
Annals of Operations Research 22(1990)181-217 181

LARGE-SCALE 0-1 LINEAR PROGRAMMING ON DISTRIBUTED
WORKSTATIONS

Timothy L. CANNON*

Digital Equipment Corporation, 3020 Hamaker Court, Fairfax, VA 22031, USA

and

Karla L. HOFFMAN *

Department of Operations Research and Applied Statistics, George Mason University,
4400 University Drive, Fairfax, VA 22030, USA

Abstract

We present a methodology which uses a collection of workstations connected by
an Ethernet network as a parallel processor for solving large-scale linear program-
ming problems. On the largest problems we tested, linear and super-linear speedups
have been achieved. Using the "branch-and-cut" approach of Hoffman, Padberg
and Rinaldi, eight workstations connected in parallel solve problems from the test
set documented -in the Crowder, Johnson and Padberg 1983 Operations Research
article. Very inexpensive, networked workstations are now solving in minutes
problems which were once considered not solvable in economically feasible times.
In this peer-to-peer (as opposed to master-worker) implementation, interprocess
communication was accomplished by using shared files and resource locks. Effective
communication between processes was accomplished with a minimum of overhead
(never more than 8% of total processing time). The implementation procedures
and computational results will be presented.

1. Introduction

Many combinatorial optimization problems are not solved, or not solved to
optimality, because they are either too large or require too much computation time
for existing sequential computers and algorithms to solve. It has been shown that a
group of computers participating in the solution of a tingle large problem (i.e. perform-
ing parallel computation) could achieve much better results than one computer acting
alone.

*Supported in part by a grant from the Digital Equipment Corporation.
*Supported in part by grants from the Office of Naval Research and the National Science Foundation
(ECS-8615438).

© J.C. Baltzer AG, Scientific Publishing Company

182 T.L. Cannon, K.L. Hoffrnan, 0-1 programming on distributed workstations

Furthermore, when parallel computation is achieved by connecting a number
of independent small processors, problems that are "expensive" to solve on a large
machine (e.g. "mainframe" or "supercomputer") may be solved at lower cost. The
processors may be as small as existing computer workstations or personal computers
and, while they may not achieve the equivalent performance found on larger computers,
they do not require a substantial monetary investment.

The general class of combinatorial optimization problems to be discussed
here is of the form of a general 0-1 decision problem:

minimize cx
x Problem Z n,

subject to A x < ~ b ; x E {O, 1} ,

where A is anM × N matrix, b is an M-vector and c is an N-vector. All data is assumed
to be rational. We restrict our attention to the case where the integer variables can
take on only the values zero or one. (Any bounded integer variable can be transformed
into a set of zero-one variables.)

In this paper, we present a parallel implementation of a "branch-and.cut"
algorithm (ABCOPT). This approach uses cutting planes based on the polyhedral
structure of integer polytopes to tighten the linear programming relaxation of prob-
lem Z w. When it is not possible to generate any further cuts (due to our incomplete
understanding of the polyhedral structure, or due to our inability algorithmically to
generate cuts of a known form), we resort to branching on some fractional variable
and then resume the generation of cuts for the corresponding linear programming
problems associated with each branch.

Early work in integer cutting-plane methods was conducted by Dantzig,
Fulkerson and Johnson [9], Gomory [20], and by Dantzig [8]. Although Gomory's
algorithm and related research by Glover [17], Young [57], Balas [3] and Glover [18]
have provided algorithms having proven finite convergence, all such algorithms have
the following disadvantages (Wagner, Giglio and Glaser [53], Trauth and Wolsey [51]):
(1) machine round-off errors may result in an incorrect optimal integer solution;
(2) the solution of the problem remains infeasible until the optimal integer solution
is obtained (meaning that no intermediate "good" solutions may be determined);
(3) convergence is often too slow to allow large problems to be solved; and (4) sparse
linear programs become continually more dense as the problem proceeds, forcing
numerical problems and additional effort. Other disadvantages of traditional cutting
planes in an algorithm that employs search trees are discussed in Padberg and
Rinaldi [42].

To overcome the drawbacks of the cutting-plane methods cited above , the
branch-and-cut approach employs "facial cuts". These cuts are "deep" in the sense
that they cannot be pushed further into the feasible re#on without cutting off at

T.L. Cannon, K.L. Hoffman, 0-1 programming on distributed workstations 183

least one feasible integer point, and they belong to the class of inequalities that
uniquely determines the polytope of the convex hull of all feasible integer points
(see Padberg [39]).

The strengths of these cuts in assisting in the solution of zero-one programming
problems are:

• the computational effort of identifying them algorithmically is often small;

• they are, in a mathematical sense, the "tightest" cuts possible in that they
are facets of the convex hull of feasible integer points; and

• sparse, user-supplied constraints generate sparse facial cuts.

The topic of facial cuts will be addressed very briefly here; a complete treatment
of polyhedral theory may be found in Nemhauser and Wolsey [38], Schrijver [47],
Bachem and Gr6tschel [2], Rockafellar [45], Stoer and Witzgall [49], and Griin-
baum [21].

In the next section of this paper, we will present a brief outline of the branch-
and-cut approach. Section 3 will provide background on the previous implementations
of parallel algorithms for combinatorial optimization problems. Section 4 will describe
the architecture used for our parallel implementation, as well as the detailed description
of the implementation. Finally, section 5 will present computational results and
future research.

. Solving zero-one integer programming problems
using the b ranch-and-cu t m e t h o d

Hoffman, Padberg and Rinaldi have combined the branch-and-bound method
with the generation of cutting planes based on the polyhedral structure of the integral
polytope to develop a procedure known as "branch-and-cut". This general approach
has been used to solve large-scale symmetric traveling salesman problems (Padberg
and Rinaldi [41,42]) and general zero-orie problems (Hoffman and Padberg [23]).
The novelties in the branch.and-cut approach are that there is no requirement for
special data structures related to node-specific cuts and that the proven solution is
achieved in economically feasible times.

A complete description of how the sequential system called ABCOPT of
Hoffman and Padberg [23] has been altered to allow a parallel implementation is
found in Cannon [4]. To aid in understanding the parallel implementation of ABCOPT,
the six main modules of the algorithm will be outlined below.

Reformulation procedure. Reformulation refers to elementary operations that
can be performed automatically at any point in ABCOPT to improve or simplify a given
formulation. The goal of these procedures is to obtain a solution to the linear program-
ming relaxation of the zero-one problem which is much closer to the zero-one solution

184 T.L. Cannon, K.L. Hoffman, 0-1 programming on distributed workstations

and to remove redundant rows and columns from the matrix. A full description of
the techniques is found in Hoffman and Padberg [23].

Linear program solver. The current version of the ABCOPT system uses a
modified subset of the XMP software package for linear programming written by
Roy Marsten of the University of Arizona (Marsten [34]).

Heuristic procedure. The heuristic procedure is guided by the linear-program-
ming relaxation of the problem and, when successful, provides good upper bounds on
the problem. A technical report which details the heuristic procedure is under prepara-
tion by Hoffman and Padberg.

Variable-fixing procedure. ABCOPT includes three methods of variable
fixing: reduced-cost fixing, logical fixing, and optimality fixing. Reduced-cost fixing
requires an analysis of the "gap" (i.e. the difference between the solution value of the
linear programming relaxation to problem Z~ and the best integer solution found
so far). Any variable whose associated-linear programming reduced-cost at the root
node of the tree is greater than the gap may be fixed permanently to the current
bound values. Logical fftxing is the process of determining that a specific variable
must be fixed to either zero or one in every feasible solution to problem Zzp.
Optimality fixing examines a column and its associated profit value to determine when
the fixing of such a variable can be done without detriment to any other variable.

Constraint (cut) generator. Once the linear-programming solution is deter-
mined, constraints based on the fractional value of that solution are automatically
generated and extended (or "lifted") to include all zero-one variables of the problem.
The cutting planes currently generated are extended minimal covers based on single
knapsack constraints, extended minimal covers based on single knapsacks in con-
junction with disjoint sets of special-ordered set constraints and the generation of
disaggregated plant-location constraints. Whenever cuts are generated, the problem
is augmented to include the newly generated constraints and then returned to the
linear program module for re-solution. We note that all cuts generated are valid for the
entire integer polytope by "lifting" any variable conditionally fixed within the
branching tree. Thus, one can move freely among nodes of the branching tree without
altering the data structures associated with the constraint set.

Branching procedure. The choice of the branching variable is made by evalu-
ating the fractional variables on the basis of their largest objective function coefficients
and their closeness to the value 0.5. The algorithm first chooses variables having very
large objective function cost coefficients. The determination of such variables is done
by statistically examining the set of cost coefficients for "outliers". If no outliers
are fractional in the linear-programming solution, then one first finds the fractional
variable closest to the value 0.5 and collects all fractional variables within some
tolerance of this variable. The variable within this set having the largest normalized
cost is chosen as the branching variable.

T.L. Cannon, K.L. Hoffman, 0-1 programming on distributed workstations 185

LReformulafion L
I-

L ~ Linear Program]

LF~

Constraint [
Generation,,,]

I.
_I

Fathom ~ S t o p '

Fathom

] F~ H Variables Fathom
O0

Heuristics ~ m _ [Determine

Fig. 1. Flow chart of the branch-and-cut system.

186 T.L. Cannon, K.L. Hoffman, 0-1 programming on distributed workstations

The results of the sequential branch-and-cut method are impressive: on a
48-city traveling salesman problem, a commercial branch-and-bound package required
40 minutes of CPU time (on a VAX 11/780 computer) to find an optimal solution.
Padberg and Rinaldi's [42] branch-and-cut optimizer called TSPSOLVER took
25 seconds on the same machine. This traveling salesman procedure has solved the
largest real-world symmetric problem - 2,392 cities - in 27 hours and 20 minutes
of CPU time on a CYBER 205 computer. ABCOPT has solved problems from the
test set of Crowder, Johnson and Padberg [7] with the largest problem (2,756 vari-
ables) having only ten nodes on the branching tree as compared with 2,392 nodes
required by the Crowder, Johnson and Padberg algorithm. (MPSX/MIP in over
48 hours of dedicated computer time on an IBM 370 had not even found a feasible
integer solution.) A brief flow-chart of the zero-one procedure is presented in fig. 1.
Section 4 will describe the alterations made to this overall algorithm to allow a
collection of machines to participate in the solution of a problem, but first we describe
previous parallel branch-and-bound approaches and parallel architectures.

. Review o f parallel b r a n c h - a n d - b o u n d algori thms for solving
combinator ia l op t imiza t ion problems

This section will present an overview of related research in distributed
processing of combinatorial optimization problems for the purpose of distinguishing
our work. Several popular search strategies (A*, A O*, ct--/], B*, and SSS*) have been
shown to be special cases of the generalized branch-and-bound procedure (Nau,
Kumar and Kanal [37]). Many researchers have proposed and investigated parallel
implementations for several of these strategies. Cannon [4] presents a discussion
of the branch-and-bound techniques which have been parallelized. Theoretical
discussions of speedup and performance for parallel branch-and-bound algorithms
may be found in Quinn and Deo [44], Lai and Sprague [30], Imai, Yoshida and
Fukumura [25], Li and Wah [31-33] . Kindervater and Lenstra [27] present an
excellent tutorial introduction to the literature on parallel computers and algorithms
that is relevant for combinatorial optimization.

While it might seem that most problems could be solved faster (in terms of
elapsed time) in a parallel-processing environment than in a sequential environment,
it generally is not the case. Offset against the gains in potential parallelism is the
overhead of creating, communicating with, and synchronizing additional processes.
Sometimes, the additional impact of parallelism may warrant major changes in an
algorithm when it is decomposed to run in a parallel-processing environment. For
example, it may be worthwhile to perform a set of calculations on each of the
processors rather than to pay a penalty to access the results on a single processor.
Even though some processors may perform some work previously done by another
processor, the decrease in communication cost may more than offset the redundant
effort.

T.L. Cannon, K.L. Hoffman, 0-1 programming on distributed workstations 187

We define speedup as E1/En, where E1 is the elapsed ("wall-clock") time of
an algorithm running on one processor and En is the elapsed time of the same algo-
rithm running on n of the same processors. Efficiency or utilization of an algorithm
running on n processors is the speedup divided by n.

Simulations (Imai, Yoshida and Fukumura [25], Imai, Fukumura and
Yoshida [24], Li and Wah [31-33] . Lai and Sahni [29], and Mohan [35]) and
experimental results (Wah and Ma [54,55]) have shown the effects of parallelizing
branch-and-bound algorithms by expanding several nodes simultaneously. While
one would expect an n-fold speedup when n processors are used (as compared with
the speed for one processor), it has been shown that it is possible to experience one
of three conditions:

• Detrimental anomaly. A detrimental anomaly occurs when the number of
iterations for n processors is more than the number of iterations of the
best serial algorithm.

• Acceleration, anomaly. This anomaly occurs when the number of iterations
for n processors is less than 1/n of the number of iterations of the best
serial algorithm.

• Deceleration anomaly. A deceleration anomaly occurs when the number
of iterations for n processors is less than the number of iterations of the
best serial algorithm, but more than 1/n of the number of iterations of the
best serial algorithm.

Note that in the above defintions, all comparisons are made between an algorithm
on n processors and a best serial algorithm.

Much of the early research into parallel branch-and-bound algorithms concen-
trated on depth-first and beadth-first search because of the memory limitations of
available computers. In a recently published historical note (Pruul, Nemhauser and
Rushmeier [43]), Pruul showed that using a depth-first approach, the simultaneous
exploration of nodes results in finding better solutions earlier, which in turn resulted
in earlier fathoming and a significant reduction of the number of nodes examined.
Imai, Fukumura and Yoshida [24], Imai, Yoshida and Fukumura [25], E1-Dessouki
and Huen [13], Finkel and Manber [14], and DeWitt, Finkel and Solomon [11], each
using depth-first algorithms, showed that if the number of processors was appropriately
chosen, speedups approached or sometimes exceeded the number of machines used
(see Wah and Ma [54,55]; see also Wall, Li and Yu [56] for similar testing using
best-first approaches).

Mohan [35,36] and Trienekens [52] showed that marked improvements
could be accomplished by asynchronous rather than synchronous implementations
due to the ability of each processor to work continuously. See also de Bruin, Rinnooy
Kan and Trienkens [10] for a related report on a simulation tool for performance
evaluation of parallel branch-and-bound algorithms.

188 T.L. Cannon, K.L. Hoffman, 0-.1 programming on distributed workstations

Lai and Sahni [29] and Li and Wah [31,32] studied the likelihood of branch-
and-bound algorithms exhibiting detrimental, deceleration and acceleration anomalies.
Li and Wah showed through theoretical analysis and simulation that deceleration
anomalies were infrequently encountered. Although Lai and Sahni claimed that near-
linear speedup for parallel branch-and-bound algorithms with best-first search could
be expected for only a "small" (~< 16) number of processors, Li and Wah showed
that near-linear speedup may hold for a "large" (1000-2000)number of processors.
Li and Wah also showed that a best-first branch-and-bound algorithm with dominance
tests will never yield detrimental anomalies if (1) the method of selecting the next
node for expansion is unambiguous, (2) approximations are not allowed, and
(3) dominance relations exist and are consistent with the node-selection criteria.
They also showed that acceleration anomalies could occur when (1) either a
breadth-first or depth-first search was used, (2) some nodes have identical lower
bounds, (3) the dominance relation is inconsistent with the node-selection functions,
(4) multiple lists of subproblems are used, or (5) a suboptimal solution is sought.

We draw the following conclusions from the above research: Breadth-first
asynchronous approaches to the branch-and-bound method which immediately
broadcast bounding information to all processors is likely to exhibit acceleration
anomalies on a large class of integer-programming problems. We have chosen to
implement a best-node strategy instead of a breadth-first strategy since in our branch-
and-cut environment, we expect our bounding procedures (both the cutting plane
and heuristic algorithms) to limit significantly the number of nodes one will need
to investigate. We have avoided the normal master-worker configuration so as to avoid
the overhead of an additional processor whose major function it is to coordinate
the efforts of other processors. Our implementation performs the tasks of node
selection, bounding and fathoming in parallel, and relies extensively on data exchange
between the processors to help better define the overall problem.

The features which distinguish this implementation from other methods are:

• The use of a local area network and distributed workstations as the model
for computation.

• Peer-to-peer communication and control as opposed to a master-worker
relationship.

• The use of a best-first approach based upon the value of the "tightened"
linear-programming relaxation of the problem.

• Maintenance of candidates in a sorted list available to all processors. When
a processor has completed a task (either fathoming the node or branching),
the best candidate on the active-node list is chosen for examination.

4, A change in the upper bound is communicated to all processors and is
available to each processor immediately.

• Entrance to the system by a processor may occur at any time; the algorithm
is adaptive.

T.L. Cannon, K.L. Hoffman, 0,1 programming on distributed workstations 189

• Implementation of a graceful shutdown phase so that all processors know
when the problem has been solved to optimality.

• Ability to "pause" a node when it appears that it may not lead to an optimal
solution and to "resume" processing on it at a later time. This resumption
of processing may be performed by a processor other than the one that
"paused" it.

• Maintenance of a pool of facial cuts from which individual processors
review and select cuts prior to generating new cuts. Cutting planes generated
by a processor are added (without duplication) to this pool of cuts so as to
be accessible to all participating processors.

• The use of cutting planes based on the facial structure of integer polytopes
to significantly tighten the lower bound.

• The use of a heuristic algorithm at each node. If the heuristic finds a new
best-upper-bound, this information is communicated to all other processors
immediately, even if there is additional work to perform at the node at which
the bound was found.

Only the first eight topics will be addressed below. The algorithmic extensions
required to implement a pool of facial cuts and the dramatic improvements that are
realized will be addressed in Cannon and Hoffman [5] ; for an introduction to the
concept of a constraint pool, see Padberg and Rinaldi [42].

4. I m p l e m e n t a t i o n on distributed workstat ions

We have chosen to implement the extensions to ABCOPT using a collection
of commercial computer workstations connected by a local area network. Major
shortcomings of previous parallel-processing approaches to combinatorial optimization
have been the inability to share data effectively and the inability to efficiently notify
other processors about the status of computation. Both drawbacks have been over-
come by our approach; data is freely shared among processors and all processors are
notified immediately whenever a new pausing point or upper bound is found.

The extensions to ABCOPT which were required for distributed processing
are divided into three major categories:

• interprocess communication to share critical information,

• candidate list sharing, and

• member synchronization to provide for graceful initiation and shutdown.

Each of these categories will be addressed in this section after the foundation
for the decision to use a Local Area Network (LAN) architecture is established. A
description of our implementation will then be presented.

190 T.L. Cannon, K.L. Hoffman, 0-1 programming on distributed workstations

4.1. WHY AN LAN ARCHITECTURE?

One of the major goals of this research was to design and implement a system
for combinatorial optimization which uses readily available, relatively inexpensive
technology. To that end, we have chosen an Ethemet LAN architecture as a founda-
tion because of its increasing commercial acceptance and reasonable price. The claims
made for an LAN system are similar to those made for multiprocessors with advantages
typically expressed in terms such as: high-performing, available, and reliable (Ajmone
Marsan, Balbo and Conte [1], and Gehringer, Siewiorek and SegaU [16]). Moreover,
LAN systems have the additional advantage of being separable and extremely flexible.

Because the speed of communication among the processors is substantially
slower in LANs than in highly-coupled multiprocessors, distributed processing using
LANs generally can be effective only if:

* The activity that is to be performed can be decomposed into smaller tasks
that can be executed in parallel.

. The tasks can be conveniently allocated to processors so as to minimize
the system overhead devoted to interprocessor cooperation.

. The system is designed modularly so that the addition of new elements
is possible and cost effective.

An advantage in using LAN systems is the ability to quickly reconfigure the
system under software control. Because each of the processors is connected to a local
network, the software layers that define and communicate with all processors may be
instructed to include, or to ignore, selective processors. For other optimization research
using LANs, see Schnabel [46], Chang et al. [6], and Finkel and Manber [14].

4.2. THE ENVIRONMENT

4.2.1. Hardware

Our system is composed of eight Digital Equipment Corporation VAXstation
2000 systems and one MicroVAX II system, operating not in master-worker relation-
ship (where a designated processor controls actions of the other processors), but in a
true peer-to-peer relationship (where processors share the responsibility for coordi-
nating activities). The MicroVAX II system acts merely as a file server and is called
the "boot node". The interconnection network is a combination of DECnet (Digital's
communication protocol operating on Ethernet) and Digital's Local Area VAXcluster
software. The operating system is VAX/VMS version 4.7.

4.2.2. Software

All processors are logically joined together to form a Local Area VAXcluster
(LAVC). An LAVC is a distributed system made up of computers and their associated

TL. Cannon, K.L. Hoffman, 0-1 programming on distributed workstations 191

storage elements, all linked in a closely coupled arrangement. We will explain the
LAVC concept briefly to serve as background for understanding our implementation.
Cannon [4] fully describes the method of implementation for this work. A complete
technical description of an LAVC may be found in Kronenberg et al. [28], Duffy [12],
Fox and Ywoskus [15], and Goldstein [19].

An LAVC differs from a more tightly-coupled multiprocessor arrangement
in several ways. First, the workstations communicate over a network link instead
of sharing memory. Second, each processor has its own copy of the operating system
in memory. Third, the members of the cluster may boot up and shut down inde-
pendently. Finally, the services offered by the VAXcluster are more closely aligned
with those offered by a traditional single timesharing system than with the capabilities
offered by traditional networks (e.g. a VAXcluster environment includes common
batch and print queues, system-wide synchronization, and a common operating
system).

When a satellite member is powered on, a copy of the operating system and
other necessary software is loaded over Ethemet from the central disks of the boot
member. Once the sateliite member joins the cluster as a member, all the resources
and data are as accessible as if they were attached to the satellite system. Paging and
swapping activity of the satellite node is conducted with local disks.

The collection of workstations working together to solve a single combinatorial
problem will be called the System. An individual workstation will be called either
a member or a processor.

4.3. INTERPROCESS COMMUNICATION

One of the shortcomings in other implementations of parallel search procedures
has been the lack of efficient interprocess communication. In our implementation,
we have accomplished efficient and effective interprocess communication by using
the VAX Distributed Lock Manager and Blocking Asynchronous System Traps. While
the lock manager normally is used to provide transparent, synchronized data access
by members of an LAVC, we have used it as a means of passing messages between
members of the system. Blocking asynchronous system traps are almost always used to
support local buffer caching and have seldom, if ever, been used for interprocess
communication. Used in conjunction with lock status blocks, we have found it to be
not only very efficient, but a very effective means of interprocess communication. The
critical information that is being shared among processors is the upper bound, ZSTAR,
and the point at which a node should be paused, TARGET.

4.3.1. Resources, locks and lock value blocks

A resource can be any entity within the system (e.g. files, data structures,
databases, and executable routines). Each resource in a cluster is represented by a

192 T.L. Cannon, K.L. Hoffman, 0-1 programming on distributed workstations

unique abstract name that is agreed upon by all the cooperating processes. This name
is entered into a distributed global namespace which is maintained by the distributed
lock manager. The lock management services allow processors to associate a name with
a resource and to request access to that resource. Lock modes enable processes to
indicate how they want to share access with other processes.

To use the lock management services, a process must request access to a
resource (request a lock). There are three required arguments for the request of a
new lock:

• A resource name. The lock management services use the resource name
to look for other lock requests that use the same name.

• The lock mode to be associated with the requested lock. The lock mode
indicates how the process wants to share the resource with other processes.

• The address o f a lock status block. The lock status block receives the
completion status for a lock request and the lock identification. The lock
identification is used to refer to a lock request once it has been queued.

The lock management services compare the lock mode of the newly-requested
lock to the lock modes of other locks with the same resource name. The lock manager
resolves lock requests in the following manner: (1) If no other process has a lock on
the resource, the new lock is granted; (2) If another process has a lock on the resource
and the mode of the new request is compatible with the existing lock, the new lock
is granted; and (3) If another process already has a lock on the resource and the mode
of the new request is not compatible with the lock mode of the existing lock, the
new request is placed in a queue where it waits until the resource becomes available.

The lock manager allows callers to specify one of six degrees of compatibility,
ranging from no access to exclusive access. Once the lock is granted, the owning
process can request a lock conversion to change the lock mode.

Lock conversions allow processes to change the level of locks. For example,
a process can maintain a low-level lock on a resource until it wants to limit access
to the resource. The process can then request a lock conversion to a higher-level
lock. If the requested lock mode is compatible with the currently granted locks,
the conversion request is granted immediately. If the requested lock mode is incom-
patible with the existing locks in the granted queue, the request is placed on the
conversion queue.

When a process no longer needs a lock on a resource, the lock can be dequeued.
When the last lock on a resource is dequeued, the lock management services delete
the name of the resource from its data structures.

We use a lock value block as the primary means for passing critical, time-
sensitive information to other members of our system. Used in conjunction with
Blocking ASTs (described in the next section), we immediately notify other members
in the system about changes in global information (e.g. the best integer answer,
number of idle processors, and node cut-off point).

T.L. Cannon, K.L. Hoffman, 0-1 programming on distributed workstations 193

A lock value block is an optional 16-byte value block that functions as a
small piece of global memory which is updated automatically by the operating system.
The first time a process associates a lock value block with a particular resource, the
lock management services create a resource lock value block for that resource. The
resource lock value block is maintained by the lock management services until there
are no more locks on the resource.

When a process sets the appropriate flag in a lock (or conversion) request and
the lock (or conversion) request is granted, the contents of the resource lock value
block are written to the process' lock value block. When a process sets the appropriate
flag on a conversion from specific high-level lock modes to a lower mode, the contents
of the process' lock value block are stored in the resource lock value block.

4.3.2. Blocking asynchronous system traps

An asynchronous system trap (AST) is a system service (using a combination
of hardware and software interrupts) which allows a process to request that it be
interrupted to perform a particular task when a specific event occurs. When the
interrupt is received, control is passed to a separate procedure which is executed
immediately in the context of the receiver's process. Because execution of the AST
procedure occurs without respect for the process' point of execution, it is called
asynchronous.

One of the services that the distributed lock manager provides is a notifica-
tion mechanism whereby a process that has been granted a lock on a resource can be
notified when mother process has queued an incompatible lock request. The mechan-
ism, known as a blocking AST, is at the heart of our interprocess communication
implementation.

In our implementation, all processes establish compatible high-level locks
with blocking ASTs specified on four distinct resources. Whenever a processor has
new information to share, it initiates a request for an incompatible lock on the appro-
priate resource. Because blocking ASTs were specified, each other member will be
interrupted so that new information can be obtained.

Each member begins processing by placing a Protected Read (PR)-mode lock,
with a blocking AST specified, on a desired resource. When a member has a better
value to share with the other processors, it places a lock conversion request for an
Exclusive (EX)-mode lock on the resource. Because each member in our system
has placed its lock specifying that it wants to be notified if another processor has
an incompatible request (a blocking AST), each member immediately stops what it
is doing, releases its lock on the resource and requeues a PR-mode lock request on
the same resource.

When the EX-mode lock is granted to the member requesting the lock, that
member supplies the new value to be shared and converts the lock back to a PR mode.
As soon as the EX-mode lock is converted to a PR-mode lock, all members waiting

194 T.L. Cannon, K.L. Hoffman, 0-1 programming on distributed workstations

for a PR-mode lock on that resource are granted the lock along with access to the
lock value block. As soon as each lock is granted, the lock value block is read and
the value in the block is available to each processor immediately. (The lock value
block may be read simultaneously by all members of the system.)

In the following discussion, the notation LOCK will be used to denote the
resource, while LOCK will be used to denote the value associated with the lock.

4.3.3. The ZSTAR lock

The ZSTAR lock is used to notify processors of a new upper bound. Without
the immediate sharing of this bound, members could be evaluating nodes long after
the nodes could have been fathomed. The first member to enter the system places
an EX-mode lock on ZSTAR, updates the lock value block with its best integer
answer value, ZSTAR (if none is known, ZSTAR = +~), and converts the lock back
to a PR mode. From that point on, as each new member enters the system and places
a PR-mode lock on ZSTAR specifying a blocking AST, ZSTAR is available immediately
by reading the lock status block.

When a new best integer answer is found by either the heuristic procedure
or as a linear-programming solution at some node in the tree, a lock conversion request
for an EX-mode lock is immediately placed for ZSTAR. Again, because each member
has been granted a PR-mode lock on ZSTAR, each member is interrupted, immediately
releases its lock on ZSTAR, and requeues a PR-mode lock request for ZSTAR. When
the PR-mode lock is granted, the new ZSTAR is found in the lock status block.

At each point in the original source code where ZSTAR could have an effect
on the flow of the algorithm, a check has been incorporated to compare the value of
the most recent linear-programming objective function value with ZSTAR. It should
be noted that these checks are only to support the distributed processing environment;
they are unnecessary in the sequential case since a new integer answer can only be
determined in very specific places. If a member determines that its problem can no
longer lead to an optimal solution, it will fathom the node immediately.

4.3.4. The TARGET lock

We have implemented an approach to suspend the work associated with a node
if it appears that that node may be going past an optimal solution. The method depends
on the values of the system-wide lowest linear-programming objective function (zm,)
and ZSTAR and is calculated as follows:

TARGET = ZLp -- (PERC * (ZLp -- ZSTAR)).

If TARGET falls within (ZSTAR/(1 + BETA) of ZSTAR, then TARGET is set equal
to ZSTAR. (PERC and BETA are user-supplied values.)

T.L. Cannon, K.L. Hoffman, 0-1 programming on distributed workstations 195

The mechanism of TARGET is identical to that of ZSTAR. Each time a
member selects a new candidate or finds a better integer solution, it determines
TARGET. If a member finds that its TARGET is now better than the one all the
members know about, a request is placed to convert the PR-mode lock on TARGET
to an EX mode. Each member immediately stops working, drops its lock on TARGET,
queues a PR-mode request for TARGET, then receives TARGET from the lock
status block when the lock request is granted. TARGET is critical in guiding the search;
early suspension of unattractive nodes can lead to substantial savings in processing
time.

Because TARGET is determined for the system based upon the largest system-
wide difference between the linear-programming objective function and ZSTAR,
TARGET must necessarily be dynamic. Any time ZSTAR changes, TARGET can
change. Any time the member investigating that candidate with the lowest linear-
programming objective function value disposes of the node (either by fathoming or
branching), the value of TARGET may change. In this manner, TARGET is adaptive
to the problem structure at hand.

4.4. SHARING DATA THROUGH DISK FILES

A distinguishing feature of this implementation is the ability for a member
to obtain a "most promising" candidate (i.e. new node to develop) without waiting
for any other processors to complete their tasks. By using shared fries, members
are able to insert candidates into the candidate list and to remove candidates from
the list independently.

This task of retrieving and providing new nodes is accomplished by using a
shared indexed file, called the Candidate List. The files are accessed using the Indexed
Sequential Access Method (ISAM). Once a record has been accessed by an indexed-
read request, sequential-read requests may then be used to retrieve records with
ascending key field values, beginning with the key field value in the record retrieved
by the initial read request. A record is automatically inserted into a frie (whenever
a WRITE command is issued) based upon its index value. VAX FORTRAN allows
a single frie to be shared by a number of processors.

To avoid resource contention and to allow for system shutdown, specialized
extensions were implemented. Resource contention occurs when two processes each
try to access the same resource at the same time. In our case, contention will be
experienced when two or more processes try to simultaneously access the same record
in a f'rie. System shutdown considerations include output file creation, synchronizing
frie closure, and final reporting. The VAX Record Management System was used to
accomplish record locking and to diagnose contention.

When a member wishes to insert candidates into the frie, two write requests
are initiated. The first request is for the candidate with x i = l , the second is for the
candidate with x i = O. The second of these two requests is enacted almost immediately

196 T.L. Cannon, K.L. Hoffman, 0-1 programming on distributed workstations

after the first because only the sign on the index field is changed (reversed) and the
record is rewritten to the file.

Because both candidate records are being written using the same key (the
value of the last linear-programming objective function), duplicates have been
explicitly allowed.

Because we are using a best-first search approach, the Candidate List is accessed
on the basis of the lowest reference objective function. When a record is read, the
record is locked automatically by the VAX Record Management Services, preventing
access to that record by any other process. After a successful read operation, the
record is deleted from the File. By deleting a candidate record immediately after
reading it, and by having the record locked while it is being read, we can ensure
that each member receives a unique subproblem to solve. If an unsuccessful read
operation occurs, it is for one of two reasons: the requested record is being read by
another processor or the end of the File has been reached. If the record is being read
by another processor, the read request is initiated again after a delay of approximately
0.5 seconds (to allow the other processor enough time to complete the read operation
and to then delete the record). If the end of the file is reached, indicating that no
more subproblems are available, the member is placed in hibernation until awakened.
Hibernation is the act of a member making itself inactive but remaining known to
the system so that it can be interrupted (e.g. by an AST).

We note in closing that similar shared files are used to handle constraint
information. The details of this aspect of the implementation can be found in Cannon
and Hoffman [5].

4,5. MEMBER SYNCHRONIZATION

Members of the system are synchronized by using two locks: MEMBERS and
IDLE. This synchronization provides the ability for each member to understand the
status of the system and to be able to gracefully exit when required.

Upon startup, each member places a PR-mode lock on MEMBERS. One of
the available pieces of information about locks is the total number of locks granted
for a resource. Therefore, the total number of locks on MEMBERS is equivalent to
the number of processes in the current system. The first member to place a lock on
MEMBERS is responsible for creating the Candidate List File and the Constraint Pool
file. Subsequent processes which are granted a lock on MEMBERS do not have any
"managerial" responsibility.

The same first member is also responsible for populating the Candidate List
with entries. The procedure adopted for this testing is to have the first member deter-
mine five initial variables on which to branch. Using these five variables, a five-level
search tree is created, immediately providing 32 candidates for the Candidate List. This
procedure, referred to later as a parallel start, was designed to ensure that sufficient
nodes were available early in the process.

T.L. Cannon, K.L. Hoffman, 0-1 programming on distributed workstations 197

When a member finds that the Candidate List is empty, it will place a PR-mode
lock on IDLE, specifying a blocking AST. By comparing the number of locks on
IDLE with the number of locks on MEMBERS, the member will know if processing
is complete. That is, when the number of locks on both resources is equal, all members
are idle. If the number of locks on IDLE is less than the number on MEMBERS, the
member notes that its "idle position" is equal to the number of locks, and then
hibernates. Its idle position is used by the member to know when it should again
begin processing.

The purpose of hibernation and an idle position is to provide a mechanism
by which a member may be notified that it should return to being an active member
of the system. Each time a member places a candidate in the Candidate List, it checks
to see if it can be granted an immediate lock (i.e. granted without causing any other
lock to convert) on IDLE. If it is granted an immediate lock, then no other members
are idle. If it is not granted the lock immediately (an indication of another process
holding a high-level lock on IDLE), it queues a PW-mode lock request for IDLE,
followed by an immediate release of the lock. The queuing of a PW-mode lock will
awaken each hibernating member (because their locks were placed with a blocking
AST specified). Each awakened member will decrement its idle position by one. The
member with an idle position of zero will immediately dequeue its lock, select a
candidate from the Candidate List and resume processing. All other awakened members
will return to a state -of hibernation, but with an idle position of one less than before
being awakened. If there was only one lock on IDLE, the resource will disappear
when the lock is dequeued. However, when the next idle member is granted a lock
on IDLE, the resource will be created and the idle count will again be equal to one.

The last member to be granted a lock on IDLE (i.e. when the IDLE count
equals the MEMBERS count) issues a request for an EX-mode lock on MEMBERS.
The blocking AST routine associated with MEMBERS initiates the shutdown procedure.

The shutdown procedure creates a report for the members and releases all
locks the member holds. Each member produces a report detailing its elapsed time,
its CPU time, and the number and source of identified duplicate constraints. In addi-
tion, the member that found the best answer (i.e. the one who held the last lock on
ZSTAR) reports the final answer. Each member maintains detailed information of
all its processing on a hard disk file local to that processor.

4.6. GENERAL COMMENTS ON PARALLEL IMPLEMENTATION

It should be noted from the above discussion that there is no preconceived
order for member startup. In fact, any processor may begin, and others may join
at any time without regard for the history of the other members, thus providing a
peer-to-peer relationship among processors.

While in the current implementation we have not provided a means for a
processor to leave of its own volition (i.e. when the workstation owner wants to begin

198 T.L. Cannon, K.L. Hoffman, 04 programming on distributed workstations

processing again), we could easily implement a mechanism that provides for notifica-
tion when the user wants to regain control of his system. All that need be done when
notification occurs is to have the processor stop its current computation and insert
the current candidate in the Candidate List at the last linear-programming objective
function. This termination procedure would mirror that of "pausing" a node for
TARGET considerations. The user interrupt needed to accomplish this transition
is estimated to require approximately four seconds. After the user need was serviced,
the user could again "kick off" the optimizer without any detrimental effects to the
system.

5. C o m p u t a t i o n a l results

In this section, we will present and discuss our computational results. Through-
out this discussion, the term Original Method refers to the sequential computer code
called ABCOFr, while the term Extended Method refers to the modifications made
to the Original Method to support distributed processing.

On some of the small problems, the Extended Method was not significantly
faster than the Original Method due to the relatively small size of the branching
tree. On the larger problems, however, significant reduction in elapsed time was
achieved by using the Extended Method. The Constraint Pool was responsible for a
marked "improvement in elapsed time on most of the problems when compared with
the Original Method. Because the Smaller problems were solved so quickly, gains
due to the Constraint Pool were not realized. Another significant result is the fact
that the Extended Method running on a single processor exhibited a pronounced
improvement in run-time performance on large problems when compared with the
Original Method.

The test bed (hereafter called the CJP test set) for the Extended Method
contains seven of the ten problems described in Crowder, Johnson and Padberg [7]
and is presented in table 1. (The other three problems were not available to us.) The
test set is a collection of industry-formulated problems, three of which arose as
planning applications (Johnson, Kostreva and Suhl [26]). Of the seven problems
presented, only six are applicable to distributed processing; Problem P0548 is
not because the Original Method solves the problem to optimality without generating
a single branching node. In all tables below, ABCOPT denotes the performance of
ABCOFI'.

For the purpose of our work, the definitions of anomalies presented in section 3
will be changed slightly to better describe our environment. A detrimental anomaly
occurs when En > El, where En denotes elapsed time when n processors are used.
Another characteristic indicating a detrimental anomaly is a speedup of less than one.
A deceleration anomaly occurs when El/n < En < El. A speedup between one and n
indicates a deceleration anomaly. An acceleration anomaly occurs when En < E1/n.
A speedup in excess of n characterizes an acceleration anomaly and is also called

T.L. Cannon, K.L. Hoffman, 04 programming on distributed workstations 199

superlinear speedup. The expected behavior is that n processors will take E1/n to
complete (linear speedup).

Table 1

CJP Test Set with Performance Times for the Original and Extended Methods

Original Method Extended Method

Name Variables Rows CJP N o d e s Elapsed Nodes Elapsed
(rain) (rain)

P0033 33 16 113 8 1.53 39 1.60
P0040 40 24 11 6 0.57 32 1.03
P0201 201 134 1116 346 462.36 336 45.07
P0282 282 242 1862 8 12.86 36 5.77
P0291 291 253 87 4 1 D7 32 1.55
P2756 2756 756 2392 10 648.85 137 154.58

CJP: The number of nodes as developed by Crowder, Johnson and Padberg after
preprocessing and embedded constraint generation. Once no additional cuts
could be generated, the augmented problem was passed to MPSX/MIP370
for re-solving.

Orig. Method: The Original Method running on one VAXstation 2000.
Ext. Method: The Extended Method running on eight VAXstation 2000s.

5.1. RUN-TIME PERFORMANCE

We have realized a significant reduction in solution times for large problems
by using the Extended Method. Table 1 compares the solution times for the Original
Method with those of the Extended Method running on eight processors.

All timing measurements were made after the top of the search tree had been
determined. Unless specifically noted otherwise, all references to performance times
relate to elapsed ("wall-clock") time. We have chosen elapsed time as a performance
measure because we are interested in the amount of time taken to report the optimal
solution to the user. It should be remembered that the computational model is a
number of networked single-user workstations dedicated to solving these problems.
Under these conditions, elapsed time is a good measurement of performance.

It should be noted that a change was made to the Original Method to facilitate
a parallel-processing environment which involves the generation of nodes on the
initial search tree. In the Original Method, only one new variable is generated to start
the search tree. In the Extended Method, 32 nodes are generated in order to provide

ample nodes to keep all processors busy. To generate 32 nodes, five vandals are selected
by the branching procedure described in section 2 and a five-level balanced binary tree
is created. This method was followed in all cases to provide a common benchmark.

200 T.L. Cannon, K.L. Hoffman, 0~1 programming on distributed workstations

Empirical observations indicate that generally four times the number of processors is
an adequate starting point for a distributed-processing environment. A comparison of
the number of nodes on the search tree is presented in table 2.

Table 2

Number of nodes on the search tree

Number of processors

Name 1 2 3 4 5 6 7 8 ABCOPT

P0033 39 37 36 37 39 34 36 39 8
P0040 32 32 32 32 32 32 32 32 6
P0201 307 310 316 328 320 345 349 336 346
P0282 36 36 36 36 36 36 36 36 12
P0291 32 32 32 32 32 32 32 32 4
P2756 93 90 101 89 111 115 117 137 16

The elapsed time, CPU time, speedup, and efficiency of the test set may be
found in tables 3 through 6, respectively. Figures 2 through 10 present the same
findings graphically. Problem P0201 has been solved with linear and, in some cases,
superlinear speedup. (An efficiency range of 0.99 to 1.01 is considered linear speedup
due to the inaccuracies of run-time measurements imposed by the extensive time
sampling and reporting required for the testing phases of this research. Because the
elapsed time is defined as the time between the starting of the first processor and the
completion of the processor which found the best integer answer, the actual total
system run-time may differ slightly from the reported time.) Problem P0201 is solved
using the Extended Method and eight processors in 0.75 hours versus 7.7 hours for the
Original Method. Using the Extended Method and eight processors, Problem P2756
is solved in 2.6 hours, while the Original Method requires 10.8 hours for solution.

In contrast to Problem P0201, however, Problem P2756 takes more time to
solve using the Extended Method running on one processor and using the "parallel
start". These differences will be discussed below. For problems which solve quickly
(under five minutes), detrimental anomalies were both expected and observed.

T.L. Cannon, K.L. Hoffman, 0-1 programming on distributed workstations 201

Table 3

Elapsed Time of the CJP Test Set (minutes on VAXstation 2000)

Name ABCOPT

Number of processors in the system

1 2 3 4 5 6 7 8 ABCOPT

P0033
P0040
P0201
P0282
P0291
P2756

1-53 1.92 1.23 1.30 1.12 1 _52 1.47
0.57 0.81 0.63 0.62 0.68 0.83 0.94

462.36 370.97 184.97 123.60 96.58 75.28 61.86
12.86 6.40 5.17 5.43 5.51 6.75 6.19

1.07 1.57 1.14 1.07 1.05 1.12 1.19
648.85 872_58 365.54 290_58 185.16 191.87 171.54

1.53 1.60 1.53
1.14 1.03 0.57

52.00 45.07 462.36
6D1 5.77 12.86
1.26 1.55 1.07

154.36 154.58 648.85

Table 4

Total CPU Time of the CJP Test Set (minutes on VAXstation 2000)

Number of processors in the system

Name ABCOPT 1 2 3 4 5 6 7 8 ABCOPT

P0033 1.05
P0040 0.47
P0201 453.31
P0282 12.11
P0291 0.94
P2756 631.63

1.35 1.32 0.93 1.63
0.38 0.41 0.47 0.53

318.49 343.91 341.09 349.07
5.69 5.87 6.67 6.83
1.05 1.28 1 _54 1.91

844.41 683.90 808.80 648.66

2.19 i .76 1.91 2.31 1.05
0.61 0.67 0.74 0.80 0.47

336.46 330.44 321.71 313.15 453.31
8.13 7.82 7.78 7.94 12.11
2.26 2.48 2.78 2.81 0.94

695.47 762.91 937.02 1077.01 631.63

202 T.L. Cannon, K.L. Hoffman, 0-1 programming on distributed workstations

Table 5

Speedup of the CJP Test Set

Number of processors in the system

Name 2 3 4 5 6 7 8

P0033 1 56 1.48 1.71 1.26 1.31 1.26 1.20
P0040 1.29 1.31 1.19 0.98 0.86 0.71 0.79
P0201 2.01 3.00 3.84 4.93 6.00 7.14 8.23
P0282 1.24 1.18 1.16 0.95 1.04 1.07 0.90
P0291 1.38 1.47 1.50 1.40 1.32 1.25 1.04
P2756 2.39 3.00 4.71 4.55 5.09 5.65 5.65

Table 6

Efficiency of the CJP Test Set

Number of processors in the system

Name 2 3 4 5 6 7 8

P0033 0.78 0.49 0.43 0.25 0.22 0.18 0.15
PO040 0.64 0.44 0.30 0.20 0.14 0.10 0.10
P0201 1.00 1.00 0.96 0.99 1.00 1.02 1.03
P0282 0.62 0.39 0.29 0.19 0.17 0.15 0.11
P0291 0.69 0.49 0.37 0.28 0.22 0.18 0.13
P2756 1.19 1.00 1.18 0.91 0.85 0.81 0.71

T.L. Cannon, K.L. Hoffman, 0-1 programming on distributed workstations 203

Z

Z

2.50"

2.00"

1 .50 '

1 .00 '

0 . 5 0

' °%

°.

0 ,.. , ,,0 t
%. . . "

• . . t "

"6, " ' " ~ ' " " "

- - " - " T t r r r r T T

1 E $ 4 5 6 7 8

N U M B E R O1= P R O C E S ; S ; O R I G ;

Fig. 2. Elapsed Time for Problem P0033.

Z
N
Z

2.50'

2.00'

1.50'

1 .00 '

0.50'

1

0 0 Extended MethodJ
O ~ O O r i g i n a l Hethod J

........ ~ ~

...... , 0

0 ' - " - " " - i "

1
r

$ 4 5 6 7 B

N U M B I ~ R O I = P R O C I = 8 8 O I ~

Fig. 3. Elapsed Time for Problem P0040.

204 T.L. Cannon, K.L, Hoffman, 0-1 programming on distributed workstations

~4 cu

Z
H
Z

500"

400"

800"

200"

100"

0 0

'o

%

%
,.

$ ~ Extended l~t:l~d]
0----0 orioJ.naZ M~,aj

~°,,.
°,o,,

0 " ' ~ ' - - T t T I ~ I I I

1 E $ 4 5 $ 1 0

N U M B I ~ R O I= P R O C E ~ O R ~ ;

Fig. 4. Elapsed Time for Problem P0201.

Z
M
Z

15

14

12

10

8

5

4

2"

O" -----T
1

n 0

........... ~ ~ ~ . ~ ~

[~ $ Ex~endedMethod
f l ~ O Orig:l.nal He~hod

$ 4 5 5 7 B

NUMBER 0 F PROCmWIEZ:G;OR:I~;

Fig. 5. Elapsed Time for Problem P0282.

T.L. Cannon, K.L. Hoffman, 0-1 programming on distributed workstations 205

Z
M
Z

~.50"

2 . 0 0 -

1.50"

1.00"

0.50'

t t g ~ e n d e d Hethod]
0 - - 0 Or ig ina l Met.hod J

• ~...........,......~.,'"'""'""

O' "~ -~ r "r r "r "r r r

1 E $ 4 5 6 7 B

N U M B I : ' R O F" P R O C I ~ S ; E ; O R S ;

Fig. 6. Elapsed Time for Problem P0291.

Z

Z

900"

g00 -

600'

400'

E00'

t• I t t Ewtended Met.hod
\ I D---0 0r£g:l.nal He,.hod

0 \\ 0
\\

\\

• "t... , t + t ,

1 tl $ 4 5 6 7 g

N U H B E R O F P R O C I : i ~ ; ~ O R : B

Fig. 7. Elapsed Time for Problem P2756.

206 T.L. Cannon, K.L. Hoffman, 0-1 programming on distributed workstations

uJ

O,

E.O0

1.50

1.00

0 .50 '

O'

[0 0 po2eJ1
1 ~ - - / , PO292

,-, . ~ " ~ ' - . . l* l' PO040

................. _

T "1" r I 1 T

2 ~ 4 5 6

N U M B , EI:;~ I21 I=" P I ~ O C E t g l g O R ~ ;

Fig. 8. Speedup of Problems P0033, P0040, P00282 and P0291

7 B

!1
ul

'~,- - ~ Linear

i O--'-D ' ' 1:',?56 PO'01 . ~ . ~ ' ~ " ~

jo" ~.
j . J * . .

-T 7 I T T

tl $ 4 5 6 7 B

N U M B I : : ' R O F P R O C E ~ O R ~

Fig. 9. Speedup of Problems P0201 and P2756.

T.L. Cannon, K.L. Hoffman, 0-1 programming on distributed workstations 207

>
U
Z

H

H
u_

~J

1 . 6 0 "

1 . 4 0

1.1ZO

1 . 0 0

O.OO

0 . 5 0

0 . 4 0

0.~0

0

[l - - - i 1:'275,6
. | ¥ ¥ P 0 2 9 1

. t 0 - - - 0 r, o202
. /~- -~, pO2Ol

. ' ' : : : : : ~ " - . . I * , poo,,o

. ~ ~ l f . . : . : .~ . ~ ~ : t - . . - . . - . . - - . . - L . ~ Pooaa

- _ _ "-S. _ _ _ _ _ i , . . _ . _ , , , ~ ,~.:.:

. :,.: i

I' T T

I ~ q 6 B I0

N U M B E R OI :r I :>I~OC~SSOR:f i~

Fig. 10. Efficiency of the CJP Test Set.

5.2. ANOMALIES

Problems P0201 and P2756 have been solved much faster with the Extended
Method than with the Original Method (with the exception of solving P2756 using a
single processor in the Extended Method). In a distributed-processing environment,
solutions to these problems were generally achieved with linear speedup while in a
few cases, superlinear speedup was achieved. This performance is attributed to three
factors: the effectiveness of the Constraint Pool, the large number of branching nodes,
and the effectiveness of the heuristic procedures for obtaining bounds.

A large number of branching nodes (see table 2) means that there are always
ample nodes from which to choose. Node availability is an advantage in that it supports
the simultaneous investigation of several distinct paths which can lead to quicker
integer solutions (either by direct solution or by the heuristic procedure). The mere
presence of nodes from which to choose does not necessarily lead to any speedup.
The ability to find bounds on the solution value heavily affects the performance of
the Extended Method. If a good upper bound (in the case of a minimization problem)
is not available, then the processors may be working well past t he optimal point
without knowing it. This is precisely the case with Problem P2756, which has a large
number of nodes yet loses efficiency as processors are added. Problem 0201, on the
other hand, does have good bounds established for it quickly. Thus, the combination
of an abundance of nodes from which to choose coupled with the information
necessary to decide that a path is non-optimal aUows Problem I)0201 to be solved
very efficiently while demonstrating acceleration anomalies.

208 T.L. Cannon, K.L. Hoffman, 0~1 programming on distributed workstations

Problem P2756, like Problem P0201, benefits from substantial run-time
improvements in a distributed environment when compared with the Original Method,
The Extended Method running on one processor takes longer than the Original Method,
but when as few as two processors are used, the elapsed times are less than those
obtained with the Original Method. We note that linear and superlinear speedup was
achieved for the 2-, 3-, and 4.processor configurations.

The characteristics of Problem P2756 are quite different from those of the
other six problems. On P2756 we observe linear or better speedups when four or
fewer processors are used, but when more processors are added we observe a decelera-
tion in the speedup. In solving Problem P2756, a great deal of time is spent in the
linear-programming solver and relatively little time branching. In addition, the
heuristic procedures are not as effective in supplying an upper bound on this problem
as they have been on others. Finally, the optimal solution is found high in the tree
with an answer very close to the initial linear-programming solution. The combination
of these characteristics caused the Extended Method to not achieve linear speedup
in some cases.

The parallel implementation of the Extended Method relies on a branching
strategy to be effective. That is, in the absence of a branching tree, the effects of
parallelism in the Extended Method are extinguished. (It should be noted that the
improvements of the Extended Method due to the Constraint Pool still remain and
are significant.) Because the solution of Problem P2756 is achieved near the top of
the tree and because of the startup procedures of the Extended Method, all 32 initial
nodes must be evaluated before continuing with an informed search. In all other
cases, this approach has not been detrimental because the linear-programming solution
times were very short (the next largest order of magnitude is Problem P0201, with
two to four minutes between branching nodes). For Problem P2756 though, with the
time between branches on the order of 20 to 30 minutes, the effect of the additional
work imposed by the Extended Method startup procedures becomes quite pronounced.
As can be seen in table 3 and fig. 7, total elapsed time decreases rapidly with the
addition of new processors. One can also see that the Extended Method with a 1-node
start solved the problem to optimality in one fourth the time (see table 7).

On the other problems, the heuristic procedures have worked very well in
providing an early integer answer that was near the optimal integer answer. On Prob-
lem P2756, that has not happened. Without a good upper bound on the problem,
processors are devoting much effort to solving subproblems that later are shown to
be past the optimal answer.

The third reason that the effectiveness of the Extended Method begins to
diminish after the fourth processor in Problem P2756 is that the solution is found
very close to the initial linear-programming relaxation of the problem. The combina-
tion of the length of time taken within a node (20 to 30 minutes between branches)
and the absence of a good upper bound allows processors to work for relatively long
periods of time on non-optimal paths before fathoming them.

T.L. Cannon, K.L. Hoffman, 0,1 programming on distributed workstations 209

Table 7

The effect of a 32-node start versus a 1-node start on solution times
(VAXstation 2000 processors in minutes)

Problem
Extended Method Extended Method Minutes

32-node start 1-node start (shorter)
longer

P0033 1.9 1.6 (0.3)
P0040 0.8 0.6 (0.2)
P0201 371.0 395.2 24.2
P0282 6.4 14.8 8.4
P0291 1.6 1.3 (0.3)
P2756 872.6 247.3 (625.3)

Extended Method: The Extended Method running on one processor using either a
32-node start or a single-node start. Reported time includes overhead associated
with establishing a distributed-processing environment even though there is no
parallelism used.

For the four quickly-solved problems (P0033, P0040, P0282 and P0291),
detrimental and deceleration anomalies were both expected and observed. Elapsed
times for these problems are presented graphically in figs. 2, 3, 5 and 6, respectively.
On each of these problems, "overhead" time is spent initializing data structures,
synchronizing for distributed processing, collecting performance data, and preparing
final reports. For a problem which is solved very quickly, the overhead time alone
can exceed the solution time. For Problems P0033, P0040 and P0291, each of which
is solved in under two minutes, the solution time for one processor is worse than the
Original Method. As more processors are added to the system, the solution time
decreases until the fourth or fifth processor is added, at which point the solution
time begins increasing. We note, however, that the Extended Method solution time
occasionally drops below that of the Original Method. We conclude, therefore, that
the detrimental anomaly is due to overhead time.

The solution of Problem P0282 follows the same pattern of first decreasing,
then increasing, solution times, as do the other quickly-solved problems. In contrast
to the other three problems, Problem P0282 using the Extended Method with only
one processor is solved in one-half the time taken by the Original Method. This
behavior is attributed to two factors: the effectiveness of the Constraint Pool and the
start-up procedure of the Extended Method.

The start-up procedure of the Extended Method helps to solve Problem P0282
more quickly. Because 32 nodes are generated immediately, the solution space is
more restricted from the beginning. This additional restriction of variables leads to
faster fathoming of non-optimal branches. This conclusion is further supported by
noting that when Problem P0282 was solved by the Extended Method without the
32-node start, the elapsed time was 14.8 minutes compared with 12.9 minutes for
the Original Method (see table 7).

210 T.L. Cannon, K.L. Hoffman, 0-1 programming on distributed workstations

5.3. EFFECT OF A GOOD UPPER BOUND

The branch-and-cut algorithm is a "bounding" procedure whereby one
iteratively tightens the upper and lower bounds until both bounds are equal. We
therefore believe that if one is provided with a good upper bound, the amount of
effort required to find and prove optimality will be lessened. To test how our parallel
implementation might be affected by a good upper bound, we provided the system
with an artificial ZSTAR that was slightly higher (1.5 units higher) than the true
optimal solution. We chose to have it slightly higher than the true optimal solution
so that the system would find and verify the optimal solution. Table 8 shows that
computation time was reduced substantially when the system was provided with a
tight bound. We conclude that the ability to determine good upper bounds is critical
to achieving substantial gains in the run-time performance. Further, we believe that if
heuristic procedures are employed to determine those upper bounds, then the bounds
can be provided earlier in the solution process, leading to a substantially altered
flow of the overall procedure.

Table 8

The effect of a good upper bound

Elapsed time of Elapsed time of
Extended Method Extended Method

Problem (min)* with a very good %
upper bound Reduction

(min)*

P0201 45.07 30.44 32.5
P2756 154.58 102.54 33.7

*Problems were solved using eight VAXstation 2000s.

Another reason for providing the system with a good upper bound was to
test if having such a tight bound might force I/O bottlenecks. A ZSTAR that is close
to the optimal solution causes branches to be fathomed more quickly. Each time a
branch is fathomed, the Candidate List must be accessed by the processor to deter-
mine the next best branch. The Constraint Pool is then accessed to determine whether
cuts in the Pool violate the linear-programming solution associated with the new node.
We thought that this disk activity, working across an Ethernet network, might lead to
increased I/O and possible bottlenecks. The ratio I/O to total time did not increase
substantially;no bottlenecks occurred and total computation time declined dramatically.
The I/O considerations will be discussed in the next section.

T.L. Cannon, K.L. Hof fman, 0-1 programming on distributed workstations 211

5.4. INPUT/OUTPUT CONSIDERATIONS

A common shortcoming of previous attempts to implement a search strategy
in a distributed-processing environment has been a bottleneck in interprocess com-
munication. In the Extended Method, interprocess communication takes two forms:
notification of changes in the problem (ZSTAR and TARGET) and sharing of data
(a single, common Candidate List and Constraint Pool). Communication bottlenecking
was not observed for either form within the Extended Method.

The notification of changes in ZSTAR and TARGET occurs very quickly. We
did not conduct any measurements of resource locking for the test set for two reasons.
First, generally fewer than five intermediate integer answers are found before the
optimal solution is determined, while TARGET changes are on the order of 20 per
run. Because our elapsed times are relatively long, we conclude that the small amount
of notification would not substantively alter the elapsed time. The second reason
that we did not measure the locking speed is that Snaman and Thiel [48] report
that in a Local Area VAXcluster, a total of 8.1 milliseconds (elapsed) is taken to
enqueue and dequeue a lock. Further, they report that 7.8 milliseconds (elapsed)
are required for a lock conversion (up and down). In our several hundred runs of
these problems, we have been given no reason to dispute the findings of Snaman
and Thiel.

Thus, if I/O bottlenecks were to occur, they would occur in the constant
accessing of the Constraint Pool and the Candidate List. Extensive measurements
were taken to determine exactly how much time was being spent in accessing these
fries. We measured elapsed time taken to access a record when reading from the
disk file and the amount of time taken to insert a record when writing to the disk
file. As shown in tables 9 and 10, I/O time accounts for only a small portion of the
elapsed time. (On P2756, where as many as 95,341 constraints were read and 938
distinct constraints were written, I/O time as a percent of elapsed time was never
more than 5%.)

It should be remembered that disk fries were implemented solely to support
a distributed-processing environment. When the Constraint Pool is adopted for use in a
sequential environment, or when the Extended Method is adopted for a tightly-coupled
parallel-processing environment, disk fries would be discarded and in-core computer
memory used instead.

5.5. EFFECT OF CHANGING TARGET

The determination of when to pause a node (the TARGET value) has a pro-
nounced effect on run-time performance. Remember that T A R G E T is calculated
as follows:

T A R G E T = zLp - (PERC * (zz2 - Z S T A R)) .

212 T,L. Cannon, K,L. Hoffman, 0-1 programming on distributed workstations

Table 9

Input/output time analysis for Problem P0201

~; elapsed
Constraints Candidates ~ of I/O time I/O as % Run-time

Members (min) (min) of elapsed (min)
Read Wrote Read Wrote

57 375
42 479
46 708
61 031
58 832
55 169
60 559
60 799

207 307 390 14.4 371.0 3.87 371.0
202 310 392 17.3 369.8 4.68 185.0
203 315 396 20.0 370.4 5.41 123.6
253 325 406 28.9 389.3 7.42 96.6
224 317 392 35.4 576.3 6.13 75.3
201 340 413 27.4 369.7 7.40 61.9
215 345 414 30.0 362.1 8.29 52.0
197 322 392 32.0 358.1 8.94 45.1

Table 10

Input/output time analysis for Problem P2756

Memberg
Constraints

elapsed
Candidates ~ of I/O time I/O as % Run-time

(min) (min) of elapsed (min)
Read Wrote Read Wrote

1 44,296 678 93 108 15.8 872.6
2 50,203 801 90 113 25.6 730.8
3 70,804 849 101 130 23.6 870.4
4 50,921 688 89 103 27.6 739.8
5 67~40 753 111 123 33.6 766.8
6 66~11 835 t04 122 38.6 1,027.0
7 72,535 751 117 124 44.9 1,076.0
8 95,341 938 137 161 61.4 1,230.1

1.81
3.51
2.71
3.73
4.38
3.76
4.17
4.99

872.6
365.5
290.6
181.1
191.9
171.5
154.4
154.6

Table 11

The effect of TARGET on elapsed time for Problem P2756

Elapsed time
PERC BETA (min)

0.10 0.002 872 -58
0.20 0.002 997.00
0.30 0.002 1630.18
0.50 0.002 1859.00

T.L. Cannon, K.L. Hoffman, 04 programming on distributed workstations 213

If TARGET falls within (ZSTAR/(1 + BETA)) of ZSTAR, then TARGET is set equal
to ZSTAR. The effect of variations in the user-supplied parameters BETA and PERC
for Problem P2756 is presented in table 11.

Because progress within a node is so slow in Problem P2756, and because
the gap is so large, we want to pause nodes early in the process. Therefore, for Prob-
lem P2756, BETA has been set to 0.002 and PERC has been set to 0.10. In contrast,
Problem P0201 (characterized by a shorter time within a node and an optimal solu-
tion far from the initial linear-programming solution) runs with BETA equal to 0.02
and PERC equal to the default of 0.80.

Future research will address the appropriate settings of these values and the
dynamic changing of BETA and PERC under software control.

6. Conc lus ions and f u t u r e research

We have found that large-scale zero-one integer programming problems can
be solved quickly by using a distributed-processing approach. On problems character-
ized by a large number of branching nodes, linear speedup, and sometimes superlinear
speedup, can be achieved. On problems which are solved very quickly, deceleration
and detrimental anomalies were both expected and observed.

A common criticism of distributed processing on local area networks is the
bottleneck caused by I/O functions. We have found no I/O bottlenecks resulting
from our testing. We have used shared, indexed files as a means of passing data between
processors. Extensive measurements have been taken on the two largest problems
(201 variables/134 constraints and 2756 variables/756 constraints) and show that
total disk-file related I/O accounts for an average of approximately 5% of the total
elapsed time.

It should be noted, however, that traditional approaches to solving these
problems in a parallel.processing environment rely heavily on branching, which leads
to an increased level of interprocess communication. Because the branch-and-cut
method relies on branching strictly as a last resort, interprocess communication for
the purpose of altering bounding information, or for choosing nodes, is reduced
significantly.

The minimal impact of I/O activity coupled with the relatively low require-
ment for interprocess communication allows us to conclude that this implementation
will work for much larger zero-one linear programming problems within a branch-and-
cut framework. As larger problems are obtained, interprocess communication and data
sharing procedures may be refined as necessary.

During the progress of this research, a number of topics were identified as
either natural extensions of this work or as areas that may provide insight into the
solution of this class of problems. The topics are:

214 T.L. Cannon, K.L. Hoffman, 0-1 programming on distributed workstations

Investigate the use o f sensitivity analysis to establish a better bound for a branching
node than the linear-programming relaxation o f its parent. Currently, when a
decision is made to branch on a variable, two records are inserted in the Candidate
List, using the last linear-programming objective function obtained as the record
key. Since effort within a node in a branch-and-cut solver includes routine solving
of multiple linear programs, constraint generation, logical fixing, and heuristics,
it may be worthwhile to solve the initial linear program associated with the new
node (i.e. perform all of the work normally done in a branch-and-bound code for
that node) in order to return a more accurate bound for each node, thereby
ensuring true best-first ordering (i.e. making a distinctiorr between the "up" and the
"down" branch) and hastening fathoming.

Investigate the feasibility o f using an idle machine to help an active processor. There
are occasions in the Extended Method when processors are idle. Future research
will investigate the feasibility of using idle processors to assist active processors
in one of three ways: by having an active processor produce a branching variable
(two candidates inserted in the Candidate List) whenever a processor is idle; by
having an idle processor employ alternative heuristic approaches to achieve a better
upper bound; and by having an active processor decompose its problem to allow
idle processors to assist it within a node.

Implement the ability for a user to quickly regain control o f his workstation without
affecting the integrity o f the solution. The Extended Method has been designed
to allow a processor to enter the system at any point in the solution. The ability
for a processor to voluntarily exit has not been provided and will be researched
further. We feel that we can provide a user-activated interrupt mechanism which
will allow the user to signal when the workstation is needed. That interrupt will
cause the processor to immediately return the current candidate to the Candidate
List at the latest linear-programming objective function. The workstation can then
be returned to the user. It should be noted that this feature is not required for
VAXstation 2000 workstations since they can support multi-user processing.
The feature is highly desirable though, because of the compute-intensive nature
of these problems and because most individual workstation applications are
compute-intensive as well. The contention between the Extended Method and the
user's application will cause each to perform poorly.

Much research on improving current techniques for solving combinatorial
optimization problems by using parallel processing is still needed. We will continue
to investigate the solution of these problems in both distributed- and shared-memory
environments. One of the limiting factors in our research is the lack of available large,
real, non-proprietary combinatorial optimization problems. Perhaps the ability to
solve large problems will encourage the formulation and distribution of increasingly
larger problems.

T.L. Cannon, K.L. Hoffman, 0-1 programming on distributed workstations 215

Trademarks

The following are trademarks of the Digital Equipment Corporation: DEC, DECnet,
DECnet-VAX, Digital Network Architecture (DNA), Local Area VAXcluster, MicroVAX,
MicroVAX II, RMS, VAX, VAX FORTRAN, VAXstation, VAXstation 2000, VAX/
VMS.

Acknowledgements

The authors wish to thank Manfred Padberg for his helpful suggestions on improving
this research and careful reviewing of an early version of this paper. We have tried to
incorporate as many of his suggestions as was possible, but of course, any errors,
omissions or inconsistencies are entirely our own responsibility.

References

[1] M. Ajmone Marsan, G. Balbo and G. Conte, Performance Models of Multiprocessor Systems
(The MIT Press, Cambridge MA, 1986).

[2] A. Bachem and M. Gr6tschel, New aspects of polyhedral theory, in: Modem Applied
Mathema~cs, Optimization and Operations Research, ed. B. Korte (North-Holland, Amster-
dam, 1982) pp. 51-106.

[3] E. Balas, Intersection cuts - a new type of cutting planes for integer programming, Oper.
Res~ 19, 1(1971)19.

[4] T.L. Cannon, Large-scale zero-one linear programming on distributed workstations, Ph.D.
dissertation, Department of Operations Research and Applied Statistics, George Mason
University, Fairfax, VA (1988).

[5] T.L. Cannon and K.L. Hoffman, The effect of a constraint pool on large-scale zero-one
linear programming problems, Technical Report (1989), in preparation.

[6] M.D. Chang, M. Enquist, R. Finkel and R.R. Meyer, A parallel algorithm for generalized
networks, Technical Report 642, Department of Computer Sciences, University of Wisconsin,
Madison (1987).

[7] H. Crowder, E.L. Johnson and M. Padberg, Solving large-scale zero-one linear programming
problems, Oper. Res. 31, 5(1983)803.

[8] G.B. Dantzig, Notes on solving linear programs in integers, Naval Research Logistics Quarterly
6(1959)75.

[9] G.B. Dantzig, D.R. Fulkerson and S. Johnson, Solution of a large-scale traveling salesman
problem, Oper. Res. 2(1954)393.

[10] A. de Bruin, A.H.G. Rinnooy Kan and H.W.J.M. Trienekens, A simulation tool for the
performance evaluation of parallel branch and bound algorithms, Report 8720/A, Econo-
metric Institute, Erasmus University, Rotterdam (1987).

[11] D. DeWitt, R. Finkel and M. Solomon, The Crystal multieomputer: Design and implementa-
tion experience, Technical Report 553, Computer Science Department, University of
Wisconsin-Madison (1984).

[12] D.J. Duffy, The system communication architecture, Digital Technical Journal 5(1987)22.
[13] O. EI-Dessouki and W.H. Huen, Distributed enumeration on between computers, IEEE

Trans. on Computers C-29, 9(1980)818.

216 T.L. Cannon, K.L. Hoffman, 0-1 programming on distributed workstations

[14] R.A. Finkel and U. Manber, DIB-A distributed implementation of backtracking, Technical
Report 588, Department of Computer Sciences, University of Wisconsin, Madison (1985).

[15] M.S. Fox and J.A. Ywoskus, Local Area VAXcluster systems, Digital Technical Journal
5(1987)56.

[16] E.F. Gehringer, D.P. Siewiorek and Z. Segall, Parallel Processing. The C'~m * Experience
(Digital Press, Rockport, MA, 1987).

[17] F. Glover, A bound escalation method for the solution of integer linear programs, Cab
Cent Etud Rech Operationelle 6(1965)131.

[18] F. Glover, Convexity cut and cut search, Opel Res. 21(1973)123.
[19] A.C. Goldstein, The design and implementation of a distributed file system, Digital Tech-

nical Journal 5(1987)45.
[20] R.E. Gomory, Outline of an algorithm for integer solutions to linear programs, Bull. Amer.

Math. See. 64(1958)275.
[21] B. Griinbaum, ConvexPolytopes (Wiley, London, 1967).
[22] K.L. Hoffman and M. Padberg, Techniques for improving the linear programming repre-

sentation of pure zero-one linear programming problems, Technical Report, Department
of Operations Research and Applied Statistics, George Mason University, Fairfax, VA
(1989).

[23] K.L. Hoffman and M. Padberg, ABCOPT: A branch-and-cut optimizer for sparse zero-one
linear programs, Preprint, New York University (1989).

[24] M. Imai, T. Fukumura and Y. Yoshida, A parallelized branch-and-bound algorithm imple-
mentation and efficiency, Systems Computer Controls 10, 3(1979)62.

[25] M. Imai, Y. Yoshida and T. Fukumura, A parallel searching scheme for multiprocessor
systems and its application to combinatorial problems, in: Prec. 6th Int. Joint Conf. on
Artificial Intelligence (1979) pp. 416-418.

[26] E.L. Johnson, M.W. Kostreva and U.H. Suhl, Solving 0-1 integer programming problems
arising from large-scale planning models, Oper. Res. 33, 4(1985)803.

[27] G.A.P. Kindervater and J.K. Lenstra, An introduction to parallelism in combinatorial
optimization, Distr. Appl. Math. 14(1986)135.

[28] N.P. Kronenberg, H.M. Levy, W.D. Strecker and R.J. Merewood, The VAXcluster concept:
An overview of a distributed system, Digital Technical Journal 5(1987)7.

[29] T.-H. Lai and S. Sahni, Anomalies in parallel branch-and-bound algorithms, Commun.
ACM 27, 6(1984)594.

[30] T.-H. Lai and A. Sp_rag_ue~ Performance of parallel branch-and-bound algorithms, IEEE
Trans. on Computers C-34, 10(1985)962.

[31] G.-J. Li and B.W. Wah, Computational efficiency of parallel approximate branch-and-
bound algorithms, in: Prec. 1984Int. Conf. on Parallel Processing (1984)pp.473-480.

[32] G.-J. Li and B.W. Wah, Coping with anomalies in parallel branch-and-bound algorithms,
IEEE Trans. on Computing 35, 6(1986)568.

[33] G.-J. Li and B.W. Wah, How good are parallel and ordered depth-first searches?, in: Prec.
1986 lnt. Conf. on Parallel Processing (1986) pp. 992-999.

[34] R. Marsten, The design of the XMP linear programming library, ACM Trans. on Mathematical
Software 7(1981)481.

[35] J. Mohan, A study in parallel computation - the traveling salesman problem, Technical
Report CMU-CS-82-136, Computer Science Department, Carnegie-Mellon University
(1982).

[36] J. Mohan, Experience with two parallel programs solving the traveling salesman problem,
in: Prec. 1983 Int. Conf. onParallel Processing, IEEE, New York (1983) pp. 191 - 193.

[37] D.S. Nan, V. Kumar and L. Kanal, General branch-and-bound, arid its relation to A* and
AO*, Artificial Intelligence 23(1984)29.

T.L. Cannon, K.L. Hoffman, 04 programming on distributed workstations 217

[38] G.L. Nemhauser and L.A. Wolsey, Integer and Combinatorial Optimiza~on (Wiley, New
York, 1988).

[39] M. Padberg, Essays in integer programming, Ph.D. Thesis, Carnegie-Mellon University,
Pittsburgh, PA (1971).

[40] M. Padberg, Covering, packing and knapsack problems, Ann. Discr. Math. 4(1979)265.
[41] M. Padberg and G. Rinaldi, Optimization of a 532-city traveling salesman problem by

branch-and-cut, Oper. Res. Lett. 6(1987)1.
[42] M. Padberg and G. Rinaldi, A branch-and-cut algorithm for the solution of large-scale

traveling salesman problems, Technical Report, New York University (1988).
[43] E.A. Pruul, G.L. Nemhauser and R.A. Rushmeier, Branch-and-bound and parallel computa-

tion: A historical note, Oper. Res. Lett. 7, 2(1988)65.
[44] M.J. Quinn and N. Dee, An upper bound for the speedup of parallel best-bound branch-

and-bound algorithms, BIT 26, 1(1986)35.
[45] R.T. Rockafellar, Convex Analysis (Princeton University Press, Princeton, N.J., 1970).
[46] R.B. Schnabel, Parallel computing in optimization, in: Prec. NATO Advanced Study

Institute on Computational Mathematical Programming, Bad Windsheim, F.R.G. (1984)
pp. 358-381.

[47] A. Schrijver, Linear and Integer Programming (Wiley, 1986).
[48] W.E. Snaman, Jr. and D.W. Thiel, The VAX/VMS distributed lock manager, Digital Tech-

nical Journal 5(1987)29.
[49] J. Steer and C. Witzgall, Convexity and Optimization in Finite Dimensions I (Springer-

Verlag, Berlin, 1970).
[50] H.A. Taha, OperafionsResearch -Anlntroduetion, 3rd ed. (Macmillan, New York, 1982).
[51] C.A. Trauth and R.E. Woolsey, Integer linear programming: A study in computational

efficiency, Management Science 15(1969)481.
[52] H.W.J.M. Trienekens, Parallel branch-and-bound on an MIMD system, Report 8640/A,

Econometric Institute, Erasmus University, Rotterdam, 1986).
[53] H.M. Wagner, R.J. Gigiio and R.G. Glaser, Preventive maintenance scheduling by mathe-

matical programming, Management Scieflce 10(1964)316.
[54] B.W. Wah and Y.W. Ma, MANIP - a parallel computer system for implementing branch

and bound algorithms, in: Prec. 8th Annual Int. Syrup. on Computer Architecture (1982)
pp. 239-262.

[55] B.W. Wah and Y.W. Ma, MANIP - a multicomputer architecture for solving combinatorial
extremum-search problems, IEEE Trans. on Computers C-33, 5(1984)377.

[56] B.W. Wah, G. Li and C.F. Yu, Multiprocessing of combinatorial search problems, IEEE
Trans. on Computers 18, 6(1985)93.

[57] R.D. Young, Hypercvlindrically deduced cuts in 0-1 integer programming, Oper. Res.
19, 6(1971)1393.

