Does Food Assistance Lessen the Adverse Impacts of Adult Morbidity and Mortality on Household Welfare in Zambia?

Gelson Tembo

University of Zambia
Department of Agricultural Economics & Extension Education

Presented at The Workshop

HIV/AIDS and Development in Zambia: Taking Stock and Rethinking Policies

Held at the TAJ Pamodzi Hotel, Lusaka, Zambia February 4, 2010

Introduction

- HIV/AIDS prevalence is very high in many parts of Africa
 - A major concern especially for rural livelihoods
- Three broad categories of responses
 - Prevention (vaccines, behaviour change)
 - Treatment (ARV therapy)
 - Mitigation (food aid)
- Food aid has become a central mitigation strategy of some NGOs

Introduction (2)

- Few rigorous studies on the payoffs of these interventions
 - Recent panel data evidence indicates some significant adverse effects of HIV/AIDS
 - Effects of food aid on rural livelihoods still an empirical issue
- Policy and programming could benefit from empirical evidence

Objectives of the study

- Identify household community characteristics relevant for explainign food aid allocations and prime-age mortality
- Measure the impact of food aid on households that have suffered prime-age mortality and morbidity

Data

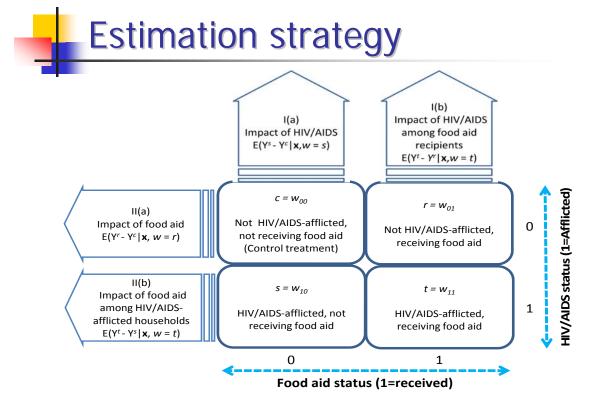
- The study uses three period panel surveys by CSO and FSRP
 - 2001 -- > 6,922 complete interviews
 - Two-stage cluster sampling
 - 2004 -- > 5,420 re-interviewed
 - 2008 -- > 4,340 re-interviewed
- Present an opportunity to measure impact

Data

- The study uses three period panel surveys by CSO and FSRP
 - 2001 -- > 6,922 complete interviews
 - Two-stage cluster sampling
 - 2004 -- > 5,420 re-interviewed
 - 2008 -- > 4,340 re-interviewed
- Present an opportunity to measure impact

Methods and procedures

- Three major empirical issues
 - Attrition among the three surveys
 - Selectivity bias
 - HIV/AIDS-afflicted households not randomly selected
 - Food-aid recipients not randomly selected
 - HIV/AIDS and Food aid intervention cannot be argued to be mutually exclusive!
 - Complex surveys involving clustering and stratification


Attrition and sample design

	2001-2004		2	2004-2008	
	2001	Attrited households	2004	Attrited H households	Total attrited households
Province	sample	(2001-2004)	samp	le (2004-2008)	(2001-2008)
	(1)	(2)	(3)	(4)	(5)
Total	6,922	1,503	5,419	9 1,079	2,582
		(21.7)		(19.9)	(37.3)

Attrition and sample design (2)

- Those not re-interviewed had
 - Younger heads
 - Smaller household sizes
 - Less landholding and assets
- Estimation strategy corrects for these and other sources of bias

Estimation strategy (2)

_	_	-1	a	• -1
 $\boldsymbol{\cap}$	\boldsymbol{n}	\sim	_	\sim
 		u	$\boldsymbol{\alpha}$	

	Non-recipients	Recipients	Total
Non-afflicted	2,978	595	3,573
HIV-afflicted	617	150	767
Total	3,595	745	4,340

Estimation strategy (3)

$$\ln(y) = \gamma + \lambda_1 w_1 + \lambda_2 w_2 + \lambda_3 (w_1 * w_2) + \phi_1 P S_1 + \phi_2 P S_2 + \phi_3 (P S_1 * P S_2) + \mu$$

 $\hat{\lambda}_3$ = Impact of food aid on HIV/AIDS-afflicted households

- Food aid recipients are more likely to
 - Be less educated
 - Have higher dependency ratios
 - Live in densely populated areas
 - Live in areas with lower HIV prevalence
 - Be in regions 2 and 3

Results – Descriptives (2)

- Households with adult mortality are more likely to
 - Have uneducated heads
 - Have chronically ill children
 - Be located closer to main roads
 - Be located in regions 2 and 3
 - To be male headed

Results – Impact crop production

Variable	Crop prod	Cereal prod	Cultivated area
PA Death (W1)	-0.25***	-0.20***	-0.01
Food Aid (W2)	0.08	0.13*	-0.04***
W1 * W2	-0.37**	-0.46***	0.05***

Results – Assets, livestock and income

Variable	Assets	Livestock income	Off-farm income	HH income
PA Death (W1)	-0.19***	-0.012	-0.05	-0.21***
Food Aid (W2)	0.07	0.14*	0.10	0.10
W1 * W2	-0.35**	-0.40**	-0.35*	-0.39**

Concluding remarks

- The results confirm the –ve impact of primeage adult mortality
 - Significant for crop production, assets & income
- Food aid has positive effects
 - Significant for cereal production and livestock
- However, this is not enough to mitigate the effects adult mortality
 - Cultivated land area the only exception
 - Productivity???