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1. Introduction
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Introduction
� Wind power is presently the most cost-effective renewable

technology and provides a continuously growing contribution to
climate change goals, energy diversity and security.

� Integration of large amounts of wind power into electricity networks
face however various strong challenges:

� Technical characteristics of wind turbine technologies are
different from conventional power plants.

� Wind intermittency
� Grid availability and reliability
� Grid Code compliance

Accurate modelling and control of wind turbine systems for power
system studies are required to help solving these challenges
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Wind turbine components

Combination of mechanical
and electrical systems

Mechanical:
Aerodynamics and structural

dynamics

Electrical:
Generator, power electronic
converters, control system,

protection equipment
Source: www.nordex-online.com
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2. Wind turbine technologies
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FSIG-based wind turbine

SCIG Soft-starter

Capacitor
bank

NETWORK

� Fixed-Speed Induction Generator (FSIG)-based wind turbines employ a squirrel-cage
induction generator directly connected to the network.

� The slip (and hence the rotor speed) varies with the amount of power generated. In this
turbines the rotor speed variations are very small (1 or 2%).

� The induction generator consumes reactive power and hence capacitor banks are used to
provide the reactive power consumption and to improve the power factor.

� An anti-parallel thyristor soft-start unit is used to energise the generator once its operating
speed is reached.

� Power control is typically exercised through pitch control.
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DFIG-based wind turbine
Wound-rotor

Induction generator

PWM converters

Network

Crowbar
protection

� Doubly-Fed Induction Generator (DFIG)-based wind turbines employ a wound rotor
induction generator with slip rings to take current into or out of the rotor.

� Variable-speed operation is obtained by injecting a controllable voltage into the rotor at
slip frequency.

� The rotor winding is fed through a variable frequency power converter. The power
converter decouples the network electrical frequency from the rotor mechanical frequency
enabling the variable-speed operation of the wind turbine.

� The generator and converters are protected by voltage limits and an over-current
‘crowbar’.
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Wide-range SG wind turbine (SGWT)

Generator
Power

converter Network

Gearbox

Generator
Side

Converter
Network

Side
Converter

� This wind turbine uses a synchronous generator (it can either be an electrically excited
synchronous generator or a permanent magnet machine.

� The aerodynamic rotor and generator shafts may be coupled directly, or they can be
couple through a gear box.

� To enable variable-speed operation, the synchronous generator is connected to the
network through a variable frequency converter, which completely decouples the
generator from the network.

� The electrical frequency of the generator may vary as the wind speed changes, while the
network frequency remains unchanged.

� The rating of the power converter in this wind turbine corresponds to the rated power of
the generator plus losses.
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3. Optimum power extraction
from wind
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Optimum power extraction from wind

Power in the airflow:

31
2airP AUρ=

Power extracted by the wind turbine rotor:

wt p airP C P= ⋅
Where:
ρ : Air density
A : Area swept by the blades
U : Wind speed
Cp : Power coefficient

max 0.593pC = (Betz limit)

The turbine will never extract
more than 59% of the power
from the airflow

WIND
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ωr is the rotor speed
and R is the radius
of the rotorPower coefficient/Tip speed ratio curve

Tip speed ratio λλλλ:

� Operating a wind turbine at variable rotational speed it is possible
to operate at maximum Cp over a wide range of wind speeds

� To extract maximum power ωωωωr should vary with the wind speed
such as to maintain λλλλ at its λλλλopt

Optimum power extraction from wind
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Generator speed

Rated power

Maximum Power
curve (Popt)

Speed Limit

U = 12 m/s

U = 10 m/s

U = 8 m/s

U = 6 m/s
U = 4 m/s

U = 2 m/s

Speed

Rated power

Cut-in
speed

Speed
limit

Shut-down
speed

Power
set-point

� In practice the rotor torque (power) is used as set-point and
a speed controller is designed to maintain the operation of
the generator at the point of maximum power extraction

Wind turbine power curve
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4. Dynamic model of the Doubly-Fed
Induction Generator (DFIG)
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Typical DFIG wind turbine

CONTROL SYSTEM Network
operator

Gearbox

Crowbar

DFIG

PWM Converters

Windmill

Power
NetworkC1 C2

Wound rotor
induction generator
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DFIG power electronic converters

Back-to-back voltage source converters (VSCs)
Converter C1 Converter C2

DC-link
Machine

Side (rotor)
Grid side
(Machine

stator)

� Graetz bridge (two-level VSC)
� IGBT-based
� Pulse Width Modulated (Sinusoidal, Space Vector PWM)
� Typical switching frequencies above 2 kHz
� Trade-off between switching frequency (losses) and harmonics
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DFIG power relationships
A DFIG system can deliver power to the grid through the
stator and rotor, while the rotor can also absorb power. This
is dependent upon the rotational speed of the generator

P

ωωωωr > ωωωωs

Super synchronous
operation

P

ωωωωr < ωωωωs

Sub synchronous
operation

s r
s

s ω ω
ω
−=
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DFIG power relationships
Mechanical

Input Electrical
Output

Power through
the slip rings

Rotor
losses

Stator
losses

mP _air gapP

rP

sP

mP : Mechanical power delivered to
the generator

rP : Power delivered by the rotor
_air gapP : Power at the generator’s air gap
sP : Power delivered by the stator

_air gap sP P=

_air gap m r s

s m r

P P P P
P P P

= − =

= −
s r rT T Pω ω= −

r s sP Ts sPω= − = −
g s rP P P= +

s r
s

s ω ω
ω
−=Slip
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Dynamic model of the DFIG
� Derive voltage and

flux equations for the
stator and rotor in
the abc domain.

� Transform voltage
and flux equations to
the dq reference
frame.

� Model the induction
generator as a
voltage behind a
transient reactance.

θ
ωr

as′

as

arbs′

bs
br

br′
cs′

cr′
cr

cs

br axis
bs axis

cr axis
cs axis

as axis

ar axisar′

Stator winding

Rotor winding

Air gap

Schematic diagram of an
induction generator
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Stator and rotor
circuits of an induction generator

: Stator resistance
: Rotor resistance
: Stator leakage inductance
: Rotor leakage inductance
: Magnetising inductance

s
r
s
r
m

R
R
L
L
L

ss s m
rr r m

L L L
L L L

= +
= +

, : Stator and rotor
self-inductances

ss rrL L

rotation

rωasi

bsi

csi

ari

bri

cri

asv
bsv

csv

arv
brv

crv
,r rR L,s sR L

mL

θ
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DFIG 3rd order model
(voltage behind transient reactance)

( )em
r TTJdt

d −×= 1ω

Stator voltages: Rotor voltages:

Voltage components:

Rotor swing equation:

'

'
ds s ds qs d

qs s qs ds q

v R i X i e
v R i X i e
 = − + +

= − − +

m
d qr

rr
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q dr
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Transient reactance's:

Open circuit time constant:
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Vector diagram of DFIG operating conditions

rψ

d

q

sv

si

sjX ′i

rv
i rδ

ri

e

δ

δ

( )[ ]1 ms s s r
s o rr

Ld j X X j s jdt T Lω ωω ′= − − − + −e e i e v

In steady state

r dr qrv jv= +v

0d dt =e

m r
rr

Ls L≈e v

r s≈v e

e : internal voltage vector
vs: terminal voltage vector
Ψr : rotor flux vector
vr : rotor voltage vector
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5. Control of DFIG-based
wind turbines
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Decoupled active and reactive power control

� The dq transformation allows the two rotor
injection voltages vqr and vdr to be regulated
separately

� Power control

� Voltage control

qrv

drv
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DFIG current-mode control

+ - +
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ΣΣ

P

I

qrv′_qr refi qrv

qri
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Voltage control loop:

Torque control loop:

Compensation
term

Compensation
term

Source: Ref [4]
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DFIG rotor flux magnitude and angle control

Controller
A

angrefX
Compensator

Aux
Loop 3

3auxu
2auxu

1auxu

Power System
Stabiliser

capabilities

Aux
Loop 2

Aux
Loop 1

Provision of
Synchronising Power

characteristic

Network
Frequency

support

Speed
(slip)

sV
srefV -

+

eP
erefP -

+

AVR
Compensator

magrefX
rV

Rotor
voltage

Flux and Magnitude Angle Controller (FMAC)
Source: Ref [3]
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Synchronous Generator
and DFIG vector diagrams

Round rotor synchronous generator Doubly fed induction generator

fdψ = rotor field flux vector
fd fdEψ =

Efd = dc field voltage
tE = terminal voltage vector
gE = generator internal voltage

(voltage behind synchronous
reactance)

sI = stator current vector
δr = rotor angle
XS = synchronous reactance

rψ = rotor flux vector
sV = terminal voltage vector
igE = generator internal voltage

vector (voltage behind
transient reactance)

isI = stator current vector
rV = rotor voltage vector

δig = generator load angle
δir = rotor voltage angle
X’ = transient reactance

rψ

d

q

igE

sV

isI

isjXI′

δig

δig

rVδir

d

q

ssjXI

δr

gE

tE

sI fdψ

Source: Ref [3]
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FMAC basic scheme

-

rv

Polar
to
dq

Transf.

irδ

drv

qrv

Σ++

-
sV

refsV
Σ

-
Σ++

-
Σ ip

pp
kk s+

im
pm

kk s+ ( )mg s

ia
pa

kk s+ ( )ag s

iv
pv

kk s+ ( )vg s

AVR compensator

refe

δ

FMAC Controller

E
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Source: Ref [3]
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Auxiliary loop 1:
Synchronising power characteristic
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Auxiliary loop to provide power-angle characteristic
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Source: Ref [3]
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Auxiliary loop 2:
Power System Stabiliser
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Auxiliary loop 3:
Short-term frequency regulation

-

magrV

Polar
to
dq

Transf.

angrV

rdV

rqV

Σ++

-
sV

refsV
Σ

+ + -
Σ+Σ+

-
Σ

2igδ

1igδ
ip

pp
kk s+

im
pm

kk s+ ( )mg s

ia
pa

kk s+ ( )ag s

slip
Auxiliary loop to
facilitate short-
term frequency

support

iv
pv

kk s+ ( )vg s

AVR compensator

DfigrefE

Dfigδ

FMAC basic scheme

DfigE

Dfigrefδ

Controller A

eP

erefP

Power-speed
function for
max. Power
extraction

1
1 fsT+

Filter

Network
frequency

2igδ

1
sT

sT+sf ( )1ag s ( )2ag s

- Σ
+

( )3ag s
1

sT
sT+

Shaping function

trefslip

tslip

rω

Source: Ref [3]

( )1
500

1 5ag s s
−=
+

( )2
3 4.5
1 5a

sg s s
+=
+

( )3
0.8 1.2

1 3a
sg s s

+=
+



© Dr Olimpo Anaya-Lara – TUTORIAL: Control of Wind Generation Systems, 4 December 2006, Napa, CA, USA 32

6. Impact of wind farms on transient
and dynamic stability
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Generic network model

Synchronous
Generator

DFIG
Wind Farm

or
synchronous

generator

Main
System

LoadZF

Fault 1

Generator 1 Generator 2

Source: Ref [3]
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Conventional synchronous plant operation

Generator 1 (G1): Synchronous generator
Generator 2 (G2): Synchronous generator

FAULT 1 applied at t=0.2 s. Clearance time 150 ms.

(a) Synchronous
generator (G1)

(b) Synchronous
generator (G2)

G1 G2

G3

Source: Ref [3]
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DFIG with synchronising power characteristic

Generator 1 (G1): Synchronous generator
Generator 2 (G2): DFIG with FMAC basic control

FAULT 1 applied at t=0.2 s. Clearance time 150 ms.

(a) Synchronous
generator (G1)

(b) DFIG
wind farm (G2)

G1 G2

G3

Source: Ref [3]
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Generator 1 (G1): Synchronous generator
Generator 2 (G2): DFIG with FMAC basic control

scheme plus auxiliary loop 1.
G1 G2

G3

FAULT 1 applied at t=0.2 s. Clearance time 150 ms.

(a) Synchronous
generator (G1)

(b) DFIG
wind farm (G2)

DFIG with synchronising power characteristic

Source: Ref [3]
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DFIG with PSS capability

Generator 1 (G1): Synchronous generator
Generator 2 (G2): DFIG with FMAC basic control

scheme plus auxiliary loop 2
G1 G2

G3

FAULT 1 applied at t=0.2 s. Clearance time 150 ms.

(a) Synchronous
generator (G1) (b) DFIG

wind farm (G2)

Source: Ref [3]



© Dr Olimpo Anaya-Lara – TUTORIAL: Control of Wind Generation Systems, 4 December 2006, Napa, CA, USA 38

DFIG contribution to frequency regulation

Loss of generation applied at t=0.5 s.

(a) Main System (G3) (b) Synchronous
generator (G2)

Generator 1 (G1): Synchronous generator
Generator 2 (G2): Synchronous generator

G1 G2

G3

Source: Ref [3]
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DFIG contribution to frequency regulation

Generator 1 (G1): Synchronous generator
Generator 2 (G2): DFIG with FMAC basic control

scheme plus auxiliary loop 3
G1 G2

G3

Loss of generation applied at t=0.5 s.

(a) Main System (G3) (b) DFIG
wind farm (G2)

Source: Ref [3]
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Influence of
wind generation on dynamic stability

installed capacity of generator G2 (MVA)Capacitor factor 2 maximum capacity of G2 MVA (2400 MVA)f =

2242402,5202,8001/10

7508002,5202,8001/3

1,5001,6002,5202,8002/3

2,2402,4002,5202,8001

G2
Rating
(MW)

G2
Rating
(MVA)

G1
Rating
(MW)

G1
Rating
(MVA)

G2
f2

Operating situations
Fixed power P1 of G1

G1
(Southern
Scotland)

G2
(Northern
Scotland)

Main System
(England-Wales)

Load L1

Bus1 Bus2

Bus3

Bus4
X1 X2

X3

Load

Eigenvalue analysis

Source: Ref [2]



© Dr Olimpo Anaya-Lara – TUTORIAL: Control of Wind Generation Systems, 4 December 2006, Napa, CA, USA 41

Generator 2: Synchronous generator

Variation of dominant eigenvalue loci with generation capacity
AVR Control AVR + PSS Control

Influence of
wind generation on dynamic stability

Source: Ref [2]
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Generator 2: Wind generation

Variation of dominant eigenvalue loci with generation capacity

FSIG-wind farm DFIG wind farm with
current-mode control

Influence of
wind generation on dynamic stability

Source: Ref [2]



© Dr Olimpo Anaya-Lara – TUTORIAL: Control of Wind Generation Systems, 4 December 2006, Napa, CA, USA 43

Generator 2: DFIG wind farm with FMAC control

Variation of dominant eigenvalue loci with generation capacity
FMAC basic FMAC basic + PSS control

Influence of
wind generation on dynamic stability
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PSS for a generic DFIG controller

Generic
DFIG

Control

srefV

erefP

drV ′

qrV ′
Rectan.
to polar
transf. rangV

Polar to
rectan.
transf.

drV

qrV

rmagV

PSSslip

+ +

PSSu

Source: Ref [5]
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DFIG Power System Stabiliser

Generic
DFIG

Control

srefV

erefP

drV ′

qrV ′
Rectan.
to polar
transf. rangV

Polar to
rectan.
transf.

drV

qrV

rmagV

+ +

PSSu
slip

Washout Compensator

5
1 5

s
s+

21300 1 0.2s
 − ⋅ + 

Limiter
0.8

0.8−

Source: Ref [5]
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Control performance (transient stability)
Generator 1 (G1): Synchronous generator
Generator 2 (G2): DFIG

Fault applied at t=0.2 s with a clearance time of 150ms. (Full line:
DFIG with PSS; dotted line: DFIG without PSS)

DFIG in super synchronous
Operation (slip = -0.2)

DFIG in sub synchronous
Operation (slip = 0.2)

G1 G2

G3

Source: Ref [5]
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Control performance (dynamic stability)
Generator 1 (G1): Synchronous generator
Generator 2 (G2): DFIG

Operating situations

G1 G2

G3

675-1828570.2

2,3033751,928-0.2

Total
power
Output MW

Converter
power
MW

DFIG Stator
power MW

Slip

Influence of PSS loop on the
dominant eigenvalue for sub
synchronous (s=0.2) and super
synchronous operation (s=-0.2).
(With PSS •; without PSS ▪)

Source: Ref [5]
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