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This article presents an overview of multi-agent system models of land-use/cover change (MAS/LUCC models).
This special class of LUCCmodels combines a cellular landscapemodelwith agent-based representations of decision
making, integrating the two components through specification of interdependencies and feedbacks between agents
and their environment. The authors review alternative LUCCmodeling techniques and discuss the ways in which
MAS/LUCC models may overcome some important limitations of existing techniques. We briefly review ongoing
MAS/LUCCmodeling efforts in four research areas. We discuss the potential strengths of MAS/LUCCmodels and
suggest that these strengths guide researchers in assessing the appropriate choice of model for their particular
research question. We find that MAS/LUCC models are particularly well suited for representing complex spatial
interactions under heterogeneous conditions and for modeling decentralized, autonomous decision making. We
discuss a range of possible roles forMAS/LUCCmodels, from abstractmodels designed to derive stylized hypotheses
to empirically detailed simulation models appropriate for scenario and policy analysis.We also discuss the challenge
of validation and verification for MAS/LUCC models. Finally, we outline important challenges and open research
questions in this new field.We conclude that, while significant challenges exist, these models offer a promising new
tool for researchers whose goal is to create fine-scale models of LUCC phenomena that focus on human-
environment interactions. Key Words: agent-based modeling, cellular automata, complexity theory, land-use and land-
cover change, multi-agent systems.

R
ecently, global environmental challenges and the
development of advanced computer-based mod-
eling and analysis tools have expanded interest in

the application of computational approaches to the study
of human systems. Researchers are beginning to use these
tools to address the challenges outlined by Openshaw
(1994, 1995) to develop methodologies within human
geography that seek computational solutions to problems
involving both numeric and symbolic data. These new
computational tools can be applied to various areas in
geography, such as industrial location, transportation,
biogeography, or the study of land-use/cover change
(LUCC), and may complement existing quantitative and
qualitative modeling approaches in human geography.
This article focuses specifically on application of these
techniques to the study of LUCC.

Land is a dynamic canvas on which human and natural
systems interact. Understanding the many factors influ-
encing LUCC has been the focus of scientific study across
multiple disciplines, locations, and scales. But direct
measurements alone are not sufficient to provide an

understanding of the forces driving change. Linking
observations at a range of spatial and temporal scales
to empiricalmodels provides a comprehensive approach to
understanding land-cover change (Turner et al. 1995).
One promising class of models designed to simulate and
analyze LUCC aremulti-agent systemmodels of land-use/
cover change (MAS/LUCC models). This article aims to
provide a broad overview of the history of these models,
offer our perspective on their potential role in LUCC
modeling, discuss some key issues related to their devel-
opment and implementation, and briefly review ongoing
research based on this modeling paradigm.

MAS/LUCCmodels combine twokey components into
an integrated system. The first component is a cellular
model that represents the landscape over which actors
make decisions. The second component is an agent-based
model that describes the decision-making architecture of
the key actors in the system under study. These two
components are integrated through specification of inter-
dependencies and feedbacks between the agents and their
environment. This approach to the study of systems with
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many discrete, interacting components that generate
observable behavior at multiple levels both draws from
and facilitates comparisons to broader studies in complex-
ity research (Manson 2001).

All of the authors of this article are involved in
development of various MAS/LUCC models. During the
planning and development stages of our projects, we have
considered several key questions:

� What alternative techniques are available for LUCC
modeling? What are the potential limitations of
these techniques? Can MAS/LUCC models over-
come some of these limitations?

� What are some ongoing applications of thismodeling
technique, and why have the developers chosen to
use the new approach?

� What are the unique strengths of MAS/LUCC
modeling techniques?Howcan these strengths guide
researchers in selecting the most appropriate model-
ing technique for their particular research question?

� What is the appropriate role for MAS/LUCC
models? Are these models best used in a highly
abstract form to demonstrate potential theoretical
causes for qualitatively assessed real-world phenom-
ena? Alternatively, can they be used to create well-
parameterized empirical simulations appropriate for
scenario and policy analysis?

� How can these models be empirically parameterized,
verified, and validated?

� What are some remaining challenges and open
questions in this research area?

By providing answers to these questions, we hope to offer
guidance to researchers considering the utility of this new
modeling approach. We also hope to spark a healthy
debate among researchers as to the potential advantages,
limitations, andmajor research challenges ofMAS/LUCC
modeling.AsMASmodeling studies are beingundertaken
by geographers in other research fields—including trans-
portation, integrated assessment, recreation, and resource
management—many of the issues raised in this articlemay
be relevant for other applications as well. The remainder
of this article sequentially addresses the questions out-
lined above.

Approaches to Modeling
Land-Use/Cover Change

This section examines myriad LUCC modeling ap-
proaches and offers MAS as a means of complementing
other techniques. We briefly discuss the strengths and
weaknesses of seven broad, partly overlapping cate-
gories of models: mathematical equation-based, system

dynamics, statistical, expert system, evolutionary, cellular,
and hybrid. This review is not exhaustive and only serves
to highlight ways in which present techniques are
complemented by MAS/LUCC models that combine
cellular and agent-based models. More comprehensive
overviews of LUCCmodeling techniques focus on tropical
deforestation (Lambin 1994; Kaimowitz and Angelsen
1998), economic models of land use (Plantinga 1999),
ecological landscapes (Baker 1989), urban and regional
community planning (U.S. EPA 2000), and LUCC
dynamics (Briassoulis 2000; Agarwal et al. 2002; Veld-
kamp and Lambin 2001; Verburg et al. forthcoming).

Equation-Based Models

Most models are mathematical in some way, but some
are especially so, in that they rely on equations that seek a
static or equilibrium solution. The most common math-
ematical models are sets of equations based on theories
of population growth and diffusion that specify cumula-
tive LUCC over time (Sklar and Costanza 1991). More
complex models, often grounded in economic theory,
employ simultaneous joint equations (Kaimowitz and
Angelsen 1998). One variant of such models is based on
linear programming (Weinberg, Kling, and Wilen 1993;
Howitt 1995), potentially linked to GIS information on
land parcels (Chuvieco 1993; Longley, Higgs, and Martin
1994; Cromley and Hanink 1999). A major drawback of
such models is that a numerical or analytical solution to
the system of equations must be obtained, limiting the
level of complexity that may practically be built into such
models. Simulation models that combine mathematical
equationswith other data structures are considered below.

System Models

System models represent stocks and flows of informa-
tion, material, or energy as sets of differential equations
linked through intermediary functions and data structures
(Gilbert and Troitzsch 1999). Time is broken into discrete
steps to allow feedback. Human and ecological interac-
tions can be representedwithin thesemodels, but they de-
pendonexplicit enumerationof causesand functional repre-
sentation, and they accommodate spatial relationships
with difficulty (Baker 1989; Sklar and Costanza 1991).

Statistical Techniques

Statistical techniques are a common approach to
modeling LUCC, given their power, wide acceptance,
and relative ease of use. They include a variety of
regression techniques applied to space and more tailored
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spatial statistical methods (Ludeke, Maggio, and Reid
1990;Mertens andLambin1997).Unless they are tied to a
theoretical framework, statistical techniques may down-
play decision making and social phenomena such as
institutions. Spatial econometrics provides successful
examples of combining theory and statistics (Chomitz
andGray 1996;Geoghegan,Wainger, andBockstael 1997;
Geoghegan et al. 1998; Leggett and Bockstael 2000;
Munroe, Southworth, and Tucker 2001).

Expert Models

Expert models combine expert judgment with non-
frequentist probability techniques, such as Bayesian
probability or Dempster-Schaefer theory (Eastman 1999),
or symbolic artificial-intelligence approaches, such as
expert systems and rule-based knowledge systems (Gor-
don and Shortliffe 1984; Lee et al. 1992). These methods
express qualitative knowledge in a quantitative fashion
that enables the modeler to determine where given land
uses are likely to occur. It can be difficult to include all
aspects of the problem domain, however, which leaves
room for gaps and inconsistencies.

Evolutionary Models

Within the field of artificial intelligence, symbolic
approaches such as expert systems are complemented by a
biologically inspired evolutionary paradigm. Exemplars of
this field, such as artificial neural networks and evolu-
tionary programming, are finding their way into LUCC
models (e.g.,Mann andBenwell 1996; Balling et al. 1999).
In brief, neural networks are silicon analogs of neural
structure that are trained to associate outcomes with
stimuli. Evolutionary programming mimics the process of
Darwinian evolution by breeding computational programs
over many generations to create programs that become
increasingly able to solve a particular problem.

Cellular Models

Cellular models (CM) include cellular automata (CA)
and Markov models. Each of these models operates over
a lattice of congruent cells. InCA, each cell exists in one of
a finite set of states, and future states depend on transition
rules based on a local spatiotemporal neighborhood. The
system is homogeneous in the sense that the set of possible
states is the same for each cell and the same transition
rule applies to each cell. Time advances in discrete
steps, and updates may be synchronous or asynchronous
(Hegselmann 1998). More general versions of CA use
nonlocal neighborhoods (Takeyama and Couclelis 1997)

and graph networks (O’Sullivan 2001). In Markov
models, cell states depend probabilistically on temporally
lagged cell state values. Markov models may be combined
with CA for LUCC modeling, as evidenced by joint CA-
Markov models (Li and Reynolds 1997; Balzter, Braun,
and Kohler 1998).

Cellular modeling methods underlie many LUCC
models. Tobler (1979) was one of the first to suggest the
use of CM to model geographical processes. This was
followed by GIS research that applied CM—particularly
CA—to a number of research questions (Couclelis 1985;
Cecchini and Viola 1990). Sophisticated CA models of
ecological processes exist for rangeland dynamics (Li and
Reynolds 1997), species composition (Silvertown et al.
1992), forest succession (Hogeweg 1988; Alonso and
Sole 2000), global LUCC in response to climate change
(Alcamo 1994), and a host of other biological phenomena
(Ermentrout and Edelstein-Keshet 1993; Gronewold and
Sonnenschein 1998).

Many CM inductively assume that the actions of
human agents are important but do not expressly model
decisions.Others explicitly posit a set of agents coincident
with lattice cells and use transition rules as proxies to
decision making. These efforts succeed when the unit of
analysis is tessellated, decision-making strategies are fixed,
and local neighbors affect heterogeneous actors in a
simple, well-defined manner. A good example is modeling
residential choice and land use in urban areas, where
actors are assumed, for analytical simplicity, to be evenly
arrayed—as in homes—and their decision making stems
from interactions with immediate neighbors (Schelling
1971; Hegselmann 1998). Other work loosens the tessella-
tion of actors to make more realistic models (Portugali,
Benenson, and Omer 1997; Benenson 1998).

When actors are not tied to location in the intrinsic
manner of CA cells, however, there may be a problem of
spatial orientedness (Hogeweg 1988)—the extent to which
neighborhood relationships do not reflect actual spatial
relationships. The remedy lies in techniques that have
nonuniform transition rules and can dynamically change
the strength and configuration of connections between
cells. As these characteristics lie beyond the capacities of
rigidly defined CA, the pure, traditional CA method may
not be broadly suited to modeling LUCC. A LUCCmodel
may require multiple mobile agents ranging widely over
space, agent heterogeneity, agents organized among insti-
tutions and social networks, or agents that control large
and varying portions of space.

In sum, cellularmodels haveprovenutility formodeling
ecological aspects of LUCC, but they face challengeswhen
incorporating human decision making. It is necessary
to use complex, hierarchical rule-sets to differentiate
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between the kinds of decisionmaking that apply to groups
of cells, such as local land-tenure structure (e.g., Li 2000;
White and Engelen 2000). While effective, these devia-
tions from generic cellular automata come at the potential
cost of moving away from the advantages of the generic
approach. In particular, ‘‘in order to converse with other
disciplines, from biology and physics to chemistry, it may
be necessary that the form of . . . CA preserve as many
features of strict and formal CA models as possible’’
(Torrens and O’Sullivan 2001, 165).

Hybrid Models

Hybrid models combine any of the above-mentioned
techniques, each of which is a fairly discrete approach unto
itself. A prime example is estuarine land-use/cover transi-
tion modeling that has an explicit, cellular model tied to a
system dynamics model (Costanza, Sklar, and Day 1986).
Another similar combination is DELTA, which integrates
submodels of human colonization and ecological interac-
tions to estimate deforestation under different immigration
and land-management scenarios (Southworth, Dale, and
O’Neill 1991). Other examples that combine statistical
techniques with cellular models and systemmodels include
larger-scalemodels, such as GEOMOD2 (Hall et al. 1995),
the CLUE family (Veldkamp and Fresco 1996), and
endangered-species models developed at the Geographic
Modeling Systems Lab at the University of Illinois (Trame
et al. 1997; Westervelt et al. 1997).

A distinct variant of hybrid models is dynamic spatial
simulation (DSS), which portrays the landscape as a two-
dimensional grid in which rules represent the actions of
land managers based on factors such as agricultural
suitability (Lambin 1994; Gilruth, Marsh, and Itami
1995). DSS typically does not represent heterogeneous
actors, institutional effects on decision making, or multi-
ple production activities. However, due to its ability to
represent individual decision making and temporal and
spatial dynamics, it constitutes an important advance over
previous models (Lambin 1994). The orientation toward
individual decision making in DSS—that some form of
land managers act over a landscape—is shared by agent-
basedmodels. Thus, these models are logical precursors to
MAS/LUCC.

Agent-Based Models

Where cellular models are focused on landscapes and
transitions, agent-based models focus on human actions.
Agents are the crucial component in these models.
Several characteristics define agents: they are autono-
mous; they share an environment through agent commu-

nication and interaction; and they make decisions that
tie behavior to the environment. Agents have been
used to represent a wide variety of entities, including
atoms, biological cells, animals, people, and organizations
(Liebrand, Nowak, and Hegselmann 1988; Epstein and
Axtell 1996; Conte, Hegselmann, and Terna 1997; Weiss
1999; Janssen and Jager 2000).

Autonomy means that agents have control over their
actions and internal state in order to achieve goals.
Wooldridge (1999) defines intelligent agents as being able
to act with flexibility, which implies that agents are goal-
directed and capable of interaction with other agents and
a common environment, meant, in a wide sense, as
anything outside of the agents. In a LUCC context, a
shared landscapewhere the actions of one agent can affect
those of others is likely to be the unifying environment. A
land market is another example of an important environ-
ment through which agents interact.

Agents must act according to some model of cognition
that links their autonomous goals to the environment
through their behavior. The term ‘‘cognition’’ ranges in
applicability to situations ranging from relatively simple
stimulus-response decision making to the point where
actors are proactive, take initiative, and have larger
intentions. At a minimum, an autonomous agent needs
strategies that allow it to react to changes in environment,
given the importance of the environment to goals and
actions. Reaction can be scripted and still be considered a
cognitivemodel in a narrow sense, as long as the agent can
respond to changes (Russell and Norvig 1995). Beyond
pure reaction, some of the most well-developed formal
models of human decision making are based on rational-
choice theory. These models generally assume that actors
are perfectly rational optimizers with unfettered access to
information, foresight, and infinite analytical ability.
These agents are therefore capable of deductively solving
complex mathematical optimization problems in order to
maximize their well-being and can balance long-run vs.
short-run payoffs even in the face of uncertainty. While
rational-choice models can have substantial explanatory
power, some of the axiomatic foundations of rational
choice are contradictedby experimental evidence, leading
prominent social scientists to question the empirical
validity of rational-choice theory (Selten 2001).

It is an open question whether models of perfect
rationality are appropriate for agent-based models applied
to LUCC, given the importance of spatial interdependen-
cies and feedbacks in these systems. For instance, if the
value of an action to every perfectly rational agent
depends on both her actions and those of her neighbors,
then she faces a high-dimensional, fully recursive pro-
gramming problem if she strategically seeks to anticipate
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the actions of her neighbors. Recognition of the complex
environment in which human decision making occurs
has resulted in a movement toward agent-based models
that employ some variant of bounded rationality (Simon
1997; Gigerenzer and Todd 1999). In general, boundedly
rational agents have goals that relate their actions to the
environment. Rather than implementing an optimal
solution that fully anticipates all future states of the
system of which they are part, they make inductive,
discrete, and evolving choices that move them toward
achieving goals (Tversky and Kahneman 1990; Rabin
1998; Bower and Bunn 2000).

Good examples of decision-making models can be found
in the emerging field of agent-based computational eco-
nomics, where these approaches have been applied to
financial markets, macroeconomics, innovation, environ-
mental management, and labor economics (Tesfatsion
2001). Boundedly rational forms of decision making have
been modeled using genetic algorithms (Arifovic 1994,
2001; Miller 1996; Beckenbach 1999; Dawid 1999; Chen
and Yeh 2001), heuristics (Arthur 1993, 1994a; Gigerenzer
and Todd 1999; Gigerenzer and Selten 2001), simulated
annealing (Kollman, Miller, and Page 1997), classifier sys-
tems (Holland 1990), and reinforcement learning (Bower
and Bunn 2000; Duffy 2001; Kirman and Vriend 2001).

Before continuing, it is important to address one key
difference between agent-based modeling and other
techniques. The discussion of systems models, cellular
models, and agent-based models leads naturally to the
question of the relationship between general systems
theory, agent-based modeling, and complexity theory
(Phelan 1999). During the heyday of general systems
theory, on which systems models are partially based, some
researchers found the theory useful for modeling environ-
mental systems (Bennett and Chorley 1978), while others
found it wanting (Chisholm 1967). Complexity research
differs from general systems theory in several respects
(Manson 2001). Complex systems are often characterized
by nonlinear relationships between constantly changing
entities, while systems theory typically studies static
entities linked by linear relationships defined by flows
and stocks of energy, information, or matter. Similarly,
systems theory emphasizes quantities of flow, not neces-
sarily their quality, while complexity research attempts to
examine qualitative attributes, such as learning and
communication. As discussed below, complex behavior
is seen as emerging from interactions between system
components, while system models tend to favor parame-
terized flows and stocks that assume that the system exists
in equilibrium due to fixed relationships between system
elements. Agent-based modeling relies on the idea that
emergent or synergistic characteristics are understood by

examining subcomponent relationships. Finally, complex-
ity research takes advantage of the increasing sophistica-
tion of computer-simulation tools that allow exploratory
simulation (Conte and Gilbert 1995). Silicon-based simu-
lation allows exploration of system outcomes that are not
preordained and deterministic (Thrift 1999).

Multi-Agent Systems for Land-Use/Cover Change

The exploration of modeling thus far has raised three
key points that the remainder of this article explores. First,
of the host of methods used to model LUCC, dynamic
spatial simulation offers a promising degree of flexibility.
Second, as noted above, cellular models successfully
replicate aspects of ecological and biogeophysical phe-
nomena, but they may not always be suited to modeling
decision making. Third, as explored more fully below,
agent-based modeling is a promising means of represent-
ing disaggregated decision making. When all three points
are taken together, they suggest the use of a dynamic,
spatial simulation-likeMAS/LUCCmodel that consists of
two components. The first is a cellular model that
represents biogeophysical and ecological aspects of a
modeled system. The second is an agent-basedmodel that
represents human decision making. The cellular model is
part of the agents’ environment, and the agents, in turn,
act on the simulated environment. In this manner, the
complex interactions among agents and between agents
and their environment can be simulated in a manner that
assumes no equilibrium conditions. Rather, equilibria or
transient but reoccurring patterns emerge through the
simulated interactions between agents and their environ-
ment. The following sections highlight the advantages of
this combination for modeling LUCC and a number
of existing examples.

Current Applications of
MAS/LUCC Modeling

In this section, we briefly discuss recent studies that
apply multi-agent systems to studying LUCC for practical
cases.We do not intend to provide a complete review of all
possible studies, since this field is newly emerging and a
detailed review would be quickly outdated. We discuss
why researchers have chosen to use MAS/LUCC models
in four overlapping topic areas: natural-resource manage-
ment, agricultural economics, archaeology, and urban
simulations. In Table 1, we list a number of published
studies that demonstrate the broad range of applications.
For more details, we refer to recent overviews by Kohler
(2000), Gimblett (2002), Janssen (forthcoming), and
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Parker, Berger, and Manson (forthcoming) that incorpo-
rate work on MAS/LUCC models.

Natural-Resource Management

Within the field of natural-resourcemanagement there
is substantial interest in usingMASmodels to understand
common-pool resource problems. The question of interest
concerns what type of institutional rules may direct
individuals to act in the benefit of the collective. Bousquet
and colleagues (1998)havedeveloped a number ofmodels
in which collective-choice models influence LUCC. For
example, Rouchier and colleagues (2001) study how
herdsmen search for suitable grazing locations in the dry
season and negotiate with farmers for the use of their land.
Depending on the criteria by which the herdsmen pursue
access to rangelands, different carrying capacities for
cattle result, although the physical characteristics of the
systemare held constant. In the long term, decisions based
on cost differentials lead to lower numbers of cattle, while
decisions that take into account the history of interactions
lead to a higher carrying capacity.

Agricultural Economics

Several agricultural economists have performed studies
on how new agricultural practices are adopted by a
population of farmers in an agricultural region (Balmann
1997; Berger 2001; Polhill, Gotts, andLaw2001; Balmann
et al. 2002). Such an adoption process is typically bottom-
up, since landowners vary in their preferences and abilities
to adopt technological innovations, land quality and
availability are spatially heterogeneous, and information
on new practices spreads via social interactions of agents.
These scholars have developed simulations that include
farmers’ investment decisions in new technologies, land
markets, and crop-choice decisions. The resulting models
can be used to assess the impacts of various governmental
policies on the adoption of new agricultural practices and
the structure of the farm economy.

Archaeology

Archaeologists are not able to perform repeated,
controlled experiments. Therefore, since the early
1970s, archaeologists have used models to test possible
explanations for observed phenomena, basing their
modeling on the limited information available from the
past. These models have focused mainly on how complex
societies have emerged and collapsed. Archeologists
are now beginning to use MAS/LUCC as a means of
incorporating spatial information into their models.

Dean and colleagues (2000) study the cause of the
collapse of the Anasazi around A.D. 1300 in Arizona.
Scholars have argued for both social and environmental
causes (drought) for the collapse of this society. Simulating
individual decisions of households on a very detailed
landscape of physical conditions of the local environment,
the authors refute the hypothesis that environmental
factors alone account for the collapse. Kohler and collea-
gues (2000) study the reasons why there have been periods
duringwhichPueblo people lived in compact villages, while
in other times they lived in dispersed hamlets. Thesemodel
results show the importance of environmental factors
related to water availability for these settlement changes.

Urban Simulation

Torrens (2002) discusses the drawbacks of traditional
spatial-interaction and discrete-choice models of urban
landscapes and argues that these drawbacks provide
motivation for scholars of urban studies to undertake
multi-agent simulations. Drawbacks of traditional models
include poor representation of dynamics in urban simula-
tions and poor handling of details in spatial and socio-
economic representations. He also argues that the top-
down approach in traditional urban models conflicts with
the bottom-up perspective of complex systems.

Torrens (2002) argues that a newwave of urbanmodels
provides a detailed, decentralized, and dynamic view of
urban systems.Whilemost are based oncellular automata,
a few MAS and CA-MAS oriented models are being
developed. CA models have been used for assessing the
role of density constraints in land development (Batty,
Xie, and Sun 1999), describing the evolution of urban
forms (Clarke, Hoppen, and Gaydos 1997; Wu 1998),
and simulating land-use transitions (White and Engelen
1997). Torrens himself (2001) combines CA and MAS
models in an exploratory study.

Why Use MAS/LUCC Models?

As discussed above, many well-developed techniques
for modeling land-use/cover dynamics exist. However,
each of these techniques has some limitations. Equation-
based models may require simplifying assumptions to
achieve analytical or computational tractability, and they
are often based on empirically implausible assumptions
regarding static market equilibria. System models directly
address the shortcomings of equation-based models in
terms of representing feedbacks and dynamic processes,
but these models also operate at a very aggregated level,
or, equivalently, at a very coarse temporal and spatial

Parker et al.320



resolution. Therefore, where local heterogeneity and
interactions are important, such models may have limited
explanatory power.

Some insight into the impacts of spatial heterogeneity,
neighborhood effects, and spatial spillovers can be gleaned
through estimation of statistical models. However, these
models distill information into parameter estimates that
represent average effects over available data. Thus, such
models may be useful for projecting spatial dynamics and
interactions only for processes that are stationary and
uniform over space and time.While the impacts of spatial
influences occurring at hierarchical spatial scales can be
represented to some extent through statistical tech-
niques that account for regional heterogeneity (such as
generalized least-squares, fixed-effect, and random-effect
models), feedbacks across scales cannot be effectively
modeled.While cellularmodeling techniques offer greater
flexibility for representing spatial and temporal dynamics,
these dynamics are also based on stationary transition
probabilities. Therefore, such models have limited ability
to reflect feedbacks in the system under study, as global
changes in the system do not influence transitions at
the cellular level. Perhaps most significantly, none of the
above modeling techniques can represent the impacts of
autonomous, heterogeneous, and decentralized human
decision making on the landscape.

MAS/LUCCmodels can potentially overcomemany of
these limitations. In particular, they might be well suited
for representing socioeconomic and biophysical complex-
ity. They also might be well suited for the related goal of
modeling interactions and feedbacks between socioeco-
nomic and biophysical environments. In the following
section, we offer our perspective on the general strengths
of MAS/LUCC models. This discussion may guide
researchers in selecting the modeling framework most
appropriate for their particular research.

MAS/LUCCModels as a Simulated Social Laboratory

Perhaps the greatest general advantage of MAS/LUCC
models is their flexibility. Because the models need not be
solved for closed-form analytical equilibrium solutions,
details critical to the system under study can be built in.
These details may include endogeneity related to agent
decision making and disaggregated spatial relationships.
As suggested by Casti (1999), these models can then serve
as a social laboratory in which to explore links between
land-use behaviors and landscape outcomes. Once the
mechanisms of the model are programmed, researchers
have greater flexibility to design and execute experiments
toexplorealternative causalmechanisms thantheywould if
a solution to a set of equilibrium conditions were required.

Representing Complexity

The flexibility possible within MAS/LUCC models
means that such models can be designed to represent
complex land-use and land-cover systems. While no
precise definition of a complex system exists (Auyang
1998; Batty and Torrens 2001; Ziemelis and Allen 2001),
complex systems are generally discussed as dynamic
systems that exhibit recognizable patterns of organization
across spatial and temporal scales. Complex systems are
often defined in terms of the strength of dynamic linkages
between components. Systems with very strong dynamic
linkages may immediately move to and remain at a stable
equilibrium. Systems with weak dynamic linkages are
often chaotic, and changes in the system due to small
perturbation are large and often difficult to track. In
contrast, systems with moderate linkages between com-
ponents may exhibit transient but recurrent patterns of
organization. Such complex systems are often said to
reside at the edge of chaos (Waldrop 1992).

Structurally, complex systems are characterized by
interdependencies, heterogeneity, and nested hierarchies
among agents and their environment (Arthur, Durlaf, and
Lane 1997; Holland 1998; Epstein 1999; Kohler 2000;
LeBaron 2001; Manson 2001). Many examples of these
three key sources of complexity can be identified in
human-influenced landscapes. Complexity arises from
both human decision making and the explicitly spatial
aspects of the landscape environment.

Interdependencies exist among agents, between agents
and their biophysical environment, across time, and across
space. Agents may rely on information from past deci-
sions—their own and those of other agents—to update
decision-making strategies. This process leads to temporal
interdependencies among agents. Agent decisions likely
will have temporally dynamic impacts on the biophysical
environment, including impacts on soil health, biodiver-
sity, and the type and succession of vegetation cover.
Brander and Taylor (1998) and Sanchirico and Wilen
(1999) present examples of bioeconomic models that
incorporate ecological interdependencies. If each agent’s
behavior potentially affects other agents’ decisions uni-
formly, and agents’ actions are not spatially linked, these
dynamics potentially could be modeled in an aspatial
context.

However, many spatial interdependencies potentially
have an impact on individual decision making. These
include spatial influences on agent behavior, such as flows
of information, diffusion of technology, spatial competi-
tion, local coordination, social networks, and positive and
negative externalities among neighbors (see Miyao and
Kanemoto 1987; Case 1991, 1992; Lansing and Kremer
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1993; Krider andWeinberg 1997; Ray andWilliams 1999;
Parker 2000; Irwin andBockstael 2002).Manybiophysical
spatial interdependencies are also potentially important,
such as downstream watershed impacts, habitat connec-
tivity, metapopulation dynamics, and ecological edge
effects. Furthermore, biophysical and social processes
interact at a spatially explicit level. For example, residen-
tial development patterns may impact surface runoff
and thereby lead to changes in hydrologic networks.
Alternatively, local changes in ecological conditions may
drive human migration.

Heterogeneity may also be present across agents, the
biophysical environment, space, and time. Agents may
vary according to experience, values, ability, and re-
sources. This heterogeneity may change over time due to
agent learning and demographic changes. Biophysical
heterogeneity can also drive changes in land-use decisions
and the resulting land cover. Differences in soil quality,
topography, vegetation, water quality, and water avail-
ability all influence the relative success of various land-use
choices.

While models with substantial heterogeneity may be
analytically tractable, when heterogeneity and interde-
pendencies are combined, analytical solutions become
very difficult to obtain. Assumptions of agent homogene-
ity are commonly invoked to obtain analytical tractability.
When agent heterogeneity is a critical driver of model
outcomes, assumptions of homogeneity are not appro-
priate. Technology adoption is a simple example in which
both agent heterogeneity and spatial interdependencies
are important. The benefits of a new technology are often
uncertain. Therefore, an agent with greater access to
resources to ensure a subsistence level of consumption
(such as stored wealth or access to credit) may be more
willing to risk adoption of a new technology. The success
or failure of the new technology will provide informa-
tion about the payoffs from the technology to other agents,
potentially reducing uncertainty. If information diffuses
spatially, risk-averse neighbors of the early adopter may
now adopt the technology. Further, the distribution of
agent types over space may impact the spatial extent
of adoption. Thus regions of adoption and nonadoption
may emerge as a result of local agent heterogeneity and
spatial interdependencies between agents.

In models of complex systems, interdependencies and
heterogeneity often lead to what are called nonconvex-
ities—an irregular and rugged abstract surface describing
the relationship between the parameters of the system and
possible outcome states. In systems with such mathema-
tical properties, many possible stable equilibria can exist
(Burrows 1986; Bond and Gasser 1988). For many
systems, the particular equilibrium that a system reaches

depends on the initial conditions of the model. Such
systems are said to exhibit path-dependency (Arthur
1988, 1994b). A simple extension of the technology-
adoption example illustrates this concept. The presence of
a single agent willing to take risks may be required to
instigate a cascade of technology adoption. The system
therefore has two equilibria, one with adoption and one
without, and initial condition of the distribution of risk
preferences among agents may determine whether the
technology is in fact adopted in a local region.

In addition to heterogeneity and interdependencies,
both social and biophysical systems are characterized by
hierarchical, nested structures. For example, family
members interact to formahousehold,whichmay interact
with other households in a village through political and
economic institutions. City governments collectively
influence and are influenced by county and regional
governments, which, in turn, interact at a national level.
On the biophysical side, individual waterways join to
define nested watersheds, and populations formed of
individual species members aggregate to form commu-
nities, which, in turn, collectively define ecosystems.
These nestings imply that an individual agent or parcel is
likely influenced by, and in turn influences, processes
occurring at multiple spatial scales. These spatial com-
plexities are very difficult tomodel in a purely analytical or
statistical framework. Further, they may complicate the
situation of multiple equilibria and path-dependence
discussed above, as feedbacks within the system may
change the shape of the outcome surface, rendering
previously stable equilibria unstable (Kauffman 1994).
Returning to the example of technology adoption,
regional policies that offer inducements for adoption
may influence the decisions of individual landowners—
a downward linkage. The subsequent development of a
critical mass of adopters may then lead to the creation of
a formal market for the good produced using the new
technology—an upward linkage.

Adaptation

Complex systems are often described as being adaptive.
Adaptive mechanisms may influence outcomes at both
micro- and macroscales. At the level of an individual
agent, learning behavior and the evolution of strategies
may be built into the decision-making structure. At the
system level, the aggregate population evolution may be
influenced by the birth, death, migration, and bankruptcy
of agents (Epstein and Axtell 1996; Kohler et al. 2000;
Berger 2001). Finally, rules and institutions may evolve
over time in response to changing social and environ-
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mental conditions (Lansing and Kremer 1993; Janssen
and Ostrom forthcoming).

Modeling Emergence

If researchers are specifically interested inmodeling the
complex dynamics of a LUCC system, they also may be
specifically interested in understanding the macroscopic,
or emergent, phenomena that could result. While
‘‘emergence’’ has become a popular buzzword in discus-
sions of complexity, there are numerous concrete mani-
festations of the concept, many of which are potentially
useful foci for empirical researchers. However, it is
important to acknowledge that a widely accepted formal
mathematical definition of emergence has not been
established, and the topic remains a point of lively debate
among modelers. Below, we briefly summarize the diverse
ways in which emergence has been defined in the
literature and discuss the relevance of the concept for
MAS/LUCC modeling.

Emergent phenomena are described as aggregate out-
comes that cannot be predicted by examining the
elements of the system in isolation. This description is
often summarized as awhole that is greater than the sumof
its parts. Holland (1998) describes emergence simply as
much coming from little. Epstein and Axtell (1996, 6)
suggest that emergence is characterized by ‘‘organization
into recognizable macroscopic social patterns.’’ Baas and
Emmeche (1997) explicitly identify emergence as a func-
tionof synergism,whereby systemwidecharacteristics result,
not from the additive effects of systemcomponents (super-
position), but from interactions among components.
Auyang (1998) similarly defines emergent phenomena
as higher-level structures that are both qualitatively
different from their lower-level components and not
obtainable through aggregation, averaging, or other
superposition of microlevel components.

Definitions of emergence usually concern macroscale
phenomena that arise from microinteraction. Therefore,
the concept of emergence is directly related to the
phenomenon of nested hierarchies that characterize
complex systems. Emergent phenomena at one level
potentially define the units of interaction at the next
higher level.However, themacrostructure potentially also
affects units at the microscale. Castelfranchi (1998), for
example, discusses how emergent networks of depen-
dence between agents’ decisions constrain and influence
agents’ subsequent actions. There are definitions of
emergence that necessitate that lower-level elements
remain unaware of their role in emergent phenomena
(Forrest 1991).MASmodels based on such principlesmay
fail to capture reality if they do not allow reflexivity or

model individualswho reason about features ofwhich they
are part. Conversely, MAS models are sufficiently flexible
to capture both upward and downward linkages, and may
therefore be a useful tool for exploring such linkages.
Emergent structures may change form in response to
exogenous shocks or a key state of the system reaching a
level of critical mass. This restoration of discernible
structure in response to system perturbations represents
an outcome-oriented interpretation of adaptation.

Some definitions specifically associate emergence with
surprise or novelty (Batty andTorrens 2001). The concept
of surprise is potentially consistent with the concept of an
emergent property as one that could not be predicted by
examining the components of the system in isolation.
However, definition in terms of the fundamentally sub-
jective concept of surprise is potentially problematic. If a
phenomenonmust be surprising, how can it be replicable?
Is it then not emergent upon reobservation? Auyang
(1998) specifically rejects the concept of surprise as a
defining characteristic of emergence, but provides a
helpful discussion of the relationship between novelty
and emergence. The concept of surprise, though, may
provide a counterfactual way of defining emergence: a
pattern the appearance of which is an obvious conse-
quence of the properties of the underlying components
may not be regarded as emergent.

Various authors identify many concrete examples of
emergence. For example, both market-clearing price and
the aggregate distribution of economic activity have been
identified as emergent properties of economic systems
(Epstein and Axtell 1996). Location models have focused
on spatial segregation and patterns of settlement and
migration as emergent properties of spatially explicit
complex systems (Schelling 1978; Kohler et al. 2000).
Patterns of land use have also been identified as emergent
properties of land markets (White and Engelen 1993,
1994; Parker, Evans, and Meretsky 2001). The distribu-
tion of farm sizes has been identified as an emergent
property of agricultural land markets (Balmann 1997;
Berger 2001). In each of these examples, the macroscopic
outcome depends on interactions between agents, as well
as individual agent characteristics.

If researchers assume that modeled systems reach their
theoretical equilibria, some of these macroscale phenom-
ena can be derived from a set of equilibrium conditions,
given a set of assumptions about agent interactions that
are not explicitly modeled. For example, in the classic
economic model of a purely competitive economy, a
market-clearing price can be derived from a set of
equilibrium conditions that hold under certain restrictive
assumptions (Laffont 1988). If these phenomena can be
modeled using simple analytical techniques, why would a
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more complicated technique be justified? There are two
answers to this question. First, by relying on simplifying
assumptions regarding agent interactions, heterogeneity,
and hierarchical structures, the analytical techniquesmay
predict outcomes that hold only as special cases. Second,
in many cases, a set of equilibrium conditions that define
the emergent outcome cannot be analytically solved, or
cannot be solved for a unique equilibrium. This second
answer often holds for spatial problems.Analytical spatial-
equilibrium models are very difficult to construct in cases
in which the relationship of each neighbor to every other
neighbor must be modeled. Even if impacts are limited
to a local neighborhood, these models quickly become
intractable. Thus, an emergent phenomenon such as
landscape pattern may be practically modeled only with
computational tools, such as MAS models.

Modeling Dynamic Paths

Many temporally dynamic analytical models are solved
only for a steady state (a dynamic equilibrium inwhich the
rate of change of system components is zero). A very long
time horizon may be required for the model to reach a
steady state.Realistically, however, steady states are highly
dependent on parameter values that are not stable over
time, and thus theoretical steady states may not be a
reasonablemodeling target. Further, policymakers may be
most interested in short-run changes in the system under
study.Therefore, analysis of the dynamic path (or paths) of
the system may be of more relevance than information
about a theoretical long-run equilibrium. When spatial
heterogeneity impacts path-dependent outcomes, policy
makers may be interested in differential impacts on local
stakeholders.MASmodels can be used to analyze the path
of the system within any timeframe. Further, parameter
values can be perturbed to examine how the path of the
system changes in response to exogenous shocks.

Participatory Models

Oreskes, Shrader-Frechette, and Belitz (1994, 644)
claim that ‘‘[F]undamentally, the reason for modeling
is a lack of full access, either in time or space, to the
phenomena of interest.’’ Such a lack of access is endemic
in many LUCC-relevant policy areas. Participatory ap-
proaches tomodel development and implementation offer
promise as a means to increase the utility of simulation
models by closely tailoring the model and subsequent
analysis to the needs of stakeholders. Participatory
approaches have been applied to problems in geography,
ecology, and natural-resource management (Grimble and
Wellard 1997; Steins and Edwards 1999; Luz 2000; Craig,

Harris, and Weiner 2002). Such participatory models
vary from heuristic models that give policy makers and
stakeholders a voice in model development and a feel for
the general dynamics of a system to detailed models
designed to mimic actual systems and provide potential
futures. MAS models are potentially useful for active/
interactive policy-testing and learning in resource-
management areas, precisely because theMAS approaches
can model both decision making and social-physical-
biological processes. The visual communication provided
by spatially explicit cellular models, particularly those
coupled with GIS, can assist in communicating model
results to a wide range of stakeholders and policy makers.
Finally, the flexibility of representation and implementa-
tion inherent in MAS/LUCC models makes them well
suited to interactive scenario analysis.

Three general types of participatory models, distin-
guished by the level of participation involved, are
prevalent in the literature. One type is explicitly con-
cerned with participation at all stages of model develop-
ment (Hare et al. 2002; Lynam et al. 2002; Bousquet et al.
2002). Stakeholders and modelers work together to build
MAS models of the systems in question, and the model-
building and model-running exercises facilitate learning
about the interactions and dynamics in the system being
addressed. With the second type of participatory model,
stakeholder participation is not necessarily incorporated
into model-building, but stakeholders participate in the
model-running, acting as agents in the model (Barreteau,
Bousquet, and Attonaty 2001; Gilbert, Maltby, and
Asakawa 2002). In this type of model, stakeholders play
the game by interacting with artificial agents in a MAS
model in order to learn more about the system at hand.
Finally—and most commonly—MAS models are de-
signed to be presented to policy makers as a fully
functioning scenario-analysis tool (Rajan and Shibasaki
2000; Antona et al. 2002; Ligtenberg et al. 2002). With
this type of model, stakeholders can alter variables and
parameters of models that either are heuristic or closely
mimic real systems in order to test policy alternatives.

In summary,MASmodels are likely to be a useful tool for
theoretical exploration and development of hypotheses
when complex phenomena have an important influence
on model outcomes. MAS models may be particularly
appropriate when important interdependencies between
agents and their environment are present, when hetero-
geneity of agents and/or their environment critically affect
model outcomes, when upward and downward linkages
among hierarchical structures of organization exist, and
when adaptive behaviors at the individual or system level
are relevant for the system under study. They are also
potentially useful for examining the path of a system in
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cases in which the timescale to reach equilibrium is
beyond the timeframe of interest to the researcher. Finally,
these may be well suited for development and implemen-
tation of participatory models designed to assist decision
making in complex circumstances. In cases where these
complexities are not present, simpler and more transpar-
ent modeling techniques may be appropriate.

Potential Roles of MAS/LUCC Models

The numerous, diverse applications and noted advan-
tages of MAS/LUCC notwithstanding, a series of ques-
tions for modelers remains. What kind of science are we
practicing when we use MAS models? What, if anything,
do the results of our models tell us? What role does our
simulation play in our investigations? In light of the
observation that ‘‘[I]n every case of simulating complex
adaptive systems, the emergent properties are strictly
dependent on the ‘rules’ preprogrammed by the investi-
gator’’ (Fogel, Chellapilla, and Angeline 1999, 146), how
muchcanwe learnwith thismethod?Theanswers to these
questions are far from clear. Indeed, recent commentaries
caution modelers to take care with the claims they make
about their models and to reflect on the utility of them
as a tool for exploring empirical phenomena (Oreskes,
Shrader-Frechette, and Belitz 1994; Casti 1997).

Beyond a common goal of understanding something
about theworld by creating simulations, there aremultiple
ways to conceive of the utility of the modeling enterprise.
While MAS/LUCC models appear to be useful tools, it is
imperative that we consider the kinds of information and
knowledge that we can potentially extract from them.
This is not a trivial task, becauseMASmodels donot easily
fit into the classic deductive/inductive categories familiar
to scientists. Consistent with deduction, a MAS modeler
begins with a set of assumptions regarding agent behaviors
and interactions. In contrast to classical deduction,
however, the modeler cannot prove the results using
formal mathematics or logic. Instead, the modeler may
generate data in different simulation experiments, which
are then analyzed with inductive methods similar to those
employed for analysis of empirical data. In contrast to the
casewith pure induction, however, onedoes notworkwith
real-world data. Judd (1997) discusses ways in which
computational methods can be useful for theoretical
analysis, evenwhen suchmethods donotmeet the theorem/
proof criteria for pure deduction.Axelrod (1997a) concurs
that simulation is neither purely deductive nor inductive,
and alternatively characterizes it as a third way of doing
science. Thus, it is not immediately clear what role this
new scientific approach should play in our analysis of
LUCC issues.

In sorting out roles for MAS/LUCCmodels, we turn to
an interesting distinctionCasti (1997) has drawn between
models, which relies on the analogy of the difference
between a photographic portrait and a Picasso portrait:
one attempts to mimic reality; the other, while capturing
parts of reality, focuses in onparticular aspects in thehopes
of emphasizing fundamental features. This is a useful
metaphor for discussing the role of MAS/LUCC models.
This section condenses various uses of MAS into similar
categories—explanatory approaches (Picasso) and de-
scriptive approaches (photographic)—and discusses the
types of knowledge hoped for and the advantages and
disadvantages of both.

Explanatory Approaches

Explanatory approaches conceive MAS to be a social
laboratory. This type of modeling strives to explore theory
and generate hypotheses. Modelers begin with a theore-
tical framework and formalize it in computer code in order
to examine the ramifications of their framework and
potentially generate new hypotheses to explore empiri-
cally. As with any theoretical enterprise, explanatory
models may emphasize some details about a phenomenon
and ignore others. Akin to Picasso’s portraits, these
models focus on particular processes or dynamics in order
to achieve fundamental understanding about aspects of a
phenomenon.

One way to conceive of this type of modeling is as
a method for testing candidate explanations. Epstein
(1999) is perhaps the best proponent of this approach,
arguing that we need to pursue generative social science.
Candidate-explanationmodelingentailsdescribing (through
a model) how the ‘‘decentralized local interactions of
heterogeneous, boundedly rational, autonomous agents
generate’’ a regularity (Epstein 1999, 41). Tesfatsion
(2001, 282) also suggests this role for agent-based models
in economics, noting that onekey role for suchmodels is to
demonstrate how market regularities can emerge from
‘‘repeated local interactions of autonomous agents acting
in their own perceived self interest.’’

Using MAS models to develop candidate explana-
tions follows simple logic. There is a target empirical,
macroscopic phenomenon (or pattern or regularity),
which often represents an emergent property of a complex
system, such as the spatial organization inherent in
patterns of human settlement. The modeler develops a
series of rules, interactions, and specifications for the
agents and their environment, and then allows agents to
interact within a simulation environment. If the macro-
phenomenon that results resembles the empirical phe-
nomenon of interest, then the modeler has uncovered, at
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the very least, a candidate explanation for the empirical
phenomenon (see Axtell and Epstein [1994] for a
discussionof the difficulty indeterminingwhat constitutes
resemblance). When used in this manner, MAS allows
modelers to assess the ramifications and boundary condi-
tions of theories and hypotheses, as it facilitates a
plausibility check on the empirical expectations that flow
from theories. Further, MAS models provide the oppor-
tunity to systematically test alternative explanations.

This type of modeling can be considered normative,
in that it attempts to encapsulate critical mechanisms in
order to function as a virtual laboratory. Again, when
outcomes from theoretically based constructions mimic
reality, the theory gains support. These models purport to
be explanatory by stating how reality should or would be
under idealized circumstances. Explanatory MAS/LUCC
models do not attempt to reproduce actual land-use
systems; instead, they concentrate on specific aspects and
onmodeling fundamental dynamics, in the hope that such
laboratory explorations will lead to empirically relevant
insights.

Beyond simulating the ramifications of given theories,
explanatory approaches also hope to find novel hypoth-
eses. Researchers may construct a model with the specific
goal of examining the possible (but unknown) macro-
scopic implications of a particular set of microlevel
interactions. The early prisoner’s-dilemma computer
tournaments, in which researchers competed by submit-
ting agent-based programs representing strategies, com-
prise a prime example of this type of modeling (Axelrod
1984, 1997b). It was far from clear at the outset which
strategies would be most successful, and most researchers
would have argued initially that cooperative outcomes
would be unlikely candidates. The fact that tit for tat—a
strategy that entails cooperation—emerged as successful
opened up a productive empirical research avenue in
politics and economics. MAS/LUCC models can poten-
tially play the same role.Models that explore fundamental
processes can potentially be used to derive novel testable
hypotheses that relate landowner/manager decisions to
land-use and land-cover outcomes.

Thus, in general, explanatory modeling approaches
allow modelers to (1) demonstrate that a set of rules can
lead to the outcome of interest—test theory, (2) explore
other possible causes that could lead to the same out-
come—formally exploring the robustness of the proposed
causal explanations, and (3) discover outcomes not
originally anticipated. The potential drawback of this
approach is the lack of a clear method for evaluating the
empirical utility of the simulations. Because abstract
conceptsmake up the building blocks of thesemodels, and
general patterns and phenomena are the goal, it is difficult

to establish what the models tell us about reality. While
they can tell us a great deal about our theorizing and
thinking, they may supply less understanding of specific
real-world systems.

Descriptive Approaches

Descriptive approaches follow a fundamentally differ-
ent logic and are more concerned with empirical validity
and/or predictive capacity. Like the photograph in Casti’s
(1997)metaphor, these approaches attempt tomimic real-
world systems to facilitate direct empirical and policy
scenario research.

In LUCC modeling terms, empirically based MAS/
LUCC models may be constructed to achieve a variety of
goals, including: to replicate landscape composition and
function; to examine the impact on the biophysical
environment of policies that influence socioeconomic
behavior; and to demonstrate the value of using informa-
tion on spatial heterogeneity and interactions, among
others. Such models would be as fully parameterized with
real-world data as possible and, ideally, would incorporate
links with models representing important biophysical
processes, such as hydrologic flows, vegetation-growth
models, soil fertility, and transport and fate of pollutants.
Within a GIS-based model, socioeconomic and biophysi-
cal inputs could be linked through common spatial
identifiers. To the extent possible, given data availability,
the scale at which social and biophysical processes operate
in the model would match researchers’ understanding of
the scale at which they operate in the real world.

Using MAS methods for this type of modeling may be
more effective in several areas than using existing
empirical models. First, by modeling at a fine resolution,
such models may make the best statistical use of available
information. Second, as noted above, by accounting for
heterogeneity and interdependencies, the models can
reflect important endogenous feedbacks between socio-
economic and biophysical processes. Last, since the
models are not constructed to meet a set of equilibrium
criteria, they can produce discontinuous and nonlinear
phenomena, such as extinctions, regime shifts, and
exponential growth of populations.

Descriptive models can often be identified by claims
made of their replicative ability, particularly when applied
to LUCC. Herein lies both their advantage (noted above)
and their disadvantage. For many of these fitting models,
MAS practitioners may point out ways in which their
models provide insight into real-world processes. This
provides hope for real relevance in terms of policymaking.
These intuitive insights, however, can potentially come at
the cost of more general rules, and descriptivemodels may
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thereby move us away from developing normative state-
ments (Judson 1994).

A different type of problem arises from a fundamental
fact regardingmodeling.WithMAS/LUCC techniques, we
can create an infinite number of models, while reality
remains singular.Thus,wemustbeonguardand temperour
conclusions, as it is possible to develop a model that can
reproduce a statistically correct metaphenomenon with a
model structure that does not capture real processes. The
most dangerous situation, of course, is when we achieve
metaverisimilitude with a model mechanism that is close
enough to be perceived as being correct when, in fact, it is
not. Rather than nullifying the utility of descriptive
approaches, these disadvantages instead necessitate a
recognition of the underlying uncertainty in any modeling
enterprise and caution in claims, especially where policy
prescriptions are concerned (Oreskes, Shrader-Frechette,
and Belitz 1994).

Moving Forward

The explanatory and descriptive approaches described
above represent a continuum, rather than a dichotomous,
mutually exclusive choice. There will always be aspects of
both photographs and Picasso in any model built to
explore LUCC questions. At issue is the question of how
precise we should make our re-creations of specific social/
environmental systems and what information we hope to
glean from our simulations. If the goal of our modeling
endeavors is the re-creation of actual land use in specific
locations over time for use in policy-scenario modeling
andprediction, then thedescriptive approach is indicated.
If, instead, we hope to understand generic patterns of
LUCC over time, so that we can find and apply insights to
a wide range of specific empirical situations, then an
explanatory approach is appropriate. To some extent, our
choices are constrained by the data available and the
theoretical sophistication already achieved. However, it is
crucial that the larger question of modeling philosophy,
explanatory versus descriptive, be acknowledged and
understood.

Building an Empirically Grounded Model

Modeling and simulation are useful approaches to
exploring LUCC, but their utility depends on adequate
verification and validation. Verification and validation
concern, respectively, the correctness of model construc-
tion and the truthfulness of a model with respect to its
problem domain. In other words, verification means
building the system right, and validation means building

the right system. Verification techniques range from
debugging the computer program that underlies the
simulation to ensuring that model structure is adequate.
Once a model is verified and works correctly, then the
modeler is concerned with validation—comparing model
outcomes to outside data and expectations. It is important
to note that these definitions of validation and verification
are model-centric terms that do not immediately address
larger epistemological questions of modeling in general
(e.g., Oreskes, Shrader-Frechette, and Belitz 1994).

Verification

The greatest simultaneous advantage and shortcoming
of agent-based models is their flexibility of specification
and design. Verification reduces the problematic nature
of flexibility by vetting model structure and the rules
employed. In particular, success in verifying amodel lies in
striking a balance between theory and data. Fortunately, a
hallmark of MAS is the ability to map the concepts and
structures of real world onto the model in a way that
preserves natural objects and connections (Batty 2001;
Kerridge, Hine, and Wigan 2001).

Apart from examining the balance between theory and
data, verification essentially involves attempts to break
the model by varying model configurations. This process
leads to debugging—careful assessment of model objects
and linkages among them. Effective communication of
model design to others can assist in verification. Most
modeling publications do not contain a description of the
simulation sufficient to permit the reader to fully under-
stand model design and therefore the appropriateness
of verification procedures. Furthermore, a general lack of
published code for LUCC models and a lack of common
modeling platforms render replication difficult. A growing
tradition of publishing software code along with manu-
scripts, however, exists within the agent-based modeling
community. It behooves MAS/LUCC research to con-
tinue this tradition. Similarly, as more models adopt
common standards, verification will become easier.

Key to verification is sensitivity analysis of relationships
between model parameters and the state or time path of
variables endogenous to themodeled system. Incremental
parameter changes aremapped againstmodel outcomes in
order to ascertain the spatial or temporal limits of amodel’s
applicability and to identify programming artifacts. Com-
mon techniques, borrowed from closed-form analytical
modeling, include the comparative static (Silberberg 1990)
and comparative dynamic (Kaimowitz and Angelsen
1998) methods. Closely allied to sensitivity analysis is
the study of error propagation and uncertainty, a topic
often left unconsidered in LUCC modeling (Robinson
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1994). Work within this topic ranges from studying the
effects on errors of mathematical operations (Alonso
1968) to error classification in remote sensing (Riley
et al. 1997) and treatment of error and uncertainty
in geographic information systems (Eastman 1999;
Heuvelink 2002).

Validation

Validation concerns how well model outcomes repre-
sent real system behavior. Therefore, validation involves
comparing model outputs with real-world observations or
the product of another model or theory assumed to
adequately characterize reality. Mounting interest in
verification and validation of LUCC models is evidenced
by a recent special issue of Agriculture, Ecosystems and
Environment (Veldkamp and Lambin 2001). Data are
drawn from other models, theories, and observations of
the target system, provided by surveys, role-playing games,
interviews, censuses, and remote sensing (Manson 2000;
Deadman and Schlager 2002). Outcomes of interest may
be demographic, such as aggregated spatial distribution of
population or migration. They may include patterns and
degree of natural-resource exploitation, such as ground-
water quality, patterns of soil degradation, species popula-
tion health and distribution, and spatial patterns of land
cover. Also of interest are measures of economic well-
being, such as the value of output, income distribution,
and trade flows. For many of these measures, researchers
may be concerned with how both aggregate and spatial
outcomes unfold over time.

Model outcomes are compared to real outcomes using a
variety of aspatial and spatial measures. Statistics is home
to an array of techniques geared toward description and
hypothesis testing appropriate for analyzing aspatial out-
comes. In terms of spatial measures, the complexity of
LUCC suggests the use of a variety of tests to measure
spatiotemporal outcomes (Turner, Costanza, and Sklar
1989). This need is evidenced through many authors’ use
of spatial statistical approaches (point-pattern and land-
scape metrics) to compare modeled outcomes and data
(White and Engelen 1993; Batty and Xie 1994; Alberti
and Waddell 2000; Manson 2000; Parker 2000; Herold
and Menz 2001; Parker, Evans, and Meretsky 2001; Irwin
and Bockstael 2002). While pattern and texture metrics
are useful for their ties to ecological characteristics, such
as biotic diversity (Giles and Trani 1999), their use is
tempered byuncertainty about the linkage between fractal
metrics and ecological processes (Li 2000). Location- based
methods, such as error-matrix analysis or the kappa
statistics, are now joined by measures that better differ-

entiate between location prediction and quantity predic-
tion (Pontius 2000; Pontius and Schneider 2001).

Pitfalls in Verification and Validation

As has been widely recognized throughout geography,
there are scale-related problems held in common by
verification and validation for MAS/LUCC models.
Change analysis of spatial data, for instance, is affected
by changing resolution (Lam and Quattrochi 1992) and
extent (Saura and Millan 2001). Scale effects can be
statistically causal, since variables differentially co-vary as
a function of the scale at which they are measured (Bian
1997). For MAS/LUCC researchers, the need for a
sufficient sample size to ensure statistical significance,
the resolution at which the MAS/LUCC model operates,
and the resolution of available data may influence the
choice of spatial resolution for comparison ofmodeled and
real-world outputs. Researchers making spatial compar-
isons are cautioned to be aware of potential issues related
to both scale and spatial correlation, as discussed by the
authors above. There is a long history of research into
issues of scalar, spatial, and temporal corollaries of
verification and validation techniques upon which re-
searchersmay draw (Cliff andOrd 1973;Openshaw 1977;
Anselin 1988; Pontius and Schneider 2001; Heuvelink
2002).

Finally, assumptions necessary for verification and
validation, such as normality and linearity, can be at odds
withmodels designed to accommodate complex behaviors
caused by sensitivity to initial conditions, self-organized
criticality, path-dependency, or nonlinearities (Arthur
1988; Kauffman 1994; Manson 2001). In effect, the very
synergies that make complex systems interesting also
make themdifficult to analyze. Therefore, a need exists for
techniques such as active nonlinear testing, which seeks
out sets of strongly interacting parameters in a search for
relationships across variables that are not found by
traditional verification and validation (Miller 1998).
Furthermore, researchers should be careful to ensure that
abrupt changes in system behavior and unexpected
outcomes are ultimately explained by the conceptual
framework embodied in the model. Outcomes must be
traced back to a unique set of precursors, not model
artifacts.

A final challenge lies in abstraction, since many
outcomes of human interaction, such as trust or learning,
are imputed or abstract. Validating abstract outcomes is
difficult, since they are ill defined or not easily measured.
One solution involves expert and stakeholder interviews
that provide a sense of howemergent outcomes are related
to model structure and processes (Bousquet et al. 1998).
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The various challenges faced in model validation and
verification highlight the need for more sophisticated
approaches. Verification and validation of agent-based
models will be aided by better communication of model
design through adoption of common languages, standard
techniques, and better linkages to other software used in
LUCC research, such as GIS and statistical packages.
Otherwise, two broad questions will continue to guide the
development of verification and validation. First, what do
we learn when different model configurations enjoy
varying levels of success across different forms of verifica-
tion and validation? Second, does a model behave as
expected when key components or their interdependen-
cies are varied? Does the removal of a key resource
institution, for example, result in an anticipated or
documented LUCC? It is the role of both verification
and validation to determine which components are
important and why.

Challenges and Conclusions

This article has outlined many of the issues researchers
face when constructing multi-agent system models of
LUCC. There remain a number of fundamental chal-
lenges forwhich no clear solutions exist. These issuesmust
be addressed in the coming years in order for MAS/LUCC
modeling to evolve into a mature scientific field.

General Modeling Challenges

Many of these challenges mirror those faced when
undertaking any modeling endeavor. In order to identify
an appropriate degree of abstraction for the model,
researchers must have a clear idea of the goal of their
modeling effort. Is it a stylized representation of an
abstract system that may produce results that are easily
generalized to a wide variety of circumstances, or a
carefully parameterized empirical model appropriate for
scenario andpolicy analysis?Researchersmay evenchoose
to create models at both ends of the spectrum, in order to
allow the development of one model to inform develop-
ment of the other. Whatever the goal of modeling efforts,
balancing the utility of abstraction against the need
to include the critical components of the system under
study is a major challenge of modeling. Developing tech-
niques to understand the relationship between model
components and outcomes is a major challenge, and
success in this area is likely to have an impact on the
acceptance of model results by the broader scientific
community.

Most MAS/LUCC models are, by their nature, inter-
disciplinary. Therefore, researchers building these models

face a formidable set of challenges unique to interdisci-
plinary research. A major challenge relates to building an
experimental frame that can be used to answer questions
of interest to multiple disciplines. A second challenge lies
in unifying models that may operate—perhaps appropri-
ately—at different spatial and temporal scales. This
challenge occurs both at the time of model construction
and when model outcomes are analyzed.

Building an Experimental Frame. Since the real world
is far too complex to model in its entirety, we must define
an experimental frame that we can use to guide our data-
collection, modeling, and validation efforts. In defining
such an experimental frame,we place boundaries around a
subset of the real world. These boundaries can be defined
in a variety of ways based on the spatial extent of a study
area, the institutions or other human systems considered,
and the temporal period of interest. Experimental frames
are also defined in reference to particular research
questions and bodies of knowledge. A real-world system
can have any number of experimental frames associated
with it. For example, the experimental frames for
a particular fishery would be different for an ecologist, a
fisheries biologist, or an economist. When the purpose of
the modeling effort is specifically interdisciplinary, the
boundaries of the experimental frame will be broadened,
but challenges inherent to the definition of any model—
defining the appropriate degree of abstraction and
identifying which factors will be endogenous to the
model—remain.

Scale Considerations. While MAS/LUCCmodels can
theoretically integrate submodels across disciplines, a
caveat is that models representing these processes must
work according to compatible spatial and temporal scales.
Frequently, processes in different disciplines operate over
different scales, and relevant boundaries of scale do not
coincide. These incompatibilities potentially occur over
both spatial and temporal scales. Thus, representing and
integrating processes across scale is a major modeling
challenge. While issues of scale are central to the
discipline of ecology (Levin 1992), within the social
sciences the significance of scale is only beginning to be
explored. In order to link ecological and social processes,
we need a common understanding of how to address scale
in integrated systems (Gibson, Ostrom, and Ahn 2000).

Theoretically, MAS/LUCC models can be structured
to match the scale and structure of the available spatial
data. However, if spatial data are not available at a scale
fine enough to be compatible with the minimum spatial
unit at which human decision making and/or ecological
processes operate, then parameterization of aMASmodel
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maybe difficult, andMAS resultsmayneed to be scaled up
for comparisons with actual data. The result may be a
statistical loss of information.

When landscapes are directly compared, issues of
spatial scale become potentially important in analyzing
model outcomes. Within a defined geographical area,
spatial heterogeneity that is apparent at a fine spatial scale
may not show up as an aggregate, cross-region measure.
Thus, if scale-dependent phenomena are present in the
landscape of interest, the choice of spatial unit of analysis
becomes quite important when comparingmodel outputs.
This potential scale-dependence in measuring results
highlights the importance of identifying the appropriate
spatial scale for decision making in the model.

Specific Challenges

Understanding Complexity. Many of the challenges
we have discussed are specific to MAS/LUCC models.
These include the need to understand and represent
complexity. While we have argued that MAS/LUCC
models are an excellent tool for modeling complexity in
human-influenced landscapes, it also must be acknowl-
edged that the theory that defines complexity is still in the
developmental stage. Thus, modeling and understanding
complexity will surely be an iterative process. As
researchers, we may find that the road we have taken
changes even as we are in the middle of our journey.

Individual DecisionMaking. We have seen that many
competing models of decision making exist. One of the
strengths of MAS/LUCC modeling lies in the diversity of
disciplinary perspectives that it brings together. Yet the
result of this diversity is that radically different approaches
have been used to represent human behavior through
agent-based models. Within the community of multi-
agent simulation, most researchers embrace a variant of
bounded rationality formodeling human decisionmaking.
The resulting problem is an almost infinite number of
possible formulations of agents.

A key challenge for researchers designing an agent-
based model is to decide among the sheer number of
competing techniques and theories for modeling decision
making. In order for MAS modeling to become a viable
long-term field, more comparison between different
research efforts is needed. There is a particular need for
research that compares these decision-making models to
extant theory, practice, and observation of the real world.
Such research would focus on themacroscale implications
of particular microscale decision-making strategies and
would examine whether particular agent decision-making
formulations are appropriate for particular decision-

making situations. This research would simultaneously
support current approaches when there is agreement and
point theway for improvements (in both generalMASand
MAS/LUCC work) when there is disagreement.

Modeling Institutions. Institutions—the formal and
informal rules between agents—constrain the actions of
agents to derive an improved collective outcome. The last
twenty years have seen much improved understanding of
the factors that influence collective action problems
(Ostrom 1998). However, formal models of the empirical
insights are lacking. Nevertheless, numerous studies have
focused on the evolution of cooperation in collective-
choice problems (Axelrod 1984). These game-theory-
oriented studies focus on the selection of a limited set of
rules. The importance of social norms and reputation has
been investigated, but important aspects such as the
creation of rules, social memory, and the role of symbols
and communications have not been incorporated in
formalmodels.Many of these phenomena play a potentially
important role in LUCC systems, but development of
formal models remains a challenge.

Empirical Parameterization and Model Validation.
Due to their complexity and ability to represent detail,
MAS/LUCC models may face unique challenges of
parameterization and validation. To a high degree,
development of techniques for understanding output lags
behind development of the tools that produce output. On
the cellular modeling side, fine-resolution data appro-
priate for model validation are just beginning to become
widely available, and the availability of social-science
data lags behind the availability of natural-science
data. Confidentiality concerns related to fine-resolution
data on land use contribute to this lag.On the agent-based
modeling side, massive advances in computing power
have meant that sophisticated tools have become widely
used before researchers have had time to consider and
develop methods to link these models to data.

These challenges represent exciting opportunities for
researchers. There is no end to interesting interdisciplin-
ary research questions for which MAS/LUCC models are
appropriate tools. We live in an era of both increased
computing power and increased availability of spatial data.
While many unanswered questions remain, researchers
have the ability to draw on and combine knowledge from
many disciplines—including landscape ecology, spatial
statistics, and econometrics—in order to develop creative
new tools for empirical analysis.

Communication. For some scholars, who argue that
analytical proofs are required for the scientific method to
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be upheld, MAS/LUCC models have the image of
pseudoscience. Multi-agent simulations produce colorful
moving output, whichmight give the impression that they
involve nothing more than playing games. Since most
practitioners of MAS modeling purposely incorporate
uncertainty and path dependence in their modeling
efforts, each simulation might produce different results.
Robust solutions can be derived with multiple experi-
ments, but they do not have the power of mathematical
proofs. Thus, effective and convincing communication of
our results is a challenge.

Several strategies may assist in this goal. The first is to
attempt to replicate findings using more than one
modeling approach. This strategy has been followed by a
number of authors whose work compares experimental
and computational results (Axelrod 1986; Arthur 1991;
Duffy 2001). A second approach attempts to replicate
analytical findings in a simulation environment (Mari-
mon, McGratten, and Sargent 1990; Marks 1992; Miller
and Shubik 1992; Andreoni and Miller 1993; Arifovic
1994; Nyarko, Woodford, and Yannelis 1994; Weibull
1995; Epstein and Axtell 1996). These approaches
demonstrate, under a set of simplifying assumptions, that
a computational model can replicate a well-established
analytical result. Within LUCC modeling, researchers
may choose to make comparisons between the many
alternative land-use modeling strategies described in the
second section of this paper and the results from MAS/
LUCC models.

A second strategy is to continue development of
empirically parameterized and tested models. Historically,
while many empirical cellular models of LUCC phenom-
ena exist, agent-based models have been, by and large,
theoretical.As empiricalmodels are developed and tested,
the circle of the scientific method will be completed for
this new approach, and models will likely gain greater
acceptance and use.

A final strategy is to encourage and facilitate clear
communication of model mechanisms and results. Provi-
sion of modeling source code can be encouraged when
possible. Currently,MAS/LUCCmodels are implemented
in diverse programming languages and platforms, in order
tomeet the specializedneeds of particular projects (Parker,
Berger, and Manson forthcoming). In order to encourage
cross-fertilization and comparisons between models,
however, it may be important to have a common language
through whichmodel mechanisms can be communicated.
Documentation of models using Unified Modeling Lan-
guagemay serve as a partial remedy to this communication
gap (Fowler and Scott 1999).While we encourage journal
and volume editors to provide space for extensive model
documentation, we recognize that this space is costly.

Therefore, a centralized repository for source code and
documentation could be a valuable infrastructure addi-
tion for the MAS/LUCC community.

Conclusions

This article began with a set of questions designed to
focus our exploration of MAS/LUCC modeling. In the
course of the article, we endeavored to answer but did not
fully succeed in answering all of the questions, because,
indeed not all of the final answers are yet available.
Instead, the utility of this article has been in delineating
the uses, obstacles, advantages, and disadvantages asso-
ciatedwith this particularmethodology.Wedemonstrated
that, in principle, MAS/LUCCmodels offer tools that can
facilitate progress in understanding processes of LUCC.
We delineated the type of issues and processes that MAS/
LUCC models can address and those where traditional
methods will likely suffice. We outlined the deliberation
that must take place in choosing a modeling strategy—
namely, what type of role is themodel expected to play in a
research project? We discussed the crucial issues of
verification and validation, noting the challenges that
lie ahead in empirical applications of thesemodels. Finally,
we noted the broad and open questions that MAS/LUCC
research must address if this methodology is to become
accepted. This exercise in clarifying the questions, chal-
lenges, and possibilities surrounding MAS/LUCC builds a
foundation for further progress.

The authors of this article represent a range of social-
science disciplines, andour review is necessarily somewhat
weighted by our disciplinary perspectives and expertise.
We have seen, however, that no one methodological
approach dominates this nascent field. Rather, a wide
range of techniques for model development and empirical
assessment are used, and, in many cases, insightful
comparisons have resulted when multiple approaches
are used to tackle a single research question. Further,
modeling efforts fall along a spectrum from highly abstract
to highly empirical applications. Ideally, this diversity will
spur a dialog betweenmodelers working at each end of the
spectrum, with lessons from one end being used to inform
the other. Finally, it is clear that this modeling field will
benefit from the development of a set of common metrics
that can be used to test simulations and from continued
effort to validatemodels of humandecisionmaking.While
challenges remain, the many recent developments reflect
an encouraging trend towards integrating the multiple
tools and disciplines required to develop a newmethodol-
ogy for dynamic spatial modeling of human-environment
interactions.
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patterns of land use in Rondônia, Brazil: Simulating the
effects on carbon release. International Social Science Journal
130:681–798.

Steins, N. A., and V. M. Edwards. 1999. Platforms for collective
action in multiple-use common-pool resources. Agriculture
and Human Values 16:241–55.

Takeyama, M., and H. Couclelis. 1997. Map dynamics: Integrating
cellular automata and GIS through geo-algebra. International
Journal of Geographical Information Science 11 (1): 73–91.

Tesfatsion, L. 2001. Introduction to the special issue on agent-
based computational economics. Journal of Economic Dy-
namics and Control 25 (3/4): 281–93.

Thrift, N. 1999. The place of complexity. Theory, Culture, and
Society 16 (3): 31–69.

Tobler, W. R. 1979. Cellular geography. In Philosophy in geography,
ed. S. Gale and G. Olsson, 379–86. Dordrecht: D. Reidel
Publishing Company.

Torrens, P. M. 2001. Can geocomputation save urban simulation?
Throw some agents into the mixture, simmer, and wait . . . ,
Publication 32. London: University College, London.

FFF. 2002. Cellular automata and multi-agent systems as
planning support tools. In Planning support systems in practice,
ed. S. S. Geertman and J. Stillwell, 205–22. London:
Springer-Verlag.

Torrens, P. M., and D. O’Sullivan. 2001. Cellular automata and
urban simulation: Where do we go from here? Environment
and Planning B 28 (2): 163–68.

Trame, A., S. J. Harper, J. Aycrigg, and J. Westervelt. 1997. The
FortHood avian simulationmodel:Adynamicmodel of ecological
influences on two endangered species. CERL Publication 97/88.
Champaign, IL: U.S. Army Corps of Engineers. Engineer
Research and Development Center, Construction Engineer-
ing Research Laboratory. http://blizzard.gis.uiuc.edu/dsm_
FHASM_frame. htm (last accessed 5 February 2003).

Turner, B. L. I., D. Skole, S. Sanderson, G. Fischer, L. Fresco, and
R. Leemans. 1995. Land-use and land-cover change: Science/
research plan. IGBP Report no. 35 and HDP Report no. 7.
Stockholm andGeneva: International Geosphere-Biosphere
Programme: A study of Global Change (IGBP) of the
International Council of Scientific Unions, and Human
Dimensions of Global Environmental Change Programme
(HDP) of the International Social Science Council.

Turner, M. G., R. Costanza, and F. Sklar. 1989. Methods to
evaluate the performance of spatial simulation models.
Ecological Modelling 48 (1/2): 1–18.

Tversky, A., and D. Kahneman. 1990. Rational choice and the
framingof decisions. InThe limits of rationality, ed.K.S.Cookand
M. Levi, 60–89. Chicago: University of Chicago Press.

U.S.EnvironmentalProtectionAgency (EPA).2000.Projecting land-
use change: A summary of models for assessing the effects of
community growth and change on land-use patterns. Office of
Research and Development Publication EPA/600/R-00/098.
Cincinnati, OH: U.S. Environmental Protection Agency.

Veldkamp, A., and L. O. Fresco. 1996. CLUE: A conceptual
model to study the conversion of land use and its effects.
Ecological Modelling 85 (2/3): 253–70.

Veldkamp, A., and E. F. Lambin. 2001. Predicting land-use
change.Agriculture, Ecosystems, and Environment 85 (1–3): 1–6.

Verburg, P. H., P. Schot, M. Dijst, and A. Velkamp. Forthcoming.
Land-use change modeling: Current practice and research
priorities. GeoJournal.

Waldrop, M. M. 1992.Complexity: The emerging science at the edge
of order and chaos. New York: Simon and Schuster.

Weibull, J. W. 1995. Evolutionary game theory. Cambridge, MA:
MIT Press.

Weinberg, M., C. L. Kling, and J. E. Wilen. 1993. Water markets
and water quality.American Journal of Agricultural Economics
75 (2): 278–91.

Weiss, G., ed. 1999. Multi-agent systems: A modern approach
to distributed artificial intelligence. Cambridge,MA:MITPress.

Westervelt, J. D., B.M.Hannon, S. Levi, and S. J. Harper. 1997.A
dynamic simulation model of the desert tortoise (Gopherus
agassizii) habitat in the Central Mojave Desert. CERL Publica-
tion 97/102. Champaign, IL: U.S. Army Corps of Engineers.
Engineer Research and Development Center, Construction
Engineering Research Laboratory. http://blizzard.gis.uiuc.
edu/dsm_TORT_frame. htm (last accessed 5 February
2003).

White, R., and G. Engelen. 1993. Cellular automata and fractal
urban form:A cellularmodeling approach to the evolution of
urban land-use patterns. Environment and Planning A 25 (8):
1175–99.

White, R., and G. Engelen. 1994. Cellular dynamics and GIS:
Modelling spatial complexity. Geographical Systems 1 (3):
237–53.

White, R., andG. Engelen. 1997.Cellular automata as the basis of
integrated dynamic regional modelling. Environment and
Planning B 24:235–46.

White, R., and G. Engelen. 2000. High-resolution integrated
modeling of spatial dynamics of urban and regional systems.
Computers, Environment, and Urban Systems 24:383–400.

Wooldridge,M. 1999. Intelligent agents. InMulti-agent systems: A
modern approach to distributed artificial intelligence, ed. G.
Weiss, 27–77. Cambridge, MA: MIT Press.

Wu, F. 1998.Anexperiment on the generic polycentricity of urban
growth in a cellular city. Environment and Planning B 25:
731–52.

Ziemelis, K., and L. Allen. 2001. Nature insight: Complex
systems. Nature 410:241.

Correspondence:Departments of Geography and Environmental Science and Policy, George Mason University, Fairfax, VA 22030-4444, e-mail:
dparker3@gmu.edu (Parker); Department of Geography, University of Minnesota, Minneapolis, MN 55455, e-mail: manson@umn.edu
(Manson); Center for the Study of Institutions, Population, and Environmental Change, Indiana University, Bloomington, IN 47408, e-mail:
maajanss@indiana.edu (Janssen); Department of Political Science and International Relations, University of Delaware, Newark, DE 19716,
e-mail: mjhoff@udel.edu (Hoffman); Department of Geography, University of Waterloo, Waterloo, ON N2L 3G1 Canada, e-mail:
pjdeadma@fes.uwaterloo.ca (Deadman).

Multi-Agent Systems for the Simulation of Land-Use and Land-Cover Change 337




