A
PR 0
(0!
........«...... % A
() L
e

)
L
e

_.

.

_:
s

oo,

) -‘.

.
e
¢
L
.
A
e

e
et ees
AN
ey 1
ek

nua-

L

LR
BP0
crtr £
SAPrs
s ettt

199

tal O

amen
Global Memory
Stanford 2011

Fund

SAIII I
\-..‘.
e
s I3 339500

SAIISI I

KRR EEE RN

R

‘e '
te
R

ich, NVIDIA Corporation

Steve Renn

Schedule

» Fundamental Optimizations 1 - Global Memory

— Address pattern and performance, number of accesses and performance, caching, using the profiler

Outline

» Launch configuration

* Global memory throughput

 Using the profiler

Launch Configuration

Launch Configuration

 How many threads/threadblocks to launch?

» Key to understanding:
— Instructions are issued in order

— A thread stalls when one of the operands isn’t ready:
* Memory read by itself doesn’t stall execution

— Latency is hidden by switching threads

» GMEM latency: 400-800 cycles
» Arithmetic latency: 18-22 cycles

* Conclusion:
— Need enough threads to hide latency

Launch Configuration

¥ Hiding arithmetic latency:
“ Need -18 warps (576) threads per Fermi SM
“ Or, latency can also be hidden with independent instructions from the same warp

“ For example, if instruction never depends on the output of preceding
instruction, then only 9 warps are needed, etc.

¥ Maximizing global memory throughput:
“ Depends on the access pattern, and word size
“ Need enough memory transactions in flight to saturate the bus
¥ Independent loads and stores from the same thread
¥ Loads and stores from different threads

“ Larger word sizes can also help (float2 is twice the transactions of float, for
example)

Maximizing Memory Throughput

* Increment of an array of 64M elements

— Two accesses per thread (load then store)

— The two accesses are dependent, so really 1 access per thread at a time
+ Tesla C2050, ECC on, theoretical bandwidth: ~120 GB/s

120
100

80

GB/s g0
40

20

—ee

/—- e

/

/
e
/

=—=132-bitaccess

——64-bit access

/
e

128-bit access

/

0

128 256 384 512 640 768 896 1024 1152 1280 1408 1536

Threads per Multiprocessor

Several independent smaller
accesses have the same effect
as one larger one.

For example:
Four 32-bit ~= one 128-bit

Launch Configuration: Summary

* Need enough total threads to keep GPU busy
— Typically, you’d like 512+ threads per SM
* More if processing one fp32 element per thread
— Of course, exceptions exist

* Threadblock configuration
— Threads per block should be a multiple of warp size (32)

— SM can concurrently execute up to 8 threadblocks
» Really small threadblocks prevent achieving good occupancy
» Really large threadblocks are less flexible

» | generally use 128-256 threads/block, but use whatever is best for the
application

Global Memory Throughput

Fermi Memory Hierarchy Review

SM-0 SM-1 SM-N
i Registers i
$ Reglste$rs $ gi $ oo o $ Reglste$rs
L1 SMEM L1 SMEM L1 SMEM
A A
L2

!

Global Memory

Fermi Memory Hierarchy Review

* Local storage
— Each thread has own local storage
— Mostly registers (managed by the compiler)
» Shared memory / L1
— Program configurable: 16KB shared / 48 KB L1 OR 48KB shared / 16KB L1
— Shared memory is accessible by the threads in the same threadblock
— Very low latency
— Very high throughput: 1+ TB/s aggregate
L2
— All accesses to global memory go through L2, including copies to/from CPU host
* Global memory
— Accessible by all threads as well as host (CPU)
— Higher latency (400-800 cycles)
— Throughput: up to 177 GB/s

Programming for L1 and L2

 Short answer: DON’T

— GPU caches are not intended for the same use as CPU caches
* Smaller size (especially per thread), so not aimed at temporal reuse

* Intended to smooth out some access patterns, help with spilled registers,
etc.

— Don’t try to block for L1/L2 like you would on CPU
* You have 100s to 1,000s of run-time scheduled threads hitting the caches
« |If it is possible to block for L1 then block for SMEM

— Same size, same bandwidth, hw will not evict behind your back

» Optimize as if no caches were there
— Some cases will just run faster

Fermi GMEM Operations

* Two types of loads:

— Caching
» Default mode
» Attempts to hit in L1, then L2, then GMEM
» Load granularity is 128-byte line

— Non-caching
« Compile with -Xptxas -dlcm=cg option to nvcc
« Attempts to hit in L2, then GMEM

— Do not hit in L1, invalidate the line if it’s in L1 already
» Load granularity is 32-bytes

» Stores:
— Invalidate L1, write-back for L2

Load Caching and L1 Size

* Non-caching loads can improve perf when:

— Loading scattered words or only a part of a warp issues a load
» Benefit: transaction is smaller, so useful payload is a larger percentage
» Loading halos, for example

— Spilling registers (reduce line fighting with spillage)
« Large L1 can improve perf when:
— Spilling registers (more lines so fewer evictions)
— Some misaligned, strided access patterns
— 16-KB L1 / 48-KB smem OR 48-KB L1 / 16-KB smem
» CUDA call, can be set for the app or per-kernel
 How to use:
— Just try a 2x2 experiment matrix: {CA,CG} x {48-L1, 16-L1}

» Keep the best combination - same as you would with any HW managed cache, including CPUs

Load Operation

* Memory operations are issued per warp (32
threads)

— Just like all other instructions

* Operation:
— Threads in a warp provide memory addresses
— Determine which lines/segments are needed
— Request the needed lines/segments

Caching Load

» Warp requests 32 aligned, consecutive 4-byte words

» Addresses fall within 1 cache-line
— Warp needs 128 bytes
— 128 bytes move across the bus on a miss
— Bus utilization: 100%

addresses from a warp

VLib

32 64 96 128 160 192 224 256 288 320 352 384 416 448
Memory addresses

Non-caching Load

» Warp requests 32 aligned, consecutive 4-byte words

» Addresses fall within 4 segments
— Warp needs 128 bytes
— 128 bytes move across the bus on a miss
— Bus utilization: 100%

addresses from a warp

RE2 L

32 64 96 128 160 192 224 256 288 320 352 384 416 448
Memory addresses

Caching Load

» Warp requests 32 alighed, permuted 4-byte words

» Addresses fall within 1 cache-line
— Warp needs 128 bytes
— 128 bytes move across the bus on a miss
— Bus utilization: 100%

addresses from a warp

32 64 96 128 160 192 224 256 288 320 352 384 416 448
Memory addresses

Non-caching Load

» Warp requests 32 alighed, permuted 4-byte words

» Addresses fall within 4 segments
— Warp needs 128 bytes
— 128 bytes move across the bus on a miss
— Bus utilization: 100%

addresses from a warp

32 64 96 128 160 192 224 256 288 320 352 384 416 448
Memory addresses

Caching Load

* Warp requests 32 misalighed, consecutive 4-byte words

» Addresses fall within 2 cache-lines
— Warp needs 128 bytes
— 256 bytes move across the bus on misses
— Bus utilization: 50%

addresses from a warp

I

0 32 64 96 128 160 192 224 256 288 320 352 384 416 448
Memory addresses

Non-caching Load

* Warp requests 32 misalighed, consecutive 4-byte words

» Addresses fall within at most 5 segments
— Warp needs 128 bytes
— At most 160 bytes move across the bus
— Bus utilization: at least 80%

addresses from a warp

T T T T 71

0 32 64 96 128 160 192 224 256 288 320 352 384 416 448
Memory addresses

Caching Load

 All threads in a warp request the same 4-byte word

» Addresses fall within a single cache-line
— Warp needs 4 bytes
— 128 bytes move across the bus on a miss
— Bus utilization: 3.125%

addresses from a warp

N ——

32 64 96 128 160 192 224 256 288 320 352 384 416 448
Memory addresses

Non-caching Load

 All threads in a warp request the same 4-byte word

» Addresses fall within a single segment
— Warp needs 4 bytes
— 32 bytes move across the bus on a miss
— Bus utilization: 12.5%

addresses from a warp

N ——

32 64 96 128 160 192 224 256 288 320 352 384 416 448
Memory addresses

Caching Load

* Warp requests 32 scattered 4-byte words

» Addresses fall within N cache-lines
— Warp needs 128 bytes
— N*128 bytes move across the bus on a miss
— Bus utilization: 128 / (N*128)

addresses from a warp
& T .
— r r 7©° 1

0 32 64 96 128 160 192 224 256 288 320 352 384 416 448
Memory addresses

Non-caching Load

* Warp requests 32 scattered 4-byte words

» Addresses fall within N segments
— Warp needs 128 bytes
— N*32 bytes move across the bus on a miss
— Bus utilization: 128 / (N*32)

addresses from a warp
1 [T 1 I I

0 32 64 96 128 160 192 224 256 288 320 352 384 416 448
Memory addresses

Impact of Address Alignment

« Warps should access aligned regions for maximum memory throughput
— Fermi L1 can help for misaligned loads if several warps are accessing a contiguous region
— ECC further significantly reduces misaligned store throughput

120 ‘ .
\\ // Experiment:
N —— ——
100 \ I — Copy 16MB of floats
5 Y . N o — 256 threads/block
GB/s ., || A | Greatest throughput drop:
— GT200: 40%
0 : , — Fermi:
===Fermi: caching copy
20 ===Fermi: non-caching copy — CA loads: 15%
GT200: copy — CG loads: 32%

O T T T T T T T 1
0 4 8 12 16 20 24 28 32

misalignment, in 4-byte words

GMEM Optimization Guidelines

 Strive for perfect coalescing per warp
— Align starting address (may require padding)
— A warp should access within a contiguous region

« Have enough concurrent accesses to saturate the bus
— Launch enough threads to maximize throughput
» Latency is hidden by switching threads (warps)
— Process several elements per thread

* Multiple loads get pipelined
 Indexing calculations can often be reused

« Try L1 and caching configurations to see which one works best

— Caching vs non-caching loads (compiler option)
— 16KB vs 48KB L1 (CUDA call)

Using the Profiler

Compute Visual Profiler

& File Session View Options Window Help
i = —
‘COm te rOf DeBd @8 AR EEO0oEa B
u Sessions B ® | Profiler Output 3¢ Summary Table 3¢ | Kernel Table 3¢ l Memcopy Table 3 l
5} Sessionl 5 -
= Eiég;:ice 0 dram reads dram writes glob mem read throughput glob mem write throughput glob mem overall throughput textun
I Conext_l] sf]s)N) | 1(4439416156 56105792 29.0298 0.332962 29.3628 0
2
3
Session Profiler Counters ‘ Other Options I
Device |0 : Tesla C2070 sl
=[] Al [«]
£ [Memory transactions
-[+| local load
[+ local store
-|+| gld request
[+ gst request
-|+| shared load
&1 - [+| shared store E
-] uncached global load transaction
Sutnug - [+| global store transaction]§
. - |«| dram reads L =
CPU time = 0.180000000000007 at sweep 1 [+¢| dram writes
. =« Cache
CPU time = 0.170000000000016 at sweep 1 [+ tex cache requests
. - |+| tex cache misses
CPU time = 0.180000000000007 at sweep 1 | 11 global load hit
. ~[+| 11 global load miss
CPU time = 0.180000000000007 at sweep 1 [+ 11 local load hit
- [+| 11 local load miss
CPU time = 0.179999999999978 at sweep 1 [+ 11 local store hit =
4 0.281955513726971E-01 0.54141E+00 -0.24189E+03 -0.53759E+02 0.21316E+(
0.265726118567683E+03 0.14639E+05 0.16790E+04 -0.10841E+05 0.98204E+ [iEinEk] [5]] [Ok
Lift 0.558916589120559E+05 Drag 0.682706442631468E+05 = =
Mo restart files written! [
Done. ?

Notes on using the profiler

Most counters are reported per Streaming Multiprocessor (SM)
— Not entire GPU
— Exceptions: L2 and DRAM counters

A single run can collect a few counters

— Multiple runs are needed when profiling more counters
» Done automatically by the Visual Profiler
* Have to be done manually using command-line profiler

« Counter values may not be exactly the same for repeated runs

— Threadblocks and warps are scheduled at run-time
— So, “two counters being equal” usually means “two counters within a small delta”

See the profiler documentation for more information

30

Questions?

Schedule ,fﬁ%h

Introduction and CUDA C Basics 1

* Memory allocation/copy, programming model, kemel code, kemel configuration, emor-
reporting, coordinating CPU and GPU execution

CUDA C Basics 2

* GPU memory system, shared memory basics, relationship between the hardware and
programming models, requirements for performance.

Fundamental Optimizations 1 — Global Memory

* Address pattern and performance, number of accesses and performance, caching, using the
profiler

Fundamental Optimizations 2 — Shared Memory
* Shared memory banking, shared memory mulicast, using the profiler

Finite Difference Stencils on Regular Grids
Fundamental Optimizations 3 — Warp Execution, Synchronizing CPU and GPU
* Control flow divergence, intrinsic functions, Events, streams, and call synchronicity

Determining Kernel Performance Limiters

* Description of the three limiting factors (memory, arithmetic, latency) and howto use the
profiler and code modifications to investigate them

