
Adapting SAWSDL for Semantic Annotations of
RESTful Services

Maria Maleshkova1, Jacek Kopecký2, Carlos Pedrinaci1

1 Knowledge Media Institute (KMi)
The Open University, Milton Keynes, United Kingdom
m.maleshkova@open.ac.uk, c.pedrinaci@open.ac.uk

2 STI Innsbruck, Innsbruck, Austria
jacek.kopecky@sti2.at

Abstract. RESTful services are increasingly been adopted as a suit-
able lightweight solution for creating service-based applications on the
Web. However, most often these services lack any machine-processable
description and therefore a significant human labour has to be devoted
to locating existing services, understanding their documentation, and
implementing software that uses them. In order to increase the au-
tomation of these tasks, we present an integrated lightweight approach
for the creation of semantic RESTful service descriptions. Our work is
based on hRESTS, a microformat for including machine-readable de-
scriptions of RESTful service within existing HTML service documenta-
tion. We complement hRESTS by the MicroWSMO microformat, which
uses SAWSDL-like hooks to add semantic annotations. Finally, we present
SWEET–Semantic Web sErvices Editing Tool–which effectively supports
users in creating semantic descriptions of RESTful services based on the
aforementioned technologies.

1 Introduction

Currently, there is an increased use and popularity of RESTful services [1], which
offer a more lightweight alternative to the SOAP- and WSDL-based approach. As
a result, more and more Web applications and APIs follow the Representational
State Transfer [2] (REST) architecture principles and expose functionalities in
the form of RESTful Web services. This trend is supported by the Web 2.0 wave,
which drives the creation of user-centered Web applications for communication,
information sharing and collaboration. Popular Web 2.0 applications by Yahoo,
Google and Facebook offer easy-to-use, resource-oriented APIs, which not only
provide simple access to diverse resources but also enable combining heteroge-
neous data coming from diverse services, in order to create data-oriented service
compositions called mashups. Even though RESTful services are already widely
accepted, their potential is restricted by the current low level of automation due
to the lack of machine-readable descriptions and the limited applicability of the
Semantic Web Services automation technologies.

Web 2.0 principles contributed significantly to the uptake of RESTful ser-
vices. As a result, the value of Web 2.0 applications is not only for the direct

user, who can receive customized information, but also in exposing functionality
through public REST-based APIs. However, the fact that these APIs were in-
spired by user-centered applications has resulted in the creation of user-oriented
descriptions. Even though, the APIs are meant for machine consumption, the
descriptions themselves are plain unstructured HTML documents.

The lack of machine-readable descriptions is only one of the challenges, which
have to be addressed in order to provide a certain level of automation for REST-
ful service. The fact that the majority of existing RESTful service descriptions
have no semantic annotations, also has to be taken into consideration. Seman-
tic Web Services (SWS) are proposed as means for automating many common
tasks involved in using Web services. Discovery, negotiation, composition and
invocation can have a higher level of automation, when Web service are supple-
mented with semantic descriptions of their properties. Similarly to traditional
SWS, which improve the automation of WSDL-based solutions, the adding of
annotations to RESTful services can bring further automation to the process of
creating mashups, in addition to the discovery and invocation tasks.

In this paper we present an integrated lightweight approach for the creation
of semantic annotations of RESTful service by adapting SAWSDL [3]. For the
creation of machine-readable RESTful service descriptions we use the hRESTS
(HTML for RESTful Services) microformat [4]. Microformats [5] offer means
for annotating human-oriented Web pages in order to make key information
machine-readable, while hRESTS, in particular, enables the creation of machine-
processable Web API descriptions based on available HTML documentation.

hRESTS is complemented by the MicroWSMO microformat [6], which en-
ables using SAWSDL-like annotations to RESTful services. MicroWSMO intro-
duces additional HTML classes, in order to enable the specification of a model
reference, in addition to lifting and lowering relations for data grounding. More-
over, concrete semantics can be added by applying WSMO-Lite [7] service se-
mantics, which enable the integration of RESTful services with WSDL-based
ones. In this way, discovery and composition approaches no longer need to dif-
ferentiate between WSDL and RESTful services, but rather simply be based on
the integrated WSMO-Lite service semantics.

The creation of semantic RESTful services, including both hRESTS tagging
and semantic annotation, is supported by SWEET: Semantic Web sErvices Edit-
ing Tool3. SWEET assists users in injecting hRESTS and MicroWSMO within
RESTful HTML service descriptions, thus enabling the effective creation of se-
mantic descriptions. It hides formalism complexities from the user and assists
him/her in adding service metadata.

The remainder of this paper is structured as follows: Section 2, provides an
analysis of common ways of describing RESTful services, while Section 3 uses
this analysis to deduce a lightweight RESTful service model. Our approach for
creating machine-readable service descriptions, including the hRESTS microfor-
mat and the provided tool support, is described in Section 4. In Section 5, we
present our adaptation of SWASDL for RESTful services, by describing the prop-

3 http://sweet.kmi.open.ac.uk/; http://sweetdemo.kmi.open.ac.uk/

erties of MicroWSMO and the tool support for semantic annotations offered by
SWEET. Section 6 presents an overview of related formalisms and approaches.
Finally, 7 provides some detail on future work and a conclusion.

2 Common RESTful Service Descriptions

In order to be able to find services and interact with them, RESTful services,
and services in general, need to be described in some way. While Web appli-
cations and Web APIs contain HTML documentation, which is understandable
for human users, it needs to be extended in order to become machine-readable
and -processable as well. WSDL [8] is an established standard for Web service
descriptions, however, it has not found wide adoption for RESTful services and
only a few such services have WSDL descriptions. Similarly, WADL [9] does
not seem to be gaining acceptance among API provides and instead Web appli-
cations and APIs are usually described in textual documentation. However, in
order to support the automation of RESTful services, certain key aspects of the
descriptions have to be made machine-readable.

Listing 1. Example HTML Service Description
1 <h1>Send SMS Service</h1>
2 <p>This is a Short Message Service (SMS).<p>
3 Example usage http://my.test.serv.com/SendSMS.php?recipient=tel:
4 447712345678&message=messagetext&sender=User&title=TheMessage</br>
5 <h2>SendSMS Method</h2>
6 recipient<p>List of recipent phone numbers in the format ”tel:”
7 followed by an international phone number</p>

8 message<p>Content of the message.</p>

9 <h2>The result is a sent SMS.</h2>

Our approach suggests the hRESTS microformat, which can be used to tag
service properties and produce a machine-readable service description on top
of existing HTML documentation. In order to identify which elements of the
service description need to be marked with hRESTS tags, we analyze existing
RESTful service descriptions and derive a lightweight RESTful service model,
which consists of service properties required for the completion of the discovery,
composition and invocations tasks.

Common RESTful service descriptions are usually given in a Web page, which
contains a list of the available operations, their URIs and parameters, expected
output, error message and an example. The description includes all details neces-
sary for a user to execute the service or use it in a mashup. Based on an existing
repository for Web APIs4, which contains more than 1380 APIs, manually col-
lected over time, we have identified three basic types of descriptions.

Listing 1 shows an example of the first type of HTML descriptions of RESTful
services. These descriptions contain only one or a number of operations, which
are described with their corresponding parameters and URIs, within the same
Web page. However, a lot of Web 2.0 applications contain a plenitude of oper-
ations. In this case, the second type of descriptions, includes one main page for
4 programmableweb.com

the service and a number of linked pages, each of which describes one opera-
tion. This results in the requirement that the microformat used to annotate the
service descriptions should include not only operations, URIs, HTTP methods,
inputs and outputs but should also enable the linking of multiple operations
from different Web sites to one “root” service description.

Listing 2. Example Resource-Oriented Description
activity blogs auth
∗ flickr . activity .userComments ∗ flickr . blogs . getList ∗ flickr .auth.checkToken
∗ flickr . activity .userPhotos ∗ flickr . blogs .postPhoto ∗ flickr .auth.getFrob

Finally, the last type of RESTful service descriptions are the resource-oriented
ones. Listing 2 shows parts of the flickr5 API documentation, where operations
are not simply listed but they are rather grouped, based on the resources which
they manipulate. In the example, there are three resources (activity, blogs and
auth), each of which has a set of operations. Similarly, in this case the require-
ments for the microformat include that separate operation descriptions can be
linked to a particular resource and one RESTful service. Based on these three
types of RESTful service descriptions, we derive a lightweight RESTful service
model that can effectively support the creation of machine-readable service de-
scriptions.

3 Lightweight RESTful Service Model

The service examples given in Section 2 serve as the basis for identifying key
service properties present in the textual documentation. These properties are
formalized in a model, which specifies the service properties used for creating
machine-readable RESTful service descriptions by marking HTML with hRESTS
microformat tags.

Generally, a RESTful service description consist of several operations, each
of which is performed over a HTTP method and has a particular address (URI
or a parametrized URI). Operations have inputs and outputs with corresponding
data formats. In addition, outputs of one operation may link to other operations,
creating a resource based “choreography”. Also, a number of operations can have
distributed descriptions but belong to the same service, or can have different
outputs but a common set of input parameters.

In summary, the elements, which have to be identified in an unstructured
HTML service description are the service body, the operations, the input and
output, the address and the HTTP method. As it can be seen, this list is very
similar to the one of the WSDL structure and provides the basis for a machine
readable description, which can be extended and annotated with additional in-
formation such as semantic descriptions and nonfunctional properties.

5 www.flickr.com/services/api/

4 Machine-readable Descriptions of RESTful Services

In order to support the creation of machine-readable descriptions, we use the
hRESTS microformat. Microformats facilitate the translation of the HTML
tag structure into objects and properties. As a result, the visualization of the
HTML description remains unchanged, while the microformat uses class and
rel XHTML attributes to mark key service properties. In this way, the hRESTS
microformat enables the creation of machine-readable RESTful service descrip-
tions, on top of existing HTML documentation.

Fig. 1. SWEET: hRESTS Annotation

hRESTS consists of a number of classes based directly on the properties
identified in the previous section. However, even if the hRESTS microformat en-
ables the creation of machine-readable RESTful service descriptions, the manual
annotation of an HTML service description with hRESTS is a time-consuming
and complex task. In order to support users in adopting hRESTS, we have de-
veloped SWEET. SWEET is a JavaScript Web application, which requires no
installation and has the form of a vertical widget, which appears on top of the
currently browsed Web page. This tool overcomes a number of difficulties asso-
ciated with the annotation of Web applications and API descriptions, including
the fact that the HTML documentation is viewed through a browser and that
the user who wants to annotate the service descriptions, usually does not have
access to manipulate or change the HTML.

Therefore, we provide a browser-based annotation solution, which can be
started on top of the currently viewed RESTful service description. Figure 1

shows a screenshot of SWEET. hRESTS tags can simply be inserted by selecting
the relevant part of the HTML and clicking on the corresponding class node in
the hRESTS panel of SWEET. In this way, the hRESTS annotation process is
less error-prone, less time-consuming and much simpler for the user. The result is
hRESTS annotated HTML, which can easily be converted into RDF (“Export”
button), by using an implemented XSLT stylesheet.

Listing 3 shows the previous service description example, annotated with
hRESTS by using SWEET. It visualizes the usage of the microformat annota-
tions, as well as the structure restrictions, which exist for the different classes.
The complete Web service or API description is marked by the service class.
The service may have a label, which can be used to mark the human-readable
name of the service. A machine readable description can be created, even if there
is no service class inserted. It is sufficient that the HTML description contains
at least one operation, which is marked with the operation class. The oper-
ation description itself includes the address where it can be executed and the
HTTP method. Input and output details as well as a label can also be part of
the operation.

Listing 3. Example hRESTS Service Description
1 <div class=”service” id=”svc”>
2 <h1>Send SMS Service</h1>
3 <p>This is a Short Message Service (SMS).<p>
4 Example usage
5 http://my.test.serv.com/SendSMS.php?recipient=
6 tel :447712345678&message=messagetext&sender=User&title=TheMessage
7 <div class=”operation” id=”op1”>
8 <h2><code class=”label”>SendSMS Method</code></h2>
9

10 recipient<p>List of recipent phone numbers in the format ”tel:”
11 followed by an international phone number</p>

12 message<p>Content of the message.</p>

13 <h2>The result is a sent SMS.
14 </h2></div></div>

The hRESTS address class is used to specify the URI of the operation. Sim-
ilarly, the method class specifies the HTTP method used for the operation. The
final two elements used are input and output. They are used on block markup
and indicate the operation’s input and output. These two elements serve as the
basis for extensions given by microformats, which provide additional semantic
information or details about the particular data type and schema information.
Finally, user-oriented labels can be attached to the service, operation, input or
output classes.

The current version of SWEET directly supports the annotation only of
the first, most common type of RESTful service descriptions, where all details
about a service are provided within one webpage. However, the two other types
of descriptions can easily by annotated as well, by making some minor manual
modifications. First, one API description can have one main page and a num-
ber of separate pages, which describe each of the operations. In order not to
lose the link between the separate parts of the description, the service page is
modified to include rel="section" after each of the links pointing to the oper-
ation Web pages and each of the operations is modified to include rel="start",

which points to the main service description. As a result the start and section
relations link the pages together. The second requirement, that a number of op-
erations can be grouped based on the resource, to which they apply, is implicitly
solved. All of the grouped operations have the same subset of input parame-
ters, which can additionally be emphasized by adding semantic annotations as
described in Section 5.

5 Semantic Descriptions of RESTful Services

hRESTS marks the key properties of the RESTful service and provides a machine-
readable description based on the available HTML documentation. The result
can effectively be used as the basis for adding extensions for supplementary in-
formation and annotations. In addition, it enables the adapting of SAWSDL
[3] properties for adding semantic annotations to RESTful services because
the hRESTS view of services is analogous to the WSDL one. Even though,
hRESTS already provides a certain level of automation by enabling the creation
of machine-readable descriptions, a higher level of automation of the discovery,
composition, ranking, invocation and mediation service tasks can be archived
by extending service descriptions with semantic annotations of their properties.
As a result, Semantic RESTful Services (SRS) can be developed following and
adapting approaches from the Semantic Web Services (SWS).

SAWSDL specifies how to annotate service descriptions, provided in WSDL,
with semantic information by defining three XML attributes with equivalent
RDF properties. The modelReference points to URIs identifying appropriate
semantic concepts, while liftingSchemaMapping and loweringSchemaMapping
associate messages with appropriate transformations between the level of tech-
nical descriptions (XML) and the level of semantic knowledge (RDF).We adopt
these SAWSDL properties as extensions to hRESTS as part of the here described
MicroWSMO microformat. Therefore, MicroWSMO represents the SAWSDL
layer for RESTful services, based on top of hRESTS, instead of WSDL. Conse-
quently, MicroWSMO has three main elements, which represent links to URIs of
semantic concepts and data transformations. model indicates that the URI is a
link to a model reference, while lifting and lowering point to links for lifting
and lowering transformations.

Since the WSMO-Lite [7] ontology is used for describing the content of
SAWSDL annotations in WSDL, we also adapt it for MicroWSMO. WSMO-
Lite specifies four aspects of service semantics including information model, func-
tional semantics, behavioral semantics and nonfunctional descriptions, instances
of which are linked to the MicroWSMO annotations. It is important to point out
that since both MicroWSMO and SAWSDL can apply WSMO-Lite service se-
mantics, RESTful services can be integrated with WSDL-based ones. Tasks such
as discovery, composition and mediation can be performed based on WSMO-Lite,
completely independently from the underlying Web service technology (WSDL/
SOAP or REST/HTTP).

The task of associating semantic content with RESTful service properties
is even more time- and effort-demanding than the insertion of hRESTS tags.
Therefore, SWEET supports users in searching for suitable domain ontologies
and in making semantic annotations in MicroWSMO. Whenever, a user wants
to add semantics to a particular service property, for example, an input param-
eter, he/she has to select it and click on the “magic wand” symbol, which send
a request to Watson [10]. Waston is a search engine, which retrieves relevant
ontologies based on keyword search.

Fig. 2. SWEET: Semantic Annotation

The results are presented in the service properties panel visualized in
Figure 2. The searched for property is the root of the tree, populated with nodes
that represent the found matches. In the example, recipient was found to be
a property (“P”) in an ontology located at http://protege.stanford.edu. If
the user needs additional information in order to decide whether the partic-
ular semantic annotation is suitable or not, he/she can switch to the domain
ontologies panel, which provides a list of all concepts and the corresponding
property matches. The user can make a semantic annotation by simply selecting
the property instance and clicking on one of the semantic matches in the service
properties panel. The result is a MicroWSMO annotated HTML description,
which can be saved in a repository (button “Save”) or be converted into RDF
(button “Export”).

Listing 4 shows our example service description annotated with MicroWSMO
using SWEET. Line 4 uses the model relation to indicate that the service sends
SMS, while line 12 associates the input parameter recipient with the class Re-
cipient. The lowering schema for the recipient is also provided in line 13.

Listing 4. Example MicroWSMO Service Description
1 <div class=”service” id=”svc”>
2 <h1>Send SMS Service</h1>
3 <p>This is a
4
5 Short Message Service (SMS).<p>
6 Example usage
7 http://my.test.serv.com/SendSMS.php?recipient=
8 tel :447712345678&message=messagetext&sender=User&title=TheMessage
9 <div class=”operation” id=”op1”>

10 <h2><code class=”label”>SendSMS Method</code></h2>
11
12
13 recipient (
14 lowering)<p>List of recipient phone numbers in the format ”tel:”
15 followed by an international phone number</p>
</div></div>

6 Related Work

hRESTS is not the only alternative that can be used for the creation of machine-
readable descriptions of RESTful services. WADL (Web Application Description
Language) [9] and even WSDL 2.0 [8] can be used as description formats. They
provide well-structured and detailed forms of descriptions. However, probably
due to the user-centered context of Web 2.0 and of the resulting API descrip-
tions, WADL and WSDL seem to add complexity and still the majority of the
API descriptions are provided in unstructured text. We use hRESTS, which is
relatively simple, easy to use, can be applied directly on the existing HTML
descriptions, supports the extraction of RDF and can provide a basis, for the
future adoption of dedicated formats such as WADL.

Another description approach if offered by RDFa [11]. RDFa can be effectively
used for embedding RDF data in HTML. However, following the simplicity and
lightweight principles perused with hRESTS, it needs to be investigated to what
extent and in which use cases RDFa can be used for hRESTS. A parallel approach
to RDFa would be the use of GRDDL [12] on top of hRESTS. GRDDL is a
mechanism for extracting RDF information from Web pages and is particularly
suitable for processing microformats.

In the area of tools supporting the semantic annotation of services, ASSAM
[13] enables the annotations of services with WSDL-based descriptions. It pro-
vides user interface tools as well as some automatic recommendation compo-
nents, however, it can only be used on WSDL-based descriptions and does not
support RESTful services.

7 Conclusion and Future Work

Current RESTful services can be found, interpreted and invoked not without
the extensive user involvement and a multitude of manual tasks. This situation
can be alleviated through the creation of machine-readable descriptions. Based
on such descriptions, crawlers and search engines can better find services, and

developers can better use them. Moreover, extended with semantic annotations,
RESTful services can even be discovered, composed and invoked automatically,
following the principles of the SWS.

In this paper, we have built on a lightweight RESTful service model, based
on the hRESTS microformat that enables the tagging of key service properties
and therefore supports the creation of machine-readable service descriptions.
We complemented hRESTS by the MicroWSMO microformat, which adapts
SAWSDL for the semantic annotation of RESTful services. Finally, we have
shown the tool SWEET, which effectively supports users in creating semantic
descriptions of RESTful services based on hRESTS and MicroWSMO.

Future work will include the development of additional functionalities of
SWEET, which will better support users in the creation of semantic RESTful
annotations. Better visualization components, such as structure and properties
highlighting are planned. In addition, some work will be devoted to the auto-
matic recognition of service properties such as operations and input parameters,
so that the amount of manual work required by the user can be reduced.

The work presented here is partially supported by EU FP7 project SOA4All.

References

1. L. Richardson, S. Ruby: RESTful Web Services. O’Reilly Media, May 2007.
2. R. T. Fielding: Architectural styles and the design of network-based software ar-

chitectures. PhD thesis, University of California, 2000.
3. J. Kopecký, T. Vitvar, C. Bournez, J. Farrel. SAWSDL: Semantic Annotations for

WSDL and XML Schema. IEEE Internet Computing, 11(6):60-67, 2007.
4. J. Kopecký , K. Gomadam, T.Vitvar: hRESTS: an HTML Microformat for De-

scribing RESTful Web Services. Proceedings of the 2008 IEEE/WIC/ACM Inter-
national Conference on Web Intelligence (WI-08), 2008.

5. R. Khare, T. Celik: Microformats: a pragmatic path to the semantic web (Poster).
Proceedings of the 15th international conference on World Wide Web, 2006.

6. J. Kopecký, T. Vitvar, D. Fensel, K. Gomadam: hRESTS & MicroWSMO. Tech-
nical report, available at http://cms-wg.sti2.org/TR/d12/, 2009.

7. T. Vitvar, J. Kopecký, J. Viskova, D. Fensel. WSMO-Lite Annotations for Web
Services. In the Semantic Web: Research and Applications, ESWC 2008.

8. Web Services Description Language (WSDL) Version 2.0. Recommendation, W3C,
June 2007. Available at http://www.w3.org/TR/wsdl20/.

9. M. J. Hadley: Web Application Description Language (WADL). Technical report,
Sun Microsystems, November 2006. Available at https://wadl.dev.java.net.

10. Watson - The Semantic Web Gateway: Ontology Editor Plugins. http://watson.
kmi.open.ac.uk. Online November 2008.

11. RDFa in XHTML: Syntax and Processing. Proposed Recommendation, W3C,
September 2008. Available at http://www.w3.org/TR/rdfa-syntax/.

12. Clarke, F., Ekeland, I.: Gleaning Resource Descriptions from Dialects of Languages.
Recommendation, W3C, September 2007. http://www.w3.org/TR/grddl/.

13. A. Hess, E., Johnston, N., Kushmerick: ASSAM: A tool for semi-automatically
annotating semantic web services. In Proceedings of International Semantic Web
Conference, 2004.

