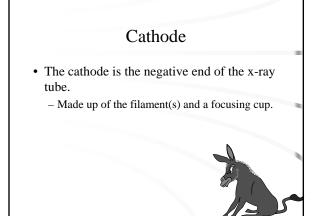


Tube Housing

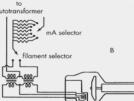
- Made of cast steel & is usually lead-lined
 Provides for absorption of most off-focus radiation
- Purposes:
 - Controls leakage & off-focus radiation (discussed later)
 - Isolates high
 - voltages
 - Helps to cool the tube

Glass Envelope


- Surrounds entire cathode & anode assemblies except for the stator
 - Made of several layers of Pyrex w/ varying densities
 - Glass is fitted to the metal of the anode & cathode ends
 - Must be airtight to maintain a good vacuum

Glass Envelope

- A target window is constructed in the glass = envelope to allow less scatter & attenuation of the photons
 - In most tubes simply a thinner "cut" of glass
 - In mammography a special metallic beryllium window prevents attenuation of lower energy photons



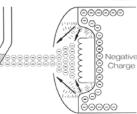
Filament

- Most x-ray tubes have a dual filament cathode assembly also known as dual focus
 - The two filaments sit parallel to each other in the focusing cup & share a common ground wire.

 Most filament coils are 7-15mm long , 1-2mm wide, 0.1-0.2mm thick

Filament

- Filaments must be able to:
 - Boil off electrons (thermionic emission)
 - Withstand great amounts of heat
- Filament materials
 - Tungsten most widely used material
 High boiling point (3,370° C)
 - It is difficult to vaporize
 - Rhenium (3,170° C)
 - Molybdenum (2,620° C)

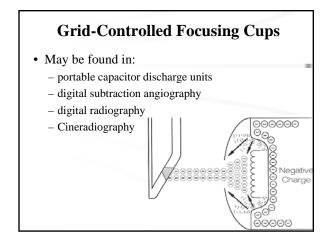


Filament

- Vaporization occurs over time
 - When the particles vaporize (turn into a gaseous form), they solidify on the glass of the x-ray tube, called sun-burning or sun-tanning of tube.
 - Reduce the x-ray output of the tube
 - destroy the vacuum integrity of the tube, leads to arcing and ultimately tube failure
- Thorium (a radioactive metallic element) is added to the filament material to make the tube last longer.

Focusing Cup

- The focusing cup helps control electron cloud
 - The electrons repel each other & want to spread out. The focusing cup forces the electrons to form a small stream as they move toward the target material
 - Made of nickel
 - Has a low negative charge



Grid-Controlled Focusing Cups

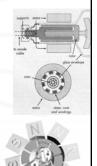
Some x-ray procedures require exposures be taken at quick intervals.

- Grid-controlled focusing cups have a variable charge applied to the focusing cup that acts as an exposure switch
 - When the tube is activated, the charge increases & decreases rapidly
 - Short bursts of electrons flowing to the target.

Anode

The Anode is the part of the x-ray tube where accelerated electrons move to after kV is applied to the tube.

- Two types:
 - Stationary anode (old type) just a tungsten button imbedded in copper bar.
 - Rotating anode consists of a molybdenum disk(target) rotated by an induction motor.



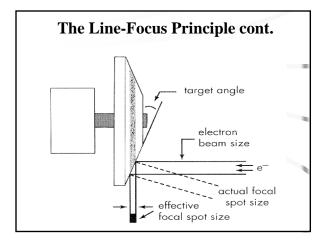
Rotating Anode Stator and Rotor

Consists of two main parts:

- Stator
 - Rests just outside of the glass tubeMade up of a series of
 - electromagnets equally spaced around the neck of the tube
 - Designed to energize opposing pairs, in sequence, so that they induce the rotation of the rotor.
- Rotor
 - Located within the glass tube
 - Made up of copper bars & soft iron
 - around a molybdenum shaft ***Mutual Induction***

Rotating Anode Stator and Rotor

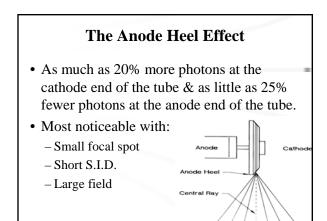
- When the rotor is rotating at the desired level, = the x-ray exposure may be completed.
- Most revolve at 3400 revolutions per minute (rpm) minimum.
- By rotating the anode we spread the generated heat over a larger surface area allowing greater technique loads.

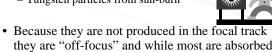


Anode Target Characteristics

- Anode target the point on the anode where the electrons strike
- Tungsten rhenium alloy is the most common material and is plated onto the surface of the molybdenum disk
- Tungsten has:
 - High atomic number (74)
 - High thermal conductivity level
 - High melting point
- Rhenium added to increase thermal capacity and tensile strength

The Line-Focus Principle


- Actual focal spot the area of the target material being bombarded by electrons from the filament.
- Effective focal spot the imaginary geometric line that can be drawn based on the actual focal spot size vs. the angle of the anode.
- Best described by the angle of the anode
 - the smaller the angle of the anode, the smaller the effective focal spot size (any angle $<45^{\circ}$ results in the effective FS being smaller than the actual FS)
 - -12^{0} target angle most common because it is the minimum that will cover a 14x17 at 40"


The Anode Heel Effect

- Caused by the angle of the anode vs. the intensity of the electrons striking it.
- X-rays exiting the target on the anode side have to traverse the "heel" of the anode
 - Photons directed toward the cathode end do not have to travel through as much of the anode because of the angle of the target so more make it out
 - Those directed toward the anode end must travel through more material so more are absorbed
 - Results in the beam being of lower intensity on the anode side.

Production of Off-Focus Radiation

- Radiation produced from x-ray photons or electrons that have reflected off of the anode
- These x-rays or electrons can strike a number of things in the tube and produce scatter photons:
 - Side of the focusing cup
 - Tungsten particles from sun-burn

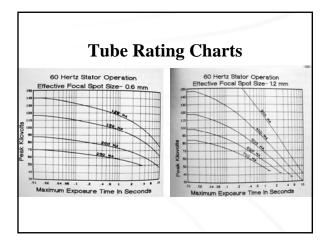
0 100

they are "off-focus" and while most are absorbed by the housing, some make it out of the tube and degrade the radiographic image.

Extending Tube Life

- Practical methods
- Tube rating charts
 - Determines if a technique is safe
 - Used to test overload protection circuits
- Calculating heat units and using cooling charts.

Practical Methods


The life of the tube is under your control!

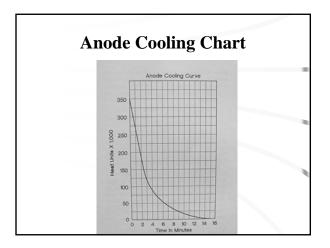
- Proper warming extends tube life
- Avoid repeated exposures close to tube load limit
- Do not hold the rotor switch unnecessarily *Listen to your equipment!*

Tube rating charts

• Rules for use

- Select the correct chart
- Plot the point using technical factors
- ANYTHING ON OR ABOVE THE GIVEN mA LINE IS UNSAFE

Calculating Heat Units (hu) $kV x mA x time (s) x C_r x \# of exposures$ The heat unit rectification constants (C_r) are: $-1 \phi 2$ pulse (full wave) = 1.00 $-3 \phi 6$ pulse = 1.35 $-3 \phi 12$ pulse = 1.41 -High frequency = 1.45 An anode cooling curve based on the tube's rating chart must be used when calculating multiple exposures.


Calculating Heat Units (hu)

If 10 exposures of 80 kVp, 200 mA & 0.43 s. is made on a high frequency unit, how many heat units (hu) are produced?

kV x mA x time (s) x $C_r x \#$ of exposures

80kVp x 200mA x 0.43 sec x 1.45 x 10 = 99,760 hu

If the anode is at its maximum how long must we wait before making the exposures?

