2] with steps of 10–7 requires 4 × 107 iterations. A smarter
grid search searches on successively finer grids to find
bracketing pairs until convergence. If the grids are of fineness 1,
.1, .01, …, 10–7, the best-case performance on the same interval
is 3 × 27 = 384 iterations. Thus, one of the best of the most used
competing search algorithms requires a minimum of about 10
times as many evaluations of)(λl as fastbc, and usually far
more. The advantages of fastbc compared to these algorithms
are clear.

The importance of using the correct convergence criterion can be
seen in three instances. Press et al.’s (1992, p. 401-402) golden
section search routine golden uses a different convergence
criterion that stops quicker than that used in the present paper.
An implementation of that algorithm for this problem took 20
iterations to converge to an incorrect value. SHAZAM (Whistler
et al., 2001) appears to use the change in)(λl as the

convergence criterion. If)(λl is flat around its maximum, it can
converge to the wrong value. This problem is particular acute
when the accuracy is set to .001 using the ACCURACY option,
instead of the default .01. Ogwang and Rao (1997) use the
change in the current value of λ as a convergence criterion.
Their Table 1 (p. 407) shows λ* varying as function of the degree
of the Taylor series approximation used. In their equation
“Consumer goods imports,” λ* varies from .528 to .553. Although
they acknowledge imprecision by using .01 as their standard of
comparison to SHAZAM’s results (Ogwang and Rao, 1997, p.

AnalysisNESUG 17

4

406), these values vary by about .02, making them different by
their own standard. Hyde (1999) develops SAS/IML® code for
inference in multivariate Box-Cox models, but uses a far too small
tolerance (1e-10).

CONCLUSION
This paper has presented SAS/IML® code for using the golden
section search to compute fast, high-precision, one-parameter
Box-Cox transformations. This code produces estimates of the
transformation parameter up to machine precision. It avoids the
pitfalls of other algorithms in that it does not converge improperly
and it economizes on the number of function evaluations. The
golden section search is a general method that is suited to other
optimization problems. Adaptation of the code to these problems
has been discussed.

REFERENCES
Box, G.E.P. and Cox, D.R. (1964), “An Analysis of
Transformations,” Journal of the Royal Statistical Society, Series
B, 26, 211-243.

Dimakos, I.C. (1995), “Power Transformations Using SAS/IML®
Software,” Proceedings of the 22nd SAS Users Group
International,
http://www2.sas.com/proceedings/sugi22/CODERS/PAPER95.P
DF. NC: SAS Institute. Accessed September 4, 2002.

Emerson, J.D. (1983), “Mathematical Aspects of
Transformations.” In Hoaglin, D.C., Mosteller, F. and Tukey,
J.W. [Eds.], Understanding Robust and Exploratory Data
Analysis, New York: Wiley, 247-282.

Emerson, J.D. and Stoto, M.A. (1983), “Transforming Data.” In
Hoaglin, D.C., Mosteller, F. and Tukey, J.W. [Eds.],
Understanding Robust and Exploratory Data Analysis, New York:
Wiley, 97-128.

Hyde, S. (1999), “Likelihood Based Inference on the Box-Cox
Family of Transformations: SAS and MATLAB Programs,” M.S.
Thesis, Department of Mathematical Sciences, Montana State
University, Bozeman, MT,
http://www.math.montana.edu/~hyde/msthesis.pdf. Accessed
September 9, 2002.

Ogwang, T. and Rao, U.L.G. (1997), “A Simple Algorithm for
Estimating Box-Cox Models,” The Statistician, 46, 399-409.

Press, W.H., Teukolsky, S.A., Vetterling, W.T. and Flannery, B.P.
(1992), Numerical Recipes in C: The Art of Scientific Computing,
Second Edition. New York: Cambridge University Press.

SAS Institute, Inc. (1989). SAS/IML® Software and Reference,
Version 6, First Edition, Cary, NC: SAS Institute.

Schlesselman, J. (1971), “Power Families: A Note on the Box and
Cox Transformation,” Journal of the Royal Statistical Society,
Series B, 33, 307-311.

Swanson, D.A., Tayman, J. and Barr, C.F. (2000), “A Note on the
Measurement of Accuracy for Subnational Demographic
Estimates,” Demography, 37, 233-249.

Whistler, D., White, K.J., Wong S.D. and Bates, D. (2001),
SHAZAM Version 9 User's Reference Manual, Vancouver, BC,
Canada: Northwest Econometrics.

Zarembka, P. (1974), “Transformation of Variables in
Econometrics,” in Zarembka, P. [ed.], Frontiers of Econometrics,
New York: Academic Press.

ACKNOWLEDGMENTS
I would like to thank Rob Agnelli of SAS Institute, Inc. for help
with debugging an earlier version of this macro and Aref N. Dajani
for peer review and improvements to the macro. This report is
released to inform interested parties of research. The views
expressed on methodological and technical issues are those of
the author and not necessarily those of the U.S. Census Bureau.

CONTACT INFORMATION
Your comments and questions are valued and encouraged.
Contact the author at:

Charles D. Coleman
 U.S. Census Bureau
 Washington, DC 20233-8800
 Work Phone: +1 (301) 763-6068
 Fax: +1 (301) 457-2481
 Email: charles.d.coleman@census.gov

SAS® and all other SAS Institute Inc. product or service names
are registered trademarks or trademarks of SAS Institute Inc. in
the USA and other countries. ® indicates USA registration.

Other brand and product names are trademarks of their
respective companies.

1 Box and Cox (1964) also define a two-parameter transformation
that includes a shift parameter. This paper does not consider
that transformation. The presence of the second parameter
creates a multivariate optimization problem, which requires
different techniques than those used and discussed in the
present paper.
2 Schlesselman (1971) uses c for k. k is used in the present
paper for consistency with the SAS/IML® code herein.
3 The listings from PROC UNIVARIATE have been edited to fit
into one column.
4 Graphically, a platykurtotic distribution has a larger modal value
and thinner tails than a normal distribution.
5 Thomas Bryan (personal correspondence) has observed this in
several data sets.
6 J.B. Ramsey (quoted by Zarembka (1974, p. 87)) appears to
have been the first to observe this. However, Zarembka (1974, p.
87) notes that “if the probability of large negative values [of the
transformed data] is quite low, the error term may still be
approximately normal.”

AnalysisNESUG 17

