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ABSTRACT

The objective of image stabilization is to prevent image blurring
caused by the relative motion between the camera and the scene dur-
ing the image integration time. In this paper we propose a software
approach to image stabilization based on capturing and fusing mul-
tiple short exposed image frames of the same scene. Due to their
short exposure, the individual frames are noisy, but they are less cor-
rupted by motion blur than it would be a single long exposed frame.
The proposed fusion method is designed such that to compensate for
the misalignment between the individual frames, and to prevent the
blur caused by object motion in front of the camera during the multi-
frame image acquisition. Various natural images acquired with cam-
era phones have been used to evaluate the proposed image stabiliza-
tion system. The results reveal the ability of the system to improve
the image quality by simulating longer exposure times. In addition
the system has the ability to reduce the effect of noise and outliers
present in the individual short exposed frames.

Index Terms— image stabilization, camera motion, de-noising,
low light imaging, motion blur

1. INTRODUCTION

Any relative motion between the camera and the scene during the im-
age integration time results in a degradation of the image known as
motion blur. This degradation reduces the perceptual quality of the
imaging product, and hence the manufacturers prioritize their efforts
to develop solutions to this problem. Such solutions are commonly
known under the name of ”image stabilization”. The main motiva-
tions for such efforts are two-fold. First, it is the need for longer
integration times in order to cope with smaller pixel areas that result
from sensor miniaturization and resolution increase requirements.
Second, it is the difficulty in avoiding unwanted motion during the
integration time when using high zoom, and/or small hand-held de-
vices.

Image stabilization solutions developed so far are divided in two
categories, based on whether they are aiming to correct or to prevent
the motion blur degradation. The first category includes those solu-
tions that are aiming to restore a single image shot captured during
a long exposure time. Such image could be affected by motion blur
caused by unwanted camera motions during the exposure time. If the
blur point spread function (PSF) is known then the original image of
the scene can be restored, to some extent, by applying an image de-
convolution routine . In such a case, the main limitation in restoring
the original image is given by the zeros of the PSF in the frequency
domain, that result in lost spatial frequencies from the original im-
age. However, the main difficulty is that in most practical situations
the motion blur PSF is not known, and since it depends of the arbi-
trary camera motion during the exposure time, it is also different for

each particular image. The lack of knowledge about the blur PSF
suggests the use of blind de-convolution approaches in order to re-
store the motion blurred images [1, 2]. Unfortunately, most of these
methods rely on rather simple motion models, e.g. linear constant
speed motion, and hence their potential use in consumer products is
rather limited. Measurements of the camera motion during the ex-
posure time could help in estimating the motion blur PSF and even-
tually to restore the original image of the scene. Such an approach
have been introduced in [3], where a secondary video camera is used
for estimating the motion during the exposure time of the principal
camera. Another way to estimate the PSF has been proposed in [4],
where a second image of the scene is taken with a short exposure.
Although noisy, the secondary image is unaffected by the motion
blur and it can be used as a reference for estimating the motion blur
PSF which degraded the principal image. The second category of
image stabilization solutions are aiming to prevent the motion blur
for happening in the first place. In this category are included all op-
tical image stabilization (OIS) solutions adopted nowadays by many
camera manufactures. These solutions are utilizing inertial senors
(gyroscopes) in order to measure the camera motion, following then
to cancel the effect of this motion by moving either the image sensor
or some optical element in the opposite direction. Due to the fact
the inertial sensors are less sensitive to low frequency motions, the
OIS solutions are effective only for relatively small exposure times.
As the exposure time increases the mechanism may drift, produc-
ing motion blurred images. A different method, based on specially
designed high-speed CMOS sensors has been proposed in [5]. The
method utilizes the possibility to independently control the exposure
time of each image pixel. In order to prevent motion blur the integra-
tion is stopped selectively in those pixels where motion is detected.

Multi-frame image stabilization, is another approach to prevent
motion blur, and it relies on dividing a long exposure time in shorter
intervals following to capture multiple short exposed image frames
of the same scene. Due to their short exposure, the individual frames
are corrupted by sensor noises but fortunately they are less affected
by motion blur. Consequently, a long exposed and motion blur free
picture could be synthesized by registering and fusing the available
short exposed image frames. In this paper we introduce a novel and
efficient approach to multi-frame image fusion for image stabiliza-
tion. One input frame is selected as the reference and divided in
blocks of variable size in accordance to the image content, i.e. larger
blocks in smooth image areas and smaller blocks in the neighbor-
hood of prominent image details. Next, each block of the refer-
ence frame is improved based on visually similar blocks found in the
available images. It is of importance to mention that the method pre-
sented here extends our previous work [6], by (i) allowing multiple
correspondences for each image block in both spatial and temporal
dimensions, and (ii) adaptively selecting the size of each block in
accordance to the image content.



2. THE PROPOSED ALGORITHM

The pixel brightness delivered by an imaging system is related to the
exposure time through a non-linear mapping called ”radiometric re-
sponse function”, or ”camera response function” (CRF). There are a
variety of techniques (e.g. [7, 8]) that can be used for CRF estima-
tion. In our work we assume that the CRF function of the imaging
system is known, and based on that we can write down the following
relation for the pixel brightness value:

I(x) = CRF (g(x)∆t) (1)

where x = [x y]T denotes the spatial position of an image pixel,
I(x) is the brightness value delivered by the system, g(x) denotes
the irradiance level caused by the light incident on the pixel x of the
imaging sensor, and ∆t stands for the exposure time of the image.

Let Ik, for k ∈ {1, . . . ,K} denote the K observed image
frames whose exposure times are denoted by ∆tk. A first step in our
algorithm is to convert each image to the linear (irradiance) domain
based on knowledge about the CRF function, i.e.

gk(x) = (1/∆tk) CRF−1 (Ik(x)) , for all k ∈ {1, . . . ,K}. (2)

We assume the following model for the K observed irradiance
images:

gk(x) = fk(x) + nk(x), (3)

where nk denotes a zero mean additive noise, and fk denotes the la-
tent image of the scene at the moment the k-th input frame was cap-
tured. We emphasize the fact that the scene may change between the
moments when different input frames are captured. Such changes
could be caused by unwanted motion of the camera and/or by the
motion of different objects in the scene. Consequently, the algo-
rithm can provide a number of K different estimates of the latent
scene image, each of them corresponding to a different reference
moment.

In the following, we assume that gr , (r ∈ {1, . . . ,K}) is the
reference observation, and hence the objective of the algorithm is
to recover an estimate of the latent scene image at moment r, i.e.
f = fr .

The restoration process is carried out based on a spatiotempo-
ral block processing. Assuming a division of gr in non-overlapping
blocks of size B × B pixels, the restored version of each block is
obtained as a weighted average of all B × B blocks located in a
specific search range, inside all observed images.

Let XB
x denote the sub-set of spatial locations included into a

block of B ×B pixels centered in the pixel x, i.e.:

XB
x =

{
y ∈ Ω | [−B −B]T < 2 (y − x) ≤ [B B]T

}
, (4)

where the inequalities are componentwise, and Ω stands for the im-
age support. Also, let g(XB

x ) denote the B2 × 1 column vector
comprising the values of all pixels from an image g that are located
inside the block XB

x .
The restored image is calculated block by block as follows

f̂(XB
x ) =

1

W

K∑
k=1

∑

y∈XSx

wk (x,y) gk(XB
y ), (5)

whereW =
∑K

k=1
Wk(XB

x ), withWk(XB
x ) =

∑
y∈XSx

wk (x,y),

denoting the total weight value of the kth image in the block XB
x .

The set XS
x denotes the spatial search range of size S × S centered

in x, and wk (x,y) is a scalar weight value assigned to an input

block XB
y from image gk. The weigh values are emphasizing the

input blocks that are more similar with the reference block.
In our work we used an exponential like weighted functions of

the form

wk (x,y) = exp

[
− 1

U2σ2
r,k

dist
(
gk(XU

y ), gr(X
U
x )
)]
, (6)

where σ2
r,k is the sum of noise variances in the reference and the

k-th observed image, and XU
x is a block of size U × U , (U ≥ B),

called here outer-block, that includes the actual B ×B image block
in the middle. Thus, in accordance to (6), the similarity between
blocks can be calculated based on matching larger neighborhoods
(i.e. outer-blocks) that include the actual image blocks in the middle.

The vectorial distance function ”dist”, used in (6) is defined as

dist (a,b) =
∑
t

ρ (at − bt) , (7)

where a, b are vectors of the same length, and ρ(u) is equal with u2

if |u| > σr,k, and zero otherwise.
The sizesB and U , selected for the image block and outer-block

respectively, influence both the computational complexity and the
quality of the result. On one hand, a small ratio U/B, i.e. close to
one, is desirable in order to reduce the computational cost. On the
other hand, a large ratio U/B would be preferable in order to im-
prove the quality of the result. This is because a large outer-block
size (U ) would ensure a more robust estimate of the block similar-
ity in the presence of noise, whereas a small B would ensure the
preservation of sharp edges preventing image over-smoothing.

In our solution the tradeoff between quality and complexity is
addressed by adaptively selecting the proper block size suitable for
each image region. The selection is based on the estimated restora-
tion quality achievable by different block sizes. Also, in order to
reduce the computational load the selection of the block size in dif-
ferent image regions is carried out only into the reference image. The
total weight in the reference image (i.e. Wr(X

B
x )) is used as an esti-

mate of the restoration quality achievable with a block size B in the
given image region. Starting with a large block size (i.e. small U/B
ratio), the algorithm progressively decreases the block size until the
total weight exceeds a certain threshold. Noting that the maximum
value of the total weight is S2, we use a threshold value of the form
γS2, where γ is a real constant that, in accordance to our experi-
mental observations, can be selected in the interval [0.3, 0.5]. The
propose method selects large block sizes (i.e. small U/B ratios) in
the smooth image ares, and small block sizes (i.e. large U/B ratios)
only in the neighborhood of image edges, gaining from the fact that
edges and sharp transition regions typically represent only a small
percent from a natural image area.

The stabilization algorithm receives as parameters a list of L >
1 decreasing block sizes, i.e. B1 > B2 > · · · > BL, along with
their corresponding outer block sizes, i.e. U1 ≤ U2 ≤ · · · ≤ UL.
The appropriate block sizes and block positions determined by the
algorithm are stored in a set B of the form:

B = {(x, B) | x ∈ Ω, B ∈ {B1, . . . , BL}}, (8)

where each element encodes a block descriptor comprising the cen-
tral coordinates of the block (x) and the size of the block (B). The
operations applied onto the reference image in order to select the ap-
propriate block sizes for each image region are summarized in the
following algorithm:

1. Set B = ∅, and an auxiliary set B0 = ∅.



2. Divide gr in non-overlapping blocks of size B1 ×B1 pixels,
and store their descriptors in B0.

3. Extract a descriptor (x, B) from B0, i.e. B0 = B0\{(x, B)}.
4. If B == BL then go to 6.

5. If Wr(X
B
x ) < γS2 then divide XB

x in non-overlapping
blocks of next smaller size, and insert their descriptors in B0.
Go to 3.

6. Insert the descriptor (x, B) into B, i.e. B = B⋃{(x, B)}.
7. If B0 is not empty then go to 3.

Finally, we can summarize the proposed stabilization algorithm
in the following steps:

1. Convert the input images in the irradiance domain in accor-
dance to (2).

2. Estimate the additive noise variance in each input image gk.

3. Determine the block division (i.e. the set B) in accordance to
previous algorithm acting only on the reference image gr .

4. Restore each block in B in accordance to (5).

5. Convert the resulted irradiance estimate f̂ , back to the image
domain Î(x) = CRF(f̂(x)∆t), based on the desired expo-
sure time ∆t. Alternatively, in order to avoid saturation and
hence to extend the dynamic range of the captured image, one
can employ a tone mapping procedure (e.g. [9]) for convert-
ing the levels of the irradiance image estimate into the limited
dynamic range of the system.

The extension of the proposed procedure to color or multichan-
nel images is done by applying (5) to each image channel, with
weight values calculated as follows:

wk (x,y) =

[
C∏
c=1

wck (x,y)

] 1
C

, (9)

where C denotes the number of color channels, and wck (x,y) is the
weight function (6), calculated based only on the c-th color channel.

3. EXPERIMENTS

Comparisons between the proposed method and different other
methods applied on public domain test images is shown in Table
1. In these experiments a single input frame was assumed. For the
proposed method we used block sizes B ∈ {8, 4, 1} with corre-
sponding outer block sizes U ∈ {8, 4, 3}, and a search range S = 9.
The method is compared against:

M1 the method proposed in our previous work [6],

M2 the Matlab’s spatial local Wiener filtering,

M3 the hard thresholding of wavelet coefficients [10],

M4 the hard thresholding of curvelet coefficients [11].

Fig. 1, shows the performance achieved when using different
numbers of input frames. For this experiment we used the ”Lenna”
image with an additive noise standard deviation of 15, and a search
range S = 3 was set for the algorithm. The figure shows,with dashed
line, the performance achieved by averaging the input frames after
their global registration. In Fig. 1(a), it is assumed a perfect global
registration between the input frames, and that the scene is static. A
more practical scenario is simulated in Fig. 1(b), where some errors
in the global alignment of the input images are inserted in the form of

Noise standard deviation
10 15 20 25

Lenna (512× 512)
Proposed method 34.73 32.87 31.52 30.37
(M1) The method in [6] 31.88 30.02 28.76 27.71
(M2) Wiener filtering 33.73 31.25 29.09 27.25
(M3) Wavelet de-noising 30.77 29.02 27.80 26.87
(M4) Curvelet de-noising 33.69 32.32 31.30 30.35

Barbara (512× 512)
Proposed method 32.86 30.65 29.05 27.78
(M1) The method in [6] 30.07 27.21 25.44 24.32
(M2) Wiener filtering 29.80 28.24 26.76 25.45
(M3) Wavelet de-noising 27.26 25.04 23.66 22.91
(M4) Curvelet de-noising 29.19 26.59 25.34 24.68

Cameraman (256× 256)
Proposed method 33.48 31.09 29.61 28.36
(M1) The method in [6] 31.36 28.99 27.27 25.90
(M2) Wiener filtering 30.90 29.40 27.85 26.41
(M3) Wavelet de-noising 28.24 26.06 24.57 23.60
(M4) Curvelet de-noising 29.53 27.58 26.40 25.66

Table 1. PSNR results in decibels achieved with different ap-
proaches.

small perturbation of±3 pixels translations, and±1 degree rotations
between input frames.

One example of low light imaging is shown in Fig. 2. In this
experiment four input image frames have been captured in low light.
During the time the individual frames have been captured the camera
was slightly moving, and also various objects were moving in the
scene, as reveal by Fig. 2 (b). Applying the proposed algorithm we
can recover the latent scene image at any moment when an individual
frame was captured. Fig. 2 (c) and (d) show two such examples
based on using two different input frames as reference. The ability of
the proposed algorithm to reduce the noise present in the individual
input frames is exemplified by the detail shown in Fig. 2 (e) and (f).

The individual frames can be also degraded by blur, which ul-
timately may affect the final result. Fig. 3, shows such an example
where some of the input frames are degraded (e.g. Fig. 3 b). If all
four frames of this set would be registered and added together then
the blur regions of various frames would degrade the quality of the
final image as shown in Fig. 3 (c). The proposed method is able to
reduce the effect of blur image regions in individual frames (Fig. 3
d), providing that the reference frame is selected based on a sharp-
ness criteria.

4. CONCLUSIONS

In this paper we introduced an image stabilization approach based on
fusing visually similar image blocks available in multiple observed
images of the scene. The block sizes are automatically adapted to
the image content such that to optimize the trade off between quality
and complexity. The proposed method acts along the temporal (inter-
frame), and spatial (intra-frame) dimensions, reducing the effect of
camera and object motion. The experiments show that the proposed
approach achieves high de-noising performance even with one input
frame (Table 1), and that it improves with the number of input frames
tolerating possible misalignment caused by camera motion (Fig. 1).
The method has been demonstrated also on real image examples.
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(a) (b)

Fig. 1. PSNR for different numbers of input frames fused in accor-
dance to the proposed method (continuous line), using the method
[6] (dotted line), or temporal filtering (dashed line). (a) shows the
ideal case when there is no camera motion, and (b) shows the real
case when there is camera motion.
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(a) (b)

(c) (d)

(e) (f)

Fig. 2. Low light imaging example: (a) input short exposed image,
(b) overlapped 4 input images, (c,d) two different results by the pro-
posed algorithm showing the scene at different reference moments,
(e,f) detail showing the noise reduction achieved by the proposed
method (f) in comparison with a gain increased input image (e).

(a) (b)

(c) (d)

Fig. 3. Dealing with degraded input frames: (a) fragment from the
reference frame out of four input frames used by the algorithm, (b)
one input frame heavily corrupted by blur, (c) the result obtained by
averaging the registered frames, and (d) the result of our algorithm.


