
Annals of Operations Research 22(1990)181-217 181 

LARGE-SCALE 0-1 LINEAR PROGRAMMING ON DISTRIBUTED 
WORKSTATIONS 

Timothy L. CANNON* 

Digital Equipment Corporation, 3020 Hamaker Court, Fairfax, VA 22031, USA 

and 

Karla L. HOFFMAN * 

Department of  Operations Research and Applied Statistics, George Mason University, 
4400 University Drive, Fairfax, VA 22030, USA 

Abstract 

We present a methodology which uses a collection of workstations connected by 
an Ethernet network as a parallel processor for solving large-scale linear program- 
ming problems. On the largest problems we tested, linear and super-linear speedups 
have been achieved. Using the "branch-and-cut" approach of Hoffman, Padberg 
and Rinaldi, eight workstations connected in parallel solve problems from the test 
set documented -in the Crowder, Johnson and Padberg 1983 Operations Research 
article. Very inexpensive, networked workstations are now solving in minutes 
problems which were once considered not solvable in economically feasible times. 
In this peer-to-peer (as opposed to master-worker) implementation, interprocess 
communication was accomplished by using shared files and resource locks. Effective 
communication between processes was accomplished with a minimum of overhead 
(never more than 8% of total processing time). The implementation procedures 
and computational results will be presented. 

1. Introduction 

Many combinatorial optimization problems are not solved, or not solved to 
optimality, because they are either too large or require too much computation time 
for existing sequential computers and algorithms to solve. It has been shown that a 
group of computers participating in the solution of a tingle large problem (i.e. perform- 
ing parallel computation) could achieve much better results than one computer acting 
alone. 
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Furthermore, when parallel computation is achieved by connecting a number 
of independent small processors, problems that are "expensive" to solve on a large 
machine (e.g. "mainframe" or "supercomputer") may be solved at lower cost. The 
processors may be as small as existing computer workstations or personal computers 
and, while they may not achieve the equivalent performance found on larger computers, 
they do not require a substantial monetary investment. 

The general class of combinatorial optimization problems to be discussed 
here is of the form of a general 0-1 decision problem: 

minimize cx 
x Problem Z n, 

subject to A x < ~ b ; x E  {O, 1} , 

where A is anM × N matrix, b is an M-vector and c is an N-vector. All data is assumed 
to be rational. We restrict our attention to the case where the integer variables can 
take on only the values zero or one. (Any bounded integer variable can be transformed 
into a set of zero-one variables.) 

In this paper, we present a parallel implementation of a "branch-and.cut" 
algorithm (ABCOPT). This approach uses cutting planes based on the polyhedral 
structure of integer polytopes to tighten the linear programming relaxation of prob- 
lem Z w. When it is not possible to generate any further cuts (due to our incomplete 
understanding of the polyhedral structure, or due to our inability algorithmically to 
generate cuts of a known form), we resort to branching on some fractional variable 
and then resume the generation of cuts for the corresponding linear programming 
problems associated with each branch. 

Early work in integer cutting-plane methods was conducted by Dantzig, 
Fulkerson and Johnson [9], Gomory [20], and by Dantzig [8]. Although Gomory's 
algorithm and related research by Glover [17], Young [57], Balas [3] and Glover [18] 
have provided algorithms having proven finite convergence, all such algorithms have 
the following disadvantages (Wagner, Giglio and Glaser [53], Trauth and Wolsey [51 ] ): 
(1) machine round-off errors may result in an incorrect optimal integer solution; 
(2) the solution of the problem remains infeasible until the optimal integer solution 
is obtained (meaning that no intermediate "good" solutions may be determined); 
(3) convergence is often too slow to allow large problems to be solved; and (4) sparse 
linear programs become continually more dense as the problem proceeds, forcing 
numerical problems and additional effort. Other disadvantages of traditional cutting 
planes in an algorithm that employs search trees are discussed in Padberg and 
Rinaldi [42]. 

To overcome the drawbacks of the cutting-plane methods cited above , the 
branch-and-cut approach employs "facial cuts". These cuts are "deep" in the sense 
that they cannot be pushed further into the feasible re#on without cutting off at 
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least one feasible integer point, and they belong to the class of inequalities that 
uniquely determines the polytope of the convex hull of all feasible integer points 
(see Padberg [39] ). 

The strengths of these cuts in assisting in the solution of zero-one programming 
problems are: 

• the computational effort of identifying them algorithmically is often small; 

• they are, in a mathematical sense, the "tightest" cuts possible in that they 
are facets of the convex hull of feasible integer points; and 

• sparse, user-supplied constraints generate sparse facial cuts. 

The topic of facial cuts will be addressed very briefly here; a complete treatment 
of polyhedral theory may be found in Nemhauser and Wolsey [38], Schrijver [47], 
Bachem and Gr6tschel [2], Rockafellar [45], Stoer and Witzgall [49], and Griin- 
baum [21]. 

In the next section of this paper, we will present a brief outline of the branch- 
and-cut approach. Section 3 will provide background on the previous implementations 
of parallel algorithms for combinatorial optimization problems. Section 4 will describe 
the architecture used for our parallel implementation, as well as the detailed description 
of the implementation. Finally, section 5 will present computational results and 
future research. 

. Solving zero-one  integer programming problems 
using the  b ranch-and-cu t  m e t h o d  

Hoffman, Padberg and Rinaldi have combined the branch-and-bound method 
with the generation of cutting planes based on the polyhedral structure of the integral 
polytope to develop a procedure known as "branch-and-cut". This general approach 
has been used to solve large-scale symmetric traveling salesman problems (Padberg 
and Rinaldi [41,42] ) and general zero-orie problems (Hoffman and Padberg [23] ). 
The novelties in the branch.and-cut approach are that there is no requirement for 
special data structures related to node-specific cuts and that the proven solution is 
achieved in economically feasible times. 

A complete description of how the sequential system called ABCOPT of 
Hoffman and Padberg [23] has been altered to allow a parallel implementation is 
found in Cannon [4]. To aid in understanding the parallel implementation of ABCOPT, 
the six main modules of the algorithm will be outlined below. 

Reformulation procedure. Reformulation refers to elementary operations that 
can be performed automatically at any point in ABCOPT to improve or simplify a given 
formulation. The goal of these procedures is to obtain a solution to the linear program- 
ming relaxation of the zero-one problem which is much closer to the zero-one solution 
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and to remove redundant rows and columns from the matrix. A full description of 
the techniques is found in Hoffman and Padberg [23]. 

Linear program solver. The current version of the ABCOPT system uses a 
modified subset of the XMP software package for linear programming written by 
Roy Marsten of the University of Arizona (Marsten [34] ). 

Heuristic procedure. The heuristic procedure is guided by the linear-program- 
ming relaxation of the problem and, when successful, provides good upper bounds on 
the problem. A technical report which details the heuristic procedure is under prepara- 
tion by Hoffman and Padberg. 

Variable-fixing procedure. ABCOPT includes three methods of variable 
fixing: reduced-cost fixing, logical fixing, and optimality fixing. Reduced-cost fixing 
requires an analysis of the "gap" (i.e. the difference between the solution value of the 
linear programming relaxation to problem Z~ and the best integer solution found 
so far). Any variable whose associated-linear programming reduced-cost at the root 
node of the tree is greater than the gap may be fixed permanently to the current 
bound values. Logical fftxing is the process of determining that a specific variable 
must be fixed to either zero or one in every feasible solution to problem Zzp. 
Optimality fixing examines a column and its associated profit value to determine when 
the fixing of such a variable can be done without detriment to any other variable. 

Constraint (cut) generator. Once the linear-programming solution is deter- 
mined, constraints based on the fractional value of that solution are automatically 
generated and extended (or "lifted") to include all zero-one variables of the problem. 
The cutting planes currently generated are extended minimal covers based on single 
knapsack constraints, extended minimal covers based on single knapsacks in con- 
junction with disjoint sets of special-ordered set constraints and the generation of 
disaggregated plant-location constraints. Whenever cuts are generated, the problem 
is augmented to include the newly generated constraints and then returned to the 
linear program module for re-solution. We note that all cuts generated are valid for the 
entire integer polytope by "lifting" any variable conditionally fixed within the 
branching tree. Thus, one can move freely among nodes of the branching tree without 
altering the data structures associated with the constraint set. 

Branching procedure. The choice of the branching variable is made by evalu- 
ating the fractional variables on the basis of their largest objective function coefficients 
and their closeness to the value 0.5. The algorithm first chooses variables having very 
large objective function cost coefficients. The determination of such variables is done 
by statistically examining the set of cost coefficients for "outliers". If no outliers 
are fractional in the linear-programming solution, then one first finds the fractional 
variable closest to the value 0.5 and collects all fractional variables within some 
tolerance of this variable. The variable within this set having the largest normalized 
cost is chosen as the branching variable. 
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Fig. 1. Flow chart of the branch-and-cut system. 
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The results of the sequential branch-and-cut method are impressive: on a 
48-city traveling salesman problem, a commercial branch-and-bound package required 
40 minutes of CPU time (on a VAX 11/780 computer) to find an optimal solution. 
Padberg and Rinaldi's [42] branch-and-cut optimizer called TSPSOLVER took 
25 seconds on the same machine. This traveling salesman procedure has solved the 
largest real-world symmetric problem - 2,392 cities - in 27 hours and 20 minutes 
of CPU time on a CYBER 205 computer. ABCOPT has solved problems from the 
test set of Crowder, Johnson and Padberg [7] with the largest problem (2,756 vari- 
ables) having only ten nodes on the branching tree as compared with 2,392 nodes 
required by the Crowder, Johnson and Padberg algorithm. (MPSX/MIP in over 
48 hours of dedicated computer time on an IBM 370 had not even found a feasible 
integer solution.) A brief flow-chart of the zero-one procedure is presented in fig. 1. 
Section 4 will describe the alterations made to this overall algorithm to allow a 
collection of machines to participate in the solution of a problem, but first we describe 
previous parallel branch-and-bound approaches and parallel architectures. 

. Review o f  parallel b r a n c h - a n d - b o u n d  algori thms for  solving 
combinator ia l  op t imiza t ion  problems 

This section will present an overview of related research in distributed 
processing of combinatorial optimization problems for the purpose of distinguishing 
our work. Several popular search strategies (A*, A O*, ct--/], B*, and SSS*) have been 
shown to be special cases of the generalized branch-and-bound procedure (Nau, 
Kumar and Kanal [37]). Many researchers have proposed and investigated parallel 
implementations for several of these strategies. Cannon [4] presents a discussion 
of the branch-and-bound techniques which have been parallelized. Theoretical 
discussions of speedup and performance for parallel branch-and-bound algorithms 
may be found in Quinn and Deo [44], Lai and Sprague [30], Imai, Yoshida and 
Fukumura [25], Li and Wah [31-33] .  Kindervater and Lenstra [27] present an 
excellent tutorial introduction to the literature on parallel computers and algorithms 
that is relevant for combinatorial optimization. 

While it might seem that most problems could be solved faster (in terms of 
elapsed time) in a parallel-processing environment than in a sequential environment, 
it generally is not the case. Offset against the gains in potential parallelism is the 
overhead of creating, communicating with, and synchronizing additional processes. 
Sometimes, the additional impact of parallelism may warrant major changes in an 
algorithm when it is decomposed to run in a parallel-processing environment. For 
example, it may be worthwhile to perform a set of calculations on each of the 
processors rather than to pay a penalty to access the results on a single processor. 
Even though some processors may perform some work previously done by another 
processor, the decrease in communication cost may more than offset the redundant 
effort. 
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We define speedup as E1/En, where E1 is the elapsed ("wall-clock") time of 
an algorithm running on one processor and En is the elapsed time of the same algo- 
rithm running on n of the same processors. Efficiency or utilization of an algorithm 
running on n processors is the speedup divided by n. 

Simulations (Imai, Yoshida and Fukumura [25], Imai, Fukumura and 
Yoshida [24], Li and Wah [31-33] .  Lai and Sahni [29], and Mohan [35]) and 
experimental results (Wah and Ma [54,55]) have shown the effects of parallelizing 
branch-and-bound algorithms by expanding several nodes simultaneously. While 
one would expect an n-fold speedup when n processors are used (as compared with 
the speed for one processor), it has been shown that it is possible to experience one 
of three conditions: 

• Detrimental anomaly. A detrimental anomaly occurs when the number of 
iterations for n processors is more than the number of iterations of the 
best serial algorithm. 

• Acceleration, anomaly. This anomaly occurs when the number of iterations 
for n processors is less than 1/n of the number of iterations of the best 
serial algorithm. 

• Deceleration anomaly. A deceleration anomaly occurs when the number 
of iterations for n processors is less than the number of iterations of the 
best serial algorithm, but more than 1/n of the number of iterations of the 
best serial algorithm. 

Note that in the above defintions, all comparisons are made between an algorithm 
on n processors and a best serial algorithm. 

Much of the early research into parallel branch-and-bound algorithms concen- 
trated on depth-first and beadth-first search because of the memory limitations of 
available computers. In a recently published historical note (Pruul, Nemhauser and 
Rushmeier [43]), Pruul showed that using a depth-first approach, the simultaneous 
exploration of nodes results in finding better solutions earlier, which in turn resulted 
in earlier fathoming and a significant reduction of the number of nodes examined. 
Imai, Fukumura and Yoshida [24], Imai, Yoshida and Fukumura [25], E1-Dessouki 
and Huen [13], Finkel and Manber [14], and DeWitt, Finkel and Solomon [11], each 
using depth-first algorithms, showed that if the number of processors was appropriately 
chosen, speedups approached or sometimes exceeded the number of machines used 
(see Wah and Ma [54,55]; see also Wall, Li and Yu [56] for similar testing using 
best-first approaches). 

Mohan [35,36] and Trienekens [52] showed that marked improvements 
could be accomplished by asynchronous rather than synchronous implementations 
due to the ability of each processor to work continuously. See also de Bruin, Rinnooy 
Kan and Trienkens [10] for a related report on a simulation tool for performance 
evaluation of parallel branch-and-bound algorithms. 
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Lai and Sahni [29] and Li and Wah [31,32] studied the likelihood of branch- 
and-bound algorithms exhibiting detrimental, deceleration and acceleration anomalies. 
Li and Wah showed through theoretical analysis and simulation that deceleration 
anomalies were infrequently encountered. Although Lai and Sahni claimed that near- 
linear speedup for parallel branch-and-bound algorithms with best-first search could 
be expected for only a "small" (~< 16) number of processors, Li and Wah showed 
that near-linear speedup may hold for a "large" (1000-2000)number  of processors. 
Li and Wah also showed that a best-first branch-and-bound algorithm with dominance 
tests will never yield detrimental anomalies if (1) the method of selecting the next 
node for expansion is unambiguous, (2) approximations are not allowed, and 
(3) dominance relations exist and are consistent with the node-selection criteria. 
They also showed that acceleration anomalies could occur when (1) either a 
breadth-first or depth-first search was used, (2) some nodes have identical lower 
bounds, (3) the dominance relation is inconsistent with the node-selection functions, 
(4) multiple lists of subproblems are used, or (5) a suboptimal solution is sought. 

We draw the following conclusions from the above research: Breadth-first 
asynchronous approaches to the branch-and-bound method which immediately 
broadcast bounding information to all processors is likely to exhibit acceleration 
anomalies on a large class of integer-programming problems. We have chosen to 
implement a best-node strategy instead of a breadth-first strategy since in our branch- 
and-cut environment, we expect our bounding procedures (both the cutting plane 
and heuristic algorithms) to limit significantly the number of nodes one will need 
to investigate. We have avoided the normal master-worker configuration so as to avoid 
the overhead of an additional processor whose major function it is to coordinate 
the efforts of other processors. Our implementation performs the tasks of node 
selection, bounding and fathoming in parallel, and relies extensively on data exchange 
between the processors to help better define the overall problem. 

The features which distinguish this implementation from other methods are: 

• The use of a local area network and distributed workstations as the model 
for computation. 

• Peer-to-peer communication and control as opposed to a master-worker 
relationship. 

• The use of a best-first approach based upon the value of the "tightened" 
linear-programming relaxation of the problem. 

• Maintenance of candidates in a sorted list available to all processors. When 
a processor has completed a task (either fathoming the node or branching), 
the best candidate on the active-node list is chosen for examination. 

4, A change in the upper bound is communicated to all processors and is 
available to each processor immediately. 

• Entrance to the system by a processor may occur at any time; the algorithm 
is adaptive. 
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• Implementation of a graceful shutdown phase so that all processors know 
when the problem has been solved to optimality. 

• Ability to "pause" a node when it appears that it may not lead to an optimal 
solution and to "resume" processing on it at a later time. This resumption 
of processing may be performed by a processor other than the one that 
"paused" it. 

• Maintenance of a pool of facial cuts from which individual processors 
review and select cuts prior to generating new cuts. Cutting planes generated 
by a processor are added (without duplication) to this pool of cuts so as to 
be accessible to all participating processors. 

• The use of cutting planes based on the facial structure of integer polytopes 
to significantly tighten the lower bound. 

• The use of a heuristic algorithm at each node. If the heuristic finds a new 
best-upper-bound, this information is communicated to all other processors 
immediately, even if there is additional work to perform at the node at which 
the bound was found. 

Only the first eight topics will be addressed below. The algorithmic extensions 
required to implement a pool of  facial cuts and the dramatic improvements that are 
realized will be addressed in Cannon and Hoffman [5] ; for an introduction to the 
concept of  a constraint pool, see Padberg and Rinaldi [42]. 

4. I m p l e m e n t a t i o n  on distributed workstat ions  

We have chosen to implement the extensions to ABCOPT using a collection 
of commercial computer workstations connected by a local area network. Major 
shortcomings of previous parallel-processing approaches to combinatorial optimization 
have been the inability to share data effectively and the inability to efficiently notify 
other processors about the status of  computation. Both drawbacks have been over- 
come by our approach; data is freely shared among processors and all processors are 
notified immediately whenever a new pausing point or upper bound is found. 

The extensions to ABCOPT which were required for distributed processing 
are divided into three major categories: 

• interprocess communication to share critical information, 

• candidate list sharing, and 

• member synchronization to provide for graceful initiation and shutdown. 

Each of these categories will be addressed in this section after the foundation 
for the decision to use a Local Area Network (LAN) architecture is established. A 
description of our implementation will then be presented. 
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4.1. WHY AN LAN ARCHITECTURE? 

One of the major goals of this research was to design and implement a system 
for combinatorial optimization which uses readily available, relatively inexpensive 
technology. To that end, we have chosen an Ethemet LAN architecture as a founda- 
tion because of its increasing commercial acceptance and reasonable price. The claims 
made for an LAN system are similar to those made for multiprocessors with advantages 
typically expressed in terms such as: high-performing, available, and reliable (Ajmone 
Marsan, Balbo and Conte [1], and Gehringer, Siewiorek and SegaU [16]). Moreover, 
LAN systems have the additional advantage of being separable and extremely flexible. 

Because the speed of communication among the processors is substantially 
slower in LANs than in highly-coupled multiprocessors, distributed processing using 
LANs generally can be effective only if: 

* The activity that is to be performed can be decomposed into smaller tasks 
that can be executed in parallel. 

. The tasks can be conveniently allocated to processors so as to minimize 
the system overhead devoted to interprocessor cooperation. 

. The system is designed modularly so that the addition of new elements 
is possible and cost effective. 

An advantage in using LAN systems is the ability to quickly reconfigure the 
system under software control. Because each of the processors is connected to a local 
network, the software layers that define and communicate with all processors may be 
instructed to include, or to ignore, selective processors. For other optimization research 
using LANs, see Schnabel [46], Chang et al. [6], and Finkel and Manber [14]. 

4.2. THE ENVIRONMENT 

4.2.1. Hardware 

Our system is composed of eight Digital Equipment Corporation VAXstation 
2000 systems and one MicroVAX II system, operating not in master-worker relation- 
ship (where a designated processor controls actions of the other processors), but in a 
true peer-to-peer relationship (where processors share the responsibility for coordi- 
nating activities). The MicroVAX II system acts merely as a file server and is called 
the "boot node". The interconnection network is a combination of DECnet (Digital's 
communication protocol operating on Ethernet) and Digital's Local Area VAXcluster 
software. The operating system is VAX/VMS version 4.7. 

4.2.2. Software 

All processors are logically joined together to form a Local Area VAXcluster 
(LAVC). An LAVC is a distributed system made up of computers and their associated 
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storage elements, all linked in a closely coupled arrangement. We will explain the 
LAVC concept briefly to serve as background for understanding our implementation. 
Cannon [4] fully describes the method of  implementation for this work. A complete 
technical description of an LAVC may be found in Kronenberg et al. [28], Duffy [12], 
Fox and Ywoskus [15], and Goldstein [19]. 

An LAVC differs from a more tightly-coupled multiprocessor arrangement 
in several ways. First, the workstations communicate over a network link instead 
of sharing memory. Second, each processor has its own copy of the operating system 
in memory. Third, the members of the cluster may boot up and shut down inde- 
pendently. Finally, the services offered by the VAXcluster are more closely aligned 
with those offered by a traditional single timesharing system than with the capabilities 
offered by traditional networks (e.g. a VAXcluster environment includes common 
batch and print queues, system-wide synchronization, and a common operating 
system). 

When a satellite member is powered on, a copy of  the operating system and 
other necessary software is loaded over Ethemet from the central disks of the boot 
member. Once the sateliite member joins the cluster as a member, all the resources 
and data are as accessible as if they were attached to the satellite system. Paging and 
swapping activity of the satellite node is conducted with local disks. 

The collection of workstations working together to solve a single combinatorial 
problem will be called the System. An individual workstation will be called either 
a member or a processor. 

4.3. INTERPROCESS COMMUNICATION 

One of the shortcomings in other implementations of parallel search procedures 
has been the lack of efficient interprocess communication. In our implementation, 
we have accomplished efficient and effective interprocess communication by using 
the VAX Distributed Lock Manager and Blocking Asynchronous System Traps. While 
the lock manager normally is used to provide transparent, synchronized data access 
by members of an LAVC, we have used it as a means of passing messages between 
members of the system. Blocking asynchronous system traps are almost always used to 
support local buffer caching and have seldom, if ever, been used for interprocess 
communication. Used in conjunction with lock status blocks, we have found it to be 
not only very efficient, but a very effective means of  interprocess communication. The 
critical information that is being shared among processors is the upper bound, ZSTAR, 
and the point at which a node should be paused, TARGET. 

4.3.1. Resources, locks and lock value blocks 

A resource can be any entity within the system (e.g. files, data structures, 
databases, and executable routines). Each resource in a cluster is represented by a 
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unique abstract name that is agreed upon by all the cooperating processes. This name 
is entered into a distributed global namespace which is maintained by the distributed 
lock manager. The lock management services allow processors to associate a name with 
a resource and to request access to that resource. Lock modes enable processes to 
indicate how they want to share access with other processes. 

To use the lock management services, a process must request access to a 
resource (request a lock). There are three required arguments for the request of  a 
new lock: 

• A resource name. The lock management services use the resource name 
to look for other lock requests that use the same name. 

• The lock mode to be associated with the requested lock. The lock mode 
indicates how the process wants to share the resource with other processes. 

• The address o f  a lock status block. The lock status block receives the 
completion status for a lock request and the lock identification. The lock 
identification is used to refer to a lock request once it has been queued. 

The lock management services compare the lock mode of the newly-requested 
lock to the lock modes of other locks with the same resource name. The lock manager 
resolves lock requests in the following manner: (1) If no other process has a lock on 
the resource, the new lock is granted; (2) If  another process has a lock on the resource 
and the mode of the new request is compatible with the existing lock, the new lock 
is granted; and (3) If another process already has a lock on the resource and the mode 
of  the new request is not compatible with the lock mode of  the existing lock, the 
new request is placed in a queue where it waits until the resource becomes available. 

The lock manager allows callers to specify one of  six degrees of  compatibility, 
ranging from no access to exclusive access. Once the lock is granted, the owning 
process can request a lock conversion to change the lock mode. 

Lock conversions allow processes to change the level of  locks. For example, 
a process can maintain a low-level lock on a resource until it wants to limit access 
to the resource. The process can then request a lock conversion to a higher-level 
lock. If  the requested lock mode is compatible with the currently granted locks, 
the conversion request is granted immediately. If the requested lock mode is incom- 
patible with the existing locks in the granted queue, the request is placed on the 
conversion queue. 

When a process no longer needs a lock on a resource, the lock can be dequeued. 
When the last lock on a resource is dequeued, the lock management services delete 
the name of the resource from its data structures. 

We use a lock value block as the primary means for passing critical, time- 
sensitive information to other members of  our system. Used in conjunction with 
Blocking ASTs (described in the next section), we immediately notify other members 
in the system about changes in global information (e.g. the best integer answer, 
number of  idle processors, and node cut-off  point). 
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A lock value block is an optional 16-byte value block that functions as a 
small piece of  global memory which is updated automatically by the operating system. 
The first time a process associates a lock value block with a particular resource, the 
lock management services create a resource lock value block for that resource. The 
resource lock value block is maintained by the lock management services until there 
are no more locks on the resource. 

When a process sets the appropriate flag in a lock (or conversion) request and 
the lock (or conversion) request is granted, the contents of  the resource lock value 
block are written to the process' lock value block. When a process sets the appropriate 
flag on a conversion from specific high-level lock modes to a lower mode, the contents 
of  the process' lock value block are stored in the resource lock value block. 

4.3.2. Blocking asynchronous system traps 

An asynchronous system trap (AST) is a system service (using a combination 
of  hardware and software interrupts) which allows a process to request that it be 
interrupted to perform a particular task when a specific event occurs. When the 
interrupt is received, control is passed to a separate procedure which is executed 
immediately in the context of  the receiver's process. Because execution of the AST 
procedure occurs without respect for the process' point of  execution, it is called 
asynchronous. 

One of the services that the distributed lock manager provides is a notifica- 
tion mechanism whereby a process that has been granted a lock on a resource can be 
notified when mother  process has queued an incompatible lock request. The mechan- 
ism, known as a blocking AST, is at the heart of  our interprocess communication 
implementation. 

In our implementation, all processes establish compatible high-level locks 
with blocking ASTs specified on four distinct resources. Whenever a processor has 
new information to share, it initiates a request for an incompatible lock on the appro- 
priate resource. Because blocking ASTs were specified, each other member will be 
interrupted so that new information can be obtained. 

Each member begins processing by placing a Protected Read (PR)-mode lock, 
with a blocking AST specified, on a desired resource. When a member has a better 
value to share with the other processors, it places a lock conversion request for an 
Exclusive (EX)-mode lock on the resource. Because each member in our system 
has placed its lock specifying that it wants to be notified if another processor has 
an incompatible request (a blocking AST), each member immediately stops what it 
is doing, releases its lock on the resource and requeues a PR-mode lock request on 
the same resource. 

When the EX-mode lock is granted to the member requesting the lock, that 
member supplies the new value to be shared and converts the lock back to a PR mode. 
As soon as the EX-mode lock is converted to a PR-mode lock, all members waiting 
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for a PR-mode lock on that resource are granted the lock along with access to the 
lock value block. As soon as each lock is granted, the lock value block is read and 
the value in the block is available to each processor immediately. (The lock value 
block may be read simultaneously by all members of the system.) 

In the following discussion, the notation LOCK will be used to denote the 
resource, while LOCK will be used to denote the value associated with the lock. 

4.3.3. The ZSTAR lock 

The ZSTAR lock is used to notify processors of a new upper bound. Without 
the immediate sharing of this bound, members could be evaluating nodes long after 
the nodes could have been fathomed. The first member to enter the system places 
an EX-mode lock on ZSTAR, updates the lock value block with its best integer 
answer value, ZSTAR (if none is known, ZSTAR = +~), and converts the lock back 
to a PR mode. From that point on, as each new member enters the system and places 
a PR-mode lock on ZSTAR specifying a blocking AST, ZSTAR is available immediately 
by reading the lock status block. 

When a new best integer answer is found by either the heuristic procedure 
or as a linear-programming solution at some node in the tree, a lock conversion request 
for an EX-mode lock is immediately placed for ZSTAR. Again, because each member 
has been granted a PR-mode lock on ZSTAR, each member is interrupted, immediately 
releases its lock on ZSTAR, and requeues a PR-mode lock request for ZSTAR. When 
the PR-mode lock is granted, the new ZSTAR is found in the lock status block. 

At each point in the original source code where ZSTAR could have an effect 
on the flow of the algorithm, a check has been incorporated to compare the value of 
the most recent linear-programming objective function value with ZSTAR. It should 
be noted that these checks are only to support the distributed processing environment; 
they are unnecessary in the sequential case since a new integer answer can only be 
determined in very specific places. If a member determines that its problem can no 
longer lead to an optimal solution, it will fathom the node immediately. 

4.3.4. The TARGET lock 

We have implemented an approach to suspend the work associated with a node 
if it appears that that node may be going past an optimal solution. The method depends 
on the values of  the system-wide lowest linear-programming objective function (zm,) 
and ZSTAR and is calculated as follows: 

TARGET = ZLp -- (PERC * (ZLp -- ZSTAR)). 

If TARGET falls within (ZSTAR/(1 + BETA) of ZSTAR, then TARGET is set equal 
to ZSTAR. (PERC and BETA are user-supplied values.) 
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The mechanism of TARGET is identical to that of ZSTAR. Each time a 
member selects a new candidate or finds a better integer solution, it determines 
TARGET. If a member finds that its TARGET is now better than the one all the 
members know about, a request is placed to convert the PR-mode lock on TARGET 
to an EX mode. Each member immediately stops working, drops its lock on TARGET, 
queues a PR-mode request for TARGET, then receives TARGET from the lock 
status block when the lock request is granted. TARGET is critical in guiding the search; 
early suspension of unattractive nodes can lead to substantial savings in processing 
time. 

Because TARGET is determined for the system based upon the largest system- 
wide difference between the linear-programming objective function and ZSTAR, 
TARGET must necessarily be dynamic. Any time ZSTAR changes, TARGET can 
change. Any time the member investigating that candidate with the lowest linear- 
programming objective function value disposes of  the node (either by fathoming or 
branching), the value of TARGET may change. In this manner, TARGET is adaptive 
to the problem structure at hand. 

4.4. SHARING DATA THROUGH DISK FILES 

A distinguishing feature of this implementation is the ability for a member 
to obtain a "most promising" candidate (i.e. new node to develop) without waiting 
for any other processors to complete their tasks. By using shared fries, members 
are able to insert candidates into the candidate list and to remove candidates from 
the list independently. 

This task of retrieving and providing new nodes is accomplished by using a 
shared indexed file, called the Candidate List. The files are accessed using the Indexed 
Sequential Access Method (ISAM). Once a record has been accessed by an indexed- 
read request, sequential-read requests may then be used to retrieve records with 
ascending key field values, beginning with the key field value in the record retrieved 
by the initial read request. A record is automatically inserted into a frie (whenever 
a WRITE command is issued) based upon its index value. VAX FORTRAN allows 
a single frie to be shared by a number of processors. 

To avoid resource contention and to allow for system shutdown, specialized 
extensions were implemented. Resource contention occurs when two processes each 
try to access the same resource at the same time. In our case, contention will be 
experienced when two or more processes try to simultaneously access the same record 
in a f'rie. System shutdown considerations include output  file creation, synchronizing 
frie closure, and final reporting. The VAX Record Management System was used to 
accomplish record locking and to diagnose contention. 

When a member wishes to insert candidates into the frie, two write requests 
are initiated. The first request is for the candidate with x i = l ,  the second is for the 
candidate with x i = O. The second of  these two requests is enacted almost immediately 
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after the first because only the sign on the index field is changed (reversed) and the 
record is rewritten to the file. 

Because both candidate records are being written using the same key (the 
value of the last linear-programming objective function), duplicates have been 
explicitly allowed. 

Because we are using a best-first search approach, the Candidate List is accessed 
on the basis of the lowest reference objective function. When a record is read, the 
record is locked automatically by the VAX Record Management Services, preventing 
access to that record by any other process. After a successful read operation, the 
record is deleted from the File. By deleting a candidate record immediately after 
reading it, and by having the record locked while it is being read, we can ensure 
that each member receives a unique subproblem to solve. If an unsuccessful read 
operation occurs, it is for one of two reasons: the requested record is being read by 
another processor or the end of the File has been reached. If the record is being read 
by another processor, the read request is initiated again after a delay of approximately 
0.5 seconds (to allow the other processor enough time to complete the read operation 
and to then delete the record). If the end of the file is reached, indicating that no 
more subproblems are available, the member is placed in hibernation until awakened. 
Hibernation is the act of a member making itself inactive but remaining known to 
the system so that it can be interrupted (e.g. by an AST). 

We note in closing that similar shared files are used to handle constraint 
information. The details of this aspect of the implementation can be found in Cannon 
and Hoffman [5]. 

4,5. MEMBER SYNCHRONIZATION 

Members of the system are synchronized by using two locks: MEMBERS and 
IDLE. This synchronization provides the ability for each member to understand the 
status of the system and to be able to gracefully exit when required. 

Upon startup, each member places a PR-mode lock on MEMBERS. One of 
the available pieces of information about locks is the total number of locks granted 
for a resource. Therefore, the total number of locks on MEMBERS is equivalent to 
the number of processes in the current system. The first member to place a lock on 
MEMBERS is responsible for creating the Candidate List File and the Constraint Pool 
file. Subsequent processes which are granted a lock on MEMBERS do not have any 
"managerial" responsibility. 

The same first member is also responsible for populating the Candidate List 
with entries. The procedure adopted for this testing is to have the first member deter- 
mine five initial variables on which to branch. Using these five variables, a five-level 
search tree is created, immediately providing 32 candidates for the Candidate List. This 
procedure, referred to later as a parallel start, was designed to ensure that sufficient 
nodes were available early in the process. 



T.L. Cannon, K.L. Hoffman, 0-1 programming on distributed workstations 197 

When a member finds that the Candidate List is empty, it will place a PR-mode 
lock on IDLE, specifying a blocking AST. By comparing the number of locks on 
IDLE with the number of locks on MEMBERS, the member will know if processing 
is complete. That is, when the number of locks on both resources is equal, all members 
are idle. If the number of locks on IDLE is less than the number on MEMBERS, the 
member notes that its "idle position" is equal to the number of  locks, and then 
hibernates. Its idle position is used by the member to know when it should again 
begin processing. 

The purpose of hibernation and an idle position is to provide a mechanism 
by which a member may be notified that it should return to being an active member 
of the system. Each time a member places a candidate in the Candidate List, it checks 
to see if it can be granted an immediate lock (i.e. granted without causing any other 
lock to convert) on IDLE. If it is granted an immediate lock, then no other members 
are idle. If it is not granted the lock immediately (an indication of another process 
holding a high-level lock on IDLE), it queues a PW-mode lock request for IDLE, 
followed by an immediate release of the lock. The queuing of a PW-mode lock will 
awaken each hibernating member (because their locks were placed with a blocking 
AST specified). Each awakened member will decrement its idle position by one. The 
member with an idle position of zero will immediately dequeue its lock, select a 
candidate from the Candidate List and resume processing. All other awakened members 
will return to a state -of hibernation, but with an idle position of one less than before 
being awakened. If there was only one lock on IDLE, the resource will disappear 
when the lock is dequeued. However, when the next idle member is granted a lock 
on IDLE, the resource will be created and the idle count will again be equal to one. 

The last member to be granted a lock on IDLE (i.e. when the IDLE count 
equals the MEMBERS count) issues a request for an EX-mode lock on MEMBERS. 
The blocking AST routine associated with MEMBERS initiates the shutdown procedure. 

The shutdown procedure creates a report for the members and releases all 
locks the member holds. Each member produces a report detailing its elapsed time, 
its CPU time, and the number and source of identified duplicate constraints. In addi- 
tion, the member that found the best answer (i.e. the one who held the last lock on 
ZSTAR) reports the final answer. Each member maintains detailed information of 
all its processing on a hard disk file local to that processor. 

4.6. GENERAL COMMENTS ON PARALLEL IMPLEMENTATION 

It should be noted from the above discussion that there is no preconceived 
order for member startup. In fact, any processor may begin, and others may join 
at any time without regard for the history of the other members, thus providing a 
peer-to-peer relationship among processors. 

While in the current implementation we have not provided a means for a 
processor to leave of its own volition (i.e. when the workstation owner wants to begin 
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processing again), we could easily implement a mechanism that provides for notifica- 
tion when the user wants to regain control of his system. All that need be done when 
notification occurs is to have the processor stop its current computation and insert 
the current candidate in the Candidate List at the last linear-programming objective 
function. This termination procedure would mirror that of "pausing" a node for 
TARGET considerations. The user interrupt needed to accomplish this transition 
is estimated to require approximately four seconds. After the user need was serviced, 
the user could again "kick off" the optimizer without any detrimental effects to the 
system. 

5. C o m p u t a t i o n a l  results  

In this section, we will present and discuss our computational results. Through- 
out this discussion, the term Original Method refers to the sequential computer code 
called ABCOFr, while the term Extended Method refers to the modifications made 
to the Original Method to support distributed processing. 

On some of the small problems, the Extended Method was not significantly 
faster than the Original Method due to the relatively small size of the branching 
tree. On the larger problems, however, significant reduction in elapsed time was 
achieved by using the Extended Method. The Constraint Pool was responsible for a 
marked "improvement in elapsed time on most of the problems when compared with 
the Original Method. Because the Smaller problems were solved so quickly, gains 
due to the Constraint Pool were not realized. Another significant result is the fact 
that the Extended Method running on a single processor exhibited a pronounced 
improvement in run-time performance on large problems when compared with the 
Original Method. 

The test bed (hereafter called the CJP test set) for the Extended Method 
contains seven of the ten problems described in Crowder, Johnson and Padberg [7] 
and is presented in table 1. (The other three problems were not available to us.) The 
test set is a collection of industry-formulated problems, three of which arose as 
planning applications (Johnson, Kostreva and Suhl [26]). Of the seven problems 
presented, only six are applicable to distributed processing; Problem P0548 is 
not because the Original Method solves the problem to optimality without generating 
a single branching node. In all tables below, ABCOPT denotes the performance of 
ABCOFI'. 

For the purpose of  our work, the definitions of anomalies presented in section 3 
will be changed slightly to better describe our environment. A detrimental anomaly 
occurs when En > El, where En denotes elapsed time when n processors are used. 
Another characteristic indicating a detrimental anomaly is a speedup of less than one. 
A deceleration anomaly occurs when El/n < En < El.  A speedup between one and n 
indicates a deceleration anomaly. An acceleration anomaly occurs when En < E1/n. 
A speedup in excess of n characterizes an acceleration anomaly and is also called 



T.L. Cannon, K.L. Hoffman, 04 programming on distributed workstations 199 

superlinear speedup. The expected behavior is that n processors will take E1/n to 
complete (linear speedup). 

Table 1 

CJP Test Set with Performance Times for the Original and Extended Methods 

Original Method Extended Method 

Name Variables Rows CJP N o d e s  Elapsed Nodes Elapsed 
(rain) (rain) 

P0033 33 16 113 8 1.53 39 1.60 
P0040 40 24 11 6 0.57 32 1.03 
P0201 201 134 1116 346 462.36 336 45.07 
P0282 282 242 1862 8 12.86 36 5.77 
P0291 291 253 87 4 1 D7 32 1.55 
P2756 2756 756 2392 10 648.85 137 154.58 

CJP: The number of nodes as developed by Crowder, Johnson and Padberg after 
preprocessing and embedded constraint generation. Once no additional cuts 
could be generated, the augmented problem was passed to MPSX/MIP370 
for re-solving. 

Orig. Method: The Original Method running on one VAXstation 2000. 
Ext. Method: The Extended Method running on eight VAXstation 2000s. 

5.1. RUN-TIME PERFORMANCE 

We have realized a significant reduction in solution times for large problems 
by using the Extended Method. Table 1 compares the solution times for the Original 
Method with those of the Extended Method running on eight processors. 

All timing measurements were made after the top of  the search tree had been 
determined. Unless specifically noted otherwise, all references to performance times 
relate to elapsed ("wall-clock") time. We have chosen elapsed time as a performance 
measure because we are interested in the amount of  time taken to report the optimal 
solution to the user. It should be remembered that the computational model is a 
number of  networked single-user workstations dedicated to solving these problems. 
Under these conditions, elapsed time is a good measurement of  performance. 

It should be noted that a change was made to the Original Method to facilitate 
a parallel-processing environment which involves the generation of nodes on the 
initial search tree. In the Original Method, only one new variable is generated to start 
the search tree. In the Extended Method, 32 nodes are generated in order to provide 

ample nodes to keep all processors busy. To generate 32 nodes, five vandals are selected 
by the branching procedure described in section 2 and a five-level balanced binary tree 
is created. This method was followed in all cases to provide a common benchmark. 



200 T.L. Cannon, K.L. Hoffman, 0~1 programming on distributed workstations 

Empirical observations indicate that generally four times the number of  processors is 
an adequate starting point for a distributed-processing environment. A comparison of 
the number of nodes on the search tree is presented in table 2. 

Table 2 

Number of nodes on the search tree 

Number of processors 

Name 1 2 3 4 5 6 7 8 ABCOPT 

P0033 39 37 36 37 39 34 36 39 8 
P0040 32 32 32 32 32 32 32 32 6 
P0201 307 310 316 328 320 345 349 336 346 
P0282 36 36 36 36 36 36 36 36 12 
P0291 32 32 32 32 32 32 32 32 4 
P2756 93 90 101 89 111 115 117 137 16 

The elapsed time, CPU time, speedup, and efficiency of the test set may be 
found in tables 3 through 6, respectively. Figures 2 through 10 present the same 
findings graphically. Problem P0201 has been solved with linear and, in some cases, 
superlinear speedup. (An efficiency range of  0.99 to 1.01 is considered linear speedup 
due to the inaccuracies of run-time measurements imposed by the extensive time 
sampling and reporting required for the testing phases of this research. Because the 
elapsed time is defined as the time between the starting of the first processor and the 
completion of the processor which found the best integer answer, the actual total 
system run-time may differ slightly from the reported time.) Problem P0201 is solved 
using the Extended Method and eight processors in 0.75 hours versus 7.7 hours for the 
Original Method. Using the Extended Method and eight processors, Problem P2756 
is solved in 2.6 hours, while the Original Method requires 10.8 hours for solution. 

In contrast to Problem P0201, however, Problem P2756 takes more time to 
solve using the Extended Method running on one processor and using the "parallel 
start". These differences will be discussed below. For problems which solve quickly 
(under five minutes), detrimental anomalies were both expected and observed. 
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Table 3 

Elapsed Time of the CJP Test Set (minutes on VAXstation 2000) 

Name ABCOPT 

Number of processors in the system 

1 2 3 4 5 6 7 8 ABCOPT 

P0033 
P0040 
P0201 
P0282 
P0291 
P2756 

1-53 1.92 1.23 1.30 1.12 1 _52 1.47 
0.57 0.81 0.63 0.62 0.68 0.83 0.94 

462.36 370.97 184.97 123.60 96.58 75.28 61.86 
12.86 6.40 5.17 5.43 5.51 6.75 6.19 

1.07 1.57 1.14 1.07 1.05 1.12 1.19 
648.85 872_58 365.54 290_58 185.16 191.87 171.54 

1.53 1.60 1.53 
1.14 1.03 0.57 

52.00 45.07 462.36 
6D1 5.77 12.86 
1.26 1.55 1.07 

154.36 154.58 648.85 

Table 4 

Total CPU Time of the CJP Test Set (minutes on VAXstation 2000) 

Number of processors in the system 

Name ABCOPT 1 2 3 4 5 6 7 8 ABCOPT 

P0033 1.05 
P0040 0.47 
P0201 453.31 
P0282 12.11 
P0291 0.94 
P2756 631.63 

1.35 1.32 0.93 1.63 
0.38 0.41 0.47 0.53 

318.49 343.91 341.09 349.07 
5.69 5.87 6.67 6.83 
1.05 1.28 1 _54 1.91 

844.41 683.90 808.80 648.66 

2.19 i .76 1.91 2.31 1.05 
0.61 0.67 0.74 0.80 0.47 

336.46 330.44 321.71 313.15 453.31 
8.13 7.82 7.78 7.94 12.11 
2.26 2.48 2.78 2.81 0.94 

695.47 762.91 937.02 1077.01 631.63 
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Table 5 

Speedup of the CJP Test Set 

Number of processors in the system 

Name 2 3 4 5 6 7 8 

P0033 1 56 1.48 1.71 1.26 1.31 1.26 1.20 
P0040 1.29 1.31 1.19 0.98 0.86 0.71 0.79 
P0201 2.01 3.00 3.84 4.93 6.00 7.14 8.23 
P0282 1.24 1.18 1.16 0.95 1.04 1.07 0.90 
P0291 1.38 1.47 1.50 1.40 1.32 1.25 1.04 
P2756 2.39 3.00 4.71 4.55 5.09 5.65 5.65 

Table 6 

Efficiency of  the CJP Test Set 

Number of processors in the system 

Name 2 3 4 5 6 7 8 

P0033 0.78 0.49 0.43 0.25 0.22 0.18 0.15 
PO040 0.64 0.44 0.30 0.20 0.14 0.10 0.10 
P0201 1.00 1.00 0.96 0.99 1.00 1.02 1.03 
P0282 0.62 0.39 0.29 0.19 0.17 0.15 0.11 
P0291 0.69 0.49 0.37 0.28 0.22 0.18 0.13 
P2756 1.19 1.00 1.18 0.91 0.85 0.81 0.71 
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5.2. ANOMALIES 

Problems P0201 and P2756 have been solved much faster with the Extended 
Method than with the Original Method (with the exception of  solving P2756 using a 
single processor in the Extended Method). In a distributed-processing environment, 
solutions to these problems were generally achieved with linear speedup while in a 
few cases, superlinear speedup was achieved. This performance is attributed to three 
factors: the effectiveness of the Constraint Pool, the large number of  branching nodes, 
and the effectiveness of the heuristic procedures for obtaining bounds. 

A large number of branching nodes (see table 2) means that there are always 
ample nodes from which to choose. Node availability is an advantage in that it supports 
the simultaneous investigation of several distinct paths which can lead to quicker 
integer solutions (either by direct solution or by the heuristic procedure). The mere 
presence of nodes from which to choose does not necessarily lead to any speedup. 
The ability to find bounds on the solution value heavily affects the performance of 
the Extended Method. If a good upper bound (in the case of a minimization problem) 
is not available, then the processors may be working well past t he  optimal point 
without knowing it. This is precisely the case with Problem P2756, which has a large 
number of nodes yet loses efficiency as processors are added. Problem 0201, on the 
other hand, does have good bounds established for it quickly. Thus, the combination 
of an abundance of nodes from which to choose coupled with the information 
necessary to decide that a path is non-optimal aUows Problem I)0201 to be solved 
very efficiently while demonstrating acceleration anomalies. 
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Problem P2756, like Problem P0201, benefits from substantial run-time 
improvements in a distributed environment when compared with the Original Method, 
The Extended Method running on one processor takes longer than the Original Method, 
but when as few as two processors are used, the elapsed times are less than those 
obtained with the Original Method. We note that linear and superlinear speedup was 
achieved for the 2-, 3-, and 4.processor configurations. 

The characteristics of Problem P2756 are quite different from those of the 
other six problems. On P2756 we observe linear or better speedups when four or 
fewer processors are used, but when more processors are added we observe a decelera- 
tion in the speedup. In solving Problem P2756, a great deal of time is spent in the 
linear-programming solver and relatively little time branching. In addition, the 
heuristic procedures are not as effective in supplying an upper bound on this problem 
as they have been on others. Finally, the optimal solution is found high in the tree 
with an answer very close to the initial linear-programming solution. The combination 
of these characteristics caused the Extended Method to not achieve linear speedup 
in some cases. 

The parallel implementation of the Extended Method relies on a branching 
strategy to be effective. That is, in the absence of a branching tree, the effects of 
parallelism in the Extended Method are extinguished. (It should be noted that the 
improvements of the Extended Method due to the Constraint Pool still remain and 
are significant.) Because the solution of Problem P2756 is achieved near the top of 
the tree and because of the startup procedures of the Extended Method, all 32 initial 
nodes must be evaluated before continuing with an informed search. In all other 
cases, this approach has not been detrimental because the linear-programming solution 
times were very short (the next largest order of magnitude is Problem P0201, with 
two to four minutes between branching nodes). For Problem P2756 though, with the 
time between branches on the order of 20 to 30 minutes, the effect of the additional 
work imposed by the Extended Method startup procedures becomes quite pronounced. 
As can be seen in table 3 and fig. 7, total elapsed time decreases rapidly with the 
addition of new processors. One can also see that the Extended Method with a 1-node 
start solved the problem to optimality in one fourth the time (see table 7). 

On the other problems, the heuristic procedures have worked very well in 
providing an early integer answer that was near the optimal integer answer. On Prob- 
lem P2756, that has not happened. Without a good upper bound on the problem, 
processors are devoting much effort to solving subproblems that later are shown to 
be past the optimal answer. 

The third reason that the effectiveness of the Extended Method begins to 
diminish after the fourth processor in Problem P2756 is that the solution is found 
very close to the initial linear-programming relaxation of the problem. The combina- 
tion of the length of time taken within a node (20 to 30 minutes between branches) 
and the absence of a good upper bound allows processors to work for relatively long 
periods of time on non-optimal paths before fathoming them. 
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Table 7 

The effect of a 32-node start versus a 1-node start on solution times 
(VAXstation 2000 processors in minutes) 

Problem 
Extended Method Extended Method Minutes 

32-node start 1-node start (shorter) 
longer 

P0033 1.9 1.6 (0.3) 
P0040 0.8 0.6 (0.2) 
P0201 371.0 395.2 24.2 
P0282 6.4 14.8 8.4 
P0291 1.6 1.3 (0.3) 
P2756 872.6 247.3 (625.3) 

Extended Method: The Extended Method running on one processor using either a 
32-node start or a single-node start. Reported time includes overhead associated 
with establishing a distributed-processing environment even though there is no 
parallelism used. 

For the four quickly-solved problems (P0033, P0040, P0282 and P0291), 
detrimental and deceleration anomalies were both expected and observed. Elapsed 
times for these problems are presented graphically in figs. 2, 3, 5 and 6, respectively. 
On each of these problems, "overhead" time is spent initializing data structures, 
synchronizing for distributed processing, collecting performance data, and preparing 
final reports. For a problem which is solved very quickly, the overhead time alone 
can exceed the solution time. For Problems P0033, P0040 and P0291, each of  which 
is solved in under two minutes, the solution time for one processor is worse than the 
Original Method. As more processors are added to the system, the solution time 
decreases until the fourth or fifth processor is added, at which point the solution 
time begins increasing. We note, however, that the Extended Method solution time 
occasionally drops below that of  the Original Method. We conclude, therefore, that 
the detrimental anomaly is due to overhead time. 

The solution of Problem P0282 follows the same pattern of  first decreasing, 
then increasing, solution times, as do the other quickly-solved problems. In contrast 
to the other three problems, Problem P0282 using the Extended Method with only 
one processor is solved in one-half the time taken by the Original Method. This 
behavior is attributed to two factors: the effectiveness of  the Constraint Pool and the 
start-up procedure of  the Extended Method. 

The start-up procedure of  the Extended Method helps to solve Problem P0282 
more quickly. Because 32 nodes are generated immediately, the solution space is 
more restricted from the beginning. This additional restriction of  variables leads to 
faster fathoming of  non-optimal branches. This conclusion is further supported by 
noting that when Problem P0282 was solved by the Extended Method without the 
32-node start, the elapsed time was 14.8 minutes compared with 12.9 minutes for 
the Original Method (see table 7). 
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5.3. EFFECT OF A GOOD UPPER BOUND 

The branch-and-cut algorithm is a "bounding" procedure whereby one 
iteratively tightens the upper and lower bounds until both bounds are equal. We 
therefore believe that if one is provided with a good upper bound, the amount of  
effort required to find and prove optimality will be lessened. To test how our parallel 
implementation might be affected by a good upper bound, we provided the system 
with an artificial ZSTAR that was slightly higher (1.5 units higher) than the true 
optimal solution. We chose to have it slightly higher than the true optimal solution 
so that the system would find and verify the optimal solution. Table 8 shows that 
computation time was reduced substantially when the system was provided with a 
tight bound. We conclude that the ability to determine good upper bounds is critical 
to achieving substantial gains in the run-time performance. Further, we believe that if 
heuristic procedures are employed to determine those upper bounds, then the bounds 
can be provided earlier in the solution process, leading to a substantially altered 
flow of the overall procedure. 

Table 8 

The effect of a good upper bound 

Elapsed time of Elapsed time of 
Extended Method Extended Method 

Problem (min)* with a very good % 
upper bound Reduction 

(min)* 

P0201 45.07 30.44 32.5 
P2756 154.58 102.54 33.7 

*Problems were solved using eight VAXstation 2000s. 

Another reason for providing the system with a good upper bound was to 
test if having such a tight bound might force I/O bottlenecks. A ZSTAR that  is close 
to the optimal solution causes branches to be fathomed more quickly. Each time a 
branch is fathomed, the Candidate List must be accessed by the processor to deter- 
mine the next best branch. The Constraint Pool is then accessed to determine whether 
cuts in the Pool violate the linear-programming solution associated with the new node. 
We thought that this disk activity, working across an Ethernet network, might lead to 
increased I/O and possible bottlenecks. The ratio I/O to total time did not increase 
substantially;no bottlenecks occurred and total computation time declined dramatically. 
The I/O considerations will be discussed in the next section. 
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5.4. INPUT/OUTPUT CONSIDERATIONS 

A common shortcoming of previous attempts to implement a search strategy 
in a distributed-processing environment has been a bottleneck in interprocess com- 
munication. In the Extended Method, interprocess communication takes two forms: 
notification of changes in the problem (ZSTAR and TARGET) and sharing of data 
(a single, common Candidate List and Constraint Pool). Communication bottlenecking 
was not observed for either form within the Extended Method. 

The notification of changes in ZSTAR and TARGET occurs very quickly. We 
did not conduct any measurements of  resource locking for the test set for two reasons. 
First, generally fewer than five intermediate integer answers are found before the 
optimal solution is determined, while TARGET changes are on the order of  20 per 
run. Because our elapsed times are relatively long, we conclude that the small amount 
of notification would not substantively alter the elapsed time. The second reason 
that we did not measure the locking speed is that Snaman and Thiel [48] report 
that in a Local Area VAXcluster, a total of  8.1 milliseconds (elapsed) is taken to 
enqueue and dequeue a lock. Further, they report that 7.8 milliseconds (elapsed) 
are required for a lock conversion (up and down). In our several hundred runs of 
these problems, we have been given no reason to dispute the findings of Snaman 
and Thiel. 

Thus, if I/O bottlenecks were to occur, they would occur in the constant 
accessing of the Constraint Pool and the Candidate List. Extensive measurements 
were taken to determine exactly how much time was being spent in accessing these 
fries. We measured elapsed time taken to access a record when reading from the 
disk file and the amount of  time taken to insert a record when writing to the disk 
file. As shown in tables 9 and 10, I/O time accounts for only a small portion of the 
elapsed time. (On P2756, where as many as 95,341 constraints were read and 938 
distinct constraints were written, I/O time as a percent of  elapsed time was never 
more than 5%.) 

It should be remembered that disk fries were implemented solely to support 
a distributed-processing environment. When the Constraint Pool is adopted for use in a 
sequential environment, or when the Extended Method is adopted for a tightly-coupled 
parallel-processing environment, disk fries would be discarded and in-core computer 
memory used instead. 

5.5. EFFECT OF CHANGING TARGET 

The determination of when to pause a node (the TARGET value) has a pro- 
nounced effect on run-time performance. Remember that T A R G E T  is calculated 
as follows: 

T A R G E T  = zLp - (PERC * ( zz2  - Z S T A R ) ) .  
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Table 9 

Input/output time analysis for Problem P0201 

~; elapsed 
Constraints Candidates ~ of I/O time I/O as % Run-time 

Members (min) (min) of elapsed (min) 
Read Wrote Read Wrote 

57 375 
42 479 
46 708 
61 031 
58 832 
55 169 
60 559 
60 799 

207 307 390 14.4 371.0 3.87 371.0 
202 310 392 17.3 369.8 4.68 185.0 
203 315 396 20.0 370.4 5.41 123.6 
253 325 406 28.9 389.3 7.42 96.6 
224 317 392 35.4 576.3 6.13 75.3 
201 340 413 27.4 369.7 7.40 61.9 
215 345 414 30.0 362.1 8.29 52.0 
197 322 392 32.0 358.1 8.94 45.1 

Table 10 

Input/output time analysis for Problem P2756 

Memberg 
Constraints 

elapsed 
Candidates ~ of I/O time I/O as % Run-time 

(min) (min) of elapsed (min) 
Read Wrote Read Wrote 

1 44,296 678 93 108 15.8 872.6 
2 50,203 801 90 113 25.6 730.8 
3 70,804 849 101 130 23.6 870.4 
4 50,921 688 89 103 27.6 739.8 
5 67~40 753 111 123 33.6 766.8 
6 66~11 835 t04 122 38.6 1,027.0 
7 72,535 751 117 124 44.9 1,076.0 
8 95,341 938 137 161 61.4 1,230.1 

1.81 
3.51 
2.71 
3.73 
4.38 
3.76 
4.17 
4.99 

872.6 
365.5 
290.6 
181.1 
191.9 
171.5 
154.4 
154.6 

Table 11 

The effect of TARGET on elapsed time for Problem P2756 

Elapsed time 
PERC BETA (min) 

0.10 0.002 872 -58 
0.20 0.002 997.00 
0.30 0.002 1630.18 
0.50 0.002 1859.00 
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If TARGET falls within (ZSTAR/(1 + BETA)) of ZSTAR, then TARGET is set equal 
to ZSTAR. The effect of variations in the user-supplied parameters BETA and PERC 
for Problem P2756 is presented in table 11. 

Because progress within a node is so slow in Problem P2756, and because 
the gap is so large, we want to pause nodes early in the process. Therefore, for Prob- 
lem P2756, BETA has been set to 0.002 and PERC has been set to 0.10. In contrast, 
Problem P0201 (characterized by a shorter time within a node and an optimal solu- 
tion far from the initial linear-programming solution) runs with BETA equal to 0.02 
and PERC equal to the default of 0.80. 

Future research will address the appropriate settings of these values and the 
dynamic changing of BETA and PERC under software control. 

6. Conc lus ions  and  f u t u r e  research 

We have found that large-scale zero-one integer programming problems can 
be solved quickly by using a distributed-processing approach. On problems character- 
ized by a large number of branching nodes, linear speedup, and sometimes superlinear 
speedup, can be achieved. On problems which are solved very quickly, deceleration 
and detrimental anomalies were both expected and observed. 

A common criticism of distributed processing on local area networks is the 
bottleneck caused by I/O functions. We have found no I/O bottlenecks resulting 
from our testing. We have used shared, indexed files as a means of passing data between 
processors. Extensive measurements have been taken on the two largest problems 
(201 variables/134 constraints and 2756 variables/756 constraints) and show that 
total disk-file related I/O accounts for an average of approximately 5% of the total 
elapsed time. 

It should be noted, however, that traditional approaches to solving these 
problems in a parallel.processing environment rely heavily on branching, which leads 
to an increased level of interprocess communication. Because the branch-and-cut 
method relies on branching strictly as a last resort, interprocess communication for 
the purpose of altering bounding information, or for choosing nodes, is reduced 
significantly. 

The minimal impact of I/O activity coupled with the relatively low require- 
ment for interprocess communication allows us to conclude that this implementation 
will work for much larger zero-one linear programming problems within a branch-and- 
cut framework. As larger problems are obtained, interprocess communication and data 
sharing procedures may be refined as necessary. 

During the progress of this research, a number of topics were identified as 
either natural extensions of this work or as areas that may provide insight into the 
solution of this class of problems. The topics are: 
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Investigate the use o f  sensitivity analysis to establish a better bound for a branching 
node than the linear-programming relaxation o f  its parent. Currently, when a 
decision is made to branch on a variable, two records are inserted in the Candidate 
List, using the last linear-programming objective function obtained as the record 
key. Since effort within a node in a branch-and-cut solver includes routine solving 
of multiple linear programs, constraint generation, logical fixing, and heuristics, 
it may be worthwhile to solve the initial linear program associated with the new 
node (i.e. perform all of the work normally done in a branch-and-bound code for 
that node) in order to return a more accurate bound for each node, thereby 
ensuring true best-first ordering (i.e. making a distinctiorr between the "up" and the 
"down" branch) and hastening fathoming. 

Investigate the feasibility o f  using an idle machine to help an active processor. There 
are occasions in the Extended Method when processors are idle. Future research 
will investigate the feasibility of using idle processors to assist active processors 
in one of three ways: by having an active processor produce a branching variable 
(two candidates inserted in the Candidate List) whenever a processor is idle; by 
having an idle processor employ alternative heuristic approaches to achieve a better 
upper bound; and by having an active processor decompose its problem to allow 
idle processors to assist it within a node. 

Implement the ability for a user to quickly regain control o f  his workstation without 
affecting the integrity o f  the solution. The Extended Method has been designed 
to allow a processor to enter the system at any point in the solution. The ability 
for a processor to voluntarily exit has not been provided and will be researched 
further. We feel that we can provide a user-activated interrupt mechanism which 
will allow the user to signal when the workstation is needed. That interrupt will 
cause the processor to immediately return the current candidate to the Candidate 
List at the latest linear-programming objective function. The workstation can then 
be returned to the user. It should be noted that this feature is not required for 
VAXstation 2000 workstations since they can support multi-user processing. 
The feature is highly desirable though, because of the compute-intensive nature 
of these problems and because most individual workstation applications are 
compute-intensive as well. The contention between the Extended Method and the 
user's application will cause each to perform poorly. 

Much research on improving current techniques for solving combinatorial 
optimization problems by using parallel processing is still needed. We will continue 
to investigate the solution of these problems in both distributed- and shared-memory 
environments. One of the limiting factors in our research is the lack of available large, 
real, non-proprietary combinatorial optimization problems. Perhaps the ability to 
solve large problems will encourage the formulation and distribution of increasingly 
larger problems. 
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