Modelling and Control of Wind Generation Systems

Dr Olimpo Anaya-Lara

TUTORIAL:
Transmission and Integration of Wind Power Systems:
Issues and Solutions
$2^{\text {nd }}$ International Conference on Integration of Renewable and Distributed Energy Resources
December 4-8, 2006, Napa, CA, USA
INSTITUTE FOR
ENERGY AND ENVIRONMENT

Programme

1. Introduction
2. Wind turbine technologies
3. Optimum power extraction from wind
4. Dynamic model of the Doubly-Fed Induction Generator (DFIG)
5. Control of DFIG-based wind turbines
5.1. Provision of synchronising torque characteristic
5.2. Short-term frequency control
5.3. Provision of Power System Stabiliser (PSS)
6. Impact of wind farms on transient and dynamic stability
7. PSS for a generic DFIG controller
8. References

1. Introduction

Introduction

- Wind power is presently the most cost-effective renewable technology and provides a continuously growing contribution to climate change goals, energy diversity and security.
- Integration of large amounts of wind power into electricity networks face however various strong challenges:
> Technical characteristics of wind turbine technologies are different from conventional power plants.
> Wind intermittency
> Grid availability and reliability
> Grid Code compliance

Accurate modelling and control of wind turbine systems for power system studies are required to help solving these challenges

Wind turbine components

Combination of mechanical and electrical systems

Mechanical:

Aerodynamics and structural dynamics

Electrical:

Generator, power electronic converters, control system, protection equipment
Source: www.nordex-online.com

2. Wind turbine technologies

FSIG-based wind turbine

- Fixed-Speed Induction Generator (FSIG)-based wind turbines employ a squirrel-cage induction generator directly connected to the network.
- The slip (and hence the rotor speed) varies with the amount of power generated. In this turbines the rotor speed variations are very small (1 or 2%).
- The induction generator consumes reactive power and hence capacitor banks are used to provide the reactive power consumption and to improve the power factor.
- An anti-parallel thyristor soft-start unit is used to energise the generator once its operating speed is reached.
- Power control is typically exercised through pitch control.

DFIG-based wind turbine

- Doubly-Fed Induction Generator (DFIG)-based wind turbines employ a wound rotor induction generator with slip rings to take current into or out of the rotor.
- Variable-speed operation is obtained by injecting a controllable voltage into the rotor at slip frequency.
- The rotor winding is fed through a variable frequency power converter. The power converter decouples the network electrical frequency from the rotor mechanical frequency enabling the variable-speed operation of the wind turbine.
- The generator and converters are protected by voltage limits and an over-current 'crowbar'.

Wide-range SG wind turbine (SGWT)

- This wind turbine uses a synchronous generator (it can either be an electrically excited synchronous generator or a permanent magnet machine.
- The aerodynamic rotor and generator shafts may be coupled directly, or they can be couple through a gear box.
- To enable variable-speed operation, the synchronous generator is connected to the network through a variable frequency converter, which completely decouples the generator from the network.
- The electrical frequency of the generator may vary as the wind speed changes, while the network frequency remains unchanged.
- The rating of the power converter in this wind turbine corresponds to the rated power of the generator plus losses.

3. Optimum power extraction from wind

Optimum power extraction from wind

Power in the airflow:

$$
P_{\text {air }}=\frac{1}{2} \rho A U^{3}
$$

Power extracted by the wind turbine rotor:

$$
P_{w t}=C_{p} \cdot P_{a i r}
$$

Where:

$$
C_{p \max }=0.593 \quad \text { (Betz limit) }
$$

ρ : Air density
A : Area swept by the blades
U : Wind speed
C_{p} : Power coefficient
The turbine will never extract more than 59\% of the power from the airflow

Optimum power extraction from wind

Power coefficient/Tip speed ratio curve

Tip speed ratio λ :

$$
\lambda=\frac{\omega_{r} R}{U}
$$

ω_{r} is the rotor speed and R is the radius of the rotor

- To extract maximum power ω_{r} should vary with the wind speed such as to maintain λ at its $\lambda_{\text {opt }}$
- Operating a wind turbine at variable rotational speed it is possible to operate at maximum C_{p} over a wide range of wind speeds

Wind turbine power curve

Generator speed

Power
set-point

Cut-in
speed

Shut-down speed

Speed

- In practice the rotor torque (power) is used as set-point and a speed controller is designed to maintain the operation of the generator at the point of maximum power extraction

4. Dynamic model of the Doubly-Fed Induction Generator (DFIG)

Typical DFIG wind turbine

	Network operator

DFIG power electronic converters

- Graetz bridge (two-level VSC)
- IGBT-based
- Pulse Width Modulated (Sinusoidal, Space Vector PWM)
- Typical switching frequencies above 2 kHz
- Trade-off between switching frequency (losses) and harmonics

DFIG power relationships

A DFIG system can deliver power to the grid through the stator and rotor, while the rotor can also absorb power. This is dependent upon the rotational speed of the generator

$$
s=\frac{\omega_{s}-\omega_{r}}{\omega_{s}}
$$

Super synchronous operation

Sub synchronous operation

DFIG power relationships

P_{m} : Mechanical power delivered to the generator

Stator losses

Electrical

 Output$$
\begin{aligned}
P_{\text {air_gap }} & =P_{s} \\
P_{\text {air_gap }} & =P_{m}-P_{r}=P_{s} \\
P_{s} & =P_{m}-P_{r} \\
T \omega_{s} & =T \omega_{r}-P_{r}
\end{aligned}
$$

$$
\text { Slip } \Longleftrightarrow s=\frac{\omega_{s}-\omega_{r}}{\omega_{s}}
$$

$$
P_{r}=-T s \omega_{s}=-s P_{s}
$$

P_{s} : Power delivered by the stator

$$
P_{g}=P_{s}+P_{r}
$$

Dynamic model of the DFIG

Schematic diagram of an induction generator

- Derive voltage and flux equations for the stator and rotor in the abc domain.
- Transform voltage and flux equations to the $d q$ reference frame.
- Model the induction generator as a voltage behind a transient reactance.

Stator and rotor circuits of an induction generator

DFIG $3^{\text {rd }}$ order model

Stator voltages:

$$
\left\{\begin{array}{l}
\bar{v}_{d s}=-\bar{R} \bar{i}_{d s}+\bar{X}^{\prime} \bar{i}_{q s}+\bar{e}_{d} \\
\bar{v}_{q s}=-\bar{R} \bar{i}_{q s}-\bar{X}^{\prime} \bar{i}_{d s}+\bar{e}_{q}
\end{array}\right.
$$

Voltage components:

$$
\bar{e}_{d}=-\frac{\bar{L}_{m}}{\bar{L}_{r r}} \bar{\psi}_{q r} \quad \bar{e}_{q}=\frac{\bar{L}_{m}}{\bar{L}_{r r}} \bar{\psi}_{d r}
$$

Open circuit time constant:

$$
\bar{T}_{o}=\frac{\bar{L}_{r r}}{\bar{R}_{r}}=\frac{\bar{L}_{r}+\bar{L}_{m}}{\bar{R}_{r}}
$$

Rotor voltages:

$$
\left\{\begin{array}{l}
\frac{d \bar{e}_{d}}{d t}=-\frac{1}{\omega_{s} T_{o}}\left[\bar{e}_{d}-\left(\bar{X}-\bar{X}^{\prime}\right) \bar{i}_{q s}\right]+s \omega_{s} \bar{e}_{q}-\omega_{s} \frac{\bar{L}_{m}}{\bar{L}_{r r}} \bar{v}_{q r} \\
\frac{d \bar{e}_{q}}{d t}=-\frac{1}{\omega_{s} T_{o}}\left[\bar{e}_{q}+\left(\bar{X}-\bar{X}^{\prime}\right) \bar{i}_{d s}\right]-s \omega_{s} \bar{e}_{d}+\omega_{s} \frac{\bar{L}_{m}}{\bar{L}_{r r}} \bar{v}_{d r}
\end{array}\right.
$$

Transient reactance's:

$$
\bar{X}=\bar{X}_{s}+\bar{X}_{m} \quad \bar{X}^{\prime}=\bar{X}_{s}+\frac{\bar{X}_{r} \times \bar{X}_{m}}{\bar{X}_{r}+\bar{X}_{m}}
$$

Rotor swing equation:

$$
\frac{d \omega_{r}}{d t}=\frac{1}{J} \times\left(T_{m}-T_{e}\right) \quad \bar{T}_{e}=\frac{\left(\bar{e}_{d} \times \bar{i}_{d s}+\bar{e}_{q} \times \bar{i}_{q s}\right)}{\bar{\omega}_{s}}
$$

Vector diagram of DFIG operating conditions

In steady state $d \mathbf{e} / d t=0$

$$
\begin{gathered}
s \mathbf{e} \approx \frac{L_{m}}{L_{r r}} \mathbf{v}_{r} \\
\mathbf{v}_{r} \approx s \mathbf{e}
\end{gathered}
$$

e: internal voltage vector
$\mathbf{v}_{\mathbf{s}}$: terminal voltage vector
$\boldsymbol{\Psi}_{\mathrm{r}}$: rotor flux vector
$\mathbf{v}_{\mathbf{r}}$: rotor voltage vector

5. Control of DFIG-based wind turbines

Decoupled active and reactive power control

- The dq transformation allows the two rotor injection voltages $v_{q r}$ and $v_{d r}$ to be regulated separately
- Power control

- Voltage control

DFIG current-mode control

Voltage control loop:

Torque control loop:

DFIG rotor flux magnitude and angle control

Flux and Magnitude Angle Controller (FMAC)

Synchronous Generator and DFIG vector diagrams

Round rotor synchronous generator

$\underline{\psi}_{f d}=$ rotor field flux vector
$\underline{I}_{s}=$ stator current vector
$\left|\underline{\psi}_{f d}\right|=E_{f d}$
$E_{f d}=$ dc field voltage
$\underline{E}_{t}=$ terminal voltage vector
$\underline{E}_{g}=$ generator internal voltage
(voltage behind synchronous
reactance)

Doubly fed induction generator

$\underline{\psi}_{r}=$ rotor flux vector	
$\underline{\underline{V}}_{s}=$ terminal voltage vector	
$\underline{E}_{r}=$ stator current vector voltage vector	
$\underline{E}_{i g}=$ generator internal voltage	$\delta_{i g}=$ generator load angle
	vector (voltage behind
transient reactance)	$\delta_{i r}=$ rotor voltage angle
X	

FMAC basic scheme

Auxiliary loop 1:
 Synchronising power characteristic

Auxiliary loop 2:

Power System Stabiliser

Auxiliary loop 3:

Short-term frequency regulation

6. Impact of wind farms on transient and dynamic stability

Generic network model

Generator 1
Generator 2

Conventional synchronous plant operation

Generator 1 (G1): Synchronous generator Generator 2 (G2): Synchronous generator

(a) Synchronous generator (G1)

(b) Synchronous generator (G2)

FAULT 1 applied at $\mathbf{t = 0 . 2}$ s. Clearance time 150 ms .

DFIG with synchronising power characteristic ${ }_{\text {Engrinefing }}^{\text {Strityde }}$

Generator 1 (G1): Synchronous generator Generator 2 (G2): DFIG with FMAC basic control

(a) Synchronous generator (G1)

(b) DFIG wind farm (G2)

FAULT 1 applied at $\mathbf{t}=\mathbf{0 . 2}$ s. Clearance time 150 ms .

DFIG with synchronising power characteristic ${ }_{\text {Errgraerems }}^{\text {Styde }}$

Generator 1 (G1): Synchronous generator Generator 2 (G2): DFIG with FMAC basic control scheme plus auxiliary loop 1.

(a) Synchronous generator (G1)

(b) DFIG
wind farm (G2)

FAULT 1 applied at $\mathbf{t = 0 . 2}$ s. Clearance time 150 ms .

DFIG with PSS capability

Generator 1 (G1): Synchronous generator Generator 2 (G2): DFIG with FMAC basic control scheme plus auxiliary loop 2

(a) Synchronous generator (G1)

(b) DFIG wind farm (G2)

FAULT 1 applied at $\mathbf{t = 0 . 2}$ s. Clearance time $\mathbf{1 5 0} \mathrm{ms}$.

DFIG contribution to frequency regulation

Generator 1 (G1): Synchronous generator Generator 2 (G2): Synchronous generator

(a) Main System (G3)

Loss of generation applied at $\mathbf{t}=\mathbf{0 . 5} \mathbf{~ s}$.

DFIG contribution to frequency regulation

Generator 1 (G1): Synchronous generator Generator 2 (G2): DFIG with FMAC basic control scheme plus auxiliary loop 3
(a) Main System (G3)

(b) DFIG
wind farm (G2)

Loss of generation applied at $\mathbf{t}=\mathbf{0 . 5} \mathrm{s}$.

Influence of
 wind generation on dynamic stability

Eigenvalue analysis

Operating situations
Fixed power P1 of G1

G2 f2	G1 Rating (MVA)	G1 Rating (MW)	G2 Rating (MVA)	G2 Rating (MW)
1	2,800	2,520	2,400	2,240
$2 / 3$	2,800	2,520	1,600	1,500
$1 / 3$	2,800	2,520	800	750
$1 / 10$	2,800	2,520	240	224

Capacitor factor $f 2=\frac{\text { installed capacity of generator G2 (MVA) }}{\text { maximum capacity of G2 MVA }(2400 \mathrm{MVA})}$

Influence of
 wind generation on dynamic stability

Generator 2: Synchronous generator

AVR Control

AVR + PSS Control

Variation of dominant eigenvalue loci with generation capacity

Influence of
 wind generation on dynamic stability

Generator 2: Wind generation

FSIG-wind farm

DFIG wind farm with current-mode control

Variation of dominant eigenvalue loci with generation capacity

Influence of
 wind generation on dynamic stability

Generator 2: DFIG wind farm with FMAC control

FMAC basic

FMAC basic + PSS control

Variation of dominant eigenvalue loci with generation capacity

PSS for a generic DFIG controller

DFIG Power System Stabiliser

Control performance (transient stability)

Generator 1 (G1): Synchronous generator Generator 2 (G2): DFIG

DFIG in super synchronous Operation (slip =-0.2)

DFIG in sub synchronous Operation (slip $=0.2$)

Fault applied at $\mathrm{t}=0.2 \mathrm{~s}$ with a clearance time of 150 ms . (Full line: DFIG with PSS; dotted line: DFIG without PSS)

Control performance (dynamic stability)

Generator 1 (G1): Synchronous generator Generator 2 (G2): DFIG

Influence of PSS loop on the dominant eigenvalue for sub
 synchronous (s=0.2) and super synchronous operation ($s=-0.2$). (With PSS • ; without PSS •)

Operating situations

Slip	DFIG Stator power MW	Converter power MW	Total power Output MW
-0.2	1,928	375	2,303
0.2	857	-182	675

Reference for further reading

1. P. Kundur: "Power systems stability and control," McGraw-Hill, 1994.
2. O. Anaya-Lara, F. M. Hughes, N. Jenkins, and G. Strbac, "Influence of wind farms on power system dynamic and transient stability," Wind Engineering, Vol. 30, No. 2, pp. 107-127, March 2006.
3. F. M. Hughes, O. Anaya-Lara, N. Jenkins, and G. Strbac, "Control of DFIG-based wind generation for power network support," IEEE Transactions on Power Systems, Vol. 20, No. 4, pp. 1958-1966, November 2005.
4. O. Anaya-Lara, F. M. Hughes, N. Jenkins, and G. Strbac, "Rotor flux magnitude and angle control strategy for doubly fed induction generators," Wind Energy, Vol. 9. No. 5, pp. 479-495, June 2006.
5. O. Anaya-Lara, F. M. Hughes, N. Jenkins, and G. Strbac, "Power system stabiliser for a generic DFIG-based wind farm controller," paper accepted for publication at the IEE AC/DC Conference, March, 2006

Modelling and Control of Wind Generation Systems

Dr Olimpo Anaya-Lara

TUTORIAL:
Transmission and Integration of Wind Power Systems:
Issues and Solutions
$2^{\text {nd }}$ International Conference on Integration of Renewable and Distributed Energy Resources
December 4-8, 2006, Napa, CA, US
INSTITUTE FOR
ENERGY AND ENVIRONMENT

