
A More Portable Fortran Random Number
Generator

LINUS SCHRAGE
University of Chicago

A Fortran implementation of a random number generator is described whmh produces a sequence of
random mtegers that is machine independent as long as the machine can represent all mtegers m the
interval [-2 . . 31 + 1, 2..31 - 1]

Key Words and Phrases uniform random number generator, portable software
CR Categories 4.6, 4.9, 5.5

INTRODUCTION

There are a number of situations in which it is desirable to have a random
number generator that is machine independent. In general, it is useful if a program
written in a high-level language produces results which are the same from
machine to machine as long as the input to the program is the same.

For example, the pseudorandom number generator used by the Control Data
Corporation in its GPSS simulation program is the same as in IBM's GPSS, even
though the generator is known to have defective statistical behavior. Apparently,
compatibility is more valuable than statistical goodness.

The program described here is an implementation of the generator described
by Lewis et al. [6] and indirectly attributed to D.H. Lehmer. The code for the
program appears in Figure 1. The generator produces a sequence of positive
integers, IX, by the recursion:

I X (/ + 1) = A,IX(i) mod P

where P is the Mersenne prime number 23~ - 1 = 2147483647 and A = 75 = 16807.
Thus all integers IX produced will satisfy 0 < IX < 231 - 1. Most large computers
can represent all integers in this range using INTEGER format. Many minicom-
puters, however, are fundamentally 16-bit machines and thus cannot represent
integers in this range with the "native" INTEGER format. If, however, the
minicomputer has another format, such as DOUBLE PRECISION which can
represent integers in the range [0, 231 - 1], then the generator proposed here may

a~

Permission to copy without fee all or part of this material is granted provided that the copras are not
made or dmtributed for dnrect commercial advantage, the ACM copyright notme and the title of the
pubhcatlon and its date appear, and notme is given that copying is by permmslon of the Association
for Computing Machinery. To copy otherwise, or to republish, reqmres a fee and/or specific
permission.
Author's address' Graduate School of Business, University of Chmago, 5836 Greenwood Ave, Chmago,
IL 60637
© 1979 ACM 0098-3500/79/0600-0132 $00.75

ACM Transactions on Mathematmal Software, Vol 5, No 2, June 1979, Pages 132-138

A More Portable Fortran Random Number Generator 133

!

JUNCTION R A N D (I X)
C F'OI"qFADLI- RANDOM NUMBER GENERAFOR
(" USING FFIE RECURSION
C IX - IX~(A HOD P
C
C SOMF COtIPII ERS, E.Go, THE HP3000, REQUIRE THE FOLLOWING

C DECLARAFION TO BE INIEGER~4
INIEGER A,P,IX,B15,BI6,XHI,XALO,LEF rLO,FHI,K

C

DATA A/16807/,BIS/32768/,B]6/65536/,F'/2147483647/
C

I: GEl- 15 HI ORDER B{rS OF IX
XHI = IX/B16

C GEF 16 L 0 B I I S OF I X AND FORM 1.0 PRODUCT
XALO=(IX XHT*B] 6)*A

C GEr]5 HI ORDER BIFS OF LO F'RODUCT

LEFTI.O- XALO/BI6
~ FOI(M FHE ,$1 HIGHESF BIIS OF FULL F'RODUCr

FHI = XIII~A ~ LEFTLO
(' GEF OVERFLO J'ASF 31SF BIT OF FULL F'RODUCT

K = FHI/B15
C ASSEMBLE ALL FHE PARRS AND F'RESUBTRACT P
C "file F'ARENTHFSES ARE FSSENTIAL

IX = (((XALO-LEFILO~BI6) - F'> + (FHI"K~BIS)~BI6) ÷ K
C ADD P BACh IN IF NECESSARY

JF- (I X . L I . O) IX -- IX + F'
C MIJLTII-'LY BY 1 / (2 ~ . ~ 1 - 1)

5'AND -= FLOAT(IX)~(4.656612875E-10
RETURN

END

F~g 1. Portable Fortran random number generator

still be implemented. A version of RAND which uses DOUBLE PRECISION
rather than the INTEGER format appears in Figure 2.

MACHINE INDEPENDENT USE OF THE GENERATOR

The generator is invoked as a function, that is, F X = R A N D (IX). Before first
use, IX must be set to some initial integral value in the range 0 < IX < 2147483647.
Subsequent values of IX are then obtained recursively from the preceding IX by
invoking the function. RAND returns a random fraction in the interval 0 <
RAND < I. One can use either this fractional value or IX itself.

Even though the generator is machine independent according to the earlier
criterion, it is quite easy to use it in a way which destroys this independence.

To maintain as much machine independence as possible one should use IX
rather than RAND where possible. For example, to generate a random integer K,
in [I, J] one could use either:

(I) K = (J - I + 1)*RAND(IX) + I

or

(2) FX = RAND (IX)
K = (IX/(2147483647/(J - I + I))) + I.

Method (2) is preferred because it is machine independent. The value of K in
ACM Transactions on Mathematical Software, Vol. 5, No 2, June 1979

134 • Linus Schrage

DOUBLE PRECISION FUNCTION BRAND(IX)
F'OR'rABL E RANDOM NUMBER GENERATOR

USING THE RECURSION
IX =" [X#A MOB P

DOUBLE I-'RECISION A,P , IX ,B15 ,B I6 ,XHI ,XALO,LEFTLO,FHI ,K

7~5, 2~15, 2#~1&, 2##31-1

DAtA A/16807.DO/,BIb/32768.DO/,BIG/65536°DO/,P/2147483647.DO/

GE:I 1,5 HT ORDER BITS OF IX
XH[= I X / B t 6
XHI = XHI - DMOD(XHI,I.DO)

C GEF l& LO B I I S OF IX AND FORM LO PRODUCT
XALO:-(IX-XHI~B16)$A

C GEF 15 HI ORDER BITS OF' LO PRODUCt
LEFFi_O = XALO/B16
LEFTLO -- LEFFLO - DMOD(LEFTLO,I.DO)

C FORM THE 31 HIGHESF BITS OF FULL PRODUCT
FHI = XH]);A 4- LEFTLO

(] GET OVERFLO PASF 31SF BIT OF FULL PRODUCT
Ix --" F I ' - I] / B t 5
Ix '= k - D M O D (E , I . I ' J O)

C ASSEMBLE ALL]HE PARIS ANB PRESUBIRACT P
C THE PARENFI~ESES ARE ESSENFIAL

I X - " (((X A L O - I . E I " T L O ~ B I &) - P) + (F H I - h ~ B 1 5) ~ B 1 6) + I',
C ADD P BACK I N IF NI=CESSARY

IF { IX .LF. OoDO) IX = IX -i F'
[: MUI .T]F 'LY BY 1/(2)K~31-I)

bRAN1) = IX~4.656612875D-IO
I,'E 1 URN

ND
Fig 2 Portable Fortran random number generator using double precision anthmetm

method (1) may depend upon the manner in which the host machine converts
integers to real.

For example, the widely used NETGEN portable problem generator [4] for
network LP problems contains a slow but very portable random number gener-
ator. Unfortunately, method (1) is used when the generator is invoked. Thus,
even though NETGEN takes integer input and produces integer output, it is not
truly portable because it unnecessarily uses floating point arithmetic in interme-
diate calculations.

S T A T I S T I C A L P R O P E R T I E S

As with all multiplicative congruential generators the output from the generator
cycles. The generator is full cycle, that is, every integer from 1 to 23~ - 2 =
2147483646 is generated exactly once in the cycle. This cycle length is about four
times greater than that of other typical "portable" Fortran random number
generators.

Lewis et al. [6] have subjected the IBM 360 machine language version of this
generator to a battery of statistical tests. In their words the "generator has been
found to be highly satisfactory." Hutchinson [3] points out that the low-order
bits do not behave in the highly nonrandom fashion characteristic of generators
ACM Transactlons on Mathematical Software, Vol 5, No 2, June 1979

A More Portable Fortran Random Number Generator • 135

for which P is a power of 2. Gavish and Merchant [2] find this generator to be the
best of the simple multiplicative generators they tested, including the generator
with A = 630360016.

The IMSL library [8] uses this generator as the basis for its "shuffling"
generator, GGU4, which has statistical properties which are empirically gratifying.

I M P L E M E N T A T I O N

There are two difficulties in implementing the generator in a high-level language:
(1) The product A , I X may have 46 bits in it, but we are only assuming tha t

the host machine can correctly store and calculate 31-bit products.
(2) P is not a power of 2, in fact it is prime, so discarding high-order digits of

A , I X is not a valid direct way of doing the mod P operation.
Difficulty (1) is resolved by the s tandard device of simulating double precision

with software. The 31-bit integer IX can be written as a*21~ +/Y where a is a 15-
bit integer and fl is a 16-bit integer. The product A , I X can be written as (A,a)*2 ~6
+ A*fl. Because A {=16807) is represented by 15 bits, the product A*a has at
most 30 bits and the product A*fl has at most 31 bits. Only these products are
manipulated by the generator.

Difficulty (2) is resolved by using a procedure described by Payne et al. [7] and
Fishman [1] and also at t r ibuted to D.H. Lehmer.

Suppose we wish to compute

I X (/ + 1) = A,IX(i) mod P (1)

where

P = r a - 1 (2)

but tha t it is easier to compute

Z -- A,IX(i) mod r d (3)

where r is the radix of the host machine, e.g. 2, and d is the number of base-r
digits of the host machine, e.g. 31. Equation (3) for an appropriate k is equivalent
to

Z = A,IX(i) - k * r d. (4)

If we add k to both sides of eq. (4), we obtain

Z + k = A,IX(i) - k * (r a - 1) ffi A,IX(i) - k*P. (5)

Thus, provided Z + k < P, I X (/ + 1) - Z + k. In the Appendix it is shown tha t
Z + k is always less than 2*P, provided reasonable assumptions are put on r, d,
P, and A; so if Z + k > P, w e u s e Z + k - P a s I X (/ + l) .

The appropriate value of k is

k = [A * I X (i) / r a] (i.e. integer part). (6)

Effectively, k is the set of overflow digits in the product, t reated as a number.
The Fortran code uses r d = 231. The code makes no assumptions about how the

host computer does ari thmetic other than tha t it does it correctly on all integers
in [-213~ + 1, 231 - 1] and tha t it does truncation on integer division.

ACM TranSactions on Mathematical Software, Vol. 5, No. 2, June 1979

136 Linus Schrage

Table I. Time in Seconds for 100,000 Calls

Subroutine Machine
Machine R A N D GGUBF language D R A N D

DEC 2050 6.3 9.1 2.5 25.4
IBM 168 2.94 2.43 .92 5.54
TI 59 570000*

* This number is an extrapolation of results kindly supphed by W J. Cody.
The TI 59 is a 13-decimal digit pocket calculator.

The reader may check the correctness of the implementation on his or her own
computer by verifying that if IX(0) = 1, then IX(1000) = 522329230.

COMPARISONS WITH OTHER GENERATORS AND EXECUTION TIME

Kruska] [5] describes an "extremely portable random number generator"; how-
ever, its cycle length is only 2048 and is thus inappropriate for situations requiring
large numbers of random numbers.

The IMSL scientific subroutine library [8] uses the same recursive formula as
that described here in its subroutine GGUBF. The widely used SIMSCRIPT II.5
simulation system and the DEC 20 Fortran system use the same recursion but
with the multiplier A = 630360016. The multiplier A -- 16807 appears to have
been more thoroughly tested by Lewis et al. [6].

The IMSL generator is written in Fortran and is fairly portable. It uses double
precision, floating point arithmetic; however, some machines such as the HP3000/
Series I can only represent at most 12 digits accurately in double precision,
whereas the product of 16807 × 2147483646 has 14 digits. Thus GGUBF is not
portable to the HP3000/Series I. RAND with the INTEGER*4 declaration as
suggested in the program comments produces exactly the same sequence on the
IBM 370, DEC 20, and HP3000.

The generator DRAND (Figure 2) is probably the most portable. It is appro-
priate for a computer such as the PRIME which carries less than 46 bits in
DOUBLE PRECISION (so GGUBF cannot be used) and less than 31 bits in
INTEGER (so RAND cannot be used) but does carry more than 31 bits in
DOUBLE PRECISION (so DRAND works). DRAND has the drawback of
making extensive use of DOUBLE PRECISION and thus being very slow.

For execution timings a Fortran program was written which called the random
number generator 100,000 times and summed the numbers. The results appear in
Table I. Supercomputer class machines such as the IBM 168 tend to have very
efficient double precision, floating point algorithms, so GGUBF may execute
slightly faster on such machines. Smaller machines may in fact resort to software
to perform double precision arithmetic, so RAND may be considerably faster on
them.

APPENDIX
General Version of the Method

The computing method for IX(/ + 1) is a specific form of a more genera]
method. Suppose we wish to compute
ACM Transactions on Mathematical Software, Vol 5, No 2, June 1979

A More Portable Fortran Random Number Genera to r • 137

I X (/ + 1) = A,IX(i) mod P (A1)

but tha t it is easier to compute

Z = A,IX(i) mod E (A2)

which would be t rue , for example, if E = r ~. Let E > P and define g and k as
follows:

g = E - P > 0 ,
k = [A*IX(i) /E] (i.e. the integer part), (A4)

so that k equals the number of integral multiples of E in A , I X (i). Then, adding
k * g to both sides of eq. (A2) gives

Z + k * g = A,IX(i) - k*(E - g) = A,IX(i) - k*P. (A5)

The general method is then: I feq . (A5) is less than P, then I X (/ + 1) -- Z + k * g .
If not, then we wish to show tha t I X (/ + 1) = Z + k * g - P.

This requires us to show tha t eq. (A5) is less than 2*P. We note from eq. (A2)
tha t Z _< E - 1 so tha t for eq. (A5) to be less than 2*P it is sufficient to have

E - 1 + k*g < 2*P. (A6)

Because IX(i) < P, from eq. (A4) we find that a sufficient condition for eq. (A6)
is

E - 1 + (A*P/E)*g < 2*P, (A7)

o ra l so

or also

P + g - 1 + (A*P/E)*g < 2*P, (A8)

P - g + l
(A , P / E) < (A9)

g

We finally obtain tha t a sufficient condition for the general method to work is

A < - - g , p ~ + . (A10)

For example, in R A N D where g = 1 the sufficient condition is trivial: A < E
= 2 31.

ACKNOWLEDGMENT

The presentat ion and arguments have benefitted substantially from the com-
ments of Ed Battiste and Peter Lewis.

REFERENCES

l FISHMAN, G.S. Concepts and Methods m Dtscrete Event Dtgttal Stmulatton. Wiley, New York,
1973

ACM Transactmns on Mathematical Software, Voi. 5, No. 2, June 1979

138 Linus Schrage

2. GAVISH, B., AND MERCHANT, D.K. Binary level testing of pseudo random number generators.
Tech. Rep., Graduate School of Management, U. of Rochester, 1978.

3. HUTCHINSON, D.W. A new uniform pseudorandom number generator. Comm. ACM 9, 6 (June
1966), 432-433.

4. KLINGMAN, D., NAPIER, A., AND STUTZ, J. NETGEN: A program for generating large scale
capacitated assignment, transportation, and minimum cost network problems. Management Sc~.
20, 5 (Jan. 1974), 814-821.

5. KRUSKAL, J.B. Extremely portable random number generator. Comm. ACM 12, 2 (Feb. 1969), 93-
94.

6 LEWIS, P A W, GOODMAN, A.S., AND MILLER, J M A pseudo-random number generator for the
system/360. IBM Syst. 3". 8, 2 (1969), 136-146.

7 PAYSE, W.H., RARUNG, J .R , AND BOGYO, T.P. Coding the Lehmer pseudo-random number
generator Comm ACM 12, 2 (Feb. 1969), 85-86.

8. The IMSL L~brary, Vol 1, 6th ed., Int. Math. Stat. Libraries, Inc., Houston, Tex., July 1977.

Recewed January 1978, revised June 1978

ACM Transactions on Mathematmal Software, Vol 5, No 2, June 1979

