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Schedule 

• Introduction and CUDA C Basics 1 

– Memory allocation/copy, programming model, kernel code, kernel configuration, error-reporting, coordinating CPU and GPU execution  

• CUDA C Basics 2 

– GPU memory system, shared memory basics, relationship between the hardware and programming models, requirements for performance. 

• Fundamental Optimizations 1 – Global Memory 

– Address pattern and performance, number of accesses and performance, caching, using the profiler 

• Fundamental Optimizations 2 – Shared Memory 

– Shared memory banking, shared memory multicast, using the profiler 

• Finite Difference Stencils on Regular Grids 

• Fundamental Optimizations 3 – Warp Execution, Synchronizing CPU and GPU 

– Control flow divergence, intrinsic functions, Events, streams, and call synchronicity 

• Determining Kernel Performance Limiters 

– Description of the three limiting factors (memory, arithmetic, latency) and how to use the profiler and code modifications to investigate them 
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Outline 

• Launch configuration 

 

• Global memory throughput 

 

• Using the profiler 
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Launch Configuration 
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Launch Configuration 

• How many threads/threadblocks to launch? 

• Key to understanding: 

– Instructions are issued in order 

– A thread stalls when one of the operands isn’t ready: 
• Memory read by itself doesn’t stall execution 

– Latency is hidden by switching threads 
• GMEM latency: 400-800 cycles 

• Arithmetic latency: 18-22 cycles 

• Conclusion: 

– Need enough threads to hide latency 
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Launch Configuration 

Hiding arithmetic latency: 

Need ~18 warps (576) threads per Fermi SM 

Or, latency can also be hidden with independent instructions from the same warp 

For example, if instruction never depends on the output of preceding 
instruction, then only 9 warps are needed, etc. 

 

Maximizing global memory throughput: 

Depends on the access pattern, and word size 

Need enough memory transactions in flight to saturate the bus 

Independent loads and stores from the same thread 

Loads and stores from different threads 

Larger word sizes can also help (float2 is twice the transactions of float, for 
example) 
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Maximizing Memory Throughput 

• Increment of an array of 64M elements 

– Two accesses per thread (load then store) 

– The two accesses are dependent, so really 1 access per thread at a time 

• Tesla C2050, ECC on, theoretical bandwidth: ~120 GB/s 

Several independent smaller 
accesses have the same effect 
as one larger one. 

For example: 

Four 32-bit  ~=  one 128-bit 
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Launch Configuration: Summary 

• Need enough total threads to keep GPU busy 

– Typically, you’d like 512+ threads per SM 

• More if processing one fp32 element per thread 

– Of course, exceptions exist 
 

• Threadblock configuration 

– Threads per block should be a multiple of warp size (32) 

– SM can concurrently execute up to 8 threadblocks 
• Really small threadblocks prevent achieving good occupancy 

• Really large threadblocks are less flexible 

• I generally use 128-256 threads/block, but use whatever is best for the 
application 
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Global Memory Throughput 
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Fermi Memory Hierarchy Review 
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Fermi Memory Hierarchy Review 
• Local storage 

– Each thread has own local storage 

– Mostly registers (managed by the compiler) 

• Shared memory / L1 

– Program configurable: 16KB shared / 48 KB L1   OR   48KB shared / 16KB L1 

– Shared memory is accessible by the threads in the same threadblock 

– Very low latency 

– Very high throughput: 1+ TB/s aggregate 

• L2 

– All accesses to global memory go through L2, including copies to/from CPU host 

• Global memory 

– Accessible by all threads as well as host (CPU) 

– Higher latency (400-800 cycles) 

– Throughput: up to 177 GB/s 
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Programming for L1 and L2 

• Short answer: DON’T 

– GPU caches are not intended for the same use as CPU caches 

• Smaller size (especially per thread), so not aimed at temporal reuse 

• Intended to smooth out some access patterns, help with spilled registers, 
etc. 

– Don’t try to block for L1/L2 like you would on CPU 

• You have 100s to 1,000s of run-time scheduled threads hitting the caches 

• If it is possible to block for L1 then block for SMEM 

– Same size, same bandwidth, hw will not evict behind your back 
 

• Optimize as if no caches were there 

– Some cases will just run faster 
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Fermi GMEM Operations 

• Two types of loads: 

– Caching 

• Default mode 

• Attempts to hit in L1, then L2, then GMEM 

• Load granularity is 128-byte line 

– Non-caching 

• Compile with –Xptxas –dlcm=cg option to nvcc 

• Attempts to hit in L2, then GMEM 

– Do not hit in L1, invalidate the line if it’s in L1 already 

• Load granularity is 32-bytes 

• Stores: 

– Invalidate L1, write-back for L2 
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Load Caching and L1 Size 

• Non-caching loads can improve perf when: 

– Loading scattered words or only a part of a warp issues a load 

• Benefit: transaction is smaller, so useful payload is a larger percentage 

• Loading halos, for example 

– Spilling registers (reduce line fighting with spillage) 

• Large L1 can improve perf when: 

– Spilling registers (more lines so fewer evictions) 

– Some misaligned, strided access patterns 

– 16-KB L1 / 48-KB smem   OR    48-KB L1 / 16-KB smem 

• CUDA call, can be set for the app or per-kernel 

• How to use: 

– Just try a 2x2 experiment matrix:  {CA,CG} x {48-L1, 16-L1} 

• Keep the best combination - same as you would with any HW managed cache, including CPUs 
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Load Operation 

• Memory operations are issued per warp (32 
threads) 

– Just like all other instructions 

• Operation: 

– Threads in a warp provide memory addresses 

– Determine which lines/segments are needed 

– Request the needed lines/segments 
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Caching Load 

• Warp requests 32 aligned, consecutive 4-byte words 

• Addresses fall within 1 cache-line 

– Warp needs 128 bytes 

– 128 bytes move across the bus on a miss 

– Bus utilization: 100% 

 

... 
addresses from a warp 

96 192 128 160 224 288 256 32 64 352 320 384 448 416 
Memory addresses 

0 
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Non-caching Load 

• Warp requests 32 aligned, consecutive 4-byte words 

• Addresses fall within 4 segments 

– Warp needs 128 bytes 

– 128 bytes move across the bus on a miss 

– Bus utilization: 100% 

 

... 
addresses from a warp 

96 192 128 160 224 288 256 32 64 352 320 384 448 416 
Memory addresses 

0 
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Caching Load 

... 

96 192 128 160 224 288 256 32 64 352 320 384 448 416 
Memory addresses 

addresses from a warp 

0 

• Warp requests 32 aligned, permuted 4-byte words 

• Addresses fall within 1 cache-line 

– Warp needs 128 bytes 

– 128 bytes move across the bus on a miss 

– Bus utilization: 100% 
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Non-caching Load 

... 

96 192 128 160 224 288 256 32 64 352 320 384 448 416 
Memory addresses 

addresses from a warp 

0 

• Warp requests 32 aligned, permuted 4-byte words 

• Addresses fall within 4 segments 

– Warp needs 128 bytes 

– 128 bytes move across the bus on a miss 

– Bus utilization: 100% 
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Caching Load 

96 192 128 160 224 288 256 

... 
addresses from a warp 

32 64 0 352 320 384 448 416 
Memory addresses 

• Warp requests 32 misaligned, consecutive 4-byte words 

• Addresses fall within 2 cache-lines 

– Warp needs 128 bytes 

– 256 bytes move across the bus on misses 

– Bus utilization: 50% 
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Non-caching Load 

96 192 128 160 224 288 256 

... 
addresses from a warp 

32 64 0 352 320 384 448 416 
Memory addresses 

• Warp requests 32 misaligned, consecutive 4-byte words 

• Addresses fall within at most 5 segments 

– Warp needs 128 bytes 

– At most 160 bytes move across the bus 

– Bus utilization: at least 80% 
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Caching Load 

... 
addresses from a warp 

96 192 128 160 224 288 256 32 64 352 320 384 448 416 
Memory addresses 

0 

• All threads in a warp request the same 4-byte word 

• Addresses fall within a single cache-line 

– Warp needs 4 bytes 

– 128 bytes move across the bus on a miss 

– Bus utilization: 3.125% 
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Non-caching Load 

... 
addresses from a warp 

96 192 128 160 224 288 256 32 64 352 320 384 448 416 
Memory addresses 

0 

• All threads in a warp request the same 4-byte word 

• Addresses fall within a single segment 

– Warp needs 4 bytes 

– 32 bytes move across the bus on a miss 

– Bus utilization: 12.5% 
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Caching Load 

... 
addresses from a warp 

96 192 128 160 224 288 256 32 64 352 320 384 448 416 
Memory addresses 

0 

• Warp requests 32 scattered 4-byte words 

• Addresses fall within N cache-lines 

– Warp needs 128 bytes 

– N*128 bytes move across the bus on a miss 

– Bus utilization:  128 / (N*128) 
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Non-caching Load 

... 
addresses from a warp 

96 192 128 160 224 288 256 32 64 352 320 384 448 416 
Memory addresses 

0 

• Warp requests 32 scattered 4-byte words 

• Addresses fall within N segments 

– Warp needs 128 bytes 

– N*32 bytes move across the bus on a miss 

– Bus utilization:  128 / (N*32) 
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Impact of Address Alignment 

• Warps should access aligned regions for maximum memory throughput 

– Fermi L1 can help for misaligned loads if several warps are accessing a contiguous region 

– ECC further significantly reduces misaligned store throughput 
 

Experiment: 

– Copy 16MB of floats 

– 256 threads/block 
 

Greatest throughput drop: 

– GT200: 40% 

– Fermi: 

– CA loads: 15% 

– CG loads: 32% 
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GMEM Optimization Guidelines 
• Strive for perfect coalescing per warp 

– Align starting address (may require padding) 

– A warp should access within a contiguous region 
 

• Have enough concurrent accesses to saturate the bus 

– Launch enough threads to maximize throughput 

• Latency is hidden by switching threads (warps) 

– Process several elements per thread 

• Multiple loads get pipelined 

• Indexing calculations can often be reused 
 

• Try L1 and caching configurations to see which one works best 

– Caching vs non-caching loads (compiler option) 

– 16KB vs 48KB L1 (CUDA call) 
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Using the Profiler 
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Compute Visual Profiler 

• computeprof 
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Notes on using the profiler 

• Most counters are reported per Streaming Multiprocessor (SM) 

– Not entire GPU 

– Exceptions: L2 and DRAM counters 

• A single run can collect a few counters 

– Multiple runs are needed when profiling more counters 

• Done automatically by the Visual Profiler 

• Have to be done manually using command-line profiler 

• Counter values may not be exactly the same for repeated runs 

– Threadblocks and warps are scheduled at run-time 

– So, “two counters being equal” usually means “two counters within a small delta” 

• See the profiler documentation for more information 

 

30 
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Questions? 
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Schedule 


